物理光学知识点

合集下载

物理高中光学知识点总结

物理高中光学知识点总结

物理高中光学知识点总结一、光的性质1. 光的波动性光既具有波动性,也具有粒子性。

光的波动性体现在光的传播过程中,如光的干涉和衍射现象。

而光的粒子性体现在光的能量是以光子的形式传播的,光的粒子性主要与光的光电效应和康普顿效应等现象有关。

2. 光的传播速度光在真空中传播的速度为299792458m/s,通常用c表示。

而在介质中,光的传播速度会减小,不同介质中的光速不同。

3. 光的颜色白光是由各种不同波长的光波混合而成的,而不同波长的光波对应不同的颜色。

当光通过三棱镜或光栅时,会发生色散现象,将白光分解成不同颜色的光谱。

4. 光的偏振光是一种横波,具有振动的方向。

光振动方向的平面称为偏振面,垂直于偏振面的方向称为偏振光。

在光的偏振现象中,我们主要关注线偏振光和圆偏振光。

二、光的传播1. 光的直线传播在介质中,光具有直线传播的特性,光线可以通过凸透镜、凹透镜的机理可以解释光线的传播和成像。

2. 光的衍射当光通过一个大小与波长相当的孔或障碍物时,会发生衍射现象。

衍射现象可用多缝干涉或单缝衍射公式进行计算。

3. 光的干涉当两道光波相遇时,会发生干涉现象。

光的干涉一般分为相干干涉和非相干干涉,其中激光干涉是一种重要的相干干涉。

三、光的反射与折射1. 光的反射定律光线在与物体表面相遇时,会发生反射现象。

光的反射定律规定了入射角、反射角和法线之间的关系。

2. 光的折射定律当光线从一种介质传播到另一种介质中时,会发生折射现象。

光的折射定律规定了入射角、折射角和介质折射率之间的关系。

3. 透镜的成像规律凸透镜和凹透镜分别具有不同的成像规律。

通过透镜成像公式可以计算物体和像的位置关系。

四、光的使用与应用1. 显微镜显微镜是一种使用透镜放大微小物体的仪器,通过显微镜可以观察到微生物、细胞等微小物体。

2. 望远镜望远镜是一种用透镜或反射镜放大远处物体的仪器,通过望远镜可以观察到远处的星星、行星等天体。

3. 激光技术激光技术是一种利用激光放大器产生激光束的技术,激光技术广泛应用于通信、医疗、制造等领域。

高中物理光学部分知识点总结

高中物理光学部分知识点总结

物理知识点一、光源1.定义:能够自行发光的物体.2.特点:光源具有能量且能将其它形式的能量转化为光能,光在介质中传播就是能量的传播.物理知识点二、光的直线传播1.光在同一种均匀透明的介质中沿直线传播,各种频率的光在真空中传播速度:C=3³108m/s;各种频率的光在介质中的传播速度均小于在真空中的传播速度,即 v<c。

< p="">2.本影和半影(l)影:影是自光源发出并与投影物体表面相切的光线在背光面的后方围成的区域.(2)本影:发光面较小的光源在投影物体后形成的光线完全不能到达的区域.(3)半影:发光面较大的光源在投影物体后形成的只有部分光线照射的区域.(4)日食和月食:人位于月球的本影内能看到日全食,位于月球的半影内能看到日偏食,位于月球本影的延伸区域(即“伪本影”)能看到日环食.当地球的本影部分或全部将月球反光面遮住,便分别能看到月偏食和月全食.3.用眼睛看实际物体和像用眼睛看物或像的本质是凸透镜成像原理:角膜、水样液、晶状体和玻璃体共同作用的结果相当于一只凸透镜。

发散光束或平行光束经这只凸透镜作用后,在视网膜上会聚于一点,引起感光细胞的感觉,通过视神经传给大脑,产生视觉。

理知识点三、光的反射1.反射现象:光从一种介质射到另一种介质的界面上再返回原介质的现象.2.反射定律:反射光线跟入射光线和法线在同一平面内,且反射光线和人射光线分居法线两侧,反射角等于入射角.3.分类:光滑平面上的反射现象叫做镜面反射。

发生在粗糙平面上的反射现象叫做漫反射。

镜面反射和漫反射都遵循反射定律.4.光路可逆原理:所有几何光学中的光现象,光路都是可逆的.物理知识点四.平面镜的作用和成像特点(1)作用:只改变光束的传播方向,不改变光束的聚散性质.(2)成像特点:等大正立的虚像,物和像关于镜面对称.(3)像与物方位关系:上下不颠倒,左右要交换物理光学知识点汇总:双缝干涉(1)两列光波在空间相遇时发生叠加,在某些区域总加强,在另外一些区域总减弱,从而出现亮暗相间的条纹的现象叫光的干涉现象.(2)产生干涉的条件两个振动情况总是相同的波源叫相干波源,只有相干波源发出的光互相叠加,才能产生干涉现象,在屏上出现稳定的亮暗相间的条纹.(3)双缝干涉实验规律①双缝干涉实验中,光屏上某点到相干光源、的路程之差为光程差,记为 .若光程差是波长λ的整倍数,即(n=0,1,2,3…)P点将出现亮条纹;若光程差是半波长的奇数倍(n=0,1,2,3…),P点将出现暗条纹.②屏上和双缝、距离相等的点,若用单色光实验该点是亮条纹(中央条纹),若用白光实验该点是白色的亮条纹.③若用单色光实验,在屏上得到明暗相间的条纹;若用白光实验,中央是白色条纹,两侧是彩色条纹.④屏上明暗条纹之间的距离总是相等的,其距离大小与双缝之间距离d.双缝到屏的距离及光的波长λ有关,即 .在和d不变的情况下,和波长λ成正比,应用该式可测光波的波长λ.⑤用同一实验装置做干涉实验,红光干涉条纹的间距最大,紫光干涉条纹间距最小,故可知大于小于.物理光学知识点汇总:薄膜干涉(1)薄膜干涉的成因:由薄膜的前、后表面反射的两列光波叠加而成,劈形薄膜干涉可产生平行相间的条纹.(2)薄膜干涉的应用①增透膜:透镜和棱镜表面的增透膜的厚度是入射光在薄膜中波长的.②检查平整程度:待检平面和标准平面之间的楔形空气薄膜,用单色光进行照射,入射光从空气膜的上、下表面反射出两列光波,形成干涉条纹,待检平面若是平的,空气膜厚度相同的各点就位于一条直线上,干涉条纹是平行的;反之,干涉条纹有弯曲现象.。

