运筹学08整数规划

合集下载

《运筹学》之整数规划

《运筹学》之整数规划


Bn

X1n

X2n
……

Xnn
指派问题:分配要求
分配 B1 B2 … Bn 工作数
A1
X11
X12
… X1n
∑X1j
A2
X21
X22
… X2n
∑X2j



……

An 人数 要求
Xn1 ∑Xi1 1
Xn2 ∑Xi2 1
… Xnn … ∑Xin …1
∑Xnj
要求 1 1
… 1
指派问题:模型
n n
X1 1
P1:(1,9/10 X2 2 X2 3 P12: (0,3) Z=9
原问题的最优解(1,2) Z=10。
指派问题
设有n 个人A1, A2, …An,要分派去做n件事B1, B2… Bn,要求每一件事都 必须有一个人去做,而 且不同的事由不同的人去做.已知每个人Ai做每 件事Bj的效率(如劳动工时或成本,或创造的价值 等)为Cij,问应如何进行指派(哪个人做哪件事),才 能使 工作效益最好(如工时最少,或成本最低,或 创造的价值最大)?

19 23 22 18

26 17 16 19

19 21 23 17
指派问题:思考问题
1、人数比工作数多怎么处理? 2、人数比工作数少,模型会怎
样变化? 3、计算机求解方法?
特殊约束的处理
➢互斥约束 ➢矛盾约束 在建立数学模型时,有时会遇到相 互矛盾的约束,模型只要求其中的 一个约束起作用。
12 8
x5
6 相机
2 4
x6
7 设备
4 10
x7

运筹学 整数规划

运筹学  整数规划

该问题的图解如下所示,
x2 4x1+40x2=140
(2.44,3.26)
2x1+3x2=14.66
3
2 (4,2)
1 2x1+3x2=14
0
1
2
3
4
x1
2x1+3x2=6
性质:
任何求最大目标函数值的纯整数规 划或混合整数规划的最大目标函数值小 于或等于相应的线性规划的最大目标函 数值;
任何求最小目标函数值的纯整数规 划或混合整数规划的最小目标函数值大 于或等于相应的线性规划的最小目标函 数值。
L2 : max z 3x1 2x2 2x1 3x2 14
s.t. x1 0.5x2 4.5 x2 3 x1 0
求得L1的最优解为(3.5,2),z=14.5。L2 的最优解为(2.5,3),z=13.5。均非原问题的
最优解,选取边界较大的子问题L1继续分枝。
L11 : max z 3x1 2x2
试确定集装箱中托运甲、乙货物的件数,使托运利润最大。
例2.某公司拟用集装箱托运甲、乙两种货物, 这两种货物每件的体积、重量,可获利润以及托 运所受限制入下表所示。甲种货物至多托运4件, 问两种货物各托运多少件,可使获得利润最大。
货物
甲 乙 托运限制
每件体积 (立方英尺)
195 273 1365
每件重量 (百千克)
如果所有子问题的最优解均非原问题的可行 解,则选取其边界值最大(求极大时)或最小 (求极小时)的子问题进一步再细分成子问题求 解。
本例中L0的最优解均不是整数,从中任选一 个,设选x2进行分枝,分成两个子问题L1和L2:
L1 : max z 3x1 2x2 2x1 3x2 14

管理运筹学-整数规划

管理运筹学-整数规划

§3整数规划的应用(5)
五、投资问题 例8.某公司在今后五年内考虑给以下的项目投资。已知: 项目A:从第一年到第四年每年年初需要投资,并于次年末回收本利115%,但要求第一年投资最低金额 为4万元,第二、三、四年不限; 项目B:第三年初需要投资,到第五年未能回收本利128%,但规定最低投资金额为3万元,最高金额为5 万元; 项目 C:第二年初需要投资,到第五年未能回收本利140%,但规定其投资额或为2万元或为4万元或为6 万元或为8万元。 项目 D:五年内每年初可购买公债,于当年末归还,并加利息6%,此项投资金额不限。 该部门现有资金10万元,问它应如何确定给这些项目的每年投资额,使到第五年末拥有的资金本利总额 为最大? 解:1) 设xiA、xiB、xiC、xiD ( i =1,2,3,4,5)分别表示第 i 年年初给项目A,B,C,D的投资额; 设yiA, yiB,是0—1变量,并规定取 1 时分别表示第 i 年给A、B投资,否则取 0( i = 1, 2, 3, 4, 5)。 设yiC 是非负整数变量,并规定:2年投资C项目8万元时,取值为4; 2年投资C项目6万元时,取值为3; 2年投资C项目4万元时,取值为2; 2年投资C项目2万元时,取值为1; 2年不投资C项目时, 取值为0; 这样我们建立如下的决策变量: 第1年 第2年 第3年 第4年 第5年
解:设:0--1变量 xi = 1 (Ai 点被选用)或 0 (Ai 点没被选用)。 这样我们可建立如下的数学模型: Max z =36x1+40x2+50x3+22x4+20x5+30x6+25x7+48x8+58x9+61x10 s.t. 100x1+120x2+150x3+80x4+70x5+90x6+80x7+140x8+160x9+180x10 ≤ 720 x1 + x2 + x3 ≤ 2 x4 + x5 ≥ 1 x6 + x7 ≥ 1 x8 + x9 + x10 ≥ 2 xj ≥ 0 xj 为0--1变量,i = 1,2,3,……,10

