初中数学函数新定义题型
初中数学流程图、新定义运算、阅读理解题型(1)
初中数学流程图、新定义运算、阅读理解题型一、流程图运算1.按下面的程序计算,若开始输入x的值为正整数,最后输出的结果为22,则开始输入的x值可以为()A.1B. 2C.3D.42.根据如图所示的程序计算函数y的值,若输入x的值是2,则输出y的值是1,若输入x的值是7,则输出y的值是()A.1B.-1C.2D.-23.按下面的程序计算,如果输入-1,则输出的结果为_________.4.有一数值转换器,原理如图所示.(1)若开始输入x的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是3,依次继续下去...,第2022次输出的结果是___;(2)若输入的x值为整数,且第二次输出的结果与开始输入的数值相等,则x的值为_____.5.解密数学魔术:魔术师请观众心想一个数,然后将这个数按以下步骤操作:魔术师能立刻说出观众想的那个数.(1)如果小玲想的数是-2,那么她告诉魔术师的结果应该是______;(2)如果小明想了一个数计算后,告诉魔术师结果为73,那么魔术师立刻说出小明想的那个数是____;(3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数,若设观众心想的数为a,请通过计算解密这个魔术的奥妙,6.如图,按下面的步骤进行数值运算,规定运行到“判断结果是否大于35”为一次运算.若某运算进行了两次才停止,则x的取值范围是()A.x≤19B.x>11C.11<x≤19D.11≤x≤19二、新定义运算1.定义一种新的运算“※”,规定它的运算法则为:a※b=a2+2ab,例如:3※(-2)=32+2×3×(-2)=-3.(1)求(-2)※3的值;(2)若1※x=3,求x的值;(3)若(-2)※x≥(-2)+x,求x的取值范围.2.对于x,y定义一种新运算“φ”,xφy=ax+by,其中a,b是常数,等式右边是通常的加法和乘法运算.已知3φ5=15,4φ7=28,求1φ1的值.3.定义一种新运算“⊕”:a⊕b=a-2b,比如3⊕(-2)=3-2×(-2)=3-(-4)=3+4=7(1)求(-2)⊕3的值.(2)若(x-3)⊕(x+1)=-1,求x的值.4.有一个数学运算符号“○X”,使下列算式成立:4○X8=16,10○X6=26,6○X10=22,18○X14=50.求7○X3=?5.设a,b表示两个不同的数,规定aΔb=3a+4b.求(8△7)△6.6.设x,y为两个不同的数,规定x□y=(x+y)÷4.求a□16=10中a的值.7. 历史上的数学巨人欧拉最先把关于x 的多项式用记号f (x )来表示.例如f (x )=x 2+3x -5,把x =某数时多项式的值用f (某数)来表示.例如x =-1时多项式x 2+3x -5的值记为f (-1)=(-1)2+3×(-1)-5=-7.(1)已知g (x )=-2x 2-3x +1,分别求出g (-1)和g (-2)值.(2)已知h (x )=ax 3+2x 2-x -14,h (12)=a ,求a 的值.8. 阅读材料:对于任何实数,我们规定符号|a c b d |的意义是|a c b d|=ad −bc . 例如:|1324|=1×4−2×3=−2,|−1536|=−1×6−3×5=−21.按 照这个规定,解答下列问题: (1)计算|56−7−8|的值. (2)计算:当 5x 2+y =7 时,|x 2+y 2x 2−y −1−3|的值. (3)若|x +223x −1−3|=0.5,求x 的值.9. 定义一种法则“○×”如下:a ○×b ={a ,a >bb ,a ≤b ,如:1○×2=2.若(2m -5)○×3=3,则m 的取值范围是______.三、阅读理解1. 选阅读下列解题过程,再解方程组.解方程组{x −y −1=0, ①4(x −y )=5+y.②解:由①,得:x -y =1 ③把③代入②,得:4×1=5+y解得:y =-1把y =-1代入③,得:x =0所以原方程组的解为{x =0y =−1上面这种结题的方法称为“整体代入法”.请用上述方法解下面的方程组:{2x −3y −2=0, ①2x−3y +57+2y =9. ②是点M 的“m 倍相关点”.例如,点A (2,1)的“2倍相关点”的横坐标为:2+1x2=4,纵坐标为2×2+1=5,所以点B (4,5)是点A 的“2倍相关点”.(1)若点C (-6,3)的“一倍相关点”是点D (a ,b ),求2a +b 的值;(2)若点P (3,2n )的“-3倍相关点”是点Q ,且点Q 在y 轴上,求点Q 到x 轴的距离.3. 有些含绝对值的方程,可以通过讨论去掉绝对值,转化成一元一次方程求解.例如:解方程x +2|x|=3解:当x ≥0时,方程可化为:x +2x =3解得x =1,符合题意.当x <0时,方程可化为:x -2x =3解得x =-3,符合题意.所以,原方程的解为:x =1或x =-3.仿照上面解法,解方程:x +3|x -1|=7.4. 【背景知识】数轴上A 点、B 点表示的数为a 、b ,则A 、B 两点之间的距离AB =|a -b |;线段AB 的中点M 表示的数为a +b 2.【问题情境】已知数轴上有A 、B 两点,分别表示的数为-40和20,点A 以每秒3个单位的速度沿数轴向右匀速运动,点B 以每秒2个单位向左匀速运动.设运动时间为t 秒(t >0).(1)运动开始前,A 、B 两点的距离为_____;线段AB 的中点M 所表示的数为_____.(2)它们按上述方式运动,A 、B 两点经过多少秒会相遇,相遇点所表示的数是什么?(3)当t 为多少时,线段AB 的中点M 表示的数为-5?并直接写出在这一运动过程中点M 的运动方向和运动速度.5. 试验与探究:我们知道分数1写为小数即0.3.,反之,无限循环小数0.3.写成分数即1一般地,任何一个无限循环小数都可以写成分数形式.现在就以0.7.为例进行讨论:设0.7.=x ,由0.7.=0.7777…,可知,10x -x =7.77…-0.777…=7,即10x -x =7,解方程得x =79,于是得0.7.=79. 请仿照上述例题完成下列各题:(1)请你把无限循环小数0.5.写成分数,即0.5.=_______(2)你能化无限循环小数0.7.3.为分数吗?请仿照上述例子求解之.6. 我们知道:|a |表示数轴上,数a 的点到原点的距离.爱动脑筋的小明联系绝对值的概念和“|a |=|a -0|”,进而提出这样的问题:数轴上,数a 的点到数1点的距离,是不是可以表示为|a -1|?小明的想法是否正确呢?让我们一起来探究吧!步骤一:实验与操作:步骤二:观察与猜想:(2)观察上表:猜想 A 、B 两点之间的距离可以表示为___________(用 a 、b 的代数式表示) 步骤三:理解与应用:(3)动点 A 从原点出发向数轴负方向运动,同时,动点 B 也从原点出发 向数轴正方向运动.运动到 3 秒时,两点相距 15 个单位长度.已知动点 A 、 B 的速度之比是 3:2(速度单位:1 个单位长度/秒). ①求两个动点运动的速度;②A 、B 两动点运动到 3 秒时停止运动,请在数轴上标出此时 A 、B 两点 的位置;③若 A 、B 两动点分别从(2)中标出的位置再次同时开始在数轴上运动, 运动速度不变,运动方向不限.问:经过几秒后,A 、B 两动点之间相距 4 个 单位长度.7.小红同学在做作业时,遇到这样一道几何题:已知:AB∥CD∥EF,∠A=110°,∠ACE=100°,过点E作EH⊥EF,垂足为E,交CD于H点.(1)依据题意,补全图形;(2)求∠CEH的度数.小明想了许久对于求∠CEH的度数没有思路,就去请教好朋友小丽,小丽给了他如图2所示的提示:请问小丽的提示中理由①是;提示中②是:度;提示中③是:度;提示中④是:,理由⑤是.提示中⑥是度;8.我们可以把根号外的数移到根号内,从而达到化简的目的.例如:(1)请仿照上例化简.①。
专题71 函数中的新定义问题(解析版)-2023年中考数学重难点解题大招复习讲义-新定义问题
例题精讲考点1一次函数新定义问题【例1】.定义:我们把一次函数y=kx+b(k≠0)与正比例函数y=x的交点称为一次函数y=kx+b(k≠0)的“不动点”.例如求y=2x﹣1的“不动点”:联立方程,解得,则y=2x﹣1的“不动点”为(1,1).(1)由定义可知,一次函数y=3x+2的“不动点”为(﹣1,﹣1);(2)若一次函数y=mx+n的“不动点”为(2,n﹣1),求m、n的值;(3)若直线y=kx﹣3(k≠0)与x轴交于点A,与y轴交于点B,且直线y=kx﹣3上没=3S△ABO,求满足条件的P点坐标.有“不动点”,若P点为x轴上一个动点,使得S△ABP解:(1)联立,解得,∴一次函数y=3x+2的“不动点”为(﹣1,﹣1),故答案为:(﹣1,﹣1);(2)∵一次函数y=mx+n的“不动点”为(2,n﹣1),∴n﹣1=2,∴n=3,∴“不动点”为(2,2),∴2=2m+3,解得m=﹣;(3)∵直线y=kx﹣3上没有“不动点”,∴直线y=kx﹣3与直线y=x平行,∴k=1,∴y=x﹣3,∴A(3,0),B(0,﹣3),设P(t,0),∴AP=|3﹣t|,=×|t﹣3|×3,∴S△ABPS△ABO=×3×3,=3S△ABO,∵S△ABP∴|t﹣3|=9,∴t=12或t=﹣6,∴P(﹣6,0)或P(12,0).变式训练【变1-1】.在初中阶段的函数学习中,我们经历了“确定函数的表达式一一利用函数图象研究其性质一一运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义.结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象,并写出这个函数的一条性质;(3)已知函数的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.(4)若方程|x2﹣6x|﹣a=0有四个不相等的实数根,则实数a的取值范围是0<a<9.解:(1)∵在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1,∴,解得,∴这个函数的表达式是y=|﹣3|﹣4;(2)∵y=|﹣3|﹣4,∴,∴函数y=x﹣7过点(2,﹣4)和点(4,﹣1);函数y=﹣x﹣1过点(0,﹣1)和点(﹣2,2),该函数的图象如图所示,性质:当x>2时,y的值随x的增大而增大;(3)由函数的图象可得,不等式的解集是:1≤x≤4;(4)由|x2﹣6x|﹣a=0得a=|x2﹣6x|,作出y=|x2﹣6x|的图象,由图象可知,要使方程|x2﹣6x|﹣a=0有四个不相等实数根,则0<a<9,故答案为:0<a<9.考点2反比例函数新定义问题【例2】.探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程,以下是我们研究函数y=x+|﹣2x+6|+m性质及其应用的部分过程,请按要求完成下列各小题.x…﹣2﹣1012345…y…654a21b7…(1)写出函数关系式中m及表格中a,b的值;m=﹣2,a=3,b=4;(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象;(3)已知函数y=﹣(x﹣2)2+8的图象如图所示,结合你所画的函数图象,不等式x+|﹣2x+6|+m>﹣(x﹣2)2+8的解集为x<0或x>4..解:(1)由表格可知,点(3,1)在该函数图象上,∴将点(3,1)代入函数解析式可得:1=3+|﹣2×3+6|+m,解得:m=﹣2,∴原函数的解析式为:y=x+|﹣2x+6|﹣2;当x=1时,y=3;当x=4时,y=4;∴m=﹣2,a=3,b=4,故答案为:﹣2,3,4;(2)通过列表—描点—连线的方法作图,如图所示;(3)要求不等式x+|﹣2x+6|+m>﹣(x﹣2)2+8的解集,实际上求出函数y=x+|﹣2x+6|+m的图象位于函数y=﹣(x﹣2)2+8图象上方的自变量的范围,∴由图象可知,当x<0或x>4时,满足条件,故答案为:x<0或x>4.变式训练【定义】在平面内,把一个图形上任意一点与另一个图形上任意一点之间的距离的最小值,称为这两个图形之间的距离,即A,B分别是图形M和图形N上任意一点,当AB的长最小时,称这个最小值为图形M与图形N之间的距离.例如,如图1,AB⊥l1,线段AB的长度称为点A与直线l1之间的距离,当l2∥l1时,线段AB的长度也是l1与l2之间的距离.【应用】(1)如图2,在等腰Rt△BAC中,∠A=90°,AB=AC,点D为AB边上一点,过点D作DE∥BC交AC于点E.若AB=6,AD=4,则DE与BC之间的距离是;(2)如图3,已知直线l3:y=﹣x+4与双曲线C1:y=(x>0)交于A(1,m)与B两点,点A与点B之间的距离是2,点O与双曲线C1之间的距离是;【拓展】(3)按规定,住宅小区的外延到高速路的距离不超过80m时,需要在高速路旁修建与高速路相同走向的隔音屏障(如图4).有一条“东南﹣西北”走向的笔直高速路,路旁某住宅小区建筑外延呈双曲线的形状,它们之间的距离小于80m.现以高速路上某一合适位置为坐标原点,建立如图5所示的直角坐标系,此时高速路所在直线l4的函数表达式为y=﹣x,小区外延所在双曲线C2的函数表达式为y=(x>0),那么需要在高速路旁修建隔音屏障的长度是多少?解:(1)如图,过点D作DH⊥BC于点H,∵∠A=90°,AB=AC,∴∠B=45°,∵DH⊥BC,∴△BDH是等腰直角三角形,∴DH=BD,∵AB=6,AD=4,∴BD=AB﹣AD=6﹣4=2,∴DH=×2=;故答案为:;(2)把A(1,m)代入y=﹣x+4中,得:m=﹣1+4=3,∴A(1,3),把A(1,3)代入y=,得:3=,∴k=3,∴双曲线C1的解析式为y=,联立,得:﹣x+4=,即x2﹣4x+3=0,解得:x1=1,x2=3,∴B(3,1),∴AB==2;如图,作FG∥AB,且FG与双曲线y=只有一个交点,设直线FG的解析式为y=﹣x+b,则﹣x+b=,整理得:x2﹣bx+3=0,∴Δ=(﹣b)2﹣4×1×3=b2﹣12=0,∴b=2或b=﹣2(不符合题意,舍去),∴直线FG的解析式为y=﹣x+2,由﹣x+2=,解得:x1=x2=,∴K(,),∴OK==;故答案为:2,;(3)如图,设点S(a,b)是双曲线y=(x>0)上任意一点,且a<b,以点S为圆心,80为半径作⊙S交l4于E,过点S作SF⊥直线l4于F,交y轴于W,SH⊥x轴于H,SG⊥y轴于G,则SG=a,SH=b,ab=2400,∵直线y=﹣x平分第二、四象限角,∴∠FOW=45°,∵∠OFW=∠SGW=90°,∴∠OWF=90°﹣45°=45°,∴∠SWG=∠OWF=45°,∴△WOF和△SWG是等腰直角三角形,∴SW=SG,WF=OW,∴SF=SW+WF=SG+OW=a+(b﹣a)=(a+b),∵EF====,∵OF=OW=(b﹣a),∴OE=(b﹣a)+,设b﹣a=m(m>0),则OE=m+≤=40,∴需要在高速路旁修建隔音屏障的长度=2OE=2×40=80,答:需要在高速路旁修建隔音屏障的长度是80米.考点3二次函数新定义问题【例3】.小爱同学学习二次函数后,对函数y=﹣(|x|﹣1)2进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:(1)观察探究:①写出该函数的一条性质:函数图象关于y轴对称;②方程﹣(|x|﹣1)2=﹣1的解为:x=﹣2或x=0或x=2;③若方程﹣(|x|﹣1)2=m有四个实数根,则m的取值范围是﹣1<m<0.(2)延伸思考:将函数y=﹣(|x|﹣1)2的图象经过怎样的平移可得到函数y1=﹣(|x﹣1|﹣1)2+2的图象?写出平移过程,并直接写出当1<y1≤2时,自变量x的取值范围.解:(1)观察探究:①该函数的一条性质为:函数图象关于y轴对称;②方程﹣(|x|﹣1)2=﹣1的解为:x=﹣2或x=0或x=2;③若方程﹣(|x|﹣1)2=m有四个实数根,则a的取值范围是﹣1<m<0.故答案为:函数图象关于y轴对称;x=﹣2或x=0或x=2;﹣1<m<0.(2)将函数y=﹣(|x|﹣1)2的图象向右平移1个单位,向上平移2个单位可得到函数y1=﹣(|x﹣1|﹣1)2+2的图象,当1<y1≤2时,自变量x的取值范围是﹣1<x<3且x≠1,变式训练【变3-1】.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|ax2+bx+c|的图象(如图所示),下列结论正确的是()A.图象具有对称性,对称轴是直线x=1.5B.有且只有﹣1≤x≤1时,函数值y随x值的增大而增大C.若a<0,则8a+c>0D.若a<0,则a+b≥m(am+b)(m为任意实数)解:由图象可得,图象具有对称性,对称轴是直线x==1,故选项A错误,不符合题意;当﹣1≤x≤1或x>3时,函数值y随x值的增大而增大,故选项B错误,不符合题意;∵﹣=1,∴b=﹣2a,当x=﹣2时,y=4a﹣2b+c<0,∴4a﹣2b+c=4a﹣2×(﹣2a)+c=4a+4a+c=8a+c<0,故选项C错误,不符合题意;∵y=ax2+bx+c开口向下,对称轴为直线x=1,∴a+b+c≥am2+bm+c(m为任意实数),∴a+b≥m(am+b)+c,故选项D正确,符合题意;故选:D.【变3-2】.已知抛物线y=ax2+c过点A(﹣2,0)和D(﹣1,3)两点,交x轴于另一点B.(1)求抛物线解析式;(2)如图1,点P是BD上方抛物线上一点,连接AD,BD,PD,当BD平分∠ADP时,求P点坐标;(3)将抛物线图象绕原点O顺时针旋转90°形成如图2的“心形”图案,其中点M,N 分别是旋转前后抛物线的顶点,点E、F是旋转前后抛物线的交点.①直线EF的解析式是y=x;②点G、H是“心形”图案上两点且关于EF对称,则线段GH的最大值是.解:(1)∵抛物线y=ax2+c过点A(﹣2,0)和D(﹣1,3)两点,∴,解得,∴抛物线解析式为y=﹣x2+4;(2)过点B作BE⊥x轴交DP延长线于点E,过D作DF⊥x于点F,由y=﹣x2+4,令y=0,则﹣x2+4=0,解得:x1=﹣2,x2=2,则B(2,0),∵DF=3,BF=2﹣(﹣1)=3,∴DF=BF,∴∠DBF=45°,∴∠DBE=45°,又∵DB=DB,BD平分∠ADP,∴△DAB≌△DEB(ASA),∴BA=BE,∵B(2,0),∴E(2,4),设直线DE的解析式为y=kx+b,则,解得,∴直线DE的解析式为y=x+,联立,解得或,则P(,);(3)①∵抛物线关于y轴对称,所以旋转后图形关于x轴对称,∴对于抛物线上任意一点P(a,b)关于原点旋转90°后对应点为P1(b,﹣a)在旋转后图形上,P1(b,﹣a)关于x轴对称的点P2(b,a)在旋转后图形上,∵P(a,b)与P2(b,a)关于y=x对称,∴图形2关于y=x对称,∴直线EF的解析式为y=x,故答案为:y=x;②如图,连接GH,交EF与点K,则GH=2GK,过点G作x轴的垂线,交EF于点I,∴当GK最大时,△GFE面积最大,=GI•(x E﹣x F),又∵S△GFE设G(m,﹣m2+4),则I(m,m),∴GI=y G﹣y I=﹣m2+4﹣m=﹣(m+)2+,∴当m=﹣时,△GFE面积最大,∴G(﹣,),由①可知G(﹣,)关于y=x的对称点H(,﹣),∴K(,),∴GK==,∴GH=2GK=,∴GH的最大值为,故答案为:.1.对于实数a,b,定义符号max|a,b|,其意义为:当a≥b时,max|a,b|=a,当a<b时,max|a,b|=b.例如max|2,﹣1|=2,若关于x的函数y=max|2x﹣1,﹣x+5|,则该函数的最小值为()A.B.1C.D.3解:当2x﹣1≥﹣x+5时,即x≥2,y=max|2x﹣1,﹣x+5|=2x﹣1,此时x=2时,y有最小值,最小值为2×2﹣1=3;当2x﹣1≤﹣x+5时,即x≤2,y=max|2x﹣1,﹣x+5|=﹣x+5,此时x=2时,y有最小值,最小值为﹣2+5=3;综上所述,该函数的最小值为3.故选:D.2.在平面直角坐标系xOy中,对于点P(a,b),若点P′的坐标为(ka+b,a+)(其中k为常数且k≠0),则称点P′为点P的“k关联点”.已知点A在反比例函数y=的图象上运动,且点A是点B的“关联点”,当线段OB最短时,点B的坐标为(,)或(﹣,﹣).解:设B(x,y),∵点A是点B的“关联点”,∴A(x+y,x+)∵点A在函数y=(x>0)的图象上,∴(x+y)(x+)=,即:x+y=或x+y=﹣,当点B在直线y=﹣x+上时,设直线y=﹣x+与x轴、y轴相交于点M、N,则M(1,0)、N(0,),当OB⊥MN时,线段OB最短,此时OB==,由∠NMO=60°,可得点B(,);设直线y=﹣x﹣时,同理可得点B(﹣,﹣);故答案为:(,)或(﹣,﹣).3.定义:由a,b构造的二次函数y=ax2+(a+b)x+b叫做一次函数y=ax+b的“滋生函数”,一次函数y=ax+b叫做二次函数y=ax2+(a+b)x+b的“本源函数”(a,b为常数,且a ≠0).若一次函数y=ax+b的“滋生函数”是y=ax2﹣3x+a+1,那么二次函数y=ax2﹣3x+a+1的“本源函数”是y=﹣2x﹣1.解:∵y=ax+b的“滋生函数”是y=ax2﹣3x+a+1,∴ax2﹣3x+a+1=ax2+(a+b)x+b,即,解得,∴y=ax2﹣3x+a+1的“本源函数”是y=﹣2x﹣1,故答案为:y=﹣2x﹣1.4.在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“不动点”.例如(﹣3,﹣3)、(1,1)、(2023,2023)都是“不动点”.已知双曲线.(1)下列说法不正确的是C.A.直线y=x的图象上有无数个“不动点”B.函数的图象上没有“不动点”C.直线y=x+1的图象上有无数个“不动点”D.函数y=x2的图象上有两个“不动点”(2)求双曲线上的“不动点”;(3)若抛物线y=ax2﹣3x+c(a、c为常数)上有且只有一个“不动点”,①当a>1时,求c的取值范围.②如果a=1,过双曲线图象上第一象限的“不动点”做平行于x轴的直线l,若抛物线上有四个点到l的距离为m,直接写出m的取值范围.解:(1)设坐标平面内任意一个“不动点”的坐标为(n,n),直线y=x,当x=n时,则y=n,∴点(n,n)在直线y=x上,∴直线y=x上有无数个“不动点”,故A正确;将(n,n)代入y=,得n=,此方程无解,∴函数y=的图象上没有“不动点”,故B正确;将(n,n)代入y=x+1,得n=n+1,此方程无解,∴直线y=x+1上没有“不动点”,故C错误;将(n,n)代入y=x2,得n=n2,解得n1=0,n2=1,∴函数y=x2的图象上有两个“不动点”(0,0)和(1,1),故D正确,故选:C.(2)设双曲线上的“不动点”为(x,x),则x=,解得x1=﹣3,x2=3,∴双曲线上的“不动点”为(﹣3,﹣3)和(3,3).(3)①设抛物线y=ax2﹣3x+c上的“不动点”为(x,x),则x=ax2﹣3x+c,即ax2﹣4x+c=0,∵该抛物线上有且只有一个“不动点”,∴关于x的一元二次方程ax2﹣4x+c=0有两个相等的实数根,∴(﹣4)2﹣4ac=0,∴a=,∵a>1,∴>1,∴0<c<4.②∵当a=1时,则=1,∴c=4,∴抛物线为y=x2﹣3x+4,由(2)得,双曲线在第一象限的不动点为(3,3),∴直线l即直线y=3,如图,∵y=x2﹣3x+4=(x﹣)2+,∴该抛物线的顶点B(,),对称轴为直线x=,设直线r在直线l下方且到直线l的距离为m,直线x=交直线l于点A,交直线r于点C,∴AC=m,A(,3),∴AB=3﹣=,设直线t与直线r关于直线l对称,∵当点C在点B的上方时,抛物线上有四个点到l的距离为m,∴0<m<.5.