初中物理光学知识点

初中物理光学知识点

初中物理光学知识点一、光的基础知识1. 光的来源:自然光源(太阳、萤火虫)和人造光源(灯泡、荧光灯)。

2. 光的传播:光在均匀介质中沿直线传播,例如激光束在空气中的直线传播。

3. 光速:在真空中,光速约为每秒299,792,458米,是宇宙中最快的速度。

二、光的反射1. 反射定律:入射光线、反射光线和法线都在同一平面内,且入射角等于反射角。

2. 平面镜成像:平面镜能形成正立、等大的虚像。

3. 镜面反射与漫反射:镜面反射指光线在光滑表面上反射,而漫反射指光线在粗糙表面上向各个方向散射。

三、光的折射1. 折射现象:光线从一种介质进入另一种介质时,其传播方向会发生改变。

2. 折射定律:入射光线、折射光线和法线都在同一平面内,且入射角和折射角的正弦值之比为常数(介质的折射率)。

3. 透镜成像:凸透镜能形成实像或虚像,凹透镜只能形成缩小的或放大的虚像。

四、光的色散1. 色散原理:不同颜色的光在通过介质时,由于折射率不同,传播速度不同,导致光线分离成不同颜色的现象。

2. 光谱:通过棱镜可以将白光分解成红、橙、黄、绿、蓝、靛、紫七种颜色的光谱。

3. 物体的颜色:物体的颜色由其反射或透过的光的颜色决定。

五、光的干涉和衍射1. 干涉现象:两个或多个相干光波相遇时,光强的增强或减弱现象。

2. 双缝干涉:通过两个相距很近的狭缝的光波相遇时,会在屏幕上形成明暗相间的干涉条纹。

3. 衍射现象:光波通过狭缝或绕过障碍物时发生的方向改变现象。

六、光的偏振1. 偏振光:只在一个方向上振动的光波称为偏振光。

2. 偏振片:只允许特定方向振动的光通过的光学元件。

3. 马吕斯定律:描述偏振光通过两个偏振片后光强变化的定律。

七、光的应用1. 光纤通信:利用光的全反射原理传输信息。

2. 激光技术:利用激光的高亮度、高单色性和高方向性的特点,在医疗、工业和科研等领域有广泛应用。

3. 光学仪器:如显微镜、望远镜等,利用光学原理放大或观察微小或远距离的物体。

物理光学知识点

物理光学知识点

物理光学知识点物理光学是光学的一个重要分支,主要研究光的本性、光的传播以及光与物质的相互作用等方面。

下面我们来详细了解一些关键的物理光学知识点。

一、光的波动性1、光的干涉光的干涉是指两列或多列光波在空间相遇时,相互叠加,在某些区域始终加强,在另一些区域始终减弱,从而形成稳定的强弱分布的现象。

杨氏双缝干涉实验是证明光具有波动性的经典实验。

在杨氏双缝干涉中,相邻明条纹或暗条纹的间距与光的波长、双缝间距以及双缝到光屏的距离有关。

2、光的衍射光在传播过程中遇到障碍物或小孔时,偏离直线传播路径而绕到障碍物后面传播的现象称为光的衍射。

衍射现象表明光具有波动性。

单缝衍射、圆孔衍射等都是常见的衍射现象。

衍射条纹的宽度与障碍物或小孔的尺寸以及光的波长有关。

3、光的偏振光的偏振现象表明光是一种横波。

自然光通过偏振片后会变成偏振光。

偏振光在很多领域都有重要应用,如立体电影、偏振光显微镜等。

二、光的粒子性1、光电效应当光照射到金属表面时,金属中的电子吸收光子的能量,从而逸出金属表面的现象称为光电效应。

光电效应的实验规律无法用经典物理学来解释,爱因斯坦提出了光子说,成功解释了光电效应。

光电效应方程为:$h\nu =W +\frac{1}{2}mv^2$,其中$h$为普朗克常量,$\nu$为光的频率,$W$为金属的逸出功,$m$为电子质量,$v$为电子逸出后的速度。

2、康普顿效应康普顿效应进一步证实了光的粒子性。

当 X 射线光子与物质中的电子碰撞时,光子的能量和动量发生改变,散射后的 X 射线波长变长。

三、光的传播1、光速真空中的光速是一个常量,约为$3\times 10^8$米/秒。

光在不同介质中的传播速度不同,且满足$v =\frac{c}{n}$,其中$v$为光在介质中的速度,$c$为真空中的光速,$n$为介质的折射率。

2、折射与反射当光从一种介质进入另一种介质时,会发生折射和反射现象。

折射定律为:$n_1\sin\theta_1 = n_2\sin\theta_2$,其中$n_1$和$n_2$分别为两种介质的折射率,$\theta_1$和$\theta_2$分别为入射角和折射角。