运筹学答案_第_8_章__整数规划

运筹学答案_第_8_章__整数规划

3 3
*=1,
或 x11 *=0,x1 *=1,x1 *=0,x14 *=0, x 2 3 x 34 *=0, x
41 21
*=0,x 2 *=0,x 2 *=0,x 2 *=1,x 3 *=0, 2 3 4 1 x
32
*=0, x
3 3
*=1,
*=1,x 42 *=0, x
4 3
*=0,x 44 *=0,z*=71
b.该目标函数的数学模型为: minz=100y1+300y2 +200y3 +7x1+2x2 +5x3 s.t. x1+x2 +x3 =2000, 0.5x1+1.8x2 +1.0x3 ≤ 2500, x1 ≤ 800, x2 ≤ 1200, x3 ≤ 1400, x ≤ yM,
1 1
x2 ≤ y2M, x3 ≤ y3M , x1,x2,x3 ≥ 0,且为整数,y1,y2,y3 为 0-1 变量。 目标函数最优解为 : x1*=0,x2*=625,x3*=1375,y1=0,y 2 =1,y3=1,z*=8625
1, 当 第 i 项 工 程 被 选 定 时, xi = 0,当第 i 项工程没被选定时。 根据给定条件,使三年后总收入最大的目标函数的数学模型为: maxz = 20x 1 + 40x2 + 20x3 +15x 4 + 30x 5 s.t. 5x +4x +3x +7x +8x ≤ 25,
1 2 3 4 5
max z=7x1+9x2 +3x3 -x1 +3x2 +x3 ≤ 7, 7x1+x2 +x3 ≤ 38, x1,x2,x3 ≥ 0,且 x1 为整数,x3 为 0-1 变量。

管理运筹学讲义:整数规划

管理运筹学讲义:整数规划
3
福建师范大学经济学院
第一节
• 步骤:
整数规划问题
二、 整数规划的图解法
在线性规划的可行域内列出所有决策变量可能取的整数值, 求出这些变量所有可行的整数解, 比较它们相应的目标函数值,最优的目标函数值所对应的 解就是整数规划的最优解。 x2
• 实用性:
只有两个决策变量, 可行的整数解较少。
x2
5
4
3 2 1

• • •
1
• • •
2
x2=3
• •
3

4
5x1 +7 x2 =35 2x1 + x2 =9
x2 =2
x1
10
福建师范大学经济学院
第二节
分枝定界法
• 求解相应的线性规划的最优解
问题4相应的线性规划的最优解: x1=3,x2 =2,Z4=28 问题5相应的线性规划的最优解:x1=14/5,x2 =3,Z5=159/5
11
福建师范大学经济学院
第二节
问题6:maxZ= 6x1 +5 x2 2x1 + x2 ≤9 5x1 +7 x2 ≤35 x1≤3 x2 ≥3 x1≤2 x1, x2 ≥0 x1, x2取整数
分枝定界法
问题7: maxZ= 6x1 +5 x2 2x1 + x2 ≤9 5x1 +7 x2 ≤35 x1 ≤3 x2 ≥3 x1 ≥ 3 x1, x2 ≥0 x1, x2取整数
第6章
整数规划
• 线性规划的决策变量取值可以是任意非负实数,但许多
实际问题中,只有当决策变量的取值为整数时才有意义。
例如,产品的件数、机器的台数、装货的车数、完成工作的人 数等,分数或小数解显然是不合理的。

运筹学整数规划

运筹学整数规划

实验报告课程名称:___ 运筹学 ____ 项目名称:整数规划问题_ 姓名:__专业:、班级:1班学号:同组成员:_ __1注:1、实验准备部分包括实验环境准备和实验所需知识点准备。

2、若是单人单组实验,同组成员填无。

例4.5设某部队为了完成某项特殊任务,需要昼夜24小时不间断值班,但每天不同时段所需要的人数不同,具体情况如表4-4所示。

假设值班人员分别在各时间段开时上班,并连续工作8h。

现在的问题是该部队要完成这项任务至少需要配备多少名班人员?解:根据题意,假设用i x(i=1,2,3,4,5,6)分别表示第i个班次开始上班的人数,每个人都要连续值班8h,于是根据问题的要求可归结为如下的整数规划模型:目标函数:iixz61min=∑=约束条件:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=≥)且为整数(6...1,0x30>=x6+x520>=x5+x450>=x4+x360>=x3+x270>=x2+x160>=x6+x1iimodel:sets:num/1,2,3,4,5,6/:b,x;endsetsdata:b=60,70,60,50,20,30;enddata[obj]min=@sum(num(i):x(i));x(1)+x(6)>=60;x(1)+x(2)>=70;x(2)+x(3)>=60;x(3)+x(4)>=50;2注:实验过程记录要包含实验目的、实验原理、实验步骤,页码不够可自行添加。