在并联电路中,电源电压为U总=6V,小亮根据“并联电路分流不分压”的原理知道:I总=I1+I2(I1=,I2=),已知R1为定值电阻,当R变化时,干路电流I总也会发生变化,且干路电流I总与R之间满足如下关系:I总=1+.(1)定值电阻R1的阻值为6Ω;(2)小亮根据学习函数的经验,参照研究函数的过程与方法,对比反比例函数I2=来探究函数I=1+的图象与性质.总①列表:如表列出I总与R的几组对应值,请写出m,n的值:m= 2.5,n=2;R…3456…I2=…2 1.5 1.21…I总=1+…3m 2.2n…②描点、连线:在平面直角坐标系中,以①给出的R的取值为横坐标,以I总相对应的值为纵坐标,描出相应的点,并将各点用光滑曲线顺次连接起来;(3)观察图象并分析表格,回答下列问题:①I总随R的增大而减小;(填“增大”或“减小”)②函数I总=1+的图象是由I2=的图象向上平移1个单位而得到.解:(1)∵I1==1,∴R1=6,故答案为:6;(2)①当R=4时,m=1+1.5=2.5,当R=6时,n=1+1=2,故答案为:2.5,2;②图象如下:(3)①根据图象可知,I随R的增大而减小,总故答案为:减小;②函数I总=1+的图象是由I2=的图象向上平移1个单位得到,故答案为:上,1.6.小欣研究了函数的图象与性质.其研究过程如下:(1)绘制函数图象①列表:下表是x与y的几组对应值,其中m=1;x…﹣4﹣3﹣2012…y…﹣1﹣2﹣332m…﹣﹣②描点:根据表中的数值描点(x,y);③连线:用平滑的曲线顺次连接各点,请把图象补充完整.(2)探究函数性质:下列说法不正确的是AA.函数值y随x的增大而减小B.函数图象不经过第四象限C.函数图象与直线x=﹣1没有交点D.函数图象对称中心(﹣1,0)(3)如果点A(x1,y1)、B(x2,y2)在函数图象上,如果x1+x2=﹣2,则y1+y2=0.解:(1)把x=0代入到中可得:y=1,即m=1,图象如下所示:故答案为:1,图象如上所示;(2)A.当x<﹣1或x>﹣1时,函数值y随x的增大而减小,故选项A不正确;B.根据图象可得,函数图象不经过第四象限,故选项B正确;C.根据函数表示可得:x≠﹣1,所以函数图象与直线x=﹣1没有交点,故选项C正确;D.根据图象可知,函数图象对称中心(﹣1,0),故选项D正确;故选:A;(3)∵x1+x2=﹣2,∴y1+y2====0;故答案为:0.7.九年级某数学兴趣小组在学习了反比例函数的图象与性质后,进一步研究了函数的图象与性质,其探究过程如下:(1)绘制函数图象,列表:下表是x与y的几组对应值,其中m=.x…﹣3﹣2﹣1123…y…124421m…描点:根据表中各组对应值(x,y),在平面直角坐标系中描出各点,请你描出剩下的点;连线:用平滑的曲线顺次连接各点,已经画出了部分图象,请你把图象补充完整;(2)通过观察图象,下列关于该函数的性质表述正确的是:②;(填写代号)①函数值y随x的增大而增大;②关于y轴对称;③关于原点对称;(3)在上图中,若直线y=2交函数的图象于A,B两点(A在B左边),连接OA.过点B作BC∥OA交x轴于C.则S四边形OABC=4.解:(1)将x=3代入得y=,故答案为:.(2)由(1)中的图象可知,在第一象限内,y随x的增大而减小;在第二象限内,y随x的增大而增大;函数图象关于y轴对称,故②正确;故答案为:②.(3)将y=2代入得x=1或x=﹣1,∴AB=1﹣(﹣1)=2,∵AB在直线y=2上,OC在x轴上,∴AB∥OC,又∵BC∥OA,∴四边形OABC为平行四边形,=AB•y A=2×2=4.∴S四边形OABC故答案为:4.8.【定义】从一个已知图形的外一点引两条射线分别经过该已知图形的两点,则这两条射线所成的最大角称为该点对已知图形的视角,如图①,∠APB是点P对线段AB的视角.【应用】(1)如图②,在直角坐标系中,已知点A(2,),B(2,2),C(3,),则原点O对三角形ABC的视角为30°;(2)如图③,在直角坐标系中,以原点O,半径为2画圆O1,以原点O,半径为4画圆O2,证明:圆O2上任意一点P对圆O1的视角是定值;【拓展应用】(3)很多摄影爱好者喜欢在天桥上对城市的标志性建筑拍照,如图④.现在有一条笔直的天桥,标志性建筑外延呈正方形,摄影师想在天桥上找到对建筑视角为45°的位置拍摄.现以建筑的中心为原点建立如图⑤的坐标系,此时天桥所在的直线的表达式为x =﹣5,正方形建筑的边长为4,请直接写出直线上满足条件的位置坐标.解:(1)延长BA交x轴于点D,过点C作CE⊥x轴于点E,∵点,,,∴AB∥y轴,,OE=3,∴AB⊥x轴,∴,OD=2,∴,,∴∠BOD=60°,∠COE=30°,∴∠BOC=∠BOD﹣∠COE=30°,即原点O对三角形ABC的视角为30°过答案为:30°(2)证明:如图,过圆O2上任一点P作圆O1的两条切线交圆O1于A,B,连接OA,OB,OP,则有OA⊥PA,OB⊥PB,在中,OA=2,OP=4,∴,∴∠OPA=30°,同理可求得:∠OPB=30°,∴∠APB=60°,即圆O2上任意一点P对圆O1的视角是60°,∴圆O2上任意一点P对圆O1的视角是定值.(3)当在直线AB与直线CD之间时,视角是∠APD,此时以E(﹣4,0)为圆心,EA 半径画圆,交直线于P3,P6,∵∠DP3B>∠DP3A=45°,∠AP6C>∠DP6C=45°,不符合视角的定义,P3,P6舍去.同理,当在直线AB上方时,视角是∠BPD,此时以A(﹣2,2)为圆心,AB半径画圆,交直线于P1,P5,P5不满足;过点P1作P1M⊥AD交DA延长线于点M,则AP1=4,P1M=5﹣2=3,∴,∴当在直线CD下方时,视角是∠APC,此时以D(﹣2,﹣2)为圆心,DC半径画圆,交直线于P2,P4,P4不满足;同理得:;综上所述,直线上满足条件的位置坐标或.9.小明在学习函数的过程中遇到这样一个函数:y=[x],若x≥0时,[x]=x2﹣1;若x<0时,[x]=﹣x﹣1.小明根据学习函数的经验,对该函数进行了探究.(1)①列表:下表列出y与x的几组对应值,请写出m,n的值m=0;n=3;x…﹣2﹣1012…y…1m00n…②描点:在平面直角坐标系中,以①给出的自变量x的取值为横坐标,以相应的函数值为纵坐标,描出相应的点并连线,作出函数图象;(2)下列关于该函数图象的性质正确的是③;(填序号)①y随x的增大而增大;②该函数图象关于y轴对称;③当x=0时,函数有最小值为﹣1;④该函数图象不经过第三象限.(3)若函数值y=8,则x=3或﹣9;(4)若关于x的方程2x+c=[x]有两个不相等的实数根,请结合函数图象,直接写出c 的取值范围是c>﹣2.解:(1)①m=﹣(﹣1)﹣1=0;n=22﹣1=3;故答案为:0,3;②描点,连线,作出函数图象如下:(2)从图象可知:下列关于该函数图象的性质正确的是③;故答案为:③;(3)若x≥0时,x2﹣1=8,解得x=3或x=﹣3,∴x=3;若x<0时,﹣x﹣1=8,解得x=﹣9,故答案为:3或﹣9;(4)由图象可知:关于x的方程2x+c=[x]有两个不相等的实数根,则c>﹣2,故答案为:c>﹣2.10.某公园内人工湖上有一座拱桥(横截面如图所示),跨度AB为4米.在距点A水平距离为d米的地点,拱桥距离水面的高度为h米.小红根据学习函数的经验,对d和h之间的关系进行了探究.下面是小红的探究过程,请补充完整:(1)经过测量,得出了d和h的几组对应值,如表.d/米00.61 1.8 2.43 3.64h/米0.88 1.90 2.38 2.86 2.80 2.38 1.600.88在d和h这两个变量中,d是自变量,h是这个变量的函数;(2)在下面的平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合表格数据和函数图象,解决问题:①桥墩露出水面的高度AE为0.88米;②公园欲开设游船项目,现有长为3.5米,宽为1.5米,露出水面高度为2米的游船.为安全起见,公园要在水面上的C,D两处设置警戒线,并且CE=DF,要求游船能从C,D两点之间安全通过,则C处距桥墩的距离CE至少为0.7米.(精确到0.1米)解:(1)d是自变量,h是这个变量的函数,故答案为:d,h;(2)如图,(3)①当x=0时,y=0.88,∴桥墩露出水面的高度AE为0.88米,故答案为:0.88;②设y=ax2+bx+c,把(0,0.88)、(1,2.38)、(3,2.38)代入得,,解得,∴y=﹣0.5x2+2x+0.88,对称轴为直线x=2,令y=2,则2=﹣0.5x2+2x+0.88,解得x≈3.3(舍去)或0.7.故答案为:0.7.11.小明为了探究函数M:y=﹣x2+4|x|﹣3的性质,他想先画出它的图象,然后再观察、归纳得到,并运用性质解决问题.(1)完成函数图象的作图,并完成填空.①列出y与x的几组对应值如表:x…﹣5﹣4﹣3﹣2﹣1012345…y…﹣8﹣3010﹣3010a﹣8…表格中,a=﹣3;②结合上表,在下图所示的平面直角坐标系xOy中,画出当x>0时函数M的图象;③观察图象,当x=﹣2或2时,y有最大值为1;(2)求函数M:y=﹣x2+4|x|﹣3与直线l:y=2x﹣3的交点坐标;(3)已知P(m,y1),Q(m+1,y2)两点在函数M的图象上,当y1<y2时,请直接写出m的取值范围.解:(1)①把x=4代入y=﹣x2+4|x|﹣3得:y=﹣16+16﹣3=﹣3,∴a=﹣3,故答案为:﹣3;②画出当x>0时函数M的图象如下:③观察图象,当x=﹣2或2时,y有最大值为1;故答案为:﹣2或2,1;(2)由解得或,由解得或,∴函数M:y=﹣x2+4|x|﹣3与直线l:y=2x﹣3的交点坐标为(﹣6,﹣15)、(0,﹣3)、(2,1);(3)∵P(m,y1),Q(m+1,y2)两点在函数M的图象上,且y1<y2,∴m的取值范围m<﹣2.5或﹣0.5<m<1.5.12.定义:平面直角坐标系xOy中,若点M绕原点顺时针旋转90°,恰好落在函数图象W 上,则称点M为函数图象W的“直旋点”.例如,点是函数y=x图象的“直旋点”.(1)在①(3,0),②(﹣1,0),③(0,3)三点中,是一次函数图象的“直旋点”的有②③(填序号);(2)若点N(3,1)为反比例函数图象的“直旋点”,求k的值;(3)二次函数y=﹣x2+2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,点D是二次函数y=﹣x2+2x+3图象的“直旋点”且在直线AC上,求D点坐标.解:(1)①点(3,0)绕原点顺时针旋转90°得点(0,﹣3),当x=0时,y=1,∴点(3,0)不是一次函数图象的“直旋点”;②点(﹣1,0)绕原点顺时针旋转90°得点(0,1),当x=0时,y=1,∴点(﹣1,0)是一次函数图象的“直旋点”;③点(0,3)绕原点顺时针旋转90°得(3,0),当x=3时,y==0,∴点(0,3)是一次函数图象的“直旋点”;∴是一次函数图象的“直旋点”的有②③;故答案为:②③;(2)点N(3,1)绕原点顺时针旋转90°得点(1,﹣3),∵点N(3,1)为反比例函数图象的“直旋点”,∴,∴k=﹣3;(3)∵二次函数y=﹣x2+2x+3与x轴交于A,B两点(A在B的左侧),令y=0,则﹣x2+2x+3=0,解得:x1=3,x2=﹣1,∴A(﹣1,0),B(3,0),∵二次函数y=﹣x2+2x+3与y轴交于点C,令x=0,则y=3,∴C(0,3),设直线AC的解析式为y=kx+b,,解得:,∴直线AC的解析式为y=3x+3,设点D(a,3a+3),则D(a,3a+3)绕原点顺时针旋转90°得点(3a+3,﹣a),∵点D是二次函数y=﹣x2+2x+3图象的“直旋点”,∴﹣(3a+3)2+2(3a+3)+3=﹣a,解得:a=0或a,∴点D的坐标为(0,3)或.13.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y ≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,图中的函数是有界函数,其边界是1.(1)直接判断函数y=(x>0)和y=﹣2x+1(﹣4<x≤2)是不是有界函数?若是有界函数,直接写出其边界值;(2)若一次函数y=kx+b(﹣2≤x≤1)的边界值是3,且这个函数的最大值是2,求这个一次函数的解析式;(3)将二次函数y=﹣x2(﹣1≤x≤m,m≥0)的图象向上平移m个单位,得到的函数的边界值是n,当m在什么范围时,满足≤n≤1.解:(1)y=(x>0)不是有界函数;y=﹣2x+1(﹣4<x≤2)是有界函数,当x=﹣4时,y=9,当x=2时,y=﹣3,∴对于﹣4<x≤2时,任意函数值都满足﹣9<y≤9,∴边界值为9.(2)当k>0时,由有界函数的定义得函数过(1,2),(﹣2,﹣3)两点,设y=kx+b,将(1,2)(﹣2,﹣3)代入上式得,解得:,所以:y=x+,当k<0时,由有界函数的定义得函数过(﹣2,2),(1,﹣3)两点,设y=kx+b,将(﹣2,2),(1,﹣3)代入上式得,即得,函数解析式为y=﹣x﹣.(3)若m>1,函数向上平移m个单位后,x=0时,y=m,此时边界值t≥1,与题意不符,故m≤1,函数y=﹣x2过点(﹣1,﹣1),(0,0);向上平移m个单位后,平移图象经过(﹣1,﹣1+m);(0,m).∴﹣1≤﹣1+m≤﹣或≤m≤1,即0≤m≤或≤m≤1.14.在平面直角坐标系中,由两条与x轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”.如图所示,抛物线C1与抛物线C2:y=mx2+4mx﹣12m(m >0)的部分图象组成一个“月牙线”,相同的交点分别为M,N(点M在点N的左侧),与y轴的交点分别为A,B,且点A的坐标为(0,﹣1).(1)求M,N两点的坐标及抛物线C1的解析式;(2)若抛物线C2的顶点为D,当m=时,试判断三角形MND的形状,并说明理由;(3)在(2)的条件下,点P(t,﹣)是抛物线C1上一点,抛物线C2第三象限上是=S△ONQ,若存在,请直接写出点Q的坐标;若不存在,说否存在一点Q,使得S△APM明理由.解:(1)令y=0,则mx2+4mx﹣12m=0,解得x=2或x=﹣6,∴M(﹣6,0),N(2,0),设抛物线C1的解析式为y=a(x+6)(x﹣2),将点A(0,﹣1)代入,得﹣12a=﹣1,解得a=,∴y=(x2+4x﹣12);(2)∵m=,∴y=x2+3x﹣9=(x+2)2﹣12,∴D(﹣2,﹣12),∴MD=4,ND=4,MN=8,∴MD=ND,∴△MND是等腰三角形;=S△ONQ,理由如下:(3)∵存在一点Q,使得S△APM∵点P(t,﹣)是抛物线C1上一点,∴﹣=(t2+4t﹣12),解得t=﹣1或t=﹣3,∴P(﹣1,﹣)或P(﹣3,﹣),设直线AM的解析式为y=kx+b,∴,解得,∴y=﹣x﹣1,过点P作PG∥y轴交AM于点G,当P(﹣1,﹣)时,G(﹣1,﹣),∴PG=,=6×=,∴S△APM=S△ONQ,∵S△APM∴××2×|y Q|=,解得y Q=﹣,∴Q(﹣﹣2,﹣);当P(﹣3,﹣)时,G(﹣3,﹣),∴PG=,=6×=,∴S△APM=S△ONQ,∵S△APM∴××2×|y Q|=,解得y Q=﹣,∴Q(﹣﹣2,﹣);综上所述:Q点坐标为(﹣﹣2,﹣)或(﹣﹣2,﹣).15.阅读材料:一般地,对于某个函数,如果自变量x在取值范围内任取x=a与x=﹣a时,函数值相等,那么这个函数是“对称函数”.例如:y=x2,在实数范围内任取x=a时,y =a2;当x=﹣a时,y=(﹣a)2=a2,所以y=x2是“对称函数”.(1)函数y=2|x|+1是对称函数(填“是”或“不是”).当x≥0时,y=2|x|+1的图象如图1所示,请在图1中画出x<0时,y=2|x|+1的图象.(2)函数y=x2﹣2|x|+1的图象如图2所示,当它与直线y=﹣x+n恰有3个交点时,求n的值.(3)如图3,在平面直角坐标系中,矩形ABCD的顶点坐标分别是A(﹣3,0),B(2,0),C(2,﹣3),D(﹣3,﹣3),当二次函数y=x2﹣b|x|+1(b>0)的图象与矩形的边恰有4个交点时,求b的取值范围.解:(1)∵在实数范围内任取x=a时,y=2|a|+1,当x=﹣a时,y=2|﹣a|+1=2|a|+1,∴y=2|x|+1是“对称函数”.故答案为:是;y=2|x|+1的图象如图1所示,(2)①当直线y=﹣x+n经过点(0,1)时,函数y=x2﹣2|x|+1的图象与直线y=﹣x+n恰有3个交点,∴n=1;②当直线y=﹣x+n与函数y=x2﹣2|x|+1的图象的右半侧相切时,函数y=x2﹣2|x|+1的图象与直线y=﹣x+n恰有3个交点,即方程组有一个解,∴方程x2﹣x+1﹣n=0有两个相等的实数根.∴Δ=(﹣1)2﹣4×1×(1﹣n)=0,解得:n=.综上,函数y=x2﹣2|x|+1的图象与直线y=﹣x+n恰有3个交点,则n的值为1或;(3)当x>0时,函数y=x2﹣bx+1的图象与x轴相切时,方程x2﹣bx+1=0有两个相等的实数根,∴Δ=(﹣b)2﹣4×1×1=0,∵b>0,∴b=2;当x>0时,函数y=x2﹣bx+1的图象与直线DC相切时,方程x2﹣bx+1=﹣3有两个相等的实数根,∴Δ=(﹣b)2﹣4×1×4,∵b>0,∴b=4;当x<0时,函数y=x2+bx+1的图象经过点(﹣3,﹣3)时,﹣3=(﹣3)2﹣3b+1,解得:b=.综上,当2<b<4或b>时,二次函数y=x2﹣b|x|+1(b>0)的图象与矩形的边恰有4个交点.16.定义:把一个半圆与抛物线的一部分合成封闭图形,我们把这个封闭图形称为“蛋圆”.如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,A,B,C,D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,8),AB为半圆的直径,半圆的圆心M的坐标为(1,0),半圆半径为3.(1)请你直接写出“蛋圆”抛物线部分的解析式y=﹣x2+4x+8,自变量的取值范围是﹣2≤x≤4;(2)请你求出过点C的“蛋圆”切线与x轴的交点坐标;(3)求经过点D的“蛋圆”切线的解析式.解:(1)∵半圆的圆心M的坐标为(1,0),半圆半径为3,∴A(﹣2,0),B(4,0),设抛物线解析式为y=ax2+bx+c,则,解得,∴“蛋圆”抛物线部分的解析式y=﹣x2+2x+8(﹣2≤x≤4);故答案为:=﹣x2+2x+8;﹣2≤x≤4.(2)如图,设过点C的切线与x轴相交于E,连接CM,∵CE与半圆相切,∴CE⊥CM,∴∠OCE+∠MCO=90°,∵∠CEO+∠ECO=90°,∴∠CEO=∠MCO,又∵∠COE=∠MOC=90°,∴△COE∽△MOC,∴=,由勾股定理得,OC==2,∴OE===8,∴过点C的“蛋圆”切线与x轴的交点坐标为(﹣8,0);(3)设过点D的“蛋圆”切线解析式为y=kx+8,联立,消掉y得,x2+(k﹣2)x=0,∵直线与“蛋圆”抛物线相切,∴△=(k﹣2)2=0,解得k=2,∴过点D的“蛋圆”切线的解析式为y=2x+8.17.规定:如果两个函数图象上至少存在一组点是关于原点对称的,我们则称这两个函数互为“O—函数”.这组点称为“XC点”.例如:点P(1,1)在函数y=x2上,点Q(﹣1,﹣1)在函数y=﹣x﹣2上,点P与点Q关于原点对称,此时函数y=x2和y=﹣x﹣2互为“O—函数”,点P与点Q则为一组“XC点”.(1)已知函数y=﹣2x﹣1和y=﹣互为“O—函数”,请求出它们的“XC点”;(2)已知函数y=x2+2x+4和y=4x+n﹣2022互为“O—函数”,求n的最大值并写出“XC 点”;(3)已知二次函数y=ax2+bx+c(a>0)与y=2bx+1互为“O—函数”有且仅存在一组“XC点”,如图,若二次函数的顶点为M,与x轴交于A(x1,0),B(x2,0)其中0<x1<x2,AB=,过顶点M作x轴的平行线l,点P在直线l上,记P的横坐标为﹣,连接OP,AP,BP.若∠OPA=∠OBP,求t的最小值.解:(1)设P(a,b)在y=﹣2x﹣1上,则Q(﹣a,﹣b)在y=﹣上,∴,解得或,∴“XC点”为(﹣2,3)与(2,﹣3)或(,﹣4)与(﹣,4);(2)设P(s,t)在y=x2+2x+4上,则Q(﹣s,﹣t)在y=4x+n﹣2022上,∴,∴n=﹣t+4s+2022=﹣s2+2s+2018=﹣(s﹣1)2+2019,当s=1时,n有最大值2019,此时“XC点”为(1,7)与(﹣1,﹣7);(3)设P(x,y)在y=ax2+bx+c上,则Q(﹣x,﹣y)在y=2bx+1上,∴,整理得ax2﹣bx+c+1=0,∵有且仅存在一组“XC点”,∴Δ=b2﹣4a(c+1)=0,即=﹣1,∴顶点M的纵坐标为﹣1,∵ax2+bx+c=0,∴x1+x2=﹣,x1•x2=,∴AB==,∵AB=,∴=,∴=,∵∠OPA=∠OBP,∠AOP=∠POB,∴△POA∽△BOP,∴OP2=OB•OA=x1•x2,∵P的横坐标为﹣,∴P(﹣,﹣1),∴t+1===(c﹣1)2+,∴当c=1时,t有最小值.18.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“CJ三角形”.(1)判断下列三角形是否为“CJ三角形”?如果是,请在对应横线上画“√”,如果不是,请在对应横线上画“×”;①其中有两内角分别为30°,60°的三角形×;②其中有两内角分别为50°,60°的三角形×;③其中有两内角分别为70°,100°的三角形√;(2)如图1,点A在双曲线y=(k>0)上且横坐标为1,点B(4,0),C为OB中点,D为y轴负半轴上一点,若∠OAB=90°.①求k的值,并求证:△ABC为“CJ三角形”;②若△OAB与△OBD相似,直接写出D的坐标;(3)如图2,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,E为BC边上一点,BE >CE且△ABE是“CJ三角形”,已知A(﹣6,0),记BE=t,过A,E作抛物线y=ax2+bx+c(a>0),B在A右侧,且在x轴上,点Q在抛物线上,使得tan∠ABQ=,若符合条件的Q点个数为3个,求抛物线y=ax2+bx+c的解析式.。
专题10 代几综合题中的新定义-2023年中考数学毕业班二轮热点题型归纳与变式演练 (解析版)
专题10 代几综合题中的新定义目录【题型一】 二次函数中的新定义【典例分析】﹣x,其顶点(2023青浦区一模)在平面直角坐标系xOy中(如图),已知抛物线y=x22为A.(1)写出这条抛物线的开口方向、顶点A的坐标;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.①试求抛物线y=x22﹣x的“不动点”的坐标;②向左或向右平移抛物线y=x22﹣x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.【分析】(1)∵a=1>0,故该抛物线开口向上,顶点A的坐标为(1,﹣1);﹣t,即可求解;(2)①设抛物线“不动点”坐标为(t,t),则t=t22②新抛物线顶点B为“不动点”,则设点B(m,m),则新抛物线的对称轴为:x=m,与x轴的交点C(m,0),四边形OABC是梯形,则直线x=m在y轴左侧,而点A (1,﹣1),点B (m ,m ),则m =﹣1,即可求解.【解答】解:(1)∵a =1>0,y =x 22﹣x =(x 1﹣)21﹣故该抛物线开口向上,顶点A 的坐标为(1,﹣1),(2)①设抛物线“不动点”坐标为(t ,t ),则t =t 22﹣t ,解得:t =0或3,故“不动点”坐标为(0,0)或(3,3);②当OC ∥AB 时,∵新抛物线顶点B 为“不动点”,则设点B (m ,m ),∴新抛物线的对称轴为:x =m ,与x 轴的交点C (m ,0),∵四边形OABC 是梯形,∴直线x =m 在y 轴左侧,∵BC 与OA 不平行,∴OC ∥AB ,又∵点A (1,﹣1),点B (m m ),∴m =﹣1,故新抛物线是由抛物线y =x 22﹣x 向左平移2个单位得到的;当OB ∥AC 时,同理可得:抛物线的表达式为:y =(x 2﹣)2+2=x 24﹣x +6,当四边形OABC 是梯形,字母顺序不对,故舍去,综上,新抛物线的表达式为:y =(x +1)21﹣.【点评】本题为二次函数综合运用题,正确利用二次函数基本知识、梯形基本性质进行分析是解题关键.【提分秘籍】所谓“新定义”型问题,主要是指在问题中定义了初中数学中没有学过的一些概念、新运算、新符号,要求同学们读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型。
