实变函数习题3思考题参考答案

合集下载

实变函数第三章习题参考解答

实变函数第三章习题参考解答

实变函数第三章习题参考解答1.设f 是E 上的可测函数,证明:R a '∈∀,})(|{a x f x E ==是可测集.解:R a '∈∀,因为)(x f 是E 上的可测,所以})(|{a x f x E ==与})(|{a x f x E ≤=均是可测集.从而})(|{a x f x E ==})(|{a x f x E ≥==})(|{a x f x E ≤= 可测.2.设f 是E 上的函数,证明:f 在E 上的可测当且仅当对一切有理数r ,})(|{r x f x E >=是可测集.证:)(⇐R a '∈∀,取单调递减的有理数序列∞=1}{k k r 使得a r k k =+∞→lim ,则})(|{})(|{1k k r x f x E a x f x E >=>=∞= .由每个k r x f x E >)(|{}的可测性,知})(|{a x f x E >=可测.从而,)(x f 在E 上的可测.)(⇒设f 在E 上的可测,即R a '∈∀,})(|{a x f x E >=可测.特别地,当r a =时有理数时,})(|{r x f x E >=可测. 3. 设f 是R '上的可测函数,证明:对于任意的常数α,)(x f α是R '上的可测函数. 为证上述命题,我们先证下面二命题:命题1.若E 是R '中的非空子集,则R '∈∀α,有E m E m *||*αα=证明:当0=α时,因为}0{=E α,则E m E m *||*αα=.不妨设,0≠α.因为E I I E m i i i i ⊃=∞=∞=∑11||inf{* ,i I 为开区间}.0>∀ε,存在开区间序列∞=1}{i i I ,E I i i ⊃∞=1 ,||*||*1αε+<≤∑∞=E m I E m i i .又因为E I i i ⊃∞=α1 (注:若),(i i i I βα=,则 ⎩⎨⎧=ααααβααβααα),,(),,(i i i i i I .所以εααααα+⋅<==≤∑∑∑∞=∞=∞=E m I I IE m i i i i i i*||||||||||||*111.由ε得任意性,有i i i i i I E I I E m ,||inf{*11αα⊃≤∞=∞=∑ 为开区间}故存在开区间∞=1}{i i I ,使E I i i α⊃∞=1,且εα+<≤∑∞=E m I E m i i *||*1.又因为E I i i ⊃∞=α11,故εαα+<≤∑∞=E m I E m i i *|1|*1.由ε得任意性,有E m E m αα**||≤从而E m E m αα**||=.命题2.设R E '⊂,+∞<E m *,则E 可测⇔R '∈∀α,E α可测.(由P54.19题的直接推论). 证:)(⇐是直接的,我们仅需证明)(⇒R '∈∀α,如果0=α,则}0{=E α为零测集.故E α可测.不妨设0≠α.现在证明R T '⊆∀,)(*)(**E C T m E T m T m αα +=.事实上,对于R T '⊆∀,则R T '⊆α1,因为E 在R '可测,所以)1(*)1(*)1(*CE T m E T m T m ααα+=,即)(*||1)(*||1*||1CE T m E T m T m αααα+=)(*)(**E C T m E T m T m αα +=即E α可测.3.设f 是R '上的可测函数,证明:对于任意常数α,)(E f α仍是R '上的可测函数.解:记R E '=,对于R '∈∀α,当0=α时,R a '∈∀,⎩⎨⎧>'=≤∅=>af R E a f a f x E )0(,)0(,})0(|{.故})(|{a x f x E >α可测所以:)(x f α可测.当0≠α时,R '∈∀α,令x y α=,则})(|{})(|{a y f xyE a x f x E >=>α= })(|{1a y f y E >α.在因为f 在R '可测,故})(|{a y f y E >可测,又由命题2,})(|{})(|{a x f x E a y f y E >=>可测.从而)(x f α使R E '=上哦可测函数.4.设)(x f 是E 上的可测函数,证明:3)]([x f 在E 上可测.证明:R '∈∀α,因为)(x f 在E 上可测.所以})(|{3a x f x E >是可列集.即})(|{})(|{33a x f x E a x f x E >=>可测.从而3)]([x f 在E 上可测.5.若],[b a 上的函数)(x f 在任意线段],[βα)(b a <<<βα上可测,试证它在整个闭区间上也可测.证明:N k ∈∀,),(]21,21[11b a b b b a E k k k ⊆---+=++,)(x f 在k E 上可测,记 ),(*b a E =,则k k E E ∞==1.又因为R '∈∀α,})(|{})(|{*1αα>=>∞=x f x E x f x E k k .