解:目标函数:y3*2000-y2*2000-y1*5000-x3*200)-(300+x2*30)-(40+x1*280)-(400=z max约束条件:⎪⎪⎩⎪⎪⎨⎧y3*300<=x3*2y2*300<=x2*0.5y1*300<=x1*32000<=x3*4+x2+x1*5 model :sets :num/1,2,3/:x,y;endsets[obj]max =(400-280)*x(1)+(40-30)*x(2)+(300-200)*x(3)-5000*y(1)-2000*y(2)-2000*y(3);5*x(1)+x(2)+4*x(3)<=2000;3*x(1)<=300*y(1);0.5*x(2)<=300*y(2);2*x(3)<=300*y(3);@for (num(i):x(i)>=0;@bin (y(i)););end实验报告成绩(百分制)__________ 实验指导教师签字:__________。

运筹学导论第八版8整数线性规划

运筹学导论第八版8整数线性规划
c 1 x 1 c 2 x 2 c n x n ,其 中 c j 0 ,j 1 ,2 , n .
上例中,对所有的 j,cj=1. 如果 cj 表示位置 j 安装 的费 用,那么这些系数就是这些费用值而不再是1.
习题
MobileCo公司拿出1500万美元,最多建造7个发射台来覆盖15个 相邻社区中尽可能多的人口。下表给出了每个发射台可以覆盖 的社区以及建造这个发射台的费用以及社区人口。确定出需要 建设哪几个发射台。
由上例看出,
将其相应的线性规划的最优解“化整”来解原整数线 性规划,虽是最容易想到的,但往往不可行。
化整后不见得是可行解;或虽是可行解,但不一定是 最优解。
因此有必要对整数线性规划的解法进行专门研究。
此类问题为整数线性规划(Integer Linear Programming , ILP),整数线性规划是最近几十年来发展起来的规划论 中的一个分支。
有部分变量取小数,这不符合实际,若采用舍入方法,则 x1= x5=1,这意味着5个项目都要选择,显然是不可行解,
对于采用“是否”决策问题,舍入法不可行。
习题
某唱片公司与一位新的歌手签约录制8首歌曲,这8首歌曲 的时间长度分别为8,3,5,5,9,6,7,12分钟,公司希望将所有的 歌曲分配在磁带的两面,使得两面的歌曲时间长度尽量相 同。请建立整数规划模型,求出最优解。
发射台
覆盖社区
1
1,2
2
2,3,5
3
1,7,9,10
4
4,6,8,9
5
6,7,9,11
6
5,7,10,12,14
7
12,13,14,15
各个社区人口数目
建造费用(百万) 3.6 2.3 4.1 3.15 2.8 2.65 3.1

第八章 运筹学课件整数规划

第八章 运筹学课件整数规划
n
例2、某公司计划在m个地点建厂,可供选择的地 点有A1,A2…Am ,他们的生产能力分别是 a1,a2,…am(假设生产同一产品)。第i个工厂的建
设费用为fi (i=1.2…m),又有n个地点B1,B2, … Bn 需
要销售这种产品,其销量分别为b1.b2…bn 。从工
厂运往销地的单位运费为Cij。试决定应在哪些地
设: xij 表示从工厂运往销地的运量(i=1.2…m、 j=1.2…n), 1 在Ai建厂 又设 Yi= (i=1.2…m) 0 不在Ai建厂 m 模型: min Z cij xij f i yi
i 1
n xij ai yi (i 1.2 m) j 1 m xij b j (j 1.2 n) i 1 x 0, y 0 或 1 (i 1.2 m、j 1.2 n) i ij
个(后继)问题的松弛问题( LP1)
和( LP2) 。
4、修改上、下界(定界):
按照以下两点规则进行: ⑴.在各分枝问题中,找出目标函数
值最大者作为新的上界;
⑵.从已符合整数条件的分枝中,找 出目标函数值最大者作为新的下界。
5、比较与剪枝 :
各分枝的目标函数值中,若有小于
Z 者,则剪掉此枝,表明此子问题已经 探清,不必再分枝了;否则继续分枝。
x1
Z(2) =-56/3≈-18.7 ∵Z2 < Z1=-16 ∴原问题有比 (-16)更小的最优解,但 x2 不是整数,故利用 3 ≥ 10/3≥4 加入条件。
加入条件: x2≤3, x2≥4
有下式:
min Z x1 5 x2 min Z x1 5 x2 x1 x2 2 x1 x2 2 5 x 6 x 30 5 x 6 x 30 2 2 1 1 4 4 x1 x1 ( IP4) ( IP3) 2 x1 2 x1 4 3 x2 x2 x , x 0且为整数 x , x 0且为整数 1 2 1 2