新定义型题目的解题策略探究
新定义型题目的解题策略探究摘要:“新定义”试题是宁波市中考数学中的特色题目之一,近年来都以固定题型的形式出现在中考试卷上,其是以能力立意为目标,以增大思维容量为特色,以定义新概念为背景的一种创新题型。
本文在简述“新定义”试题的概念,特点,题型分类的基础上探究“新定义”试题的解题技巧与方法,并得出在教学中的启示与反思。
关键词:新定义;解题策略;教学启示一、“新定义”试题概述1.“新定义”试题的概念“新定义”试题成为近年来中考数学的新亮点,也是宁波市近年来中考数学的固定题型。
“新定义”试题主要是指在问题中定义了一些没有学过的新概念、新运算、新符号等,要求学生现学现用,能够理解新知,读懂题意,然后利用题目中所介绍的新定义、新概念等,结合已有知识、能力进行理解、运算、推理、迁移、拓展的一种题型。
“新定义”试题的目的是考查学生的接受能力、应变能力与创新能力,其在于培养学生自主学习与主动探究的数学素养。
2.“新定义”试题的特点“新定义”试题设计新颖,构思独特,集应用性、探索性和开放性于一体,旨在全方面、多角度考查学生发现问题、分析问题与解决问题的能力。
首先,“新定义”试题具有情景新、形式新颖、知识点活的特点。
其次,“新定义”试题体现了阅读性、应用性、综合性的特点。
最后,“新定义”试题体现探究性、启发性、探究性的特点。
二、“新定义”试题的类型与解题策略1.“新定义”试题的类型(1)“新定义”中的新运算与新规律试题“新定义”中的新运算试题一般是通过理解示例的运算规则,然后推理题目所求,这类题目相对比较简单,一般在填空或者选择题里出现。
关于新规律试题一般是通过已知条件推导出合理的新规律,再由特殊到一般对新规律加以应用去解题,这类题目也比较简单,一般也是作为小题出现。
(2)“新定义”中的阅读理解试题“新定义”中的阅读理解试题主要考察学生的语言逻辑、分析能力和推理能力,这类题目首先要理解阅读材料的内容,理清思路是很重要的,接下来在阅读材料中提炼重要信息内化为所学知识点去求解。
中考数学中“新定义”问题的类型及教学策略
中考数学中“新定义”问题的类型及教学策略摘要:近几年嘉兴中考对于“新定义”类型的问题要求较高,而学生往往对于这类问题感到畏惧。
本文以“新定义”问题的概念以及特征为出发点,把这类题型分为四种类型。
教学时从概念中提取信息→加工信息→转化迁移→建立模型→解决问题。
这类问题主要考查学生现学现用的能力,以及类比和转化思想。
关键词:“新定义”;策略;迁移;阅读理解“新定义”问题是近几年嘉兴中考试题中的热点题型,它是基于学生必须掌握的知识及应该具备的能力,通过新定义的方式隐藏问题本源,要求学生在理解新定义的基础上进行拓展,从而灵活运用新知解决问题,主要考查学生现学现用的能力。
“新定义”问题的重要意义在于它不仅改变了学生解题的思维方式,而且对教师的课堂教学也起到了良好的导向作用,由于突出了理解定义的内在含义、问题迁移转化等重要环节,所以学生往往遇到“新定义”问题感到畏惧,故教师在教学“新定义”问题的时候要注意教学策略。
一、“新定义”问题阐释1.“新定义”问题的概念“新定义”问题是指命题者按照一定的规则,呈现给学生没有见过的新运算、新符号、新图形、新变换、新函数等,或将一些能与初中知识相衔接的高中“新知识”,通过阅读材料呈现给初中学生,让他们将这些“新知识”与已学知识联系起来,正确理解其内容、思想和方法,把握其本质,通过类比、猜想、迁移来运用新知识解决实际问题,要求学生现学现用,它全面地考查了学生的阅读理解能力、知识迁移能力和创新能力。
2.“新定义”问题的特征“新定义”题型特点突出、取材广泛,材料源于课本又有创新,不仅可以考查学生的阅读理解能力、分析综合能力、辨别判断能力以及生活经验是否丰富等,而且可以综合考查学生的数学思维能力和创新意识,此类问题能够帮助学生实现从模仿到创造的思维过程,达到从预设到生成的跨越,符合学生的认知规律,既实现了对学生知识与能力考查的结合,又体现了素质教育的本质,还为学生进入高一级学校的学习做了良好的铺垫。
42 二次函数创新题及新定义问题-【初中数学】120个题型大招!冲刺满分秘籍!
二次函数创新题及新定义问题二次函数与新定义问题在二次函数与新定义问题中,重点是将题中给出的定义“翻译”成学过的知识,再结合二次函数的性质综合进行处理,其难点就在于“翻译定义”的过程,对学生的理解能力和初中知识的运用能力要求较高.典例1.若两个二次函数图象的顶点,开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1,和y2=x2+bx+c,其中y1的图象经过点A (1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求当0≤x≤3时,y2的取值范围.【答案】解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k,当a=2,h=3,k=4时,二次函数的关系式为y=2(x﹣3)2+4.∵2>0,∴该二次函数图象的开口向上.当a=3,h=3,k=4时,二次函数的关系式为y=3(x﹣3)2+4.∵3>0,∴该二次函数图象的开口向上.∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上,∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”.∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4.(2)∵y1的图象经过点A(1,1),∴2×12﹣4×m×1+2m2+1=1.整理得:m2﹣2m+1=0,解得:m1=m2=1.∴y1=2x2﹣4x+3=2(x﹣1)2+1,∴y1+y2=2x2﹣4x+3+x2+bx+c=3x2+(b﹣4)x+(c+3),∵y1+y2与y1为“同簇二次函数”,∴y1+y2=3(x﹣1)2+1=3x2﹣6x+4,∴函数y2的表达式为:y2=x2﹣2x+1.∴y2=x2﹣2x+1=(x﹣1)2,∴函数y2的图象的对称轴为x=1.∵1>0,∴函数y2的图象开口向上.当0≤x≤3时,∵函数y2的图象开口向上,∴y2的取值范围为0≤y2≤4.【精准解析】(1)只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可.(2)由y 1的图象经过点A (1,1)可以求出m 的值,然后根据y 1+y 2与y 1为“同簇二次函数”就可以求出函数y 2的表达式,然后将函数y 2的表达式转化为顶点式,再利用二次函数的性质就可以解决问题.练习1.设二次函数y 1,y 2的图象的顶点分别为(a ,b )、(c ,d ),当a=﹣c ,b=2d ,且开口方向相同时,则称y 1是y 2的“反倍顶二次函数”.(1)请写出二次函数y=x 2+x+1的一个“反倍顶二次函数”;(2)已知关于x 的二次函数y 1=x 2+nx 和二次函数y 2=nx 2+x ,函数y 1+y 2恰是y 1﹣y 2的“反倍【答案】解:(1)∵y=x 2+x+1,∴y=,∴二次函数y=x 2+x+1的顶点坐标为(﹣,),∴二次函数y=x 2+x+1的一个“反倍顶二次函数”的顶点坐标为(,),∴反倍顶二次函数的解析式为y=x 2﹣x+;(2)y 1+y 2=x 2+nx+nx 2+x=(n+1)x 2+(n+1)x ,y 1+y 2=(n+1)(x 2+x+)﹣,顶点坐标为(﹣,﹣),y 1﹣y 2=x 2+nx ﹣nx 2﹣x=(1﹣n )x 2+(n ﹣1)x ,y 1﹣y 2=(1﹣n )(x 2﹣x+)﹣,顶点坐标为(,﹣),由于函数y 1+y 2恰是y 1﹣y 2的“反倍顶二次函数”,则﹣2×=﹣,解得n=.1.小爱同学学习二次函数后,对函数2(||1)y x =--进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:(1)观察探究:①写出该函数的一条性质:函数图象关于y 轴对称;②方程2(||1)1x --=-的解为:;③若方程2(||1)x a --=有四个实数根,则a 的取值范围是.(2)延伸思考:将函数2(||1)y x =--的图象经过怎样的平移可得到函数21(|2|1)3y x =---+的图象?写出平移过程,并直接写出当123y <时,自变量x 的取值范围.【分析】(1)根据图象即可求得;(2)根据“上加下减”的平移规律,画出函数21(|2|1)3y x =---+的图象,根据图象即可得到结论.【解答】解:(1)观察探究:①该函数的一条性质为:函数图象关于y 轴对称;②方程2(||1)1x --=-的解为:2x =-或0x =或2x =;③若方程2(||1)x a --=有四个实数根,则a 的取值范围是10a -<<.故答案为函数图象关于y 轴对称;2x =-或0x =或2x =;10a -<<.(2)将函数2(||1)y x =--的图象向右平移2个单位,向上平移3个单位可得到函数21(|2|1)3y x =---+的图象,当123y <时,自变量x 的取值范围是04x <<且2x ≠.2.(2021•长沙)我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于y 轴对称,则把该函数称之为“T 函数”,其图象上关于y 轴对称的不同两点叫做一对“T 点”.根据该约定,完成下列各题.(1)若点(1,)A r 与点(,4)B s 是关于x 的“T 函数”()24(0)0,0,x y x tx x t t ⎧-<⎪=⎨⎪≠⎩是常数的图象上的一对“T 点”,则r =,s =,t =(将正确答案填在相应的横线上);(2)关于x 的函数(y kx p k =+,p 是常数)是“T 函数”吗?如果是,指出它有多少对“T 点”如果不是,请说明理由;(3)若关于x 的“T 函数”2(0y ax bx c a =++>,且a ,b ,c 是常数)经过坐标原点O ,且与直线:(0l y mx n m =+≠,0n >,且m ,n 是常数)交于1(M x ,1)y ,2(N x ,2)y 两点,当1x ,2x 满足112(1)1x x --+=时,直线l 是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.【分析】(1)由A ,B 关于y 轴对称求出r ,s ,由“T 函数”的定义求出t ;(2)分0k =和0k ≠两种情况考虑即可;(3)先根据过原点得出0c =,再由“T 函数”得出b 的值,确定二次函数解析式后,和直线联立求出交点的横坐标,写出l 的解析式,确定经过的定点即可.【解答】解:(1)A ,B 关于y 轴对称,1s ∴=-,4r =,A ∴的坐标为(1,4),把(1,4)A 代入是关于x 的“T 函数”中,得:4t =,故答案为4r =,1s =-,4t =;(2)当0k =时,有y p =,此时存在关于y 轴对称得点,y kx p ∴=+是“T 函数”,且有无数对“T ”点,当0k ≠时,不存在关于y 轴对称的点,y kx p ∴=+不是“T 函数”;(3)2y ax bx c =++ 过原点,0c ∴=,2y ax bx c =++ 是“T 函数”,0b ∴=,2y ax ∴=,联立直线l 和抛物线得:2y ax y mx n ⎧=⎨=+⎩,即:20ax mx n --=,12m x x a +=,12n x x a-=,又 112(1)1x x --+=,化简得:1212x x x x +=,∴m n a a-=,即m n =-,y mx n mx m ∴=+=-,当1x =时,0y =,∴直线l 必过定点(1,0).3.(2021•杭州)在直角坐标系中,设函数21(y ax bx a =++,b 是常数,0)a ≠.(1)若该函数的图象经过(1,0)和(2,1)两点,求函数的表达式,并写出函数图象的顶点坐标;(2)写出一组a ,b 的值,使函数21y ax bx =++的图象与x 轴有两个不同的交点,并说明理由.(3)已知1a b ==,当x p =,(q p ,q 是实数,)p q ≠时,该函数对应的函数值分别为P ,Q .若2p q +=,求证:6P Q +>.【分析】(1)考查使用待定系数法求二次函数解析式,属于基础题,将两点坐标代入,解二元一次方程组即可;(2)写出一组a ,b ,使得240b ac ->即可;(3)已知1a b ==,则21y x x =++.容易得到2211P Q p p q q +=+++++,利用2p q +=,即2p q =-代入对代数式P Q +进行化简,并配方得出22(1)66P Q q +=-+.最后注意利用p q ≠条件判断1q ≠,得证.【解答】解:(1)由题意,得104211a b a b ++=⎧⎨++=⎩,解得12a b =⎧⎨=-⎩,所以,该函数表达式为221y x x =-+.并且该函数图象的顶点坐标为(1,0).(2)例如1a =,3b =,此时231y x x =++,2450b ac -=> ,∴函数231y x x =++的图象与x 轴有两个不同的交点.(3)由题意,得21P p p =++,21Q q q =++,所以2211P Q p p q q +=+++++224p q =++22(2)4q q =-++22(1)66q =-+,由条件p q ≠,知1q ≠.所以6P Q +>,得证.4.(2021•衡阳)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如(1,1),(2021,2021)⋯都是“雁点”.(1)求函数4y x=图象上的“雁点”坐标;(2)若抛物线25y ax x c =++上有且只有一个“雁点”E ,该抛物线与x 轴交于M 、N 两点(点M 在点N 的左侧).当1a >时.①求c 的取值范围;②求EMN ∠的度数;(3)如图,抛物线223y x x =-++与x 轴交于A 、B 两点(点A 在点B 的左侧),P 是抛物线223y x x =-++上一点,连接BP ,以点P 为直角顶点,构造等腰Rt BPC ∆,是否存在点P ,使点C 恰好为“雁点”?若存在,求出点P 的坐标;若不存在,请说明理由.【分析】(1)由题意得:4x x=,解得2x =±,即可求解;(2)①抛物线25y ax x c =++上有且只有一个“雁点”E ,则25ax x c x ++=,则△1640ac =-=,即4ac =,而1a >,04c <<;由M 、N 的存在,则△2540ac =->,而1a >,则254c <,即可求解;②求出点M 的坐标为4(a -,0)、点E 的坐标为2(a -,2a-,即可求解;(3)分两种情形:点C 在PB 的下方或上方,分别根据全等三角形解决问题.【解答】解:(1)由题意得:4x x=,解得2x =±,当2x =±时,42y x ==±,故“雁点”坐标为(2,2)或(2,2)--;(2)① “雁点”的横坐标与纵坐标相等,故“雁点”的函数表达式为y x =,抛物线25y ax x c =++上有且只有一个“雁点”E ,则25ax x c x ++=,则△1640ac =-=,即4ac =,1a > ,故04c <<;M 、N 的存在,则△2540ac =->,而1a >,则254c <,综上,04c <<;②4ac = ,则250ax x c ++=为2450ax x a ++=,解得4x a =-或1a -,即点M 的坐标为4(a-,0),由25ax x c x ++=,4ac =,解得2x a =-,即点E 的坐标为2(a -,2)a-,过点E 作EH x ⊥轴于点H ,则2HE a =,242(E M MH x x HE a a a=-=---==,故EMN ∠的度数为45︒;(3)存在,理由:当点C 在PB 的下方时,由题意知,点C 在直线y x =上,故设点C 的坐标为(,)t t ,过点P 作x 轴的平行线交过点C 与y 轴的平行线于点M ,交过点B 与y 轴的平行线于点N ,设点P 的坐标为2(,23)m m m -++,则223BN m m =-++,3PN m =-,PM m t =-,223CM m m t =-++-,90NPB MPC ∠+∠=︒ ,90MCP CPM ∠+∠=︒,NPB PCM ∴∠=∠,90CMP PNB ∠=∠=︒ ,PC PB =,()CMP PNB AAS ∴∆≅∆,PM BN ∴=,CM PN =,即2|23|m t m m -=-++,223|3|m m t m -++-=-,解得1012m =1012-,当点C 在PB 的上方时,过点P 作PK OB ⊥于K ,CH KP ⊥交KP 的延长线于H .同法可证,CHP PKB ∆≅∆,可得CH PK =,HP BK =,t m n -=,3t n m -=-,223n m m =-++32m ∴=,154n =,3(2P ∴,15)4,故点P 的坐标为210(2-,32或10(12+,3)2或3(2,15)4.5.(2021•江西)二次函数22y x mx =-的图象交x 轴于原点O 及点A .感知特例(1)当1m =时,如图1,抛物线2:2L y x x =-上的点B ,O ,C ,A ,D 分别关于点A 中心对称的点为B ',O ',C ',A ',D ',如表:⋯(1,3)B -(0,0)O (1,1)C -(A 2,)(3,3)D ⋯⋯(5,3)B '-(4,0)O '(3,1)C '(2,0)A '(1,3)D '-⋯①补全表格;②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为L '.形成概念我们发现形如(1)中的图象L '上的点和抛物线L 上的点关于点A 中心对称,则称L '是L 的“孔像抛物线”.例如,当2m =-时,图2中的抛物线L '是抛物线L 的“孔像抛物线”.探究问题(2)①当1m =-时,若抛物线L 与它的“孔像抛物线”L '的函数值都随着x 的增大而减小,则x 的取值范围为;②在同一平面直角坐标系中,当m 取不同值时,通过画图发现存在一条抛物线与二次函数22y x mx =-的所有“孔像抛物线”L '都有唯一交点,这条抛物线的解析式可能是(填“2y ax bx c =++”或“2y ax bx =+”或“2y ax c =+”或“2y ax =”,其中0)abc ≠;③若二次函数22y x mx =-及它的“孔像抛物线”与直线y m =有且只有三个交点,求m 的值.【分析】(1)①根据中点公式即可求得答案;②根据题意先描点,再用平滑的曲线从左到右依次连接即可;(2)①当1m =-时,抛物线22:2(1)1L y x x x =+=+-,当1x -时,L 的函数值随着x 的增大而减小,抛物线22:68(3)1L y x x x '=---=-++,当3x -时,L '的函数值随着x 的增大而减小,找出公共部分即可;②设符合条件的抛物线M 解析式为2y a x b x c ='+'+',令22268a x b x c x mx m '+'+'=-+-,整理得22(1)(6)(8)0a x b m x c m '++'-+'+=,分下面两种情形:)i 当1a '=-时,)ii 当1a '≠-时,分别讨论计算即可;③观察图1和图2,可知直线y m =与抛物线22y x mx =-及“孔像抛物线”L '有且只有三个交点,即直线y m =经过抛物线L 的顶点或经过抛物线L '的顶点或经过公共点A ,分别建立方程求解即可.【解答】解:(1)①(1,3)B - 、(5,3)B '-关于点A 中心对称,∴点A 为BB '的中点,设点(,)A m n ,1522m -+∴==,3302n -==,故答案为:(2,0);②所画图象如图1所示,(2)①当1m =-时,抛物线22:2(1)1L y x x x =+=+-,对称轴为直线1x =-,开口向上,当1x -时,L 的函数值随着x 的增大而减小,抛物线22:68(3)1L y x x x '=---=-++,对称轴为直线3x =-,开口向下,当3x -时,L '的函数值随着x 的增大而减小,∴当31x --时,抛物线L 与它的“孔像抛物线”L '的函数值都随着x 的增大而减小,故答案为:31x --;② 抛物线22y x mx =-的“孔像抛物线”是2268y x mx m =-+-,∴设符合条件的抛物线M 解析式为2y a x b x c ='+'+',令22268a x b x c x mx m '+'+'=-+-,整理得22(1)(6)(8)0a x b m x c m '++'-+'+=,抛物线M 与抛物线L '有唯一交点,∴分下面两种情形:)i 当1a '=-时,无论b '为何值,都会存在对应的m 使得60b m '-=,此时方程无解或有无数解,不符合题意,舍去;)ii 当1a '≠-时,△22(6)4(1)(8)0b m a c m ='--'+'+=,即22212364(1)84(1)0b b m m a m c a '-'+-'+⋅-''+=,整理得22[3632(1)]124(1)0a m b m b c a -'+-'+'-''+=,当m 取不同值时,两抛物线都有唯一交点,∴当m 取任意实数,上述等式都成立,即:上述等式成立与m 取值无关,∴23632(1)01204(1)0a b b c a -'+=⎧⎪-'=⎨⎪'-''+=⎩,解得18a '=,0b '=,0c '=,则218y x =,故答案为:2y ax =;③抛物线222:2()L y x mx x m m =-=--,顶点坐标为2(,)M m m -,其“孔像抛物线”L '为:22(3)y x m m =--+,顶点坐标为2(3,)N m m ,抛物线L 与其“孔像抛物线”L '有一个公共点(2,0)A m ,∴二次函数22y x mx =-及它的“孔像抛物线”与直线y m =有且只有三个交点时,有三种情况:①直线y m =经过2(,)M m m -,2m m ∴=-,解得:1m =-或0m =(舍去),②直线y m =经过2(3,)N m m ,2m m ∴=,解得:1m =或0m =(舍去),③直线y m =经过(2,0)A m ,0m ∴=,但当0m =时,2y x =与2y x =-只有一个交点,不符合题意,舍去,综上所述,1m =±.6.(2021•云南)已知抛物线22y x bx c =-++经过点(0,2)-,当4x <-时,y 随x 的增大而增大,当4x >-时,y 随x 的增大而减小.设r 是抛物线22y x bx c =-++与x 轴的交点(交点也称公共点)的横坐标,97539521601r r r r r m r r +-++-=+-.(1)求b 、c 的值;(2)求证:4222160r r r -+=;(3)以下结论:1m <,1m =,1m >,你认为哪个正确?