物理光学知识点总结

物理光学知识点总结

物理光学知识点总结1. 光的基本概念- 光是一种电磁波,具有波动性和粒子性(光子)。

- 可见光谱是人眼能够感知的光的范围,大约在380纳米至750纳米之间。

2. 光的传播- 光在均匀介质中沿直线传播。

- 光速在不同介质中不同,真空中的光速约为299,792,458米/秒。

- 光的传播遵循光的折射定律和反射定律。

3. 反射定律- 入射光线、反射光线和法线都在同一平面内。

- 入射角等于反射角,即θi = θr。

4. 折射定律(Snell定律)- n1 * sin(θ1) = n2 * sin(θ2),其中n1和n2是两种介质的折射率,θ1和θ2分别是入射角和折射角。

5. 光的干涉- 干涉是两个或多个光波相遇时,光强增强或减弱的现象。

- 干涉条件是两束光的频率相同,且相位差恒定。

- 常见的干涉现象有双缝干涉和薄膜干涉。

6. 光的衍射- 衍射是光波遇到障碍物或通过狭缝时发生弯曲和展开的现象。

- 单缝衍射、圆孔衍射和光栅衍射是常见的衍射现象。

7. 光的偏振- 偏振光是电磁波振动方向受到限制的光。

- 线性偏振、圆偏振和椭圆偏振是偏振光的三种类型。

- 偏振片可以用来控制光的偏振状态。

8. 光的散射- 散射是光在传播过程中遇到粒子时发生方向改变的现象。

- 散射的强度与粒子大小、光波长和入射光强度有关。

- 常见的散射现象有大气散射,导致天空呈现蓝色。

9. 光的颜色和色散- 颜色是光的另一种表现形式,与光的波长有关。

- 色散是光通过介质时不同波长的光因折射率不同而分离的现象。

- 棱镜可以将白光分解成不同颜色的光谱。

10. 光的量子性- 光电效应表明光具有粒子性,光子的能量与其频率成正比。

- 波恩提出的波函数描述了光子的概率分布。

- 量子光学是研究光的量子性质的学科。

11. 光的相干性和光源- 相干光具有固定的相位关系,激光是一种高度相干的光源。

- 光源可以是自然的,如太阳,也可以是人造的,如激光器和灯泡。

12. 光学仪器- 望远镜、显微镜、光纤和光学传感器都是利用光学原理工作的仪器。

物理光学知识点

物理光学知识点

物理光学知识点物理光学是物理学的一个分支,研究光的传播、反射、折射、干涉、衍射、偏振等现象以及与物质的相互作用。

在本文中,我们将介绍物理光学的一些重要知识点。

1. 光的传播速度光在真空中的传播速度是一个常数,即光速。

根据现行国际单位制的定义,光速的数值约为每秒299,792,458米。

这是一个非常快的速度,足以让光在一秒内绕地球走7.5圈。

2. 光的波动性和粒子性光既可以表现出波动性,也可以表现出粒子性。

这种“波粒二象性”是量子力学的基本原理之一,也被称为光的量子论。

根据光的具体实验条件,我们可以采用波动或粒子模型来解释和预测光的行为。

3. 光的反射和折射光在与界面接触时会发生反射和折射。

反射是指光从界面上的垂直方向弹回,形成镜面反射。

折射是指光从一种介质传播到另一种介质时发生方向改变。

根据斯涅尔定律,光的入射角和折射角之间存在特定的关系。

4. 光的干涉和衍射当两束或多束光波相遇时,会发生干涉现象。

干涉分为构造干涉和破坏干涉。

构造干涉是指光的相位叠加导致明暗相间的干涉条纹,例如杨氏双缝干涉实验。

破坏干涉是指光的相位差引起的干涉现象,例如红外夜视摄像机。

光通过狭缝或物体边缘时,会发生衍射现象。

衍射是光波的波前在遇到障碍物时发生弯曲并扩散的现象。

衍射过程中光波的相位和强度分布规律与观察距离和衍射孔径的大小有关。

5. 光的偏振光波在传播过程中,振动方向不随时间变化的现象称为偏振。

光可以是线偏振、圆偏振或者椭圆偏振的。

线偏振光的振动方向只在一个平面上,圆偏振光的振动方向沿着一个圆周,而椭圆偏振光的振动方向沿着一个椭圆。

6. 光的色散色散是指光在透明介质中传播时,不同波长的光的折射率不同而导致的色彩分离现象。

著名的实验是牛顿的光的色散实验,他将一束白光通过一个三棱镜,观察到光被分成了七种颜色的光谱。

7. 光的吸收和透射物质对光的吸收和透射是光与物质相互作用的重要现象。

当光通过物质时,会与物质中的原子或分子相互作用,一部分光被吸收,一部分光通过物质并被透射出来。

物理光学知识点

物理光学知识点

物理光学知识点第一章1. 可见光波长范围(380nm~760nm)。

2.折射率n =c = v3. 能流密度的坡印廷矢量s 的物理意义:表示单位时间内,通过垂直于传播方向上的单位面积的能量;光强I =S =1n 2E 0 2μ0c4. 已知E =eE 0cos ⎢2π ⎡⎣⎛t z ⎫⎤ -⎪⎥或E =E 0e -i (ωt -kz ),求光的相关参量,参见作业1-1,1-2;⎝T λ⎭⎦5. 简谐球面波E =E 0-i (ωt -kz )E e 或E =0cos (ωt -kz ),求光的相关参量。

r r1。

T 6. 无限长时间等幅震荡光场对应的频谱只含有一个频率成分,称为理想单色振动,持续有限长时间等幅震荡的光场对应的频谱宽度∆ν=7. 等相位面的传播速度称为相速度,平面单色波的相速度v p =ωk =c ,等振幅面的传播n (k )速度称为群速度,复色波的相速度v p =(公式来源t -kz =常数,然后求导),复色波的群速度v g =d ω⎛λdn ⎫结合第六章讨论在正常/反常色散中相速度和群速度哪=v p 1+⎪,dk n d λ⎝⎭个大?8. 理解线偏振光、圆偏振光和椭圆偏振光的概念及相互转化的条件,结合第四章波片讨论。

9. 讨论光波在界面上的反射和折射,如s 分量和p 分量的概念,菲涅尔公式的理解,图1-21的理解与应用,熟悉公式R s +T s =1,R p +T p =1,R n =射时R s =R p = 1R s +R p ),在正入射和掠入(2⎛n 2-n 1⎫n 2n 2,布儒斯特角的计算,全反射角,半波tan θ=sin θ=B C ⎪n n n +n 11⎝21⎭损失产生的两种情形:光从光疏介质入射到光密介质时,在正入射和掠入射时反射光相对入射光将产生“半波损失”;图1-29薄膜上下表面的反射的四种情形的作图法;偏振度的计算(1.2-39,1.2-42,43),注意p35偏振度计算的例子和p49例题1-5,利用片堆产生线偏振光的原理(反s 不反p ,输出p )和作业1-10,外腔式激光器的布儒斯特窗口的原理(反s 不反p ,输出s ),衰逝波的概念。