运筹学与优化中的整数规划与线性规划对比分析

运筹学与优化中的整数规划与线性规划对比分析

运筹学与优化中的整数规划与线性规划对比分析运筹学与优化是一门研究如何利用数学方法来优化决策的学科。

在运筹学与优化领域中,整数规划和线性规划是两种常用的数学模型。

本文将对整数规划和线性规划进行比较和分析,探讨它们在应用中的异同点以及各自的优势和劣势。

首先,我们来看整数规划。

整数规划是一种求解含有整数变量的优化问题的数学方法。

在整数规划中,决策变量必须取整数值,这导致整数规划比线性规划要更加复杂。

整数规划可以用来解决很多实际问题,例如生产调度问题、资源分配问题和路线选择问题等。

整数规划的一个重要应用领域是物流运输问题。

在物流运输中,有时需要决定在某一段时间内应该购买多少辆卡车,以满足快速变化的运输需求。

这个问题可以被建模为一个整数规划问题,目标是最小化成本或最大化利润。

与整数规划相比,线性规划是一种在决策变量可以取任意实数值的情况下求解优化问题的方法。

线性规划在运筹学与优化中被广泛应用。

线性规划的求解方法相对较为简单,可以通过线性规划软件来求解。

线性规划常被用来解决资源分配问题、产品混合问题和生产计划问题等。

一个典型的线性规划问题是生产计划问题,其中目标是最大化产量或最小化生产成本,同时满足一系列约束条件,例如原料和人力资源的限制。

整数规划和线性规划在应用中有一些明显的异同点。

首先,整数规划相对于线性规划来说更加复杂,因为整数规划需要考虑决策变量取整数值的限制。

这使得整数规划的问题规模更大,求解难度更高。

其次,整数规划可以更好地描述某些实际问题,例如一些离散决策问题,而线性规划更适用于某些具有连续决策变量的问题。

此外,整数规划常常需要更长的计算时间来求解,而线性规划则可以在较短的时间内得到结果。

尽管整数规划和线性规划在应用中有一些区别,它们也有一些共同之处。

首先,整数规划和线性规划都是数学模型,通过最大化或最小化某个特定的目标函数来进行决策。

其次,整数规划和线性规划都可以通过数学方法来求解。

虽然整数规划的求解方法相对复杂一些,但仍然可以被有效地求解出来。

运筹学-整数规划 (一)(名校讲义)

运筹学-整数规划 (一)(名校讲义)

5 8
§4 隐枚举法 (9)
从表2-2中看出,经过改进的过滤隐枚举法只需计算16次 即可。 过滤隐枚举法简单实用,但在变量数很大时,计算量仍 很大。为此,下面将介绍另一种方法,即分枝隐枚举法。
§4 隐枚举法 (10)
三、0 1规划求解法之二(分枝隐枚举法) 基本思路:把原0 1规划问题化成标准形(分枝隐枚举 法的标准形),然后从可能获得最佳目标函数的组合进 行检查(不一定可行),直到找出可行解为止。为了清 楚,下面将结合例题阐述其步骤。 1.[例2-8] 已知0 1整数规划模型为
[解]
2x1+x2=8 最优解 x1+2x2=6 1 2 3 4 5 6 7 8 9 图2-1 x1
§3 分枝定界法 (3)
2)因为x1、x2当前均为非整数,故不满足整数要求,任 选1个进取分枝。设选x1进行分枝,把可行集分成2个子 集: x1≤[10/3]=3及x1≥[10/3]+1=4 3)x1≤3时 目标函数 min z=x1+4x2 约束条件 2x1+x2≤8
x2
8 7 6 5 4 3 2 1 x1 = 4 2x1+x2=8 x1+2x2=6 1 2 3 4 5 6 7 8 9 x1 图2-3
§3 分枝定界法 (7)
5)节点④,令x2≤[3/2]=1 目标函数 min z=x1+4x2 约束条件 2x1+x2≤8
x1+2x2≥6
x1≤3 x2≤1 x1、x2≥0,且为整数。 用图解法,知该子集无解,读者可以自己作。
§4 隐枚举法 (1)
隐枚举法适于求解一种特殊的整数规划——01规划。
一、举例说明01规划的现实来源 [例2-6]投资场所的选定(相互排斥计划)。某部门拟在 东、西、南三区建立门市部,可选用的位置共7个,设 为Ai (i=1,2,…,7)。根据计划安排有下述规定: 在东区,由3个候选点A1,A2,A3中至多选2个;

运筹学 第八章(二)