请证明你认为正确的那个结论.【分析】(1)当4x <-时,y 随x 的增大而增大,当4x >-时,y 随x 的增大而减小,可得对称轴为直线4x =-,且抛物线22y x bx c =-++经过点(0,2)-,列出方程组即可得答案;(2)由r 是抛物线22162y x x =---与x 轴的交点的横坐标,可得2810r r ++=,218r r +=-,两边平方得222(1)(8)r r +=-,4222164r r r ++=,即可得结果4222160r r r -+=;(3)1m >正确,可用比差法证明,由(2)可得426210r r -+=,即753620r r r -+=,而975395952111601601r r r r r r m r r r r +-++--=-=+-+-,再由2810r r ++=,判断0r <,956010r r +-<,故950601r r r >+-,从而1m >.【解答】(1)解:22y x bx c =-++ 经过点(0,2)-,当4x <-时,y 随x 的增大而增大,当4x >-时,y 随x 的增大而减小,即对称轴为直线4x =-,∴244c b =-⎧⎪⎨-=-⎪⎩-,解得162b c =-⎧⎨=-⎩;(2)证明:由题意,抛物线的解析式为22162y x x =---,r 是抛物线22162y x x =---与x 轴的交点的横坐标,221620r r ∴++=,2810r r ∴++=,218r r∴+=-222(1)(8)r r ∴+=-,4222164r r r ∴++=,4222160r r r ∴-+=;(3)1m >正确,理由如下:由(2)知:4222160r r r -+=;426210r r ∴-+=,753620r r r ∴-+=,而9753952111601r r r r r m r r +-++--=-+-9753959521(601)601r r r r r r r r r +-++--+-=+-7539562601r r r r r r -++=+-95601r r r =+-,由(2)知:2810r r ++=,281r r ∴=--,210r --< ,80r ∴<,即0r <,956010r r ∴+-<,∴950601r r r >+-,即10m ->,1m ∴>.7.(2021•南通)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(1,1)是函数1122y x =+的图象的“等值点”.(1)分别判断函数2y x =+,2y x x =-的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;(2)设函数3(0)y x x=>,y x b =-+的图象的“等值点”分别为点A ,B ,过点B 作BC x ⊥轴,垂足为C .当ABC ∆的面积为3时,求b 的值;(3)若函数22()y x x m =-的图象记为1W ,将其沿直线x m =翻折后的图象记为2W .当1W ,2W 两部分组成的图象上恰有2个“等值点”时,直接写出m 的取值范围.【分析】(1)根据“等值点”的定义建立方程求解即可得出答案;(2)先根据“等值点”的定义求出函数3(0)y x x=>的图象上有两个“等值点”A ,同理求出1(2B b ,1)2b ,根据ABC ∆的面积为3可得111|||3222b b ⨯⨯=,求解即可;(3)先求出函数22y x =-的图象上有两个“等值点”(1,1)--或(2,2),再利用翻折的性质分类讨论即可.【解答】解:(1)在2y x =+中,令2x x =+,得02=不成立,∴函数2y x =+的图象上不存在“等值点”;在2y x x =-中,令2x x x -=,解得:10x =,22x =,∴函数2y x x =-的图象上有两个“等值点”(0,0)或(2,2);(2)在函数3(0)y x x =>中,令3x x=,解得:x =A ∴,在函数y x b =-+中,令x x b =-+,解得:12x b =,1(2B b ∴,1)2b ,BC x ⊥ 轴,1(2C b ∴,0),1||2BC b ∴=,ABC ∆ 的面积为3,∴111|||3222b b ⨯⨯=,当0b <时,2240b --=,解得b =-当0b <时,2240b -+=,△2(4124840=--⨯⨯=-<,∴方程2240b -+=没有实数根,当b 时,2240b --=,解得:b =综上所述,b 的值为-;(3)令22x x =-,解得:11x =-,22x =,∴函数22y x =-的图象上有两个“等值点”(1,1)--或(2,2),①当1m <-时,1W ,2W 两部分组成的图象上必有2个“等值点”(1,1)--或(2,2),21:2()W y x x m =-,22:(2)2()W y x m x m =--<,令2(2)2x x m =--,整理得:22(41)420x m x m -++-=,2W 的图象上不存在“等值点”,∴△0<,22(41)4(42)0m m ∴+--<,98m ∴<-,②当1m =-时,有3个“等值点”(2,2)--、(1,1)--、(2,2),③当12m -<<时,1W ,2W 两部分组成的图象上恰有2个“等值点”,④当2m =时,1W ,2W 两部分组成的图象上恰有1个“等值点”(2,2),⑤当2m >时,1W ,2W 两部分组成的图象上没有“等值点”,综上所述,当1W ,2W 两部分组成的图象上恰有2个“等值点”时,98m <-或12m -<<.8.(2021•大连)已知函数2211()22()x x m x m y x mx m x m ⎧-++<⎪=⎨⎪-+⎩,记该函数图象为G .(1)当2m =时,①已知(4,)M n 在该函数图象上,求n 的值;②当02x 时,求函数G 的最大值.(2)当0m >时,作直线12x m =与x 轴交于点P ,与函数G 交于点Q ,若45POQ ∠=︒时,求m 的值;(3)当3m 时,设图象与x 轴交于点A ,与y 轴交与点B ,过点B 作BC BA ⊥交直线x m =于点C ,设点A 的横坐标为a ,C 点的纵坐标为c ,若3a c =-,求m 的值.【分析】(1)先把2m =代入函数y 中,①把(4,)M n 代入222y x x =-+中,可得n 的值;②将02x 分为两部分确定y 的最大值,当02x <时,将211222y x x =-++配方可得最值,再将2x =代入222y x x =-+中,可得2y =,对比可得函数G 的最大值;(2)分两种情况:Q 在x 轴的上方和下方;证明POQ ∆是等腰直角三角形,得OP PQ =,列方程可得结论;(3)分两种情况:①03m ,如图2,过点C 作CD y ⊥轴于D ,证明()ABO BCD ASA ∆≅∆,得OA BD =,列方程可得结论;②3m <,如图3,同理可得结论.【解答】解:(1)当2m =时,22112(2)2222(2)x x x y x x x ⎧-++<⎪=⎨⎪-+⎩,①(4,)M n 在该函数图象上,2424210n ∴=-⨯+=;②当02x <时,22111112(222228y x x x =-++=--+,102-< ,∴当12x =时,y 有最大值是128,当2x =时,222222y =-⨯+=,1228< ,∴当02x 时,函数G 的最大值是128;(2)分两种情况:①如图1,当Q 在x 轴上方时,由题意得:12OP m =,45POQ ∠=︒ ,90OPQ ∠=︒,POQ ∴∆是等腰直角三角形,OP PQ ∴=,∴211111()22222m m m m =-⋅+⋅+,解得:10m =,26m =,0m > ,6m ∴=;②当Q 在x 轴下方时,同理得:211111()22222m m m m =⋅-⋅-解得:10m =,214m =,0m > ,14m ∴=;综上,m 的值是6或14;(3)分两种情况:①如图2,当03m 时,过点C 作CD y ⊥轴于D ,当0x =时,y m =,OB m ∴=,CD m = ,CD OB ∴=,AB BC ⊥ ,90ABC ABO CBD ∴∠=∠+∠=︒,90CBD BCD ∠+∠=︒ ,ABO BCD ∴∠=∠,90AOB CDB ∠=∠=︒ ,()ABO BCD ASA ∴∆≅∆,OA BD ∴=,当x m <时,0y =,即211022x x m -++=,220x x m --=,解得:112x =,212x +=,1812OA ∴=,且138m -, 点A 的横坐标为a ,C 点的纵坐标为c ,若3a c =-,13OD c a ∴==-,13BD m OD m a ∴=-=+,OA BD = ,∴13m =+,解得:10m =(此时,A ,B ,C 三点重合,舍),2209m =;②当0m <时,如图3,过点C 作CD y ⊥轴于D ,同理得:OA BD =,当x m 时,0y =,则20x mx m -+=,解得:1x =,2m =),2m OA a +∴==,∴13c m a m =-=--,解得:10m=,216 21m=-;综上,m的值是209或1621-.。
新定义型题目的解题策略探究
A.
1 或 2 对 B.
只有 2 对
C.
D.
2或3对
分析:本题 的 定 义 过 程 借 助 了 “对 称 ”的 概 念,主
要考查学生 对 直 线、双 曲 线 坐 标 特 征 的 理 解 程 度,以
及对应图象的熟悉 程 度 .
本题需要采用原点对称坐标
的关系切 入 思 考,通 过 已 知 的 双 曲 线 推 算 直 线 的 情
即
2.
4 法则的新定义
总结:本题 对 运 算 过 程 建 立 了 一 种 新 的 定 义,通
1ö
æç
-a, ÷ .
aø
è
1
得: =-ak+1+k,整 理 为 ka2 - (
k+1)
a+1=0,
a
值问题等,学 生 需 要 掌 握 构 建 方 程 的 思 路,找 到 问 题
中的等量关系 .
48
Copyright©博看网. All Rights Reserved.
m -1)
x +m2 =0 有 两 个 相
2
2
等实数根,所以 Δ= [
2(
m -1)]
-4m =0,得 m =
(
2)已知方程 y
′=m -
m2 =m -
1
,化简可得:
4
1
.
2
1
,那么 x2 +2(
m -1)
x+
4
x2 +2(
m -1)
x+m2 -m +
1
=0.
4
从题中可知该方程有两个正数根,则
m -1)>0,
ìï-2(
ï 2
ïm -m + 1 >0,
4
初中数学新定义题型解题技巧
初中数学新定义题型解题技巧
初中数学中的新定义题型是一种常见的题型,通常涉及到对于某个概念或者概念的组合进行定义或者解释。
这种题型在考试中往往会涉及到各种形式的题目,例如填空题、选择题、问答题等。
下面是一些常见的解题技巧:
1. 阅读题目并理解含义:在解答此类题目时,首先需要认真阅读题目,理解题目中所涉及的概念以及概念之间的关系。
尤其是对于一些新定义的题目,需要仔细阅读题目,理解题目所表达的含义,以便更好地解题。
2. 寻找关键词:在新定义题型中,关键词往往是非常重要的,因为它们表明了概念的关键特征。
在解题时,需要特别注意关键词,以便更好地理解概念的含义。
3. 运用逻辑思维:在新定义题型中,需要运用逻辑思维来推理出定义中的关键特征。
这需要考生具备较强的逻辑思维能力,能够根据已有的信息进行推理和分析。
4. 拓展思维:在新定义题型中,有时需要对概念进行更深层次的理解。
这时候,需要考生具备较强的拓展思维能力,能够从不同的角度来理解概念,以便更好地解题。
5. 练习技巧:为了更好地应对新定义题型,考生需要加强练习。
可以通过大量的练习来熟悉不同类型的新定义题型,提高解题技巧和能力。
同时,还需要注重基础知识的掌握,以便更好地理解和应用概念。
新定义题型是初中数学中常见的一种题型,需要考生具备较强的阅读理解能力和逻辑思维能力。
通过加强练习和注重基础知识的掌握,考生可以更好地应对此类题型,取得优异的成绩。
初中数学新定义题型习题1含答案
新定义题型习题1一.解答题(共23小题)1.阅读与理解:已知关于x的方程kx=5﹣x有正整数解,求整数k的值.解:kx+x=5,(k+1)x=5,x=因为关于x的方程kx=5﹣x,有正整数解,所以为正整数,因为k为整数,所以k+1=1或k+1=5,所以k=0或k=4;探究与应用:应用上边的解题方法,已知关于x的方程kx=6+x有正整数解,求整数k 的值.2.已知方程(2a+1)x=3ax﹣2有正整数解,求整数a的值.3.设m为整数,且关于x的一元一次方程(m﹣5)x+m﹣3=0.(1)当m=2时,求方程的解;(2)若该方程有整数解,求m的值.4.已知关于x的方程ax+=的解是正整数,求正整数a的值,并求出此时方程的解.5.已知关于x的方程4(x﹣2)=ax的解为正整数,求整数a的所有可能取值.6.若有理数a,b满足条件:(m是整数),则称有理数a,b为一对“共享数”,其中整数m是a,b的“共享因子”.(1)下列两对数中:①3和5,②6和8,是一对“共享数”的是______;(填序号)(2)若7和x是一对“共享数”,且“共享因子”为2,求x的值;(3)探究:当有理数a,b满足什么条件时,a,b是一对“共享数”.7.阅读下列材料,规定一种运算=ad﹣bc.例如=2×5﹣3×4=10﹣12=﹣2,按照这种运算的规定,请解答下列问题:(1)=______,=______(只填结果);(2)若=0,求x的值.(写出解题过程)8.请阅读下列材料:让我们来规定一种运算:=ad﹣bc,例如:=2×5﹣3×4=10﹣12=﹣2.按照这种运算的规定,请回答下列的问题:(1)求的值;(2)若=,试用方程的知识求x的值.9.对于任意有理数,我们规定:=ad﹣bc.例如=1×4﹣2×3=﹣2(1)按照这个规定,当a=3时,请你计算:;(2)按照这个规定,若=1,求x的值.10.设a,b,c,d为有理数,现规定一种新的运算:=ad﹣bc,当=10时,求代数式2(x﹣2)﹣3(x+1)的值.11.定义一种新运算“⊗”,规定:a⊗b=a﹣2b,除新运算“⊗”外,其它运算完全按有理数和整式的运算进行.(1)直接写出b⊗a的结果为______(用含a、b的代数式表示);(2)化简:[(2x+y)⊗(x﹣y)]⊗3y;(3)解方程:2⊗(1⊗x)=⊗x12.对于任意有理数a和b,我们规定:a*b=a2﹣2ab,如3*4=32﹣2×3×4=﹣15.(1)求(﹣5)*6的值;(2)若(﹣3)*x=10,求x的值.13.我们定义一种新的运算“⊗”,并且规定:a⊗b=a2﹣2b.例如:2⊗3=22﹣2×3=﹣2,2⊗(﹣a)=22﹣2(﹣a)=4+2a.请完成以下问题:(1)求(﹣3)⊗2的值;(2)若3⊗(﹣x)=2⊗x,求x的值.14.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2﹣2ab+b.如:2☆(﹣3)=2×(﹣3)2﹣2×2×(﹣3)+(﹣3)=27(1)求(﹣4)☆7的值;(2)若(1﹣3x)☆(﹣4)=32,求x的值.15.若新规定这样一种运算法则:a※b=a2+2ab,例如3※(﹣2)=32+2×3×(﹣2)=﹣3.(1)试求(﹣2)※3的值;(2)若(﹣2)※x=﹣1+x,求x的值.16.用“⊗”规定一种新运算:对于任意有理数a和b,规定a⊗b=ab2+2ab+a.如:1⊗3=1×32+2×1×3+1=16(1)求2⊗(﹣1)的值;(2)若(a+1)⊗3=32,求a的值;(3)若m=2⊗x,n=(x)⊗3(其中x为有理数),试比较m、n的大小.17.用“※”定义一种新运算:对于任意有理数a和b,规定a※b=ab2+2ab+a.如:1※2=1×22+2×1×2+1=9(1)(﹣2)※3=______;(2)若※3=16,求a的值;(3)若2※x=m,(x)※3=n(其中x为有理数),试比较m,n的大小.18.设x、y是任意两个有理数,规定x与y之间的一种运算“⊕”为:若对任意有理数x、y,运算“⊕”满足x⊕y=y⊕x,则称此运算具有交换律.x⊕y=(1)试求1⊕(﹣1)的值;(2)试判断该运算“⊕”是否具有交换律,说明你的理由;(3)若2⊕x=0,求x的值.19.(1)先化简,再求值:已知代数式A=(3a2b﹣ab2),B=(﹣ab2+3a2b),求5A﹣4B,并求出当a=﹣2,b=3时5A﹣4B的值.(2)对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).规定:(a,b)★(c,d)=ad﹣bc,如:(1,2)★(3,4)=1×4﹣2×3=﹣2根据上述规定解决下列问题:①有理数对(5,﹣3)★(3,2)=______.②若有理数对(﹣3,x•1)★(2,2x+1)=15,则x=______.③若有理数对(2,x﹣1)★(k,2x+k)的值与x的取值无关,求k的值.20.我们规定x的一元一次方程ax=b的解为b﹣a,则称该方程是“差解方程”,例如:3x =4.5的解为4.5﹣3=1.5,则该方程3x=4.5就是“差解方程”,请根据上述规定解答下列问题:(1)已知关于x的一元一次方程4x=m是“差解方程”,则m=______.(2)已知关于x的一元一次方程4x=ab+a是“差解方程”,它的解为a,则a+b=______.(3)已知关于x的一元一次方程4x=mn+m和﹣2x=mn+n都是“差解方程”,求代数式﹣3(m+11)+4n+2[(mn+m)2﹣m]﹣[(mn+n)2﹣2n]的值.21.我们规定,若关于x的一元一次方程ax=b的解为x=b﹣a,则称该方程为“奇异方程”.例如:2x=4的解为x=2=4﹣2,则该方程2x=4是“奇异方程”.请根据上述规定解答下列问题:(Ⅰ)判断方程5x=﹣8______(回答“是”或“不是”)“奇异方程”;(Ⅱ)若a=3,有符合要求的“奇异方程”吗?若有,求b的值;若没有,请说明理由.(Ⅲ)若关于x的一元一次方程2x=mn+m和﹣2x=mn+n都是“奇异方程”,求代数式﹣2(m+11)+4n+3[(mn+m)2﹣m]﹣的值.22.我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x的一元一次方程5x=m是“和解方程”,求m的值;(2)已知关于x的一元一次方程﹣3x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.23.定义:如果两个一元一次方程的解互为相反数,我们就称这两个方程为“兄弟方程”.如方程2x=4和3x+6=0为“兄弟方程”.(1)若关于x的方程5x+m=0与方程2x﹣4=x+1是“兄弟方程”,求m的值;(2)若两个“兄弟方程”的两个解的差为8,其中一个解为n,求n的值;(3)若关于x的方程2x+3m﹣2=0和3x﹣5m+4=0是“兄弟方程”,求这两个方程的解.新定义题型习题1参考答案与试题解析一.解答题(共23小题)1.解:kx=6+x,kx﹣x=6,(k﹣1)x=6,x=因为关于x的方程kx=6+x有正整数解,所以为正整数,因为k为整数,所以k﹣1=6或k﹣1=3或k﹣1=2或k﹣1=1,解得k=7或k=4或k=3或k=2.故整数k的值为7或4或3或2.2.解:(2a+1)x=3ax﹣2,移项,合并同类项得:(﹣a+1)x=﹣2,因为方程有解,所以(﹣a+1)≠0,即x=,因为方程有正整数解,且a取整数,所以a﹣1=1或a﹣1=2,解得:a=2或a=3,答:整数a的值为2或3.3.解:(1)当m=2时,原方程为﹣3x﹣1=0,解得,,(2)当m≠5时,方程有解,,∵方程有整数解,且m是整数,∴m﹣5=±1,m﹣5=±2,解得,m=6或m=4或m=7或m=3.4.解:由ax+=,得ax+9=5x﹣2,移项、合并同类项,得:(a﹣5)x=﹣11,系数化成1得:x=﹣,∵x是正整数,∴a﹣5=﹣1或﹣11,∴a=4或﹣6.又∵a是正整数.∴a=4.则x=﹣=11.综上所述,正整数a的值是4,此时方程的解是x=11.5.解:去括号,得:4x﹣8=ax,移项、合并同类项,得:(4﹣a)x=8,系数化成1得:x=,∵x是正整数,∴4﹣a=8或4或2或1,∴a=﹣4或0或2或3.即整数a的所有可能取值为﹣4或0或2或3.6.解:(1)根据题中的新定义得:+=+2,即3和5是一对“共享数”;+=+,即6和8不是一对“共享数”,故答案为:①;(2)根据题中的新定义得:+=+2,去分母得:14+2x=7+x+8,解得:x=1.7.解:(1)根据题中的新定义得:原式=6+10=16,原式=﹣2x﹣3(x﹣3)=﹣2x﹣3x+9=﹣5x+9;故答案为:16;﹣5x+9;(2)依题意得:2(x+3)﹣5x=0,去括号得:2x+6﹣5x=0,解得:x=2,则x的值为2.8.解:(1)根据题中的新定义得:原式=3﹣28=﹣25;(2)根据题中的新定义化简得:2x+x﹣=,移项合并得:3x=2,解得:x=.9.解:(1)当a=3时,=2a×5a﹣3×4=10a2﹣12=10×32﹣12=90﹣12=78(2)∵=1,∴4(x+2)﹣3(2x﹣1)=1,去括号,可得:4x+8﹣6x+3=1,移项,合并同类项,可得:2x=10,解得x=5.10.解:根据题中的新定义运算方法得:6x﹣4(3x﹣2)=10,去括号得:6x﹣12x+8=10,解得:x=,∴2(x﹣2)﹣3(x+1)=2x﹣4﹣3x﹣3=﹣x﹣7=﹣()﹣7=.∴代数式2(x﹣2)﹣3(x+1)的值是.11.解:(1)根据题意得:b⊗a=b﹣2a;故答案为:(b﹣2a);(2)根据题中的新定义得:原式=[(2x+y)﹣2(x﹣y)]⊗3y=(x+3y)⊗3y=x+3y﹣6y=x﹣3y;(3)已知等式利用题中的新定义化简得:2⊗(1⊗x)=2﹣2(1﹣2x)=﹣2x,解得:x=.12.解:(1)根据题意得:(﹣5)*6=(﹣5)2﹣2×(﹣5)×6=85,(2)根据题意得:(﹣3)*x=(﹣3)2﹣2×(﹣3x)=10,整理得:9+6x=10,解得:x=.13.解:(1)根据题中的新定义得:原式=9﹣4=5;(2)已知等式利用题中的新定义化简得:9+2x=4﹣2x,移项合并得:4x=﹣5,解得:x=﹣.14.解:(1)根据题意得:(﹣4)☆7=(﹣4)×72﹣2×(﹣4)×7+7=﹣133,(2)根据题意得:(1﹣3x)☆(﹣4)=(1﹣3x)×(﹣4)2﹣2×(1﹣3x)×(﹣4)+(﹣4)=32,整理得:16(1﹣3x)+8(1﹣3x)﹣4=32,解得:x=﹣.15.解:(1)(﹣2)※3=(﹣2)2+2×(﹣2)×3=4﹣12=﹣8;(2)∵(﹣2)※x=﹣1+x,∴(﹣2)2+2×(﹣2)×x=﹣1+x,即4﹣4x=﹣1+x,解得:x=1.16.解:(1)2⊗(﹣1)=2×(﹣1)2+2×2×(﹣1)+2=2﹣4+2=0,(2)(a+1)⊗3=(a+1)×32+2(a+1)×3+(a+1)=16(a+1)=32,解得:a=1,(3)m=2x2+2×2x+2=2x2+4x+2,n=x×32+2×x×3+x=4x,m﹣n=2x2+2>0,即m>n.17.解:(1)原式=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32,故答案为:﹣32.(2)因为※3=×32+2××3+=8a+8,所以8a+8=16,解得a=1;(3)根据题意,得m=2x2+2×2x+2=2x2+4x+2,n=x×32+2×x×3+x=4x,则m﹣n=2x2+2>0,所以m>n.18.解:(1)1⊕(﹣1)=2×1+3×(﹣1)﹣7=2﹣3﹣7=﹣8答:1⊕(﹣1)的值为﹣8.(2)该运算具有交换律理由:分三种情况当x>y时,x⊕y=2x+3y﹣7,y⊕x=3y+2x﹣7,此时x⊕y=y⊕x当x=y时,x⊕y=2x+3y﹣7,y⊕x=2y+3x﹣7,此时x⊕y=y⊕x当x<y时,x⊕y=3x+2y﹣7,y⊕x=2y+3x﹣7,此时x⊕y=y⊕x所以该运算“⊕”具有交换律(3)当x≤2时,2⊕x=0,2×2+3x﹣7=0解得x=1当x>2时,2⊕x=03×2+2x﹣7=0解得x=(舍去)答:x的值为1.19.解:(1)∵A=(3a2b﹣ab2),B=(﹣ab2+3a2b),∴5A﹣4B=5(3a2b﹣ab2)﹣4(﹣ab2+3a2b)=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=﹣2,b=3时,原式=36+18=54;(2)①根据题中的新定义得:原式=10+9=19;②根据题中的新定义得:﹣3(2x+1)﹣2x=15,去括号得:﹣6x﹣3﹣2x=15,移项合并得:﹣8x=18,解得:x=﹣;③根据题中的新定义化简得:2(2x+k)﹣k(x﹣1)=4x+2k﹣kx+k=(4﹣k)x+3k,由结果与x取值无关,得到4﹣k=0,即k=4.故答案为:①19;②﹣20.解:(1)由题意可知x=m﹣4,由一元一次方程可知x=,∴m﹣4=,解得m=;故答案为:;(2)由题意可知x=ab+a﹣4,由一元一次方程可知x=,又∵方程的解为a,∴=a,ab+a﹣4=a,解得a=,b=3,∴;故答案为:.(3)∵一元一次方程4x=mn+m和﹣2x=mn+n都是“差解方程”,∴mn+m=,mn+n=﹣,两式相减得,m﹣n=.∴﹣3(m+11)+4n+2[(mn+m)2﹣m]﹣[(mn+n)2﹣2n]=﹣5(m﹣n)﹣33,=﹣5×﹣33+2×,=,=﹣.21.解:(Ⅰ):∵5x=﹣8,∴x=﹣,∵﹣8﹣5=﹣13,﹣,∴5x=﹣8不是奇异方程;故答案为:不是;(Ⅱ)∵a=3,∴x=b﹣3,∴,∴,即b=时有符合要求的“奇异方程”;(Ⅲ)且由题可知:mn+m=4,mn+n=﹣,两式相减得,m﹣n=,∴﹣2(m+11)+4n+3[(mn+m)2﹣m]﹣=﹣5(m﹣n)﹣22+3(mn+m)2﹣(mn+n)2,==﹣,=﹣.22.解:(1)∵关于x的一元一次方程5x=m是“和解方程”,∴5+m是方程5x=m的解.∴5(5+m)=m∴m=﹣.(2)∵关于x的一元一次方程﹣3x=mn+n是“和解方程”,∴mn+n﹣3是方程﹣3x=mn+n的解.又∵x=n是它的解,mn+n﹣3=n.∴mn=3.把x=n代入方程,得﹣3n=mn+n.∴﹣3n=3+n.∴﹣4n=3.n=﹣.∴m=﹣4.23.解:(1)方程2x﹣4=x+1的解为x=5,将x=﹣5代入方程5x+m=0得m=25;(2)另一解为﹣n.则n﹣(﹣n)=8或﹣n﹣n=8,∴n=4或n=﹣4;(3)方程2x+3m﹣2=0的解为,方程3x﹣5m+4=0的解为,则,解得m=2.所以,两解分别为﹣2和2.。