科普 物理光学知识点

科普 物理光学知识点

科普物理光学知识点光学是物理学的一个分支,研究光的产生、传播、反射、折射、干涉、衍射、偏振等现象。

本文将对高中物理光学知识点进行全面整理。

一、光的本质1. 光的波粒二象性:光既具有波动性,又具有粒子性。

这一概念最早由爱因斯坦提出,被称为光的波粒二象性。

2. 光的电磁本质:光是一种电磁波,具有电场和磁场的交替变化。

3. 光速不变原理:光在真空中的速度是恒定不变的,即光速不变原理。

4. 光的能量:光的能量与其频率成正比,与其波长成反比。

二、光的传播1. 光的直线传播:光在同一介质中沿直线传播,遇到界面时会发生反射、折射等现象。

2. 光的衍射:光通过狭缝或物体边缘时,会出现衍射现象,即光的波前会扩散。

3. 光的干涉:两束相干光相遇时,会出现干涉现象,即光的波峰和波谷相遇时会相互加强或抵消。

三、光的反射1. 光的反射定律:入射光线、反射光线和法线在同一平面内,入射角等于反射角。

2. 光的反射现象:光在界面上发生反射时,会产生镜面反射和漫反射两种现象。

3. 光的全反射:当光从光密介质射向光疏介质时,当入射角大于临界角时,光将全部反射回去,这种现象称为全反射。

四、光的折射1. 光的折射定律:入射光线、折射光线和法线在同一平面内,入射角和折射角的正弦之比等于两介质的折射率之比。

2. 光的折射现象:光从一种介质射向另一种介质时,会发生折射现象。

3. 光的色散:不同频率的光在介质中的折射率不同,导致光的色散现象。

五、光的透射1. 光的透射现象:当光从一种介质射向另一种介质时,一部分光被反射,另一部分光被透射。

2. 光的透射定律:入射光线、透射光线和法线在同一平面内,入射角和透射角的正弦之比等于两介质的折射率之比。

3. 透明介质和不透明介质:透明介质能够让光通过,不透明介质则不能。

六、光的偏振1. 光的偏振现象:光的电场矢量在某一方向上振动,称为光的偏振。

2. 偏振光的产生:偏振光可以通过偏振片、布儒斯特角、菲涅尔公式等方法产生。

大学物理光学部分知识点

大学物理光学部分知识点

大学物理光学部分知识点高校物理光学部分学问点一、光的反射1、光源:能够发光的物体叫光源2、光在匀称介质中是沿直线传播的大气层是不匀称的,当光从大气层外射到地面时,光线发了了弯折3、光速光在不同物质中传播的速度一般不同,真空中最快,光在真空中的传播速度:C = 3×108 m/s,在空气中的速度接近于这个速度,水中的速度为3/4C,玻璃中为2/3C4、光直线传播的应用可解释很多光学现象:激光准直,影子的形成,月食、日食的形成、小孔成像等5、光线光线:表示光传播方向的直线,即沿光的传播路线画始终线,并在直线上画上箭头表示光的传播方向(光线是假想的,实际并不存在)6、光的反射光从一种介质射向另一种介质的交界面时,一部分光返回原来介质中,使光的传播方向发生了转变,这种现象称为光的反射7、光的反射定律反射光线与入射光线、法线在同一平面上;反射光线和入射光线分居在法线的两侧;反射角等于入射角可归纳为:“三线一面,两线分居,两角相等”理解:(1) 由入射光线确定反射光线,表达时要“反”字当头(2) 发生反射的条件:两种介质的交界处;发生处:入射点;结果:返回原介质中(3) 反射角随入射角的增大而增大,减小而减小,当入射角为零时,反射角也变为零度8、两种反射现象(1) 镜面反射:平行光线经界面反射后沿某一方向平行射出,只能在某一方向接收到反射光线(2) 漫反射:平行光经界面反射后向各个不同的方向反射出去,即在各个不同的方向都能接收到反射光线留意:无论是镜面反射,还是漫反射都遵循光的反射定律高校物理光学学习方法一、仔细预习,画出疑难。

在这个环节中,必需先行学习教程(提前任课老师两个课时),画出自己理解不清,理解不了的部分。

预习教材后,假如“没有”疑难,那么立刻做教材所配置的练习,关心画出重点和难点。

预习中,自己画出重点和难点,这是特别重要的,是为提高听课效率所应当预备的一个环节。

二、带着问题,进入课堂。

高中物理光学知识点

高中物理光学知识点

高中物理光学知识点一、光的基础知识1. 光的描述- 光波:光作为电磁波的一种,具有波长和频率。

- 光谱:通过棱镜分解白光,显示为红、橙、黄、绿、蓝、靛、紫七种颜色的光谱。

2. 光的波长和频率- 波长:连续波上相位相同的相邻两个点之间的最短距离。

- 频率:单位时间内波峰或波谷出现的次数。

3. 光的速度- 在真空中,光速约为 $3 \times 10^8$ 米/秒。

二、光的反射1. 反射定律- 入射角等于反射角。

- 入射光线、反射光线和法线都在同一平面上。

2. 镜面反射和漫反射- 镜面反射:光滑表面上发生的反射,反射光线保持集中。

- 漫反射:粗糙表面上发生的反射,反射光线分散各个方向。

3. 反射镜的应用- 凹面镜和凸面镜:用于聚焦或散焦光线。

- 望远镜和显微镜:利用反射镜观察远距离或微小物体。

三、光的折射1. 折射现象- 当光从一种介质进入另一种介质时,其速度和传播方向会发生变化。

2. 折射定律(Snell定律)- $n_1 \sin(\theta_1) = n_2 \sin(\theta_2)$,其中 $n_1$ 和$n_2$ 分别是入射介质和折射介质的折射率。