运筹学 第八章(二)
最优目标函数值为: 万元 万元。 最优目标函数值为:245万元。 此结果告诉我们:在 A1 , A2 , A5 , A6 , A9 , A10六个地点建立销售 此结果告诉我们: 门市部,既满足规定,又在投资不超过720万元(实际投资额为: 门市部,既满足规定,又在投资不超过 万元(实际投资额为: 万元 100+120+70+90+160+180=720万元)的情况下,获得最大利润245 万元)的情况下,获得最大利润 万元 万元。 万元。
所需时间 工人 工作 小时) (小时) A 15 19 26 19 B 18 23 17 21 C 21 22 16 23 D 24 18 19 17
甲 乙 丙 丁
8
引入0—1变量 x ij,并令 解: 引入 变量 当指派第 i 个人去完成第 j 项工作时 ; 1 , x ij = 0 , 当不指派第 i 个人去完成第 j 项工作时 . 使总消耗时间最少,则目标函数为: 使总消耗时间最少,则目标函数为: min z = 15 x11 + 18 x12 + 21x13 + 24 x14 + 19 x21 + 23 x22 + 22 x23 + 18 x24 + 26 x31 + 17 x32 + 16 x33 + 19 x34 + 19 x41 + 21x42 + 23 x43 + 17 x44 . 每人只能干一项工作的约束条件可以写为: 每人只能干一项工作的约束条件可以写为: x11 + x12 + x13 + x14 = 1, (甲只干一项工作) 甲只干一项工作)
项任务的成本(如所需时间, 并设 c ij 第 i 个人去完成 j 项任务的成本(如所需时间,费用 等),则一般指派问题的数学模型为: ),则一般指派问题的数学模型为: 则一般指派问题的数学模型为

求解整数规划的方法

求解整数规划的方法

求解整数规划的方法整数规划是一种最优化问题,其解决方案限制了决策变量必须取整数值。

整数规划的应用非常广泛,涉及到许多实际问题,如制造业生产调度、物流优化、资源分配等。

在本文中,我们将介绍几种常用的整数规划方法。

一、分支定界法分支定界法是一种常用的整数规划求解方法,它通过不断将解空间分割为子问题并求解这些子问题,最终找到整数规划的最优解。

具体步骤如下:1. 初始时,将整数规划问题转化为一个线性规划问题,并求解线性规划问题的松弛解。

2. 如果松弛解满足整数约束条件,则找到一个整数解,更新当前最优解。

3. 如果松弛解不满足整数约束条件,则选择一个变量将其分割为两个子问题,并分别求解这两个子问题。

4. 对每个子问题,递归地应用上述步骤,直到找到一个整数解或者确定当前子问题的上界小于当前最优解。

5. 最终,得到整数规划的最优解。

分支定界法的优点是能够保证找到最优解,但其缺点是计算复杂度较高,特别是在问题规模较大时,会导致计算时间过长。

二、整数规划的近似算法当整数规划问题规模较大时,找到精确解的计算复杂度可能变得非常高,此时可以考虑使用近似算法来求解。

近似算法的思想是通过放松整数约束条件,将整数规划问题转化为一个线性规划问题,并对线性规划问题进行求解。

然后,根据线性规划问题的解,对整数规划问题进行修正,得到整数规划问题的一个近似解。

三、割平面法割平面法是一种常用的整数规划求解方法,它通过添加一系列线性不等式(割平面)来逐步减小可行解空间,最终找到整数规划的最优解。

具体步骤如下:1. 初始时,将整数规划问题转化为一个线性规划问题,并求解线性规划问题的松弛解。

2. 如果松弛解满足整数约束条件,则找到一个整数解,更新当前最优解。

3. 如果松弛解不满足整数约束条件,则根据当前松弛解所对应的目标函数值,添加一系列线性不等式(割平面)来限制可行解空间。

4. 对添加了割平面约束的线性规划问题,继续求解,并更新最优解。

5. 重复以上步骤,直到找到一个整数解或者确定当前问题的上界小于当前最优解。

整数规划

整数规划

第二章整数规划§1 概论定义规划中的变量(部分或全部)限制为整数时,称为整数规划。

若在线性规划模型中,变量限制为整数,则称为整数线性规划。

目前所流行的求解整数规划的方法,往往只适用于整数线性规划。

目前还没有一种方法能有效地求解一切整数规划。

1.2 整数规划的分类如不加特殊说明,一般指整数线性规划。

对于整数线性规划模型大致可分为两类:1o 变量全限制为整数时,称纯(完全)整数规划。

2o 变量部分限制为整数的,称混合整数规划。

1.2 整数规划特点(i)原线性规划有最优解,当自变量限制为整数后,其整数规划解出现下述情况:①原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。