二次函数新定义型综合问题 中考数学
抢分秘籍15 二次函数新定义型综合问题(压轴通关) 目录【中考预测】预测考向,总结常考点及应对的策略【误区点拨】点拨常见的易错点【抢分通关】精选名校模拟题,讲解通关策略(含新考法、新情境等)二次函数新定义型综合问题是全国中考的热点内容,更是全国中考的必考内容。
每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分。
1.从考点频率看,二次函数新定义型综合问题是数学的基础,也是高频考点、必考点。
2.从题型角度看,以解答题的最后一题或最后第二题为主,分值12分左右,着实不少!题型一 新定义型二次函数之共生或伴随抛物线【例1】(新考法,拓视野)(2024·江西九江·一模)定义:若两条抛物线的顶点关于原点对称,二次函数的二次项系数互为负倒数,这样的两条抛物线称之为“共生抛物线”,如抛物线20.5y x =与22y x =-是共生抛物线,已知抛物线()212:213C y x =-++的顶点是点P ,它的共生抛物线2C 的顶点是Q ;(1)点P 的坐标是 ,点Q 的坐标是_________,抛物线2C 的函数关系式是 .(2)直线y m =与抛物线1C 、2C 均有两个交点,这些交点从左到右分别是A 、B 、C 、D .①求m 的取值范围 ;②若AB CD =,求m 的值;【例2】(2023·江苏泰州·二模)在平面直角坐标系中,对于函数21y ax bx c =++,其中a 、b 、c 为常数,a c ≠,定义:函数22y cx bx a =++是21y ax bx c =++的衍生函数,点(),M a c 是函数21y ax bx c =++的衍生点,设函数21y ax bx c =++与其衍生函数的图象交于A 、B 两点(点A 在点B 的左侧).(1)若函数21y ax bx c =++的图象过点()13C -,、 ()15D -,,其衍生点()1M c ,,求函数21y ax bx c =++的解析式;(2)①若函数21y ax bx c =++的衍生函数为221y x =-,求A 、B 两点的坐标;②函数21y ax bx c =++的图象如图所示,请在图中标出点A 、B 两点的位置;(3)是否存在常数b ,使得无论a 为何值,函数21y ax bx c =++的衍生点M 始终在直线AB 上,若存在,请求出b 的值;若不存在,请说明理由.1.新定义:我们把抛物线2y ax bx c =++(其中0ab ≠与抛物线2y bx ax c =++称为“关联抛物线”,例如,抛物线2231y x x =++的“关联抛物线”为2321y x x =++已知抛物线1C :2443(0)y ax ax a a =++->的“关联抛物线”为2C ,1C 与y 轴交于点E.本题考查了二次函数的新定义,正确利用二次函数的图像与性质是解决问题的关键.(1)若点E 的坐标为()0,1-,求1C 的解析式;(2)设2C 的顶点为F ,若△OEF 是以OF 为底的等腰三角形,求点E 的坐标;(3)过x 轴上一点P ,作x 轴的垂线分别交抛物线1C ,2C ,于点M ,N .①当MN =6时,求点P 的坐标;②当42a x a -≤≤-时,2C 的最大值与最小值的差为2a ,求a 的值.2.(2023·广东广州·一模)定义:在平面直角坐标系中,直线()y a x h k =-+称为抛物线()2y a x h k =-+的伴随直线,如直线()12y x =-+-为抛物线()212y x =-+-的伴随直线.(1)求抛物线2245y x x =-+的伴随直线;(2)无论a 取何值,抛物线1G :()2212y ax a x a =--+-总会经过某定点,抛物线2G :()()13y m x x m =---的伴随直线经过该定点,求m 的值;(3)顶点在第一象限的抛物线()214y a x a =--+与它的伴随直线交于点A ,B (点A 在点B 的左侧),与x 轴负半轴交于点C ,当90BAC ∠=︒时,y 轴上存在点P ,使得APB ∠取得最大值,求此时点P 的坐标.题型二 新定义型二次函数之特殊形状问题【例1】(新考法,拓视野)(23-24九年级上·浙江杭州·期末)定义:由两条与x 轴有相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”.【概念理解】(1)抛物线()()1212y x x =--与抛物线2232y x x =-+是否围成“月牙线”?说明理由.【尝试应用】(2)抛物线211(1)22y x =--与抛物线2212y ax bx c a ⎛⎫=++> ⎪⎝⎭组成一个如图所示的“月牙线”,与x 轴有相同的交点M ,N (点M 在点N 的左侧),与y 轴的交点分别为,A B .①求::a b c 的值.②已知点()0,P x m 和点()0,Q x n 在“月牙线”上,m n >,且m n -的值始终不大于2,求线段AB 长的取值范围.【例2】二次函数22y x mx =-的图象交x 轴于原点O 及点A .感知特例(1)当1m =时,如图1,抛物线2:2L y x x =-上的点B ,O ,C ,A ,D 分别关于点A 中心对称的点为B ',O ',C ',A ',D ¢,如下表:…()1,3B -()0,0O ()1,1C -A (___,___)()3,3D ……()5,3B '-()4,0O '()3,1C '()2,0A '()1,3D '-…①补全表格;本题考查二次函数综合应用,涉及新定义,二次函数的性质等知识,解题的关键是读懂题意,理解“月牙线”的概念.②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为L '.形成概念我们发现形如(1)中的图象L '上的点和抛物线L 上的点关于点A 中心对称,则称L '是L 的“孔像抛物线”.例如,当2m =-时,图2中的抛物线L '是抛物线L 的“孔像抛物线”.探究问题(2)①当1m =-时,若抛物线L 与它的“孔像抛物线”L '的函数值都随着x 的增大而减小,则x 的取值范围为_______;②在同一平面直角坐标系中,当m 取不同值时,通过画图发现存在一条抛物线与二次函数22y x mx =-的所有“孔像抛物线”L ',都有唯一交点,这条抛物线的解析式可能是______.(填“2y ax bx c =++”或“2y ax bx =+”或“2y ax c =+”或“2y ax =”,其中0abc ≠);③若二次函数22y x mx =-及它的“孔像抛物线”与直线y m =有且只有三个交点,求m 的值.1.(2023·江西赣州·一模)定义:若直线1y =-与开口向下的抛物线有两个交点,则这两个交点之间的距离叫做这条抛物线的“反碟长”1L :2y x =-与直线1y =-相交于P ,Q .(1)抛物线1L 的“反碟长”PQ =________.(2)抛物线随其顶点沿直线12y x =向上平移,得到抛物线2L .①当抛物线1L 的顶点平移到点()6,3,抛物线2L 的解析式是________.抛物线2L 的“反碟长”是________.②若抛物线2L 的“反碟长”是一个偶数,则其顶点的纵坐标可能是________.(填写所有正确的选项)A .15B .16C .24D .25③当抛物线2L 的顶点A 和抛物线2L 与直线1y =-的两个交点B ,C 构成一个等边三角形时(点B 在点C 左右),求点A 的坐标.题型三 新定义型二次函数与其他函数的综合问题【例1】(新考法,拓视野)(2024·湖南长沙·三模)对某一个函数给出如下定义:如果函数的自变量x 与函数值y 满足:当()()0x m x n --≤时,()()0y m y n --≤(,m n 为实数,且)m n <,我们称这个函数在m n →上是“民主函数”.比如:函数1y x =-+在12-→上是“民主函数”.理由: 由[(1)](2)0x x ---≤,得12x -≤≤. 1x y =-,112y ∴-≤-≤,解得12y -≤≤,[(1)](2)0y y ∴---≤,∴是“民主函数”.(1)反比例函数6y x=是23→上的“民主函数”吗?请判断并说明理由:(2)若一次函数y kx b =+在m n →上是“民主函数”,求此函数的解析式(可用含,m n 的代数式表示);(3)若抛物线2(0,0)y ax bx c a a b =++>+>在13→上是“民主函数”,且在13x ≤≤上的最小值为4a ,设抛物线与直线3y =交于,A B 点,与y 轴相交于C 点.若ABC 的内心为G ,外心为M ,试求MG 的长.【例2】(2023·江苏南通·一模)定义:若函数图象上存在点()1M m n ,,()21M m n '+,,且满足21n n t -=,则称t 为该函数的“域差值”.例如:函数23y x =+,当x m =时,123n m =+;当1x m =+时,221252n m n n =+-=,则函数23y x =+的“域差值”为2(1)点12'1M m n M m n +(,),(,)在4y x =的图象上,“域差值”4t =-,求m的值;本题是二次函数综合题,主要考查了一次函数、反比例函数、二次函数的性质,三角形外心和内心的性质等知识,理解新定义,得出抛物线的解析式从而得出的顶点坐标是解题的关键.ABC(2)已知函数220y x x =-(>),求证该函数的“域差值”2t <-;(3)点A a b (,)为函数22y x =-图象上的一点,将函数22y x x a =-≥()的图象记为W 1,将函数22y x x a =-≤()的图象沿直线y b =翻折后的图象记为2W 当12W W ,两部分组成的图象上所有的点都满足“域差值”1t ≤时,求a 的取值范围.1.(2023·江苏南通·一模)定义:若函数1G 的图象上至少存在一个点,该点关于x 轴的对称点落在函数2G 的图象上,则称函数1G ,2G 为关联函数,这两个点称为函数1G ,2G 的一对关联点.例如,函数2y x =与函数3y x =-为关联函数,点()1,2和点()1,2-是这两个函数的一对关联点.(1)判断函数2y x =+与函数y =-3x是否为关联函数?若是,请直接写出一对关联点;若不是,请简要说明理由;(2)若对于任意实数k ,函数2y x b =+与5y kx k =++始终为关联函数,求b 的值;(3)若函数21y x mx =-+与函数224n y x =-(m ,n 为常数)为关联函数,且只存在一对关联点,求2226m n m -+的取值范围.2.(2024·浙江湖州·一模)定义:对于y 关于x 的函数,函数在 ()1212x x x x x ≤≤<范围内的最大值,记作 []12,M x x 如函数2y x =,在13x -≤≤范围内,该函数的最大值是6, 即,[]1,36M -=.请根据以上信息,完成以下问题:已知函数 ()22141y a x x a =--+-(a 为常数)(1)若2a =.①直接写出该函数的表达式,并求 []1,4M 的值;②已知 5,32M p ⎡⎤=⎢⎥⎣⎦,求p 的值.(2)若该函数的图象经过点()0,0, 且[]3,M k k -=, 求k 的值.题型四 新定义型二次函数与几何图形的综合问题【例1】(新考法,拓视野)(2023·江苏南通·二模)定义:在平面直角坐标系中,点()11,P x y 是图形1G 上的任意一点,点()22,Q x y 是图形2G 上的任意一点,若存在直线:(0)l y kx b k =+≠满足11y kx b ≤+且22y kx b ≥+(或满足11y kx b ≥+且22y kx b ≤+),则称直线:(0)l y kx b k =+≠是图形1G 与2G 的“界线”.例如:直线4y x =-+是函数4(0)y x x=>的图象与抛物线2y x =-的一条“界线”.已知点(,2),(,2),(4,2),(4,2)A m B m C m D m -+-+.(1)若2m =-,在直线①3y x =+,②4y x =-+,③27y x =-+中,是函数6(0)y x x=>的图象与正方形ABCD 的“界线”的有______(填序号);(2)若点E 的坐标是(0,4),E的半径为E 与正方形ABCD 的“界线”有且只有一条,求“界线”l 的函数关系式;(3)若存在直线2y x b =+是函数223(22)y x x x =++-≤≤的图象与正方形ABCD 的“界线”,求m 的取值范围.【例2】(2024·江苏常州·模拟预测)定义:在平面直角坐标系xOy 中,P 、Q为平面内不重合的两个点,其本题考查二次函数的图象及性质,反比例函数的性质,一次函数的性质,熟练掌握二次函数的图象及性质,弄清“界线”的定义与图形之间的关系,数形结合、分类讨论是解题的关键.中1122(,),(,)P x y Q x y .若:1122x y x y +=+,则称点Q 为点P 的“等和点”.(1)如图1,已知点()21P ,,求点P 在直线1y x =+上“等和点”的坐标;(2)如图2,A 的半径为1,圆心A 坐标为()20,.若点()0P m ,在A 上有且只有一个“等和点”,求m 的值;(3)若函数()22y x x m =-+≤的图像记为1W ,将其沿直线x m =翻折后的图像记为2W .当1W ,2W 两部分组成的图像上恰有点()0P m ,的两个“等和点”,请直接写出m 的取值范围.1.(2023·江苏扬州·一模)对于二次函数给出如下定义:在平面直角坐标系xOy 中,二次函数2(y ax bx c a =++,b ,c 为常数,且0)a ≠的图象顶点为P (不与坐标原点重合),以OP 为边构造正方形OPMN ,则称正方形OPMN 为二次函数2y ax bx c =++的关联正方形,称二次函数2y ax bx c =++为正方形OPMN 的关联二次函数.若关联正方形的顶点落在二次函数图象上,则称此点为伴随点.(1)如图,直接写出二次函数2(1)2y x =+-的关联正方形OPMN 顶点N 的坐标___,并验证点N 是否为伴随点___(填“是”或“否”):(2)当二次函数24y x x c =-++的关联正方形OPMN 的顶点P 与N 位于x 轴的两侧时,请解答下列问题:①若关联正方形OPMN 的顶点M 、N 在x 轴的异侧时,求c 的取值范围:②当关联正方形OPMN 的顶点M 是伴随点时,求关联函数24y x x c =-++的解析式;③关联正方形OPMN 被二次函数24y x x c =-++图象的对称轴分成的两部分的面积分别为1S 与2S ,若1213S S ≤,请直接写出c 的取值范围.2.(2024·江西九江·一模)定义概念:在平面直角坐标系中,我们定义直线y ax a =-为抛物线2y ax bx c =++的“衍生直线”.如图1,抛物线2y x bx c =-++与其“衍生直线”交于A ,B 两点(点B 在x 轴上,点A 在点B 的左侧),与x 轴负半轴交于点()3,0C -.(1)求抛物线和“衍生直线”的表达式及点A 的坐标;(2)如图2,抛物线2y x bx c =-++的“衍生直线”与y 轴交于点1D ,依次作正方形111DEFO ,正方形2221D E F F ,…,正方形1n n n n D E F F -(为正整数),使得点1D ,2D ,3D ,…,n D 在“衍生直线”上,点1F ,2F ,3F ,…,n F 在x 轴负半轴上.①直接写出下列点的坐标:1E ______,2E ______,3E ______,n E ______;②试判断点1E ,2E ,…,n E 是否在同一条直线上?若是,请求出这条直线的解析式;若不是,请说明理由.3.(2023·江西新余·一模)定义:在平面直角坐标系中,抛物线()20y ax bx c a =++≠与y 轴的交点坐标为()0,c ,那么我们把经过点()0,c 且平行于x 轴的直线称为这条抛物线的极限分割线.【特例感知】(1)抛物线221y x x =++的极限分割线与这条抛物线的交点坐标为______ .【深入探究】(2)经过点()2,0A -和(),0(2)B x x >-的抛物线21142y x mx n =-++与y 轴交于点C ,它的极限分割线与该抛物线另一个交点为D ,请用含m 的代数式表示点D 的坐标.【拓展运用】(3)在(2)的条件下,设抛物线21142y x mx n =-++的顶点为P ,直线EF 垂直平分OC ,垂足为E ,交该抛物线的对称轴于点F .①当45CDF ∠=︒时,求点P 的坐标.②若直线EF 与直线MN 关于极限分割线对称,是否存在使点P 到直线MN 的距离与点B 到直线EF 的距离相等的m 的值?若存在,直接写出m 的值;若不存在,请说明理由.抢分秘籍15 二次函数新定义型综合问题(压轴通关) 目录【中考预测】预测考向,总结常考点及应对的策略【误区点拨】点拨常见的易错点【抢分通关】精选名校模拟题,讲解通关策略(含新考法、新情境等)二次函数新定义型综合问题是全国中考的热点内容,更是全国中考的必考内容。
初中数学新定义题型试卷
一、选择题(每题5分,共25分)1. 下列哪个选项不是新定义运算?A. 两个数a和b的“和差”定义为a + bB. 两个数a和b的“积商”定义为a bC. 两个数a和b的“和差”定义为a - bD. 两个数a和b的“积商”定义为a / b2. 以下哪个新定义符合“初、高中知识衔接新知识”的特点?A. 定义新运算:两个数a和b的“和差”定义为a + bB. 定义新概念:定义“奇数”为不能被2整除的整数C. 定义新运算:定义“数列”为一系列有规律的数D. 定义新概念:定义“对数”为y = log_a(x)3. 下列哪个新定义不属于“定义新概念”的类型?A. 定义“偶数”为能被2整除的整数B. 定义“质数”为除了1和它本身外,没有其他因数的自然数C. 定义“平行四边形”为对边平行且相等的四边形D. 定义“正方体”为所有面都是正方形的立体图形4. 在解决“新定义”题型时,以下哪个步骤最为关键?A. 理解新定义的含义B. 分析题目背景和条件C. 运用已学知识进行运算和推理D. 总结解题方法和技巧5. 下列哪个选项不属于新定义题型?A. 定义“函数”为一种映射关系B. 定义“极限”为当自变量趋于无穷大时,函数值趋于一个固定值C. 定义“几何体”为具有一定形状和尺寸的立体图形D. 定义“复数”为形如a + bi的数,其中a和b是实数,i是虚数单位二、填空题(每题5分,共25分)6. 若定义“数字a的奇偶性质”为:若a为偶数,则值为1;若a为奇数,则值为-1,则“数字5的奇偶性质”为______。
7. 下列数列中,若定义“数列的“和”为所有项之和,则数列1, 2, 3, ... 的“和”为______。
8. 已知定义“平行四边形的对角线”为连接非相邻顶点的线段,则平行四边形ABCD中,对角线AC的长度为______。
9. 若定义“三角形的“面积”为底边乘以高的一半,则三角形ABC的底边BC长度为3,高为4,则其面积为______。
初中数学精品教案: 新定义函数类问题》微设计