3. 透镜- 凸透镜:使光线汇聚。

- 凹透镜:使光线发散。

四、光的干涉和衍射1. 干涉- 两个或多个相干光波叠加时,光强增强或减弱的现象。

- 双缝干涉实验:展示了光的波动性质。

2. 衍射- 光波遇到障碍物或通过狭缝时发生弯曲和展开的现象。

- 单缝衍射和双缝衍射:通过实验观察光波的传播特性。

五、光的偏振1. 偏振光- 只在一个平面内振动的光波称为偏振光。

- 通过偏振片可以控制光的振动方向。

2. 马吕斯定律- 描述偏振光通过偏振片时光强变化的定律。

六、光的颜色和色散1. 颜色的三原色- 红、绿、蓝:通过不同比例的混合可以产生其他颜色。

2. 色散- 不同波长的光在介质中传播速度不同,导致折射率不同,从而产生色散现象。

七、光的量子性1. 光电效应- 光照射到金属表面时,能使金属发射电子的现象。

物理光学知识点

物理光学知识点

物理光学知识点光学是研究光的传播、相互作用以及产生的现象和规律的学科。

物理光学是光学的一个重要分支,它研究光的波动性和粒子性以及光与物质相互作用的规律。

在本文中,我们将介绍几个物理光学的基本知识点。

1. 光的波动性光既具有粒子性又具有波动性。

光的波动性体现在它遵循的波动方程和它的干涉、衍射等现象上。

干涉是指两个或多个波叠加时发生的相加或相消的过程,衍射是指光通过孔径或物体边缘时发生的弯曲和辐射现象。

2. 光的粒子性光的粒子性体现在光的能量和动量上,即光以粒子的形式称为光子。

光的能量由光子的频率决定,而光的动量由光子的波长决定。

这个现象由爱因斯坦的光电效应和康普顿散射实验证实。

3. 光的吸收、反射和折射当光与物体相互作用时,会发生吸收、反射和折射。

吸收是指光被物体吸收并转化为其他形式的能量,反射是指光从物体表面反射回来,折射是指光从一种介质传播到另一种介质时发生的改变方向的现象。

4. 光的色散光的色散是指光通过介质时不同波长光的折射角度不同的现象。

这是由于不同波长的光在介质中传播速度不同导致的。

最典型的例子是光在经过三棱镜时分解成不同颜色的光谱。

5. 光的偏振光的偏振是指光波在传播过程中的振动方向。

自然光是所有方向上都有振动的光,而偏振光则只在一个方向上振动。

这个现象由偏振片实现,通过选择性地阻止光振动方向来实现光的偏振。

6. 光的干涉光的干涉是指两个或多个光波叠加时发生的干涉现象。

由于光是波动性的,当两个或多个光波相遇时,它们会相互叠加形成干涉图案。

著名的双缝干涉实验证实了光的波动性和干涉现象。

总结:物理光学研究光的波动性和粒子性,以及光与物质相互作用的规律。

光的波动性体现在干涉、衍射等现象上,光的粒子性体现在光的能量和动量上。

光与物体相互作用时会发生吸收、反射、折射等现象,光经过介质时会发生色散。

光的偏振和干涉是光学中的重要概念。

通过学习这些基本知识点,我们可以更好地理解光的本质和光与物质的相互作用规律。

物理光学知识点

物理光学知识点

物理光学知识点物理光学是光学的一个重要分支,主要研究光的本性、光的传播以及光与物质的相互作用等。

下面就让我们一起来了解一些物理光学的关键知识点。

一、光的波动性光具有波动性,这一特性可以通过光的干涉、衍射和偏振现象来体现。

1、光的干涉当两束或多束光相遇时,如果它们的频率相同、振动方向相同且具有恒定的相位差,就会发生干涉现象。

最典型的干涉实验是杨氏双缝干涉实验。

在这个实验中,通过两条狭缝的光在屏幕上形成明暗相间的条纹,亮条纹处是光的加强区域,暗条纹处是光的减弱区域。

干涉条纹的间距与光的波长、双缝间距以及双缝到屏幕的距离有关。

2、光的衍射光在传播过程中遇到障碍物或小孔时,会偏离直线传播而发生衍射现象。

衍射现象使得光能够绕过障碍物,在障碍物的阴影区域形成一定的光强分布。

例如,单缝衍射实验中,当一束光通过一个狭窄的单缝时,在屏幕上会形成中央亮纹宽而两侧亮纹窄的衍射条纹。

3、光的偏振光是一种横波,其振动方向与传播方向垂直。

光的偏振现象表明了光的横波特性。

自然光通过偏振片后可以变成偏振光,偏振光的振动方向是特定的。

偏振光在许多领域都有重要应用,如 3D 电影的眼镜就是利用了偏振光的原理。

二、光的粒子性光不仅具有波动性,还具有粒子性。

1、光电效应当光照射到金属表面时,金属中的电子会吸收光子的能量而逸出表面,这就是光电效应。

光电效应的发生存在截止频率,只有当入射光的频率高于截止频率时,才会产生光电效应。

而且,光电子的逸出几乎是瞬间的,与光的强度无关,而与光的频率有关。

2、光子的能量光子的能量与光的频率成正比,即E =hν,其中E 是光子的能量,h 是普朗克常量,ν 是光的频率。

三、光的折射与反射1、光的折射当光从一种介质进入另一种介质时,会发生折射现象。

折射定律指出,入射角的正弦与折射角的正弦之比等于两种介质的折射率之比。

折射率取决于介质的性质和光的波长。

2、光的反射光在遇到界面时会发生反射,反射角等于入射角。

镜面反射和漫反射是常见的两种反射形式。

物理光学知识点

物理光学知识点

物理光学知识点物理光学是研究光的传播、产生、检测以及与物质相互作用的学科。

在日常生活中,我们常常接触到光,比如太阳的光线、电灯的照明、光的折射等等。

了解物理光学的知识,对我们理解光的本质、光的特性、光的行为以及光的应用都有着重要的意义。

下面我们将介绍几个物理光学的知识点:1. 光的特性光既可以表现出粒子性,也可以表现出波动性。

根据粒子性,光可以被看作以光子为单位的能量传递体;根据波动性,光可以被看作是由纵波和横波组成的电磁波。

光的波长和频率决定了光的颜色,不同颜色的光对应着不同的波长和频率。

2. 光的传播光是以光速在真空中传播的,光速在真空中几乎是不变的,约为每秒300,000公里。

而在介质中,光的传播速度会减慢,传播路径也会发生弯曲。

3. 光的折射当光从一种介质传播到另一种介质时,光线的传播路径会发生改变,这种现象称为光的折射。

根据斯涅尔定律,光线在两种介质间传播时,入射角和折射角之比等于两种介质的折射率之比。

4. 光的反射光线从一种介质射向另一种介质的分界面时,会发生反射现象。

根据光的反射定律,入射角等于反射角,反射角的大小和入射光线与垂直方向的夹角有关。

5. 光的衍射光通过一个小孔或者细缝时,会在背后产生干涉和衍射现象,使得光在一定范围内进行波的传播。

这种现象称为光的衍射。

光的衍射现象在日常生活中的应用十分广泛,比如光的衍射在显微镜中的应用。

6. 光的干涉光的干涉是指两束或多束光线相互叠加形成明暗条纹的现象。