由每个})(|{α>x f x E k 的可测性,得})(|{*α>x f x E 可测.所以)(x f 在),(*b a E =可测. 令},{0b a E =,],[b a E =即E E E *=. })(|{})(|{*})(|{0ααα>>=>x f x E x f x E x f x E故})(|{α>x f x E 可测,从而)(x f 在E 上可测.],[βα=E 7.设f 是E 上的可测函数,证明: (i )对R '上的任意开集O ,)(1O f-是可测集; (ii) 对R '中的任何开集F ,)(1F f-是可测集;(iii )对R '中的任何δG 型集或σF 型集M ,)(1M f-是可测集.证:(i )当O 时R '中有界开集时,由第一章定理11(P.30),O 是至多可数个互不相交的开区间i i i )},{(βα的并,即),(i i iO βα =. })(|{)],[()],([)(111i i ii i ii i ix f E f f O f βααβαβα<<===---由f 在E 上哦可测性,知:每个})(|{i i x f x E βα<<可测,从而)(1O f-可测.若O 是R '的误解开集,N n ∈∀,记],[n n E n -=,则n n E O O =是R '中有界开集,且n n O O ∞==1,故][][)(11111n n n O f O f O f-∞=∞=--== .故由)(1n O f-得可测性,知)(1O f -可测.(ii) 设F 是R '中的任一闭集,记F R O -'=是R '中开集.)()(11F R fO f-'=--=)()(11F fR f---',即)()()(111O fR fF f----'= .由)(1O f-与)(1R f '-得可测性,知,)(1F f-可测.(iii )设G ,F 分别为R '中δG 型集和σF 型集.即,存在开集列∞=1}{k k G ,闭集列∞=1}{k k F 使得k k G G ∞==1k k F F ∞==1,从而,][)(111k k G f G f-∞=-= 且][)(111k k F f F f-∞=-= .由)(1k G f -与)(1k F f -的可测性,知)(1G f-与)(1F f -均可测.8.证明:E 上两个可测函数的和仍是可测函数.证明:设)(x f ,)(x g 是E 上的两个可测函数,令})(|{0±∞=-=x g x E E E ,R a '∈∀)}(})(|{})()(|{00x g a x f x E a x g x f x E ->=>+=)()(|{01X g a r x f x E i i ->>∞= =i i r x f x E >∞=)(|{[01}])(|{0i r a x g x E ->.由)(x f ,)(x g 在E 可测,知)(x f ,)(x g 在0E 可测. 从而N i ∈∀,}])(|{0i r x f x E >与}])(|{0i r a x g x E ->可测. 故})()(|{0a x g x f x E >+可测.又因})(|{±∞=x g x E })()(|{a x g x f x E >+ 是零测集,故可测.从而g f +在E 上可测. 9.证明:若)(x f 是1E 及2E 上的非负可测函数,则f 也是21E E 上的非负可测函数.证明:因为)(x f 是1E 及2E 上的非负可测函数,则R a '∈∀,})(|{1a x f x E >与})(|{2a x f x E >均可测.于是,记21E E E =,则=>})(|{a x f x E })(|{1a x f x E >})(|{2a x f x E > 可测.从而)(x f 在21E E E =上非负可测.10.设E 是nR 中有界可测集,f 是E 上几乎处处有限的可测函数,证明:0>∀ε,存在闭集E F ⊂,使得ε<-)(F E m ,而在F 上)(x f 有界.证明:(法一)由sin lu 定理,0>∀ε,∃闭集E F ⊂,使得ε<-)(F E m 且)(x f 在F 上连续,现在证)(x f 在F 上有界.如果)(x f 在F 无界,即0>∀M ,F x m ∈∃使得M x f m >|)(|.特别的,当11=M 时,F x ∈∃1有11|)(|M x f >;当}2,1|)(m ax {|2+=x f M ,F x ∈∃2,使得22|)(|M x f >;; 当},1|)(m ax {|k x f M k +=时,F x k ∈∃,使得k k M x f >|)(|,从而,得F 中互异点列F x k ⊂}{,使得N k >∀,k x f k >|)(|,即+∞=∞→|)(|lim k k x f .另一方面,因为F 为有界,且F x k k ⊂∞=1}{,故∞=1}{k k x 有一收敛子列∞=1}{k k x ,不妨设0lim x x k n k =∞→,则F x ∈0,又因为)(x f 在0x 连续.对1=ε,N k ∈∃0,0k k ≥∀时,恒有1|)(||)(||)(||)(|000<-≤-x f x f x f x f k k n n ,即)(|1|)(|0x f x f k n +≤.