《新定义函数类问题》微设计学习目标:1.体会新定义函数问题研究的基本方法:阅读-理解-辨析-应用;2.巩固二次函数的顶点式,交点式,对称性以及图象的平移等核心知识,尝试与其它几何图形的综合应用;3.体会函数建模、几何直观和数形结合等数学思想方法.学习重点:掌握研究新定义函数问题研究的基本方法,巩固函数的相关知识.学习难点:对新定义的阅读-理解-辨析-应用的过程.教学过程:一、认识问题例1.如果二次函数的二次项系数为1,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].(1)若一个函数的特征数为[-2,1],求此函数图象的顶点坐标.(2)探究下列问题:①若一个函数的特征数为[4,-1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.②若一个函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?分析:阅读题意可知,特征数[p,q] 中的p,q分别是二次函数的一次项系数和常数项,且二次项系数为1,所以已知“特征数”就确定二次函数的解析式,已知解析式同样也就有了相应的“特征数”,要研究二次函数的平移问题,只需化为顶点式即可.xyA BD CO xyA BD CO 练1.定义{a ,b ,c }为函数y =ax 2+bx +c 的“特征数”.如:函数y =x 2-2x +3的“特征数”是{1,-2,3},函数y =2x +3的“特征数”是{0,2,3},函数y =-x 的“特征数”是{0,-1,0}(1)将“特征数”是30,,13⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的函数图象向下平移2个单位,得到一个新函数,这个新函数的解析式是 ;(2)在(1)中,平移前后的两个函数分别与y 轴交于A 、B 两点,与直线3x =分别交于D 、C 两点,判断以A 、B 、C 、D 四点为顶点的四边形形状,请说明理由并计算其周长;(3)若(2)中的四边形与“特征数”是211,2,2b b ⎧⎫-+⎨⎬⎩⎭的函数图象的有交点,求满足条件的实数b 的取值范围.分析:(1)根据函数“特征数”写出函数的解析式,再根据平移后一次函数的变化情况写出函数图象向下平移2个单位的新函数的解析式.(2)判断以A 、B 、C 、D 四点为顶点的四边形形状,可根据一次函数图象向下平移2个单位与原函数图象的关系,得出AB =2,并确定为平行四边形,由直线相交计算交点坐标后,求出线段BC =2,再根据菱形的判定(邻边相等的平行四边形是菱形)得出,其周长=2×4=8;(3)根据函数“特征数”写出二次函数的解析式,化为顶点式为y =(x -b )2+21,确定二次函数的图象不会经过点B 和点C ,再将菱形顶点A (0,1),D ()2,3代入二次函数解析式得出实数b 的取值范围.解析:(1)y =313x -,“特征数”是3013,,⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的函数,即y =313x +, 该函数图象向下平移2个单位,得y =313x -.(2)由题意可知y =313x +向下平移两个单位得y =313x - ∴AD ∥BC ,AB =2.∵3x =,∴AB ∥C D .∴四边形ABCD 为平行四边形.3313x y x ⎧=⎪⎨=-⎪⎩,得C 点坐标为(3,0),∴D (3,2) 由勾股定理可得BC =2,∵四边形ABCD 为平行四边形,AB =2,BC =2∴四边形ABCD 为菱形.∴周长为8. 所以二次函数的图象不会经过点B 和点C . 设二次函数的图象与四边形有公共部分,当二次函数的图象经过点A 时,将A (0,1),代入二次函数, 2),代入二次函数, 二、问题拓展分析:本题(1)可以取任意一个确定的m 的值都可以得到一对对应的兄弟抛物线,第(2) ①对照兄弟抛物线的定义即可求b ,第(2) ② 则可以通过图象数学结合的进行分析求解. 解答:(1)当m =0时,得到一对兄弟抛物线, y =x (x +1)与y =x (x -1); (2)①y =x 2-x =x (x -1).情况一:若y =x (x -1)是形如y =(x -m )(x -m +1),则m =1,则另一个函数为y =(x -1)(x -2),即y =x 2-3x +2,b =3.情况二:若y =x (x -1)是形如y =(x -m )(x -m -1),则m =0,则另一个函数为y =x (x +1),即y =x 2+x ,与已知矛盾. 综上,所以b =3.②y =x 2-3x +2的图象可以看作是由y =x 2-x 的图象向右平移1个单位得到,如图. 如果k >0,则点A 与点B 是平移对应点,AB =1, ∵点B ,点C 为线段AD 三等分点, ∴AB =BC =CD =13AD =1,即BC =1;如果k <0,则点A 与点C 是平移对应点,AC =1,∵点B ,点C 为线段AD 三等分点,∴AB =BC =12AC =12,即BC =12.故线段BC 的长为1或12.练2.在平面直角坐标系xOy 中,给出如下定义:形如y =a (x -m )2+a (x -m )与y =a (x -m )2-a (x -m )的两个二次函数的图象叫做“姐妹抛物线”. (1)试写出一对姐妹抛物线的解析式;(2)判断二次函数y =x 2-x 与y =x 2-3x +2的图象是否为姐妹抛物线,如果是,求出a 与m 的值,如果不是,请说明理由;(3)若一对姐妹抛物线各自与x 轴的两个交点和其顶点构成直角三角形,其中一个抛物线的对称轴为直线2x =且开口向上,请直接写出这对姐妹抛物线的解析式.分析:本题为例2的练习题,提取公因式后即转化为例2形式,所以解答的方法与例2相似,第(3)问则根据抛物线的对称性结合直角三角形,易得为等腰直角三角形,从而得顶点坐标,进而得解.解答:(1)不妨令a =1,m =1,则得此时的兄弟抛物线为: y = (x -1)2+ (x -1)=x 2-x 与y = (x -1)2-(x -1)=x 2-3x +2. (2)由(1)可知a =1,m =1. 当然也可以将两个二次函数分别化为:y =x 2-x = (x -1)2+ (x -1) ,y =x 2-3x +2= (x -1)2-(x -1) ,所以a =1,m =1. (3)y =a (x -m )2+a (x -m )可化为y =a (x -m ) (x -m +1); y =a (x -m )2-a (x -m ) 可化为y =a (x -m ) (x -m -1), 不妨令y =a (x -m ) (x -m +1)的对称轴为直线2x =, 所以m +m -12=2,所以m =52,所以y =a (x -52 ) (x -32 ),又抛物线与x 轴的两个交点和其顶点构成直角三角形,所以顶点为(2,-12),将顶点代人抛物线得a =2,所以y =2(x -52 ) (x -32),当m =52时得姐妹抛物线为y =2(x -52) (x - 72 ),当m =32 时得姐妹抛物线为y =2(x -32) (x - 12 ).三、感悟提升。
初中数学精品课件:二次函数实际应用及函数新定义问题
(3)当 20≤t≤25 时,易得 w=20t-200, ∴增加的利润为 600m+[200×30-w(30-m)]=40t2- 600t-4000,∴-2ba=125, ∴当 t=25 时,增加的利润的最大值为 6000 元. 当 25≤t≤37 时,w=300, 增 加 的 利 润 为 600m + [200×30 - 300(30 - m)] = 900×-85×(t-29)2+15000=-11225(t-29)2+15000, ∴当 t=29 时,增加的利润的最大值为 15000 元. 综上所述,当 t=29,m=20 时,提前上市 20 天,增加的 利润最大值为 15000 元.
1. 在二次函数的实际应用中,以求最值或存在性问题较 为常见,主要利用二次函数最值来求得实际问题或几 何问题中线段长度或图形面积的最值.
2. 在构建二次函数模型来解决实际问题时,通常体现了 函数思想、方程思想、数形结合、转化思想和分类讨 论等,在解题过程中一定要注意自变量的取值范围.
【典例 1】 (2019·嘉兴)某农作物的生长率 p 与温度 t(℃)有如下关系:如图
【典例 2】 (2019·宁波二模)如图 14-6,函数 y1 的图象经过向左或 向右平移一次,再向上或向下平移一次,得到函数 y2 的图象, 我们称函数 y1 为“基函数”,y2 为“基函数”的“像”,左右、 上下平移的路径称为平移路径,对应点之间的距离称为平移距 离. 我们所学过的函数:二次函数 y=ax2,正比例函数 y=kx 和反
0
5
10
15
①请运用已学的知识,求 m 关于 p 的函数表达式.
②请用含 t 的代数式表示 m.
(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大 棚恒温 20 ℃时,每天的成本为 200 元.该作物 30 天后上市时,根据市 场调查:每提前一天上市售出(一次售完),销售额可增加 600 元.因此 给大棚继续加温,加温后每天成本 w(元)与大棚温度 t(℃)之间的关系如 图 14-4②所示.问:提前上市多少天时增加的利润最大?并求这个最大 利润(农作物上市售出后大棚暂停使用).
初中数学新定义题专题
初中数学新定义题专题类型一 新运算型1. 我们根据指数运算,得出了一种新的运算,下表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log 216=4,②log 525=5,③log 212=-1.其中正确的是( )A. ①②B. ①③C. ②③D. ①②③B 【解析】①∵24=16,∴log 216=4,故①正确;②∵52=25,∴log 525=2≠5,故②不正确;③∵2-1=12,∴log 212=-1,故③正确.2. 阅读材料:设a →=(x 1,y 1),b →=(x 2,y 2),如果a →∥b →,则x 1·y 2=x 2·y 1.根据该材料填空:已知a →=(2,3),b →=(4,m ),且a →∥b →,则m =________.6 【解析】∵a →∥b →,∴2m =3×4,解得m =6.3. 对于实数p ,q ,我们用符号min{p ,q }表示p ,q 两数中较小的数,如min{1,2}=1.因此,min{-2,-3}=________;若min{(x -1)2,x 2}=1,则x =______.-3,2或-1 【解析】∵-2>-3,∴min{-2,-3}=-3;当(x -1)2=1时,解得x =0或x =2,当x =0时,min{(x -1)2,x 2}=min{1,0}=0,不符合题意舍去,当x =2时,min{(x -1)2,x 2}=min{1,4}=1;当x 2=1时,x = -1或x =1,当x =1时,min{(x -1)2,x 2}=min{0,1}=0,不符合题意舍去,当x =-1时,min{(x -1)2,x 2}=min{4,1}=1,综上所述,x =2或x =-1.4. 阅读理解题:定义:如果一个数的平方等于-1,记为i 2=-1,这个数i 叫做虚数单位,把形如a +bi (a ,b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫做这个复数的虚部.它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2-i )+(5+3i )=(2+5)+(-1+3)i =7+2i ; (1+i )×(2-i )=1×2-i +2×i -i 2=2+(-1+2)i +1=3+i ; 根据以上信息,完成下列问题: (1)填空:i 3=________,i 4=________;(2)计算:(1+i )×(3-4i ); (3)计算:i +i 2+i 3+…+i 2017.解:(1)-i ;1;【解法提示】∵i 2=-1, ∴i 3=i 2·i =-i ,i 4=i 2·i 2=1. (2)原式=3-4i +3i -4i 2 =3-i +4 =7-i ;(3)根据题意可得i =i ,i 2=-1,i 3=-i ,i 4=1,i 5=i ,i 6=-1,…,i 2016=1,i 2017=i , ∵i +i 2+i 3+i 4=0,2017÷4=504……1, ∴i +i 2+i 3+…+i 2017=i .类型二 新概念型5. 已知点A 在函数y 1=-1x (x >0)的图象上,点B 在直线y 2=kx +1+k (k 为常数,且k ≥0)上,若A ,B 两点关于原点对称,则称点A 、B 为函数y 1,y 2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为( )A. 有1对或2对B. 只有1对C. 只有2对D. 有2对或3对A 【解析】设A 坐标为(x ,-1x ),则B 坐标为(-x, 1x ),把B (-x, 1x )代入y 2=kx +1+k ,得1x =-kx +1+k ,整理得:kx 2-(k +1)x +1=0.当k =0时,x =1,只有一组解;当k ≠0时,b 2-4ac =(k +1)2-4k =(k -1)2≥0,该方程有两个实数根.综上所述,x 有一个或两个值,即“友好点”有1对或2对.6. 新定义:[a ,b ]为一次函数y =ax +b (a ≠0,a ,b 为实数)的“关联数”.若“关联数”[1,m -2]的一次函数是正比例函数,则关于x 的方程1x -1+1m =1的解为________.x =3 【解析】根据题意可得:y =x +m -2,∵“关联数”[1,m -2]的一次函数是正比例函数,∴m -2=0,解得m=2,则关于x 的方程1x -1+1m =1变为1x -1+12=1,解得x =3,检验:把x =3代入最简公分母2(x -1)=4≠0,故x =3是原分式方程的解.7. 在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(-3,5)与(5,-3)是一对“互换点”.(1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?(2)M 、N 是一对“互换点”,若点M 的坐标为(m ,n ),求直线MN 的表达式(用含m 、n 的代数式表示);(3)在抛物线y =x 2+bx +c 的图象上有一对“互换点”A 、B ,其中点A 在反比例函数y =-2x 的图象上,直线AB 经过点P (12,12),求此抛物线的表达式.解:(1)不一定,理由如下:设这一对“互换点”的坐标为P (m ,n )、Q (n ,m ). ①当mn =0时,它们不在反比例函数的图象上;②当mn ≠0时,点P (m ,n )在反比例函数y =kx (k ≠0)的图象上,则mn =k ,∵nm =k ,∴点Q 在反比例函数y =kx(k ≠0)的图象上;综上所述,任意一对“互换点”不一定都在一个反比例函数的图象上; (2)点M (m ,n )的互换点N 的坐标为(n ,m ); 设直线MN 的解析式为y =k ′x +a ,将点M ,N 代入得⎩⎪⎨⎪⎧mk ′+a =n nk ′+a =m ,解得⎩⎪⎨⎪⎧k ′=-1a =m +n ,∴直线MN 的解析式为y =-x +m +n ;(3)∵点A 在反比例函数y =-2x 的图象上,则设点A 的坐标为(t ,-2t ),∵点A 和点B 是互换点, ∴点B 的坐标为(-2t,t ),由(2)知直线AB 的解析式为y =-x +t -2t ,∵点P (12,12)在直线AB 上,∴-12+t -2t =12,解得t 1=-1,t 2=2,则点A 的坐标为(-1,2)或(2,-1),则对应的互换点B 的坐标为(2,-1)或(-1,2),∵点A ,B 在抛物线y =x 2+bx +c 上,将点(-1,2),(2,-1)代入得,⎩⎪⎨⎪⎧1-b +c =24+2b +c =-1,解得⎩⎪⎨⎪⎧b =-2c =-1, ∴抛物线解析式为y =x 2-2x -1.拓展类型 新方法型8. 阅读下面的材料:如果函数y =f (x )满足:对于自变量x 的取值范围内的任意x 1,x 2. (1)若x 1<x 2,都有f (x 1)<f (x 2),则称f (x )是增函数: (2)若x 1<x 2,都有f (x 1)>f (x 2),则称f (x )是减函数. 例题:证明函数f (x )=2x (x >0)是减函数. 证明:假设x 1<x 2,x 1>0,x 2>0,f (x 1)-f (x 2)=2x 1-2x 2=2x 2-2x 1x 1x 2=2(x 2-x 1)x 1x2, ∵x 1<x 2,且x 1>0,x 2>0,∴x 2-x 1>0,x 1x 2>0, ∴2(x 2-x 1)x 1x 2>0,即f (x 1)-f (x 2)>0, ∴f (x 1)>f (x 2),∴函数f (x )=2x (x >0)是减函数. 根据以上材料,解答下面的问题:(1)函数f (x )=1x 2(x >0), f (1)=112=1, f (2)=122=14.计算, f (3)=________,f (4)=________,猜想f (x )=1x 2(x >0)是________函数(填“增”或“减”);(2)请仿照材料中的例题证明你的猜想.解:(1)19,116,减;【解法提示】∵f (x )=1x 2(x >0),f (1)=211=1,f (2)=122=14,∴f (x )=1x 2(x >0), f (3)=132=19,f (4)=142=116,∵19>116, ∴猜想f (x )=1x 2(x >0)是减函数;(2)证明:假设x 1<x 2,且x 1>0,x 2>0,f (x 1)-f (x 2)=1x 21-1x 22=x 22-x 21x 21x 22=()x 2-x 1()x 2+x 1x 21x 22, ∵x 1<x 2,且x 1>0,x 2>0,∴x 2-x 1>0,x 2+x 1>0,x 21·x 22>0, ∴()x 2-x 1()x 2+x 1x 21x 22>0,即f (x 1)-f (x 2)>0,∴f (x 1)>f (x 2),∴f (x )=1x2(x >0)是减函数.9. 在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程x 2-5x +2=0,操作步骤是:第一步:根据方程的系数特征,确定一对固定点A (0,1),B (5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A ,另一条直角边恒过点B ;第三步:在移动过程中,当三角板的直角顶点落在x 轴上点C 处时,点C 的横坐标m 即为该方程的一个实数根(如图①);第四步:调整三角板直角顶点的位置,当它落在x 轴上另一点D 处时,点D 的横坐标n 即为该方程的另一个实数根.(1)在图②中,按照“第四步”的操作方法作出点D (请保留作出点D 时直角三角板两条直角边的痕迹);(2)结合图①,请证明“第三步”操作得到的m 就是方程x 2-5x +2=0的一个实数根; (3)上述操作的关键是确定两个固定点的位置.若要以此方法找到一元二次方程ax 2+bx +c =0(a ≠0,b 2-4ac ≥0)的实数根,请你直接写出一对固定点的坐标;(4)实际上,(3)中的固定点有无数对,一般地,当m 1,n 1,m 2,n 2与a ,b ,c 之间满足怎样的关系时,点P (m 1,n 1),Q (m 2,n 2)就是符合要求的一对固定点?第9题图解:(1)如解图①,第9题解图①先作出AB 的中点O 1,以O 1为圆心,12AB 为半径画圆.x 轴上另外一个交点即为D 点;(2) 证明:如解图②,过点B 作x 轴的垂线交x 轴于点E ,第9题解图②∵∠ACB =90°,∴∠ACO +∠BCE =90°, ∵∠OAC +∠ACO =90°, ∴∠OAC =∠BCE ,∵∠AOC =∠CEB =90°, ∴△AOC ∽△CEB , ∴AO CE =OC EB ,即15-m =m 2, ∴m 2-5m +2=0,∴m 是x 2-5x +2=0的一个实数根; (3) (0,1)、(-b a ,ca)(答案不唯一);(4)如解图③中,P 在AD 上,Q 在BD 上,过P ,Q 分别作x 轴的垂线交x 轴于M ,N ,第9题解图③易得△PMD ∽△DNQ , ∴PM DN =MD NQ ,即n 1m 2-x=x -m 1n 2, ∴x 2-(m 1+m 2)x +m 1m 2+n 1n 2=0与ax 2+bx +c =0同解, ∴-b a =m 1+m 2,ca=m 1m 2+n 1n 2.10. 在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下定义:若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|; 若|x 1-x 2|<|y 1-y 2|,则点P 1与点P 2的“非常距离”为|y 1-y 2|.例如:点P 1(1,2),点P 2(3,5),因为|1-3|<|2-5|,所以点P 1与点P 2的“非常距离”为|2-5|=3,也就是图①中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q 与垂直于x 轴的直线P 2Q 的交点).(1)已知点A (-12,0),点B 为y 轴上的一个动点,①若点A 与点B 的“非常距离”为2,求满足条件的点B 的坐标; ②直接写出点A 与点B 的“非常距离”的最小值; (2)已知C 是直线y =34x +3上的一个动点,①如图②,点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标;②如图③,点E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C 与点E 的“非常距离”的最小值及相应的点E 和点C 的坐标.第10题图解:(1)①∵B 为y 轴上的一个动点, ∴设点B 的坐标为(0,y ); ∵|-12-0|=12≠2,∴|0-y |=2,解得y =2或y =-2. ∴点B 的坐标是(0,2)或(0,-2);②点A 与点B 的“非常距离”的最小值为12;(2)①取点C 与点D 的“非常距离”的最小值,根据运算定义“若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的‘非常距离’为|x 1-x 2|”,此时|x 1-x 2|=|y 1-y 2|.∵C 是直线y =34x +3上的一个动点,点D 的坐标是(0,1),∴设点C 的坐标为(x ,34x +3),由题意知,此时点C 位于第二象限,|x C -x D |=-x ,|y C -y D |=34x +2,∴-x =34x +2,此时,x =-87,y =34x +3=157, ∴点C 与点D 的“非常距离”的最小值为87,此时,点C 的坐标为(-87,157);②当点E 在过原点且与直线y =34x +3垂直的直线上时,点C 与点E 的“非常距离”最小,设点E (x ,y )(点E 位于第二象限),则⎩⎪⎨⎪⎧y x =-43x 2+y 2=1,解得:⎩⎨⎧x =-35y =45,故E (-35,45),设点C 的坐标为(x ,34x +3),∴-35-x =34x +3-45,解得x =-85,当x =-85时,y =34x +3=95,-35-x =1,∴点C 的坐标为(-85,95)时,与点E 的“非常距离”最小,最小值为1.。
中考数学 专题复习二 新定义运算、新概念问题-人教版初中九年级全册数学试题
新定义运算、新概念问题【专题思路剖析】“新概念”试题,其设计新颖,构思独特,思维容量大,既能考查学生的阅读、分析、推理、概括等能力,又能考查学生知识迁移的能力和数学素养,同时还兼具了区分选拔的功能,因此越来越受到全国各地命题者的青睐,已经成为了近几年数学中考试题中的一道亮丽风景线。
因对“新概念”试题的研究及突破对教师的教学和学生都具有很高的价值。
新定义运算、新概念问题一般是介绍新定义、新概念,然后利用新定义、新概念解题,,,,回顾检查.“新概念”试题,其设计新颖,构思独特,思维容量大,既能考查学生的阅读、分析、推理、概括等能力,又能考查学生知识迁移的能力和数学素养,同时还兼具了区分选拔的功能,因此越来越受到全国各地命题者的青睐,已经成为了近几年数学中考试题中的一道亮丽风景线。
因对“新概念”试题的研究及突破对教师的教学和学生都具有很高的价值。
【典型例题赏析】 类型1:新定义点例题1:(2015年某某B 第23题10分)如果把一个自然数各数位上数字从最高位到个位依次排出一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数叫做 “和谐数”.例如:自然数64746从最高位到个位排出的一串数字是:6、4、7、4、6,从个位到最高排出的一串数字也是:6、4、7、4、6,所64746是“和谐数”.再如:33,181,212,4664,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”,猜想任意一个四位“和谐数”能否被11整除,并说明理由;[来。