干涉现象往往需要两束相干光的干涉,比如利用两个光源产生的相干光源。

光的干涉在光的测量、光的检测以及光的应用中都具有重要意义。

7. 光的偏振光的偏振是指光的电场振动方向只在一个平面上的现象。

当光通过特定的装置时,可以使光线只振动在一个特定方向或者只允许振动在特定方向上的光通过,这种现象称为偏振。

8. 光的颜色与频谱白光可以通过光的色散被分解成不同颜色的光,这就是频谱。

频谱包含了整个可见光的范围,从红色到紫色依次排列。

高中物理光学的知识点总结

高中物理光学的知识点总结

高中物理光学的知识点总结一、光的传播1. 光的直线传播当光线传播时,光线总是沿着直线传播,这就是光的直线传播。

当光线遇到不透明的物质,会被吸收或反射。

2. 光的波动传播光具有波动性,光波的传播是通过波峰和波谷向前传播的。

光的波动传播可以解释光的干涉、衍射现象。

3. 光的速度光在真空中的速度是299,792,458米/秒,通常用c表示。

在介质中,光的速度会减小,光速与介质的折射率有关。

二、光的反射1. 光的反射定律当光线与表面相交时,会发生反射。

根据光的反射定律,入射角等于反射角。

即光线、入射面法线和反射面法线共面,且入射角和反射角的两个角度评分量互相相等。

2. 光的反射规律根据反射定律,可以分析光线在镜子、平面镜、曲面镜、棱镜等物品的反射规律。

通过这些规律可以进行光学器件的设计和应用。

三、光的折射1. 光的折射定律当光线从一种介质入射到另一种介质时,会发生折射。

根据光的折射定律,入射角、折射角以及两种介质的折射率之间有特定的关系。

即入射角的正弦与折射角的正弦成正比。

2. 折射率不同的物质对光的折射具有不同的能力,这种能力的大小由介质的折射率来描述。

通常折射率的定义是介质中光速与真空中光速的比值。

3. 折射规律根据折射定律可以分析折射角和入射角的关系,也可以证明光在折射率不同的介质中会出现全反射现象,这是光纤和光导管应用的原理。

四、光的成像1. 光的成像原理在光学中,成像是光折射或反射后产生的物体形象。

根据光的成像原理,可以分析光的折射和反射过程,得出成像的位置、大小和性质。

2. 镜子成像特点根据光的反射规律,不同类型的镜子如平面镜、凸面镜和凹面镜,对入射光线的反射方式有所不同。

通过分析镜子的反射特点,可以了解镜子的成像特点,如实像、虚像和放大缩小等。

3. 透镜成像特点透镜是光学器件的一种,在透镜中也会发生光的折射。

透镜可以使入射平行光线汇聚成一个焦点处,并且能够产生实像和虚像。

五、光的波动1. 光的波动性质光是一种电磁波,具有波动性质,其中包括波长、频率和波速等。

光学知识点总结

光学知识点总结

光学知识点总结光学是研究光的传播、反射、折射、干涉和衍射等现象的科学。

它是物理学的一个重要分支,也是应用广泛的一门学科。

下面将从光的传播、反射、折射、干涉和衍射等方面,对光学知识进行总结。

一、光的传播光是一种电磁波,它的传播速度在真空中是恒定的,约为每秒3×10^8米。

光的传播是沿直线路径进行的,这是光的直线传播特性。

当光遇到介质边界时,会发生反射和折射现象。

二、光的反射光在与介质界面相遇时,根据入射角和介质的折射率,会发生反射。

根据反射定律,入射角等于反射角,光线的入射角和反射角分别与法线的夹角相等。

光的反射现象在我们日常生活中很常见,如镜子的反射和光的漫反射等。

三、光的折射光在从一种介质进入另一种介质时,由于介质的折射率不同,会发生折射现象。

根据斯涅尔定律,折射定律可以表达为n1sinθ1=n2sinθ2,其中n1和n2分别是两种介质的折射率,θ1和θ2分别是入射角和折射角。

光的折射现象在透明介质中非常常见,如光在水中的折射。

四、光的干涉光的干涉是指两束或多束光波相互叠加产生的干涉现象。

根据干涉的相干性,干涉可以分为相干干涉和非相干干涉。

相干干涉是指两束或多束光波在相位相同或相差恒定的情况下叠加产生干涉现象,如杨氏双缝干涉。

非相干干涉是指两束或多束光波在相位相差不恒定的情况下叠加产生干涉现象,如牛顿环干涉。

五、光的衍射光的衍射是指光通过一个缝隙或物体的边缘时,产生的波的弯曲现象。

根据衍射的程度,衍射可以分为强衍射和弱衍射。

强衍射是指波的弯曲程度较大,如单缝衍射和双缝衍射。

弱衍射是指波的弯曲程度较小,如物体的边缘衍射。

光学作为一门重要的科学,广泛应用于光学仪器、光通信、光计算、光储存等领域。

通过研究光的传播、反射、折射、干涉和衍射等现象,我们可以更好地理解光的性质和行为,从而推动光学的发展和应用。

同时,光学的研究也为我们揭示了光与物质相互作用的机制,帮助我们更好地认识和探索自然界的奥秘。

物理光学知识点

物理光学知识点

物理光学知识点
1. 光的直线传播呀,你想想,为啥我们能看到笔直的手电筒光线?这就是光沿直线传播的表现呀!就好像箭直直地射出去一样。

2. 光的反射多神奇呀!你照镜子的时候,不就能看到自己的样子吗?这就是光反射的结果,就像球撞到墙上反弹回来一样。

3. 说到光的折射,把铅笔插进水里,看起来好像变弯了,这就是折射搞的鬼呢!像人走在不同的路上会有不同的路线。

4. 凸透镜能聚集光线呢,你看放大镜不就是这个道理吗?它能把光聚集到一点,就像把东西都集中到一起。

5. 那凹透镜可是会让光发散哦,就好像把东西都散开一样,想想近视眼镜,是不是就是利用这个原理呀!
6. 颜色是怎么来的呢?白光通过三棱镜会分成各种颜色,这多有趣呀!就像把一个大礼包打开,里面有各种不同的宝贝。

7. 激光的威力可大啦!用于手术、切割等,就如同一个超级厉害的武器一样厉害。

8. 红外线我们看不到,但它很重要呀!比如遥控器不就是靠它工作的吗?像一个隐身但很能干的小助手。

9. 紫外线也有它的用处和危害呢!晒太阳会有紫外线,能让我们合成维生素 D,但也得注意别晒伤呀!就好像一把双刃剑。

我觉得物理光学的知识点真的是又神奇又实用,让我们的世界变得丰富多彩!。

物理光学知识点汇总

物理光学知识点汇总

物理光学知识点汇总一、名词:(共58个)1、全反射:光从光密介质入射到光疏介质,并且当入射角大于临界角时,在两个不同介质的分界面上,入射光全部返回到原介质中的现象,就叫全反射。

2、折射定律:①折射光位于由入射光和法线所确定的平面内。

②折射光与入射光分居在法线的两侧。

③折射角与入射角满足:。

3、瑞利判据:定义一:一个点物衍射图样的中央极大与近旁另一点物衍射图样的第一极小重合,作为光学系统的分辨极限,认为此时系统恰好可以分辨开两个点物,称此分辨标准为瑞利判据。