取N k ∈*,|)(|1*0x f k +>,则*|)(|*k x f kn ≤,但由*k n x 得定义,有***|)(|k n x f k n k≥>,这是一矛盾.从而)(x f 在F 有界.证明:(法二)由sin lu 定理,0>∀ε,∃闭集E F ⊂,使得ε<-)(F E m 且)(x f 在F 上连续,现在用有限覆盖定理证:)(x f 在F 上有界.F x ∈∀0,因为)(x f 在0x 连续.所以对1=ε,00>∃x δ使得F x O x x ),(00δ∈∀,恒有:1|)()(||)()(|00<-<-x f x f x f x f ,即1|)(||)(|0+<x f x f .从而),(000x Fx x O F δ∈⊂ .因为F 是有界闭集,故由有限覆盖定理,存在)1(0x ,)2(0x ,, F x k ∈)(0,N k ∈,使得),()(0)(01i x i ki x O F δ=⊂ .取}11|({|)(0k i x f nax M i ≤≤+=,则F x ∈∀,有),(0)(x i o x O x δ∈,M x f x f i ≤+≤1|)(|)(|)(0.从而)(x f 在F 有界.11.设}{n f 是E 上的可测函数序列,证明:如果0>∀ε,都有+∞<>∑∞=}|)(|{1εx f xmE n n ,则必有0)(lim =∞→x f n n ][,E e a .证:0>∀ε,因为+∞<>∑∞=}|)(|{1εx f xmE n n ,故0}|)(|{lim1=>∑∞=∞→εx f xmE n n N .又因为})1|)(|{(}0)(|{11kx f x E x f x E n N n N k n >=→/∞=∞=∞=故})]1|)(|{([}0)(|{11kx f x E m x f x mE n N n N k n >=→/∞=∞=∞=}]1|)(|{[lim }1)(|{lim 11k x f x E m k x f x E m n N n N k n N k >=>≤∞=∞→∞=∞→∞=∑∑∑∑∑∞=∞=∞→∞==>≤110}]1|)(|{limk n Nn N k k x f x mE ,故0)(lim =∞→x f n n ][,E e a12.证明:如果)(x f 是n R 上的连续函数,则)(x f 在n R 的任何可测自己E 上都可测. 证明:(1)先证:)(x f 在n R 上可测.令n R E =,R a '∈∀,因为)),((})(|{1+∞=>-a fa x f x E .现在证:)),((1+∞-a f是一个开集.事实上,)),((10+∞∈∀-a fx ,),[)(0+∞∈a x f ,取2)(0ax f -=ε.因为)(x f 在0x 连续,则对于02)(0>-=ax f ε,0>∃δ,使),(0δx O x ∈∀时,ε<-|)()(|0x f x f ,即 ))(,)(()(00εε+-∈x f x f x f =-+--=)2)()(,.2)()((0000ax f x f a x f x f)2)()(,.2)()((0000ax f x f a x f x f -+--),()2)()(,.2)((000+∞⊂-++=a a x f x f a x f ,故)],[(),(10+∞⊂-a f x O δ,从而)],[(1+∞-a f 为开集,可测.即,)(x f 在n R 上可测.(2)再证:nR E ⊆∀可测,f 在E 可测.事实上,这是P59性质2的直接结果.14.设}{n f ,}{n h 是E 上的两个可测函数序列,且f f n ⇒,h h n ⇒,h f ,(都是E 上的有限函数)证明: (i )h f ,是E 上可测函数 (ii )对于任意实数α ,β,h f h f n n βαβα+⇒+若+∞<mE ,则还有(iii )h f h f n n ⋅⇒⋅若+∞<mE ,且n h ,h 在E 上几乎处处不等于0,则(iv )hfh f n n ⇒.证明:(i )因为f f n ⇒,n f 是可测函数列,由Riesz 定理,}{n f 有一个子列}{k n f ,使得f f k n ⇒ ][,E e a .再由P62性质4,f 是在E 可测,同理,h 在E 可测.(ii )先证:当f f n ⇒时,R '∈∀α,有f f n αα⇒.事实上,当0=α时,0>∀ε,∅=≥-}|{εααf f x E n .所以∅=≥-∞→}|{lim εααf f x mE n n .当0≠α时,因为}||||{}||{αεεαα≥-=≥-f f x E f f x E n n ,故 }||||{}||{lim αεεαα≥-=≥-∞→f f x E f f x mE n n n 0}||||{lim =≥-=∞→αεf f x mE n n .从而f f n αα⇒.再证:h f h f n n βαβα+⇒+. 