②整数规划无可行解。

例1 原线性规划为 其最优实数解为:45min ,45,021===z x x 。

③有可行解(当然就存在最优解),但最优解值变差。

例2 原线性规划为 其最优实数解为:23min ,23,021===z x x 。

若限制整数得:2m in ,1,121===z x x 。

(ii ) 整数规划最优解不能按照实数最优解简单取整而获得。

求解方法分类:(i )分枝定界法—可求纯或混合整数线性规划。

(ii )割平面法—可求纯或混合整数线性规划。

(iii )隐枚举法—求解“0-1”整数规划:①过滤隐枚举法;②分枝隐枚举法。

(iv)匈牙利法—解决指派问题(“0-1”规划特殊情形)。

(v)蒙特卡洛法—求解各种类型规划。

下面将简要介绍常用的几种求解整数规划的方法。

§2 分枝定界法对有约束条件的最优化问题(其可行解为有限数)的所有可行解空间恰当地进行系统搜索,这就是分枝与定界内容。

通常,把全部可行解空间反复地分割为越来越小的子集,称为分枝;并且对每个子集内的解集计算一个目标下界(对于最小值问题),这称为定界。

在每次分枝后,凡是界限超出已知可行解集目标值的那些子集不再进一步分枝,这样,许多子集可不予考虑,这称剪枝。

整数规划PPT课件

整数规划PPT课件

混合整数规划
总结词
混合整数规划是同时包含连续变量和整数变量的规划问题。
详细描述
混合整数规划问题在数学上表示为在一定的约束条件下,求一组连续变量和整数变量的函数的最优解 。这类问题在现实生活中应用广泛,如生产计划、物流优化、金融投资等。求解混合整数规划问题需 要同时考虑连续变量和整数变量的特性,通常需要使用特殊的算法进行求解。
通过不断分割解空间并确 定可行解的范围,逐步逼 近最优解。
割平面法
通过添加割平面方程来不 断缩小解空间,直到找到 最优解。
迭代优化法
通过迭代优化算法不断逼 近最优解,适用于大规模 整数规划问题。
02 整数规划问题建模
线性整数规划
总结词
线性整数规划是整数规划的一种,其目标函数和约束条件都是线性函数,且决 策变量都是整数。
装箱问题
总结词
装箱问题是一个经典的整数规划问题, 旨在确定如何将一组物品装入有限容 量的容器中,以最小化装载成本。
详细描述
装箱问题需要考虑物品的尺寸、重量、价值 等多个因素,通过整数规划的方法,可以确 定最佳的装箱方案,包括每个容器的装载物 品和数量等,从而实现装载成本最小化。
THANKS FOR WATCHING
遗传算法
要点一
总结词
一种基于生物进化原理的优化算法
要点二
详细描述
遗传算法是一种模拟生物进化过程的优化算法,通过选择 、交叉和变异等操作来逼近最优解。在整数规划问题中, 遗传算法将决策变量编码为染色体,通过不断进化染色体 群体来寻找满足整数约束的解。遗传算法具有全局搜索能 力强、能够处理多约束和离散变量等优点,因此在整数规 划问题中得到了广泛应用。
整数规划ppt课件
contents

运筹学目标规划与整数规划

运筹学目标规划与整数规划
目标规划
单击此处添加副标题
运筹学
01
02
可能的弹性约束:
方案优劣并不以单一准则为目标,而是以多重准则为目标 约束条件并不完全符合严格的刚性条件,具有一定的弹性
最好等于 最好不大于 最好不小于
实际问题决策经常面临的问题:
多目标决策问题
弹性约束的处理方法
实际量+
d


d
+
=
目标值
负偏差变量
正偏差变量
S1
B: x1=2,x2=23/9 Z=41/9
S11
无可行解
S12
D: x1=33/14,x2=2 Z=61/14
对S12分枝:
1
2
3
1
1
3
2
X
2
5
4
X
S2
构造约束:

形成分枝问题S121和S122,得解E和F
S121
ቤተ መጻሕፍቲ ባይዱ
S122
S
A: x1=3/2,x2=10/3 Z=29/6
S2
C: x1=1,x2=7/3 Z=10/3
经典指派问题
n个员工分配作n项工作,一致的i个员工作的j项工作的成本为cij,i=1,…,n; j=1,…,n。求最佳分配方案。
指派问题的数学模型
t.
指派问题的解应对应于成本矩阵的不同行与不同列,且总成本最小

cij
指派问题的性质
定理:对于指派问题,成本矩阵的任一行(或列)减去(或加上)一个相同的数得到的新指派问题与原问题同解
100
200
300
400
500
1
(1)
(2)

运筹学试验:整数规划

运筹学试验:整数规划

《运筹学》上机实验报告三(整数线性规划)实验名称:利用Gomory割平面法编程求解整数规划问题;利用分枝定界法编程求解整数规划问题实验目的:1. 学会软件lindo/lingo的安装及基本的操作;2. 对实际问题进行数学建模,并学会用数学软件Matlab或运筹软件Lindo/Lingo 对问题进行求解。

实验内容:1.用lindo/lingo 计算(学会输入、查看、运行、结果分析)max z = 20x1 + 10x25x1 + 4x2 ≤ 242x1 + 5x2 ≤ 13x1,x2 ≥ 0x1,x2取整数2.(指派问题)现在有A 、B、C、D、E五种任务,要交给甲、乙、丙、丁、戊去完成,每人完成一种任务,每个人完成每种任务所需要的时间如下表。