定义二:两个波长的亮条纹只有当它们合强度曲线中央极小值低于两边极大值的0.81时才能被分辨开。

4、干涉:在两个(或多个)光波叠加的区域,某些点的振动始终加强,另一些点的振动始终减弱,形成在该区域内稳定的光强强弱分布的现象。

5、衍射:通俗的讲,衍射就是当入射光波面受到限制后,将会背离原来的几何传播路径,并呈现光强不均匀分布的现象。

6、倏逝波:沿着第二介质表面流动的波。

7、光拍现象:光强随时间时大时小变化的现象。

8、相干光束会聚角:对应干涉场上某一点P的两支相干光线的夹角。

9、干涉孔径角:对于干涉场某一点P的两支相干光线从光源发出时的张角。

10、缺级现象:当干涉因子的某级主极大值刚好与衍射因子的某级极小值重合,这些主极大值就被调制为零,对应级次的主极大就消失了,这种现象就是缺级。

11、坡印亭矢量(34、辐射强度矢量):它表示单位时间内,通过垂直于传播方向的,单位面积的电磁能量的大小。

它的方向代表的是能量流动的方向,。

12、相干长度:对于光谱宽度为的光源而言,能够发生干涉现象的最大光程差。

13、发光强度:辐射强度矢量的时间平均值。

14、全偏振现象(15、布儒斯特角):当入射光是自然光,入射角满足时,,,即反射光中只有波,没有波,这样的现象就叫全偏振现象。

此时的入射角即为布儒斯特角,16、马吕斯定律:从起偏器出射的光通过一检偏器,透过两偏振器后的光强随两器件透光轴的夹角而变化,即称该式表示的关系式为马吕斯定律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章波的基本性质一. 填空题1 某介质的介电常数为ε,相对介电常数为r ε,磁导率为μ,相对磁导率为r μ,则光波在该介质中的传播速度v =);该介质的折射率n =。

2 单色自然光从折射率为n 1的透明介质1入射到折射率为n 2的透明介质2中,在两介质的分界面上,发生(反射和折射)现象;反射角r θ、透射角t θ和入射角i θ的关系为(ri θθ=,12sin sin i t n n θθ=);设12,υυ分别为光波在介质1、介质2中的时间频率,则12υυ和的关系为(12υυ=);设12,λλ分别为光波在介质1、介质2中的波长,则12λλ和的关系为(1122n n λλ=)。

3 若一束光波的电场为152cos 210π⎡⎤⎛⎫=⨯- ⎪⎢⎥⎝⎭⎣⎦rrzE j t c,则,光波的偏振状态是振动方向沿(y 轴)的(线)偏振光;光波的传播方向是(z 轴)方向;振幅是(2)v m ;频率是(1510)Hz ;空间周期是(7310-⨯)m ;光速是(8310⨯)m/s 。

4 已知为波长632.8nm 的He-Ne 激光在真空中的传播速度为3.0x108m/s ,其频率为4.74x1014Hz ;在折射为1.5的透明介质中传播速度v 为2.0x108m/s ,频率为4.74x1014Hz ,波长为421.9nm ;5 一平面单色光波的圆频率为ω、波矢为k ,其在真空中的光场E 用三角函数表示为)cos(0r k t E E ⋅-=ω,用复数表示为)(exp 0t r k i E E ω-⋅=;若单色球面(发散)光波的圆频率为ω、波矢为,其在真空中的光场E 用三角函数表示为)cos()(1r k t E E ⋅-=ω,用复数表示为)(ex p 1t r k i r E E ω-⋅=;6 一光波的波长为500nm ,其传播方向与x 轴的夹角为300,与y 轴的夹角为600,则其与z 轴的夹角为900,其空间频率分别为1.732x106m -1、1x106m -1、0;7 玻璃的折射率为n =1.5,光从空气射向玻璃时的布儒斯特角为________;光从玻璃射向空气时的布儒斯特角为________。

8 单色自然光从折射率为n 1的透明介质1入射到折射率为n 2的透明介质2中,在两介质的分界面上,发生现象;(),()()r t θθθi 反射角透射角和入射角的关系为;设12,υυ分别为光波在介质1、介质2中的时间频率,则12υυ和的关系为;设12,λλ分别为光波在介质1、介质2中的波长,则12λλ和的关系为。

二. 选择题1[]0exp ()E E i t kz ω=--与[]0exp ()E E i t kz ω=-+描述的是(C )传播的光波。

A.沿正z 方向;B.沿负z 方向;C.分别沿正z 和负z 方向;D.分别沿负z 和正z 方向。

2 光波的能流密度S r正比于(B )。

A .E 或HB .2E 或2HC .2E ,与H 无关D .2H ,与E 无关3 在麦克斯韦方程组中,描述法拉第电磁感应定律的方程是:(C )。

A.D ρ∇⋅=;B.0B ∇⋅=;C.B E t ∂∇⨯=-∂;D.DH j t∂∇⨯=+∂ 4若某波长的光在某介质的相对介电常数为r ε,相对磁导率为r μ,则该光在该介质中的折射率为(B )。

A.n =;B.n =C.n =D.n =5 某种透明媒质对于空气的临界角(指全反射)等于45°,光从空气射向此媒质时的布儒斯特角是(D )。

A.小于45°;B.30°C.45°;D.大于45°6 在麦克斯韦方程组中,说明磁场是无源场的方程是:(B )。

A.D ρ∇⋅=;B.0B ∇⋅=;C.B E t ∂∇⨯=-∂;D.DH j t∂∇⨯=+∂ 7若某波长的光在某介质的介电常数为ε,磁导率为μ,则该光在该介质中的传播速度为(A )。

A.v=B.v =C.v =D.v8 在介质1和2的分界面上(法线表示为n r ),若无面电荷和面电流,下列关系正确的是(B )。

A.12()0n B B ⨯-=r rr;B.12()0n D D ⋅-=r rr;C.12()0n E E ⋅-=r rr;D.12()0n H H ⋅-=r rr9 全反射时,在折射率小的介质中的电场()。

B 。

A .等于零B .随离界面距离的增加按指数规律衰减C .等于常数D .随离界面距离的增加按指数规律增加10 自然光在界面发生反射和折射,当反射光为线偏振光时,折射光与反射光的夹角必为()。

DA .B θB .C θC .3πD .2π11 当光波在两种不同介质中的振幅相等时,D 。

A.其强度相等B.其强度不相等C.不确定D.其强度比等于两种介质的折射率之比12 光从折射率小介质中正入射到折射率大的介质表面时,相对于入射光的电场和磁场,反射光的C 。