事实上,0>∀ε,⊆≥-+-⊆≥+-+}|)|||{}|)()|{εββααεβαβαh h f f x E h f h f x E n n n n }2|)|{}2||{εββεαα≥-≥-h h x E f f x E n n .≤≥-+-≤≥+-+}|)|||{}|)()|{εββααεβαβαh h f f x mE h f h f x mE n n n n)(0}2|)|{}2||{∞→→≥-+≥-n h h x mE f f x mE n n εββεαα. 0}|)()({lim =≥+-+∞→εβαααh f f f x mE n n所以:h f h f n n βαβα+⇒+. (iii )现在证:h f h f n n ⋅⇒⋅.先证:f f n ⇒,必有22f f n ⇒.事实上,若0}|{lim 022≠≥-∞→εf f x mE n n (对于某个00>ε).因为+∞<mE ,而N n ∈∀,mE f f x E n ≤≥-≤}|{0022ε,则∞=≥-1022}|{{n n f f x mE ε是有界无穷数列.故存在}{n f 的子列}{k n f 使得0}|{lim 022>=≥-∞→l f f x mE k n k ε.事实上,如果每个}{n f 的收敛子列}{k n f 都0}|{lim 022=≥-∞→εf f x mE k n k .故0>∀δ,N ∈∃N 时,恒有),0(}|{022δεU f f x mE kn ∈≥-.倘若不然,∃无穷个∞=1}{k m k f ,使得 ),0(],0[}|{022δεU mE f f x mE k m -∈≥-.即∞=≥-1022}}|{{k m f f x mE kε是有界无穷点列,它有一收敛子列.不妨设这收敛子列就是它本身.因为N k ∈∀,δ≥-|}{22f f x mE kn ,故0}|{lim 022=≥-∞→εf f x mE k n k .故 .}|{lim *022δε≥=≥-∞→l f f x mE k m k 这与}{k n f 得每个收敛子列都为零极限矛盾,从而0>∀δ,N ∈∃N ,使得N n ≥∀时,有δε<≥-}|{022f f x mE n .即0}|{lim 022=≥-∞→εf f x mE n k ,这与.0}|{lim 022≠≥≥-∞→εεf f x mE k m k 矛盾.所以 }{n f 有子列}{k n f 使得0}|{lim 022>=≥-∞→l f f x mE kn k ε.另一方面:因为f f n ⇒,所以f f k n ⇒.故由Riesz 定理}{n f 有一子列}{k n f ',有f f k n →' ][,E e a ,从而22f f kn →' ][,E e a .故.0}|{lim 022=≥-∞→εf f xmE km k 这与l f f x mE k m k =≥-'∞→}|{lim 022ε矛盾.从而,.0}|{lim 022=≥-∞→εf f x mE k n k 最后证:h f h f n n ⋅⇒⋅. 事实上,])()[(4122n n n n n n h f h f h f --+=⋅h f h f h f ⋅=--+⇒])()[(4122. 习题14(iii )引理例1,设)(x f ,)2,1)(( =n x f n 都是E 上的可测函数列且+∞<mE ,如果f f n ⇒,则22f f n ⇒.证明:设f f n ⇒,若22f f n ⇒/,即0>∃0ε使得.0}|{lim 022=/≥-∞→εf f x mE k n k 即0>∃0δ,N ∈∀N ,N n N ≥∃,有0022}|{1δε≥≥-f f x mE n . 特别的,当1=N 时,N n ≥∃1,有00022}|{1δε≥≥-f f x mE n ;当11+=n N 时,N n ≥∃2,有0022}|{2δε≥≥-f f x mE n ; 当12+=n N 时,N n ≥∃3,有0022}|{3δε≥≥-f f x mE n这样继续下去,得}{n f 的一子列∞=1}{k n k f 使得N k ∈∀,+∞<≤≥-≤mE f f x mE kn }|{0220εδ,即∞=≥-1022}|{{k n f f x mE kε是一个有界的无穷数列,有一收敛子列∞='≥-1022}|{{k n ff x mE k ε,0}|{{lim 0022>≥=≥-'∞→δεl f f x mE kn k .另一方面,因为f f n ⇒,所以f f k n ⇒',由Riesz 定理,∞=1}{k n k f 必有一子列∞=1}{k m k f 使得f f k m ⇒ ][,E e a .所以22f f km ⇒ ][,E e a .从而22f f km ⇒.即0}|{lim 022=≥-∞→εf f x mE k m k ,这与0}|{{lim 0022>≥=≥-'∞→δεl f f x mE k n k 矛盾. 例2,设f f n ⇒,h h n ⇒,则h f h f n n ⋅⇒⋅证:因为h f h f h f h f h f h f n n n n n n ⋅=--+⇒--+=⋅])()[(41])()[(412222。