问应该如何安排个人完成哪项任务可使总的花费的时间最少?(建立数学模型,用数学软件求解该问题,写出结果并对运行结果加以说明)A B C D E任务人甲127979乙89666丙717121412丁15146610戊41071063.选址问题某跨国公司准备在某国建三个加工厂,现有8个城市供选择,每个城市需要的投资分别为1200万美元、1400万美元、800万美元、900万美元、1000万美元、1050万美元、950万美元、150万美元,但投资总额不能超过3400万美元,形成生产能力分别为100万台、120万台、80万台、85万台、95万台、100万台、90万台、130万台,由于需求的原因,要求:城市1和城市3最多选1个,城市3、城市4、城市5最多选两个,城市6和城市7最少选1个,问选择哪些城市建厂,才能使总的生产能力最大?(建立数学模型,用数学软件求解该问题,写出结果并对运行结果加以说明)整数变量定义LinDo一般整数变量:GIN <Variable>0-1整数变量: INT <Variable>LinGo一般整数变量: @GIN( variable_name);0-1整数变量:@BIN( variable_name);例如(1)Lindo运算程序max 3 x1+5 x2+4 x3subject to2 x1+3 x2<=15002 x2+4 x3<=8003 x1+2 x2 +5 x3<=2000endgin x1gin x3(2) max z = 3x1 - 2x2 + 5x3x1 + 2x2 - x3 ≤ 2x1 + 4x2 + x3 ≤ 4x1 + x2 ≤ 34x2 + x3 < 6x1,x2,x3 = 0或1lingo程序:max =3*x1 – 2*x2 + 5*x3;x1 + 2*x2 - x3 <= 2;x1 + 4*x2 + x3 <= 4;x1 + x2 <= 3 ; 4*x2 + x3< 6; @bin(x1);@bin(x2);@bin(x3);。

运筹学08整数规划

运筹学08整数规划

8.2 整数规划的应用
二、固定成本问题
例5.高压容器公司制造小、中、大三种尺寸的金属容器,所用资源为 金属板、劳动力和机器设备,制造一个容器所需的各种资源的数量如表 所示。不考虑固定费用,每种容器售出一只所得的利润分别为 4万元、5 万元、6万元,可使用的金属板有500吨,劳动力有300人/月,机器有 100台/月,此外不管每种容器制造的数量是多少,都要支付一笔固定的 费用:小号是l00万元,中号为 150 万元,大号为200万元。现在要制定 一个生产计划,使获得的利润为最大。
8.2 整数规划的应用
解:1) 设xiA、xiB、xiC、xiD ( i =1,2,3,4,5)分别表示第 i 年年初给项目 A,B,C,D的投资额; 设yiA, yiB,是0—1变量,并规定取 1 时分别表示第 i 年给A、B投资, 否则取 0( i = 1, 2, 3, 4, 5)。 设yiC 是非负整数变量,并规定:第2年投资C项目8万元时,取值为4; 第 2年投资C项目6万元时,取值3;第2年投资C项目4万元时,取值2; 第2年投资C项目2万元时,取值1;第2年不投资C项目时,取值0; 这样我们建立如下的决策变量: 第1年 A x1A B C D x1D 第2年 x2A 第3 年 x3A x3B x2C=20000y2C x2D x3D 第4年 第5年 x4A x4D x5D
8.3整数规划与线性规划的关系