(2) 已知一个能被11整除的三位“和谐数”,设个位上的数字为x(14x ≤≤,x 为自然数),十位上的数字为y ,求y 与x 的函数关系式.【答案】略,能被11整除;y=2x(1≤x ≤4) 【解析】试题分析:根据“和谐数”的定义写出数字,然后设“和谐数”的形式为abcd ,则根据题意得出a=d ,b=c ,然后将这个四位数除以11,将其化成代数式的形式,用a 和b 来表示c 和d ,然后得出答案,进行说明能被11整除;首先设三位“和谐数”为zyx ,根据定义得出x=z ,然后根据同上的方法进行计算. 试题解析:⑴、四位“和谐数”:1221,1331,1111,6666…(答案不唯一) 任意一个四位“和谐数”都能被11整数,理由如下:设任意四位“和谐数”形式为:abcd ,则满足:最高位到个位排列:,,,a b c d 个位到最高位排列:,,,d c b a 由题意,可得两组数据相同,则:,a d b c == 则1000100101000100101001110911011111111abcd a b c d a b b a a ba b +++++++====+为正整数 ∴ 四位“和谐数”abcd 能被11整数 又∵,,,a b c d 为任意自然数, ∴任意四位“和谐数”都可以被11整除考点:新定义题型、代数的应用、一次函数的应用.【变式练习】(2015年某某舟,24,12分)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”. (1)概念理解:如图1,在四边形ABCD 中,添加一个条件,使得四边形ABCD 是“等邻边四边形”,请写出你添加的一个条件;(2)问题探究:①小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由;②如图2,小红画了一个Rt △ABC ,其中∠ABC=90°,AB=2,BC=1,并将Rt △ABC 沿∠B 的平分线'BB 方向平移得到'''A B C ,连结''AA BC ,. 小红要使平移后的四边形''ABC A 是“等邻边四边形”,应平移多少距离(即线段'BB 的长)? (3)应用拓展:如图3,“等邻边四边形”ABCD 中,AB=AD ,∠BAD+∠BCD=90°,AC ,BD 为对角线,2AC =.试探究BC ,CD ,BD 的数量关系.【答案】解:(1)DA AB =(答案不唯一). (2)①正确.理由如下:∵四边形的对角线互相平分,∴这个四边形是平行四边形.∵四边形是“等邻边四边形”,∴这个四边形有一组邻边相等.[中*%国教育^出版#网] ∴这个四边形是菱形.②∵∠ABC=90°,AB=2,BC=1,∴5AC =. ∵将Rt △ABC 平移得到'''A B C ,∴''BB AA =,'AB ∥AB ,''2,''1,''5A B AB B C BC A C AC ====== i )如答图1,当'2AA AB ==时,''2BB AA AB ===; ii )如答图2,当'''5AA A C ==''''5BB AA A C ===;iii )如答图3,当'''5A C BC ==''C B 交AB 于点D ,则''C B AB ⊥.∵'BB 平分ABC ∠,∴01'452ABB ABC ∠==.设'B D BD x ==,则'1,'2C D x BB =+= .在'Rt BC D ∆中,222''BD C D BC +=,∴()22215x x ++=,解得121,2x x==- (不合题意,舍去).∴'22BB x ==.iv )如答图4,当'2BC AB ==时,同ii )方法,设'B D BD x ==, 可得222''BD C D BC +=,即()22212x x ++=,解得12171722x x -+--== .∴142'22BB x -==.综上所述,要使平移后的四边形''ABC A 是“等邻边四边形”,应平移2或5或2或1422-的距离.(3)BC ,CD ,BD 的数量关系为2222BC CD BD +=.如答图5,∵AB AD =,∴将ADC 绕点A 旋转到ABF . ∴ADC ABF ≌.∴,,,ABF ADC BAF DAC AF AC FB CD ∠=∠∠=∠== .∴,1AC ADBAD CAF AF AB ∠=∠==.∴ACF ABD ∽.∴2CF ACBD AB ==.∴2CF BD =∵0360BAD ADC BCD ABC ∠+∠∠+∠=+, ∴()000036036090270ABC ADC BAD BCD ∠+∠=-∠∠=-=+.∴0270ABC ABF ∠+∠=.∴090CBF ∠=.∴()2222222BC CD CF BDBD +===.【考点】新定义;面动平移问题;菱形的判定;全等三角形的判定和性质;相似三角形的判定和性质;等腰直角三角形的判定和性质;多边形内角和定理;勾股定理;分类思想和方程思想的应用. 【分析】(1)根据定义,添加AB BC =或BC CD =或CD DA =或DA AB =即可(答案不唯一). (2)根据定义,分'2AA AB ==,'''5AA A C ==,'''5A C BC ==,'2BC AB ==四种情况讨论即可.(3)由AB AD =,可将ADC 绕点A 旋转到ABF ,构成全等三角形:ADC ABF ≌,从而得到,,,ABF ADC BAF DAC AF AC FB CD ∠=∠∠=∠== ,进而证明ACF ABD ∽得到2CF BD =,通过角的转换,证明090CBF ∠=,根据勾股定理即可得出2222BC CD BD +=.类型2:新定义图形例题1:(2015•某某某某,第24题14分)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”. (1)概念理解如图1,在四边形ABCD 中,添加一个条件使得四边形ABCD 是“等邻边四边形”.请写出你添加的一个条件. (2)问题探究①小红猜想:对角线互相平分的“等邻边四边形”是菱形.她的猜想正确吗?请说明理由。
重庆市中考数学 第二部分 题型研究 二、解答题重难点突破 题型二 新定义问题-人教版初中九年级全册数
新定义问题针对演练1. (2015某某)平面直角坐标系中,点P (x ,y )的横坐标x 的绝对值表示为|x |,纵坐标y 的绝对值表示为|y |,我们把点P (x ,y)的横坐标与纵坐标的绝对值之和叫做点P (x ,y )的勾股值,记为[P ],即[P ]=|x |+|y |.(其中的“+”是四则运算中的加法) (1)求点A (-1,3),B (3+2,3-2)的勾股值[A ],[B ]; (2)点M 在反比例函数y =x3的图象上,且[M ]=4,求点M 的坐标; (3)求满足条件[N ]=3的所有点N 围成的图形的面积.2. (2014某某)对x ,y 定义一种新运算T ,规定:T (x ,y )=yx byax ++2(其中a 、b 均为非零常数),这里等式右边是通常的四则运算,例如:T (0,1)=10210+⨯⨯+⨯b a =b .(1)已知T (1,-1)=-2,T (4,2)=1. ①求a ,b 的值; ②若关于m 的不等式组⎩⎨⎧>≤pm m T m m T )2-,3(4)4-,5(2恰好有3个整数解,某某数p 的取值X 围;(2)若T (x ,y )=T (y ,x )对任意实数x ,y 都成立(这里T (x ,y )和T (y ,x )均有意义),则a ,b 应满足怎样的关系式?3. 先阅读下列材料,并解决后面的问题. 材料:一般地,n 个相同的因数a 相乘:记为a n ,如23=8,此时,3叫做以2为底8的对数,记为log 28(即log 28=3).一般地,若a n=b (a >0且a ≠1,b >0),则n 叫做以a 为底b 的对数,记为:log a b (即log a b =n ). 如34=81,则4叫做以3为底81的对数,记为log 381(即log 381=4).问题:(1)计算以下各对数的值:log24=;log216=;log264=;(2)观察(1)中三个数4、16、64之间满足怎样的关系式?log24、log216、log264之间又满足怎样的关系式?(3)由(2)的结果,你能归纳出一个一般性的结论吗?log a M+log a N=(a>0且a≠1,M>0,N>0);(4)根据幂的运算法则:a n·a m=a n+m以及对数的含义证明上述结论.4. (2015某某)观察下表我们把表格中字母和所得的多项式称为特征多项式,例如第1格的“特征多项式”为4x+y,回答下列问题:(1)第3格的“特征多项式”为,第4格的“特征多项式”为,第n格的“特征多项式”为.;(2)若第1格的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16,①求x,y的值;②在此条件下,第n格的“特征多项式”是否有最小值?若有,求出最小值和相应的n值;若没有,说明理由.5. (2014某某)给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.①求证:△BCE是等边三角形;②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.第5题图6. 阅读下面的情景对话,然后解答问题:(1)①根据“奇异三角形”的定义,小红得出命题:“等边三角形一定是奇异三角形”,请判断小红提出的命题是否正确,并填空(填“正确”或“不正确”);②若某三角形的三边长分别是2、4、10,则△ABC 是奇异三角形吗?(填“是”或“不是”);(2)①若Rt△ABC 是奇异三角形,且其两边长分别为2、22,则第三边的边长为;且此直角三角形的三边之比为(请按从小到大排列);②在Rt△ABC 中,∠ACB =90°,AB =c ,AC =b ,BC =a ,且b >a ,若Rt△ABC 是奇异三角形,求a ∶b ∶c ;(3)在Rt△ABC 中,∠ACB =90°,以AB 为斜边作等腰直角三角形ABD ,点E 是AC 上方的一点,且满足AE =AD ,CE =CB .求证:△ACE 是奇异三角形.7. 阅读材料:关于三角函数还有如下的公式: sin (α±β)=sin αcos β±cos αsin β tan (α±β)=βαβαtan tan 1tan tan ⋅±利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值. 例:tan15°=tan(45°-30°)=︒⋅︒+︒︒tan30tan451tan30-tan45=331133-1⨯+=)3-)(33(3)3-)(33-(3+=636-12=2-3.根据以上阅读材料,请选择适当的公式解答下面问题: (1)计算:sin15°;(2)乌蒙铁塔是六盘水市标志性建筑物之一(图①),小华想用所学知识来测量该铁塔的高度,如图②,小华站在离塔底A 距离7米的C 处,测得塔顶B 的仰角为75°,小华的眼睛离地面的距离DC 为,请帮助小华求出乌蒙铁塔的高度.(精确到,参考数据3≈1.732,2≈1.414)第7题图8. 对于非负实数x “四舍五入”到个位的值记为<x >,即:当n 为非负整数时,如果n -21≤x <n +21,则<x >=n .如:<0>=<0.46>=0,<0.64>=<1.49>=1,<3.5>=<4.28>=4,…,试解决下列问题: (1)填空:①<π>=(π为圆周率); ②如果<2x -1>=3,则实数x 的取值X 围为;(2)试举例说明:当x =,y =时,<x +y >=<x >+<y >不恒成立;(3)求满足<x >=34x 的所有非负实数x 的值.9. 在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下定义:若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|; 若|x 1-x 2|<|y 1-y 2|,则点P 1与点P 2的“非常距离”为|y 1-y 2|.例如:点P 1(1,2),点P 2(3,5),因为|1-3|<|2-5|,所以点P 1与点P 2的“非常距离”为|2-5|=3,也就是图①中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q 与垂直于x 轴的直线P 2Q 的交点).图① 图② 第9题图 (1)已知点A (-21,0),B 为y 轴上的一个动点, ①若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标; ②写出点A 与点B 的“非常距离”的最小值; (2)如图②,已知C 是直线y =43x +3上的一个动点,点D 的坐标是(0,1),求点C 与点D的“非常距离”的最小值及相应的点C 的坐标. 【答案】 针对演练1.解:(1)[A ]=|-1|+|3|=4,[B ]=|2+3|+|3-2|=2+3+2-3=4. (2)设点M 的横坐标为x ,则它的纵坐标是y =x3, 由[M ]=4得:|x |+|x3|=4, 即|x |2-4|x |+3=0, 解之得:|x |=3或|x |=1,∴x =3或x =-3或x =1或x =-1, ∴满足条件的点M 有4个:M 1(3,1),M 2(-3,-1),M 3(1,3),M 4(-1,-3).(3)满足条件[N ]=3的所有点组成的图形是正方形, 正方形的4个顶点依次为(3,0)(0,3)(-3,0)(0,-3), ∴所有点N 围成的图形面积为18.2.解:(1)①根据题意得:T (1,-1)=1-2-ba =-2,即a -b =-2; T =(4,2)=2824++ba =1,即2a +b =5,解得:a =1,b =3.②由①得T (x ,y )=yx yx ++23.根据题意得:⎪⎪⎩⎪⎪⎨⎧>++≤++②① 2-32)2-3(3 44-54)4-3(52p mm m m mm m m ,解①得:m ≥-21,解②得:m <53-9p .∴不等式组的解集为-21≤m <53-9p,∵不等式组恰好有3个整数解,即m =0,1,2, ∴2<53-9p≤3,解得:-2≤p <-31. (2)由T (x ,y )=T (y ,x ),得到y x by ax ++2=yx byax ++2,整理得:(x 2-y 2)(2b -a )=0,∵T (x ,y )=T (y ,x )对任意实数x ,y 都成立, ∴2b -a =0,即a =2b . 3.(1)解:2;4;6. 【解法提示】∵22=4,∴log 24=2,∵24=16,∴log 216=4, ∵26=64,∴log 264=6.(2)解:4×16=64,log 24+log 216=log 264. (3)解:log a (MN ).(4)证明:设log a M =b 1,log a N =b 2,则a b 1=M ,a b 2=N ,∵a b 1·a b 2=ab b +12, ∴b 1+b 2=log a (a b 1·a b 2)=log a(MN ),即log a M +log a N =log a (MN ).4.解:(1)16x +9y ;25x +16y;(n +1)2x +n 2y (n 为正整数).【解法提示】仔细观察每格的特征多项式的特点,找到规律,利用规律求得答案即可.观察图形发现:第1格的“特征多项式”为 4x +y , 第2格的“特征多项式”为 9x +4y , 第3格的“特征多项式”为 16x +9y , 第4格的“特征多项式”为25x +16y , …第n 格的“特征多项式”为(n +1)2x +n 2y (n 为正整数). (2)①∵第1格的“特征多项式”的值为-10, 第2格的“特征多项式”的值为-16,∴⎩⎨⎧=+=+-1649-104y x y x ,解得:⎪⎪⎩⎪⎪⎨⎧==726724-y x ,∴x 、y 的值分别为724-, 726. ②设最小值为W ,则依题意得:W =(n +1)2x +n 2y =724- (n +1)2+726n 2=72 (n 2-24n -12)= 72 (n -12)2-7312.∴第n 格的“特征多项式”有最小值为-7312,相应的n 值为12. 5.(1)解:正方形、矩形、直角梯形任选两个均可. (2)证明:①∵△ABC ≌△DBE , ∴BC =BE , ∵∠CBE =60°, ∴△BCE 是等边三角形. ②∵△ABC ≌△DBE , ∴BC =BE ,AC =ED . ∵△BCE 为等边三角形, ∴BC =CE ,∠BCE =60°, ∵∠DCB =30°,∴∠DCE=∠BCE+∠DCB=90°,∴在Rt△DCE中,DC2+CE2=DE2,又∵BC=CE,AC=DE,∴DC2+BC2=AC2,即四边形ABCD是勾股四边形.6.解:(1)①正确;【解法提示】设等边三角形的边长为a,则a2+a2=2a2,∴符合“奇异三角形”的定义,∴小红提出的命题是正确的.②是.【解法提示】∵22+42=2×(10)2,∴符合“奇异三角形”的定义,∴△ABC是奇异三角形.(2)①23;1∶2∶3.【解法提示】∵22+(23)2=2×(22)2,且22+(22)2=(23)2,∴第三边的边长为23,∴此直角三角形的三边之比为2∶22∶23=1∶2∶3.②∵∠ACB=90°,则a2+b2=c2①,∵Rt△ABC是奇异三角形,且b>a,∴a2+c2=2b2②,由①②得:b=2a,c=3a,∴a∶b∶c=1∶2∶3.(3)∵以AB为斜边分别在AB的两侧作直角三角形,利用直角三角形外接圆直径就是斜边,AD=BD,∴AB 是⊙O 的直径,∴AB 2=AD 2+BD 2=2AD 2,∴AC 2+CB 2=AB 2=2AD 2,又∵CB=CE ,AE=AD , ∴AC 2+CE 2=2AE 2,∴△ACE 是奇异三角形.7.解:(1)sin15°=sin(45°-30°)=sin45°cos30°-cos45°sin30° =22×23-22×21 =46-42=42-6. (2)在Rt△BDE 中,∵∠BED =90°,∠BDE =75°,DE =AC =7米,∴BE =DE ·tan∠BDE =DE ·tan75°.∵tan75°=tan(45°+30°) =︒⋅︒︒+︒tan30tan45-1tan30tan45 =331-1331⨯+ =2+3,∴BE =7(2+3)=14+73,∴AB =AE +BE =1.62+14+73≈27.7(米).∴乌蒙铁塔的高度约为.8.解:(1)①3; ②47≤x <49.【解法提示】如果<2x -1>=3,可得3-21≤2x -1<3+21, 解得:47≤x <49. (2)0.6;0.7.【解法提示】说明:设x =n +a ,其中n 为x 的整数部分(n 为非负整数),a 为x 的小数部分(0≤a <1). 分两种情况:(Ⅰ)当0≤a <21时,有<x >=n , ∵x +y =(n +y )+a ,这时(n +y )为(x +y )的整数部分,a 为(x +y )的小数部分,∴<x +y >=n +y ,又<x >+y =n +y ,∴<x +y >=<x >+y . (Ⅱ)当21≤a <1时,有<x >=n +1, ∵x +y =(n +y )+a ,这时(n +y )为(x +y )的整数部分,a 为(x +y )的小数部分,∴<x +y >=n +y +1,又<x >+y =n +1+y =n +y +1,∴<x +y >=<x >+y .综上所述:<x +y >=<x >+y ,∴x 可取0.6,y 取0.7(x 可取0.4,y 取0.4,答案不唯一).(3)设34x =k (k 为非负整数),则x =43k ,根据题意可得: k -21≤43k <k +21, 即-2<k ≤2,∵k 为非负整数,∴k =0,1,2, ∴x =0,43,23. 9.解:(1)①∵B 为y 轴上的一个动点,∴设点B 的坐标为(0,y ).∵|-21-0|=21≠2, ∴|0-y |=2,解得,y =2或y =-2.∴点B 的坐标是(0,2)或(0,-2).②点A 与点B 的“非常距离”的最小值为21. (2)如解图,取点C 与点D 的“非常距离”的最小值时,需要根据运算定义“若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|”解答,此时|x 1-x 2|=|y 1-y 2|,即AC =AD .∵C 是直线y =43x +3上的一个动点,点D 的坐标是(0,1), ∴设点C 的坐标为(x 0,43x 0+3), ∴-x 0=43x 0+2,此时,x 0=-78, ∴点C 与点D 的“非常距离”的最小值为:|x 0|=78, 此时C (-78,715).第9题。
初中数学中考复习 第6关 以新定义与阅读理解问题为背景的选择填空题(原卷版)
第6关 以新定义与阅读理解问题为背景的选择填空题【考查知识点】所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力. 阅读理解型问题在近几年的全国中考试题中频频“亮相”,特别引起我们的重视.这类问题一般文字叙述较长,信息量较大,各种关系错综复杂,考查的知识也灵活多样,既考查学生的阅读能力,又考查学生的解题能力的新颖数学题.【解题思路】“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.解决阅读理解问题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含了什么新的数学知识、结论,或揭示了什么数学规律,或暗示了什么新的解题方法,然后展开联想,将获得的新信息、新知识、新方法进行迁移,建模应用,解决题目中提出的问题.【典型例题】【例1】(2019·湖南中考真题)从1-,1,2,4四个数中任取两个不同的数(记作,k k a b )构成一个数组{},K k k M a b =(其中1,2,,k S =,且将{},k k a b 与{},k k b a 视为同一个数组),若满足:对于任意的{},i i i M a b =和{},(,1,1)j i j M a b i j i S j S =≠≤≤≤≤都有i i j j a b a b +≠+,则S 的最大值( )A .10B .6C .5D .4【名师点睛】本题考查了规律型:数字的变化类,找出i i a b +共有几个不同的值是解题的关键.【例2】(2020·四川绵阳实中、绵阳七中初三月考)阅读材料:定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位,把形如a bi +(a ,b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似. 例如计算:(4)(62)(46)(12)10i i i i ++-=++-=-;2(2)(3)6326(1)7i i i i i i i -+=-+-=---=-; 2(4)(4)1616(1)17i i i +-=-=--=;22(2)4444134i i i i i +=++=+-=+根据以上信息,完成下面计算:2(12)(2)(2)i i i +-+-=_______.【名师点睛】本题考查有理数的混合运算,解题的关键是读懂题意,掌握有理数的混合运算.【例3】(2019·湖南中考真题)规定:如果一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M 、N 的坐标分别为(0,1),(0,1),-P 是二次函数214y x =的图象上在第一象限内的任意一点,PQ 垂直直线1y =-于点Q ,则四边形PMNQ 是广义菱形.其中正确的是_____.(填序号) 【名师点睛】本题考查新定义,二次函数的性质,特殊四边形的性质;熟练掌握平行四边形,菱形,二次函数的图象及性质,将广义菱形的性质转化为已学知识是求解的关键.【例4】(2018新疆中考)如图,已知抛物线y 1=﹣x 2+4x 和直线y 2=2x .我们规定:当x 取任意一个值时,x 对应的函数值分别为y 1和y 2,若y 1≠y 2,取y 1和y 2中较小值为M ;若y 1=y 2,记M=y 1=y 2.①当x >2时,M=y 2;②当x <0时,M 随x 的增大而增大;③使得M 大于4的x 的值不存在;④若M=2,则x=1.上述结论正确的是_____(填写所有正确结论的序号).【名师点睛】本题考查了一次函数的性质、二次函数的性质、一次函数图象上点的坐标特征以及二次函数图象上点的坐标特征,逐一分析四条结论的正误是解题的关键.【方法归纳】阅读试题提供新定义、新定理,根据所给的内容类比解决新问题 ;阅读相关信息,通过归纳探索,发现规律,得出结论阅读试题信息,借助已有数学思想方法解决新问题;阅读理解型问题是指通过阅读材料,理解材料中所提供新的方法或新的知识,并灵活运用这些新方法或新知识,去分析、解决类似的或相关的问题。