A .电场和磁场都无相位变化B.电场和磁场都有相位突变C.电场有相位突变,磁场无相位变化D.电场无相位变化,磁场有相位突变13 在相同时间内,同一单色光在空气和在玻璃中C 。

A.传播的路程相等,走过的光程相等。

B.传播的路程相等,走过的光程不相等。

C.传播的路程不相等,走过的光程相等。

D.传播的路程不相等,走过的光程不相等。

14 光在界面发生反射和透射,对于入射光、反射光和透射光,不变的量是D 。

A .波长B .波矢C .强度D .频率15 6.光波的能流密度S ϖ正比于B 。

A .E 或HB .2E 或2H C .2E ,与H 无关D .2H ,与E 无关⎪⎪⎪⎩⎪⎪⎪⎨⎧∂∂+=⨯∇∂∂-=⨯∇=⋅∇=⋅∇t Dj H t BE B D ϖϖϖϖϖϖϖ0ρ三. 名词解释1 半波损失:在小角度入射(1分)或掠入射(1分)两种情况下,光波由折射率小的媒质(光疏媒质)进入折射率大的媒质(光密媒质)时,反射光和入射光的振动方向相反,这种现象通常称为“半波损失”。

(1分)2 全反射:光从光密介质入射到光疏介质,并且当入射角大于临界角时,在两个不同介质的分界面上,入射光全部返回到原介质中的现象,就叫全反射。

3 折射定律:①折射光位于由入射光和法线所确定的平面内。

②折射光与入射光分居在法线的两侧。

③折射角与入射角满足:n n I I '='sin sin 。

4 坡印亭矢量(34、辐射强度矢量):它表示单位时间内,通过垂直于传播方向的,单位面积的电磁能量的大小。

它的方向代表的是能量流动的方向,B E Sϖϖϖ⨯=μ1。

5 发光强度:辐射强度矢量的时间平均值)(I 。

6 反射定律:①反射光线位于由入射光线和法线所确定的平面内;②反射光线和入射光线位于法线两侧;③反射角与入射角绝对值相等,符号相反,即I I -=''。

7 相速度:等相面的传播速度。

8 群速度:振幅恒值点的移动速度。

四. 简答题1 电磁场波动方程的数学表示式电场的波动方程:012222=∂∂-∇t E v E ϖϖ;磁场的波动方程:012222=∂∂-∇tB v B ϖϖ 2 平面波、球面波、柱面波的一般式平面波:(){}tr k i A E ω±⋅=ϖϖϖϖex p ;球面波:(){}t r k i rA E ω±⋅=exp 1;柱面波:(){}t r k i rA E ω±⋅=ex p 13 电磁波是如何相互激发产生的变化的电场产生交变的磁场,交变的磁场产生变化的电场,从而,电场和磁场相互激发,以一定的速度由近及远传播开来就形成了电磁波。

4 原子发光特点①实际原子发出的是一段儿一段儿有限大的波列;②振幅在持续时间内保持不变或变化缓慢;③前后波列之间没有固定的相位关系;④各个波列的振动方向不同。

5 平面电磁波性质①平面电磁波是横波②k B E ϖϖϖ⊥⊥,并且构成右手螺旋系③E ϖ和B ϖ同相位6 各向同性均匀介质的物质方程表示式及各个物理量的意义E j ϖϖσ=σ——电导率;E Dϖϖε=ε——介电常数;H Bϖϖμ=μ——磁导率7 微分形式的麦克斯韦方程组及各物理量的意义Dϖ——电感强度;B ϖ——磁感强度;E ϖ——电场强度;H ϖ——磁场强度;ρ——自由电荷体密度; j ϖ——传导电流密度;tD ∂∂——位移电流密度。

8 何为平面波?写出真空中波长为500nm 振幅为2的单色平面波的表达式。

(6分)答:等相面为平面的简谐波为平面波。

()6152cos 410 1.210Ez t ππ=⋅-⋅9 画出菲涅耳曲线,并由图分析反射光和透射光的位相变化。

(光由光疏进入光密媒质)解:菲涅耳曲线如下图所示t ∥,t ⊥在入射角θ1为任何角度时均大于0,说明透射光的相位与入射光相位相同,既无相位变化;(1分)r ⊥<0说明反射光的垂直分量与入射光的垂直分量相位差π;(1分)θ1<θB 时r ∥>0说明反射光的平行分量无相位变化,θ1>θB 时r ∥<0说明反射光的平行分量与入射光的平行分量相位差π。

(1分)10 波长为、振幅为A 的平面波以角入射到镜面,忽略反射引起的位相变化,求(1) x 轴上的复振幅分布x 轴上,是入射光与反射光的kx 分量的同向叠加。

E(x)=Asinexp(iksinx)+Asinexp(iksinx)=2Asinexp(iksinx),k=2/。

(2) y 轴上的复振幅分布y 轴上,是入射光与反射光的ky 分量的反向叠加。

E(y)=Acosexp(-ikcosy)+Acosexp(ikcosy)=2Acoscos(kcosy)11 一观察者站在水池边观看从水面反射来的太阳光,若以太阳光为自然光,则观察者所看到的反射光是自然光,线偏振光还是部分偏振光?它与太阳的位置有什么关系?为什么? (1)当入射角1B θθ=时,反射光为线偏振光,(2分)因此时//0R R R ⊥==1.33531o B B tg θθ=∴=即当153o θ=时反射光为线偏振光。

(3分)(2)当11//0,90oR R θθ⊥≈≈=和反射光为自然光。

(3分) (3)其他角度时,反射光为部分偏振光。

(2分)12 光波在介质分界面上的反射特性和透射特性与哪些因素有关?答:与入射光的偏振状态(2分)、入射角(2分)和界面两侧介质的折射率(2分)有关。

13 光波在介质分界面全透射的条件是什么?答:入射光为光矢量平行于入射面的线偏振光。

(3分) 入射角等于布儒斯特角B 。

(21tan Bn n θ=) (3分)14 光波在分界面的反射和透射特性与哪些因素有关?答:与入射光的偏振状态、入射角和界面两侧介质的折射率比值有关。

15 产生全反射的条件?产生全透射的条件?答:发生全反射的条件:光从光密介质到光疏,入射角大于或等于全反射临界角(n 1>n 2,1c ,21sin c n n θ=)。

相关文档
最新文档