从数学模型上看,整数规划似乎是线性规划的一 种特殊情况,求解只需在线性规划解的基础上, 通过舍入取整,寻求满足整数要求的解即可。 但是实际上整数规划与线性规划之间确实有着很 大的不同,通过舍入取整得到的整数解也不一定 就是整数规划问题的最优解,有时甚至不能保证 所得的解是整数可行解.例98 Nhomakorabea1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xi ≤ M yi ,i =1,2,3,M充分大
xj ≥ 0 yj 为0--1变量,i = 1,2,3
8.2 整数规划的应用
三、指派问题
有 n 项不同的任务,恰好 n 个人可分别承担这些任务,但由于每人特 长不同,完成各项任务的效率等情况也不同。现假设必须指派每个人 去完成一项任务,怎样把 n 项任务指派给 n 个人,使得完成 n 项任务 的总的效率最高,这就是指派问题。
Minz=15x11+18x12+21x13+24x14+19x21+23x22+22x23+18x24+26x31+17x32+ 16x33+19x34+19x41 +21x42+23x43+17x44
s.t. x11+ x12+ x13+ x14= 1 (甲只能干一项工作) x21+ x22+ x23+ x24= 1 (乙只能干一项工作) x31+ x32+ x33+ x34= 1 (丙只能干一项工作) x41+ x42+ x43+ x44= 1 (丁只能干一项工作) x11+ x21+ x31+ x41= 1 ( A工作只能一人干) x12+ x22+ x32+ x42= 1 ( B工作只能一人干) x13+ x23+ x33+ x43= 1 ( C工作只能一人干) x14+ x24+ x34+ x44= 1 ( D工作只能一人干)
四、整数规划的数学模型
Ma(xMin)
n
Z cjxj
j1
s.t
n
aijxj
bi
j1
i 1,2,,m
xj 0,j 1,2,,n且部分或全部为整数
纯整数规划:所有决策变量为非负整数; 全整数规划:所有变量、系数和常数均为整数; 混合整数规划:只有一部分决策变量为非负整数,其余变量可
为非负实数; 0-1整数规划:所有决策变量只能取0获1两个整数。
8.2 整数规划的应用
解:设:0--1变量 xi = 1 (Ai 点被选用)或 0 (Ai 点没被选用)。 这样我们可建立如下的数学模型:
Max z =36x1+40x2+50x3+22x4+20x5+30x6+25x7+48x8+58x9+61x10 s.t.
100x1+120x2+150x3+80x4+70x5+90x6+80x7+140x8+160x9+180x10 ≤ 720 x1 + x2 + x3 ≤ 2 x4 + x5 ≥ 1 x6 + x7 ≥ 1 x8 + x9 + x10 ≥ 2
整数规划(Integer Programming)。简称IP。 线性规划中的变量(部分或全部)限制为整数时,
称为整数线性规划。
8.1 整数规划问题及其数学模型
三、建模中常用的处理方法:
1、资本预算问题:
设有n个投资方案,cj为
第j个投资方案的收益。投 资过程共分为m个阶段,bi 为第i个阶段的投资总量,
第八章 整数规划
8.1 整数规划问题及其数学模型 8.2 整数规划的应用 8.3 整数规划与线性规划的关系 8.4 分支定界法 8.5 指派问题与匈牙利算法
8.1 整数规划问题及其数学模型
一、整数规划问题的特征:
变量取值范围是离散的,经典连续数学中的理论 和方法一般无法直接用来求解整数规划问题。
二、整数规划问题的定义: 规划中的变量(部分或全部)限制为整数时,称为
例6.有四个工人,要分别指派他们完成四项不同的工作,每人做各项 工作所消耗的时间如下表所示,问应如何指派工作,才能使总的消耗 时间为最少。
工人
工作
甲 乙 丙 丁
A
B
C
D
15
18
21
24
19
23
22
18
26
17
16
19
19
21
23
17
8.2 整数规划的应用
解:引入0—1变量 xij,并令xij = 1(当指派第 i人去完成第j项工作时)或0 (当不指派第 i人去完成第j项工作时).这可以表示为一个0--1整数规划 问题:
aij为第i阶段第j项投资方案
所需要的资金。目标是在 各阶段资金限制下使整个 投资的总收益最大。
设决策变量 得到模型:
1, 对第 j项投资
xj
0,否则
n
Max z c j x j
j 1
s
.t
.
n
a ij x j b i
i 1,2, , m
j 1
x j 0或1
j 1,2, , n
xj ≥ 0 且xj 为0--1变量,i = 1,2,3,……,10
8.2 整数规划的应用
二、固定成本问题
例5.高压容器公司制造小、中、大三种尺寸的金属容器,所用资源为 金属板、劳动力和机器设备,制造一个容器所需的各种资源的数量如表 所示。不考虑固定费用,每种容器售出一只所得的利润分别为 4万元、5 万元、6万元,可使用的金属板有500吨,劳动力有300人/月,机器有 100台/月,此外不管每种容器制造的数量是多少,都要支付一笔固定的 费用:小号是l00万元,中号为 150 万元,大号为200万元。现在要制定 一个生产计划,使获得的利润为最大。
8.2 整数规划的应用
一、投资场所的选择
例4、京成畜产品公司计划在市区的东、西、南、北四区建立销售门市, 拟议中有10个位置 Aj (j=1,2,3,…,10)可供选择,考虑到各地区居民 的消费水平及居民居住密集度,规定:
在东区由A1 , A2 ,A3 三个点至多选择两个; 在西区由A4 , A5 两个点中至少选一个; 在南区由A6 , A7 两个点中至少选一个; 在北区由A8 , A9 , A10 三个点中至少选两个。
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 投资额 100 120 150 80 70 90 80 140 160 180
利润 36 40 50 22 20 30 25 48 58 61
Aj 各点的设备投资及每年可获利润由于地点不同都是不一样的,预测 情况见表所示 (单位:万元)。但投资总额不能超过720万元,问应选择哪 几个销售点,可使年利润为最大?
引入约束 =0。
xi ≤ M yi ,i =1,2,3,M充分大,以保证当 yi = 0 时,xi
这样我们可建立如下的数学模型:
Max z = 4x1 + 5x2 + 6x3 - 100y1 - 150y2 - 200y3 s.t. 2x1 + 4x2 + 8x3 ≤ 500
2x1 + 3x2 + 4x3 ≤ 300 x1 + 2x2 + 3x3 ≤ 100
资源
小号容器 中号容器大号容器
金属板(吨) 2
4
8
劳动力(人月) 2
3
4
机器设备(台月) 1
2
3
8.2 整数规划的应用
解:这是一个整数规划 分费别用为只小有号在容生器产、该中种号容容器器时和才大投号入容,器为的了生说产明数固量定。费 用 产的第这i种种容性器质即,x设i =y0i =时1)(当。生产第 i种容器, 即 xi > 0 时) 或0(当不生
相关文档
最新文档