难点探究专题:一次函数的综合与新定义型函数(7类热点题型讲练)(解析版--初中数学北师大版8年级上册
第08讲难点探究专题:一次函数的综合与新定义型函数(7类热点题型讲练)目录【类型一一次函数图象共存综合问题】..................................................................................................................1【类型二一次函数含参数中的图象和性质】..........................................................................................................4【类型三一次函数中平移问题】..............................................................................................................................9【类型四一次函数中的规律探究问题】................................................................................................................14【类型五一次函数——分段函数】........................................................................................................................18【类型六绝对值的一次函数】................................................................................................................................21【类型七新定义型一次函数】.. (27)【类型一一次函数图象共存综合问题】例题:(2023秋·黑龙江哈尔滨·九年级哈尔滨市虹桥初级中学校校考开学考试)如图,一次函数y mx n =+与正比例函数y mnx =(m 、n 是常数,且0mn ≠)的图象的是()A .①和③B .②和③C .①和④D .②和④【答案】D【分析】利用正比例函数的图象和一次函数的图象逐一判断即可求解.【详解】解:①、由正比例函数图象得:0mn <,由一次函数图象得:0m >,且0n >,则0mn >,则①错误,故不符合题意;②、由正比例函数图象得:0mn <,由一次函数图象得:0m >,且0n <,则0mn <,则②正确,故符合题意;③、由正比例函数图象得:0mn >,由一次函数图象得:0m >,且0n <,则0mn <,则③错误,故不符④、由正比例函数图象得:0mn >,由一次函数图象得:0m <,且0n <,则0mn >,则④正确,故符合题意,故选D .【点睛】本题考查了正比例函数的图象和一次函数的图象,熟练掌握其图象是解题的关键.【变式训练】1.(2023春·湖北咸宁·八年级校考阶段练习)如图所示,两条直线1y ax b =+与2y bx a =+在同一直角坐标系中的图像位置可能是()A .B .C .D .【答案】A【分析】根据选项,结合一次函数图像与表达式系数的关系逐项判断即可得到答案.【详解】解:A 、由选项中直线1y ax b =+的图像可知0,0a b ><,则断定直线2y bx a =+图像正确,该选项符合题意;B 、由选项中直线1y ax b =+的图像可知0,0a b >>,则断定直线2y bx a =+图像错误,该选项不符合题意;C 、由选项中直线1y ax b =+的图像可知0,0a b ><,则断定直线2y bx a =+图像错误,该选项不符合题意;D 、由选项中直线1y ax b =+的图像可知0,0a b >>,则断定直线2y bx a =+图像错误,该选项不符合题意;故选:A .【点睛】本题考查一次函数图像与表达式系数的关系,掌握此类题型的解题方法是解决问题的关键.2.(2023秋·湖北咸宁·九年级统考开学考试)如图,一次函数y mx n =+与正比例函数y mnx =(m ,n 为常数,且0mn ≠)的图象是()A .B .C .D .【答案】A【分析】分别分析四个选项中一次函数和正比例函数m 和n 的符号,即可进行解答.【详解】解:A 、由一次函数图象得:0,0m n <>,由正比例函数图象得:0mn <,符合题意;B 、由一次函数图象得:0,0m n <>,由正比例函数图象得:0mn >,不符合题意;C 、由一次函数图象得:0,0m n >>,由正比例函数图象得:0mn <,不符合题意;D 、由一次函数图象得:0,0m n ><,由正比例函数图象得:0mn >,不符合题意;【点睛】本题主要考查了一次函数和正比例函数的图象,解题的关键是掌握一次函数和正比例函数图象与系数的关系.3.(2023春·河北承德·八年级统考期末)在同一平面直角坐标系中,函数y ax b =-和y bx a =+的图象可能是()A .B .C .D .【答案】D【分析】对于每个选项,先确定一个解析式所对应的图象,根据一次函数图象与系数的关系确定a 、b 的符号,然后根据此符号看另一个函数图象的位置是否正确.【详解】解:A 、若函数y ax b =-图象经过第一、三、四象限,则0a >,0b >,此时函数y bx a =+的图象应经过第一、二、三象限;若函数y ax b =-图象经过第一、二、四象限时,则a<0,0b <时,此时函数y bx a=+的图象应经过第二、三、四象限,故选项A 错误,不符合题意;B 、若函数y ax b =-图象经过第一、二、四象限时,则a<0,0b <时,此时函数y bx a =+的图象应经过第二、三、四象限,故选项B 错误,不符合题意;C 、若函数y ax b =-图象经过第一、二、三象限,则0a >,0b <,此时函数y bx a =+的图象应经过第一、二、四象限;若函数y ax b =-图象经过第二、三、四象限时,则a<0,0b >时,此时函数y bx a =+的图象应经过第一、三、四象限,故选项C 错误,不符合题意;D 、若函数y ax b =-图象经过第一、二、三象限,则0a >,0b <,此时函数y bx a =+的图象应经过第一、三、四象限;若函数y ax b =-图象经过第一、三、四象限时,则0a >,0b >时,此时函数y bx a =+的图象应经过第一、二、三象限,故选项D 正确,符合题意;故选:D .【点睛】此题主要考查了一次函数的图象与性质,正确记忆一次函数图象经过象限与系数关系是解题关键.4.(2023春·四川绵阳·八年级东辰国际学校校考阶段练习)在同一坐标系中,直线1l :()3y k x k =-+和2l :y kx =-的位置可能是()A .B .C .D .【答案】B【分析】根据正比例函数和一次函数的图像与性质,对平面直角坐标系中两函数图像进行讨论即可得出答案.【详解】A 、由正比例函数图像可知0k -<,即0k >,故由一次函数图像与y 轴的交点在原点的上方,故选项A 不符合题意;B 、由正比例函数图像可知0k -<,即0k >,故由一次函数图像与y 轴的交点在原点的上方,但()3k -无法判断正负,因此增减都可以,故选项B 符合题意;C 、由正比例函数图像可知0k ->,即0k <,故由一次函数图像与y 轴的交点在原点的下方,故选项C 不符合题意;D 、由正比例函数图像可知0k -<,即0k >,故由一次函数图像与y 轴的交点在原点的上方,故选项D 不符合题意;故选B .【点睛】本题主要考查的是正比例函数和一次函数的图像与性质,熟练掌握正比例函数和一次函数的图像与性质是解决本题的关键.【类型二一次函数含参数中的图象和性质】例题:(2023春·山东滨州·八年级统考期末)对于y 关于x 的函数()3y k x k =-+(k 是常数,3k ≠),下列结论中正确结论的序号是()①其图象是一条直线;②其图象必经过点()1,3-;③若其图象经过第二、三、四象限,则k 的取值范围是0k <;④若y 随x 的增大而增大,则其图象与y 轴的交点必定在正半轴上.A .①②③④B .①②③C .②③④D .①③④【答案】A【分析】根据一次函数的图象和性质,逐一进行判断后,即可得出结论.【详解】解:∵()3y k x k =-+(k 是常数,3k ≠),∴y 是关于x 的一次函数,其图象是一条直线,故①正确;当=1x -时,()33y k k =--+=,∴其图象必经过点()1,3-;故②正确;当其图象经过第二、三、四象限时,300k k -<⎧⎨<⎩,解得:0k <,故③正确;若y 随x 的增大而增大,则:30k ->,∴3k >,则其图象与y 轴的交点必定在正半轴上,故④正确;故选A .【点睛】本题考查一次函数的图象和性质.熟记一次函数的图象和性质,是解题的关键.【变式训练】∴与两个坐标轴围成的三角形面积是B 、∵320k ->,∴203k >>,∴一次函数y 随x 增大而增大,如图所示,∴若12>a a ,则12b b >,∴()()12120a a b b -->,故B 错;C 、假设一次函数不经过第三象限,则需0k <,320k ->,由B 得:当320k ->时,0k >,∴一次函数32y kx k =+-的图象一定经过第三象限,故C 错;D 、当0t >时,要想732tx kx k +>+-,则0327k t k =>⎧⎨-<⎩,解得:03k k >⎧⎨<⎩,即03k <<,如图所示,当0t <时,要想732tx kx k +>+-,则0k t =<即可,如图所示,综上所述:k 的取值范围是03k <<或0k <,故D 正确;故选:D .【点睛】本题考查了一次函数的图象与性质,灵活运用所学知识是关键.2.(2023春·江西南昌·八年级统考期末)对于一次函数()y kx k 1k 0=+-≠,下列叙述正确的是()A .当01k <<时,函数图象经过第一、二、三象限B .当0k <时,y 随x 的增大而增大C .当1k >时,函数图象一定交于y 轴的负半轴D .函数图象一定经过点()1,1--【答案】D【分析】根据一次函数图象与系数的关系对A 、B 、C 进行判断,根据一次函数图象上点的坐标特征对D 进行判断.【详解】解:A .当01k <<时,10k -<,函数图象经过第一、三、四象限,故A 错误,不符合题意;B .当0k <时,y 随x 的增大而减小,故B 错误,不符合题意;C .当1k >时,10k ->,函数图象一定交于y 轴的正半轴,故C 错误,不符合题意;D .把=1x -代入1y kx k =+-得,()111y k k =⨯-+-=-,所以函数图象一定经过点()1,1--,故D 正确,符合题意;故选:D .【点睛】本题考查了一次函数图象与系数的关系:一次函数y kx b =+(k b 、为常数,0k ≠)是一条直线,当0k >时,图象经过一、三象限,y 随x 的增大而增大,当0k <时,图象经过二、四象限,y 随x 的增大而减小,图象与y 轴的交点坐标为()0b ,.3.(2023春·福建泉州·八年级统考期末)对于一次函数3(0)y kx k k =++≠,下列结论正确的是()A .当0k >时,y 随着x 的增大而减小B .当0k <时,y 随着x 的增大而增大C .当1k =-时,图象一定经过点(0,1)-D .当0k ≠时,图象一定经过点(1,3)-【答案】D【分析】由题意知,当0k >时,y 随着x 的增大而增大,进而可判断A 的正误;当0k <时,y 随着x 的增大而减小,进而可判断B 的正误;当1k =-时,2y x =-+,当0x =,2y =,即图象经过点(0,2),进而可判断C 的正误;当0k ≠时,()13y k x =++,当=1x -,3y =,即图象一定经过点(1,3)-,进而可判断D 的正误.【详解】解:由题意知,当0k >时,y 随着x 的增大而增大,A 错误,故不符合要求;当0k <时,y 随着x 的增大而减小,B 错误,故不符合要求;当1k =-时,2y x =-+,当0x =,2y =,即图象经过点(0,2),C 错误,故不符合要求;当0k ≠时,()13y k x =++,当=1x -,3y =,即图象一定经过点(1,3)-,D 正确,故符合要求;故选:D .【点睛】本题考查了一次函数的图象与性质.解题的关键在于对知识的熟练掌握与灵活运用.4.(2023春·广东珠海·八年级统考期末)关于x 的一次函数()12y k x k =--+(k 为常数且1k ≠),①当0k =时,此函数为正比例函数;②无论k 取何值,此函数图象必经过(1,1);③若函数图象同时经过点(,)m a 和点1,1)(m a ++(m ,a 为常数),则2k =-;④无论k 取何值,此函数图象都不可能同时经过第二、三、四象限,上述结论中正确的序号有()A .①②B .②③C .②④D .③④【答案】C【分析】根据一次函数的性质依次判断即可.【详解】解:①当0k =时,则2y x =-+,为一次函数,故①错误;②整理得:()12y x k x =--+,∴1x =时,1y =,∴此函数图象必经过(1,1),故②正确;解得4a=,故④说法正确;综上,正确的说法有①④,故答案为:①④.【点睛】本题考查的是两条直线相交或平行问题,一次函数图象与系数的关系,数形结合解题是关键.【类型三一次函数中平移问题】(1)求直线l对应的函数表达式;(2)求四边形ABDC的面积.【答案】(1)54 y x =-(2)42 51.(2023春·全国·八年级专题练习)若点()1,2P -在直线3y kx =+上,把直线3y kx =+的图像向上平移2个单位,所得的直线表达式为______.【答案】55y x =-+【分析】把点()1,2P -代入3y kx =+中,确定直线的解析式,再运用直线的平移规律计算即可.【详解】点()1,2P -代入3y kx =+中,得23k -=+,解得5k =-,∴直线的解析式为53y x =-+,∴53y x =-+的图像向上平移2个单位得到的解析式为55y x =-+.故答案为:55y x =-+.【点睛】本题考查了解析式与点的坐标的关系,直线平移的规律,熟练掌握直线平移的规律是解题的关键.2.(2023·全国·九年级专题练习)在平面直角坐标系中,将直线3y x =先向左平移2个单位长度,再向下平移3个单位长度,平移后的新直线与x 轴的交点为()0m ,,则m 的值为___________.【答案】1-【分析】根据平移的规律求出平移后的直线解析式,然后代入()0m ,,即可求出m 的值.【详解】解:将直线3y x =先向左平移2个单位长度,再向下平移3个单位长度后得到3(2)3y x =+-,即33y x =+,∴平移后的直线与x 轴交于()0m ,,∴033m =+,解得1m =-,故答案为1-.【答案】8【分析】根据函数图象中的数据可以分别求得矩形的边长【详解】解:如图所示,过点B 、D 分别作21y x =+的平行线,交由图象和题意可得431AE =-=,871CF =-=,BE DF =则22512AB BE AE =-=-=,31BC BF CF =+=+=【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.5.(2023·陕西西安·西北大学附中校考模拟预测)将直线1l 平移到直线2l ,直线【答案】()1,4D --【分析】根据一次函数与坐标轴的交点可求形,根据线段AB 在平移过程中扫过的图形面积为可求解.【详解】解:如图,连接,AC BD 对于直线443y x =+,令0y =,【点睛】本题考查了一次函数的平移,待定系数法求解析式,求一次函数与坐标轴围成的三角形的面积,根据平移求得解析式是解题的关键.【类型四一次函数中的规律探究问题】例题:(2023·全国·九年级专题练习)在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,点A1,A2,A3,A4,…在直线l上,点C1,C2,C3,C4,…在x轴正半轴上,则A4的坐标是_____;n A的坐标是_____.【答案】(7,8)(2n-1-1,2n-1)【分析】由题意可得A1,A2,A3,A4的坐标,可得点A坐标规律,即可求解.【详解】解:由题意可得正方形OA1B1C1边长为1,正方形A2B2C2C1的边长为2,正方形A3B3C3C2的边长为4,…正方形AnBnCnCn-1的边长为2n-1,∴A1(0,1),A2(1,2),A3(3,4),A4(7,8),…,An(2n-1-1,2n-1),故答案为:(7,8),(2n -1-1,2n -1).【点睛】本题考查一次函数图象上点的坐标特征、规律型:点的坐标,解答本题的关键是明确题意,利用数形结合的思想解答.【变式训练】【答案】()212n -【分析】分别过点1B 、2B ,3B 作x 1222142422A A B S =⨯⨯== ,23312A AB S = ∵1B 在1233y x =+,且1B 的横坐标为∴()11,1B ,∴111OC B C CA ===,【答案】1675【分析】关键一次函数图像上点的坐标特征,得到形的面积,得到变化规律进行求解.【详解】解:∵()111,B y 、2B 1311y =⨯+=,1y =⨯【类型五一次函数——分段函数】(2)根据函数图像可知,这个函数图像不关于观察函数图像可知,此函数没有最小值,故【点睛】本题主要考查了一次函数的图像与性质,解题的关键在于能够熟练掌握一次函数的图像与性质.【变式训练】m>时,设点(P m (3)当3【类型六绝对值的一次函数】下面是小慧的探究过程,请补充完成:(1)函数1y x =-的自变量x 的取值范围是(2)列表,找出y 与x 的几组对应值.其中,(3)在平面直角坐标系xOy 中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;(4)函数1y x =-的最小值为____________(5)结合函数的图象,写出该函数的其他性质(一条即可)【答案】(1)任意实数(2)2(3)见解析(4)0(5)x <1时,y 随x 增大而减小;x >1(4)由函数图象可知,函数的最小值为0.故答案为:0.(5)x<1时,y随x增大而减小;x>1时,y随x增大而增大;图象关于直线y=1对称(写一条即可).【点睛】本题考查的是一次函数的性质,根据题意画出函数图象,利用数形结合求解是解答此题的关键.【变式训练】(4)小明根据画出的函数图象,写出此函数的两条性质.【答案】(1)任意实数(2)1(3)见解析(4)见解析(4)解:由函数图象可知,①函数有最小值为0;②当x>-1时,y随x的增大而增大;③图象关于过点(-1,0)且垂直于【点睛】本题考查一次函数的性质、一次函数的图象,解答本题的关键是明确题意,画出相应的函数图象,(3)在如图的直角坐标系中:①描出上表中各对对应值的坐标的点,并根据描出的各点,画出该函数的大致图象;②根据函数图象可得,该函数的最小值为__________;③结合函数图象,写出该函数除②外的一条性质:____________.【答案】(1)x 的取值范围是全体实数(2)①1m =﹐②9n =-(3)①见解析;②1;③函数关于y 轴对称【分析】(1)没做要求一次函数自变量取值范围都是全体实数(2)①把x =0代入函数即可求得m 的值②y =10代入函数即可求得n (3)①作图见解析②由图可见最小值为1③言之有理即可.【详解】解:(1)自变量x 的取值范围是全体实数;(2)①1m =﹐②9n =-﹔(3)①图象如图所示.②最小值为1;③函数关于y 轴对称(2)通过观察图象,写出该函数的一条性质:(3)利用学过的平移知识,说说函数的平面直角坐标系画出函数y=|x﹣【答案】(1)见解析;(2)当x>x>时,y随(2)由图象可知,当0故答案为当0x >时,y 随x 的增大而增大(答案不唯一);(3)函数|4|1y x =-+是由函数||y x =向右平移4个单位,再向上平移1个单位得来的,利用(1)中给出的平面直角坐标系画出函数|4|1y x =-+图象如图所示.【点睛】本题考查了一次函数的图象和性质,坐标与图形变换-平移,能根据图象得出正确信息是解此题的关键.【类型七新定义型一次函数】由-3x +2=4,得x =23-1.(2023秋·安徽六安·八年级校考期末)在平面直角坐标系xOy 中,对于点(),P x y 和(),Q x y ',给出如下定义:如果()()00y x y y x ⎧≥⎪=<'⎨-⎪⎩,那么称点Q 为点P 的“关联点”,例如:点()2,3的“关联点”为点()2,3,点()2,3-的“关联点”为点()2,3--(1)点()3,3-的“关联点”为(),a b ,则a b +=______;(2)①如果点()2,1P '-是一次函数1y x =+图象上点P 的“关联点”,那么点P 的坐标为______;②如果点(),2Q m '是一次函数1y x =+图象上点Q 的“关联点”,求点Q 的坐标。
初中数学专题讲解1专题十《新定义阅读理解题》
,相邻两个正整数的平方差之间差2.
∴当x=a2-b2(a,b均为正整数,且a≠b)时,
x的值是3、5、7、9…中的一个数(相邻时)或几个数(不相邻时)的和,等于112.
∴112是“雪松数”;
(2)解:设另一个“南麓数”为t′=1000m+100n+10n+m(m,n均为正整数,且0<n<m
即c2=b2+a2,
∴满足以上公式的a、b、c的数是一组勾股数;
1
2
1
(2)当n=5时,a= (m2-25),b=5m,c= (m2+25),
2
当a=37时,解得m=3 11,非正整数,不合题意,舍去,
37
5
当b=37时,解得m= ,非正整数,不合题意,舍去,
当c=37时,解得m=7,满足题意,此时a=12,b=35,
∴m为4567或5678或6789.
(2)q是“发财数”.理由如下:
∵t=100a+10(a+1)+(a+2)=111a+12,
∴k=100(a+2)+10(a+1)+a=111a+210,
∴q=k-t=(111a+210)-(111a+12)=210-12=198,
∵198÷18=11,
∴198可被18整除,即198是“发财数”,
构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的三边长满足上述勾
股数,其中一边长为37,且n=5,求直角三角形另两边的长.4. 解:(1)由题意知,
c2=(2n2+2n+1)2
=(2n2+2n)2+2(2n2+2n)+1
=(2n2+2n)2+4n2+4n+1
=(2n2+2n)2+(2n+1)2.