实变函数参考答案.docx

实变函数参考答案.docx

依然是旧版书的题号19.证明:若E为有界集,根据第15题则存在E中的闭集F使得mF〉O,于是F为有界闭集。

假设Vx w 氏〉0,s"i(EnO(x,氏))=0 ,就有F U U0(X,Q),根据Borel 有XE F限覆盖定理知存在P,使得Fc(j0(x;,^ ),从而Z=1p P加F =加(尸门[^0(兀,心丿)<工加(£门0(兀,/心))=0,矛盾,故假设不成立,即需证结z=l i=\论成立。

co oo若E为无界集,设B k =O(,0,k),k=l,2,...,则E = E^R n =En(|J5J = °k=\ k=l由于协E〉0,于是必然存在k,使得m(EC\B k)>Q,而Eg为有界集,由上即知3x e E A , s.t.\/3 > 0, m((E A B,) A 0(x, ^)) > 0 ,故而对E 而言,相应结论亦成立。

注:此题当然可以不使用Borel有限覆盖定理而得到证明,但作为替代,我们需要求助于习题一的24题(旧版书),此时关于E是否有界的讨论就可以省掉。

在此,我们看到习题一的24题(旧版书)的好处,它能将不可数覆盖转化为至多可数覆盖,从而可以运用(外)测度的相关运算性质。

另外,课本上“提示:利用闭集套定理”,那样做也是可以的,但是感觉繁琐了些,就不在此写出了。

附:对《实变函数参考答案(3)》的补充(一)上次的7.题有个位置有点问题:应该将||处的九4改为m{B - A)“7证明:若mA =+00 ,则m(A U B) + m(A A B) = mA + mB两端皆是+ 8,等式自然成立。

若mA < +8 ,则加(4 U 5) = mA + m(B - A),mB = m(A Cl B) + m(B - A),于是m{A U B) + m{A Pl B) = mA + m(B -A) + mB - m(B - A) = mA + mB ,等式亦成立。

实变函数课后习题答案

实变函数课后习题答案

第一章习题1.证明:(1) (A -B )-C =A -(B ∪C ); (2)(A ∪B )-C =(A -C )∪(B -C ). 证明:(1) 左=(A ∩B c )∩C c =A ∩(B c ∩C c )= A ∩(B ∪C )c =右; (2)左=(A ∪B )∩C c =(A ∩C c )∪(B ∩C c )=右. 2.证明: (1)();(2)().IIIIA B A B A B A B αααααααα∈∈∈∈-=--=-(1)ccI IA B A B αααα∈∈⎛⎫=== ⎪⎝⎭证明:左()右;(2)()c cI I A B A B αααα∈∈⎛⎫=== ⎪⎝⎭左右.111111.{},,1.{}1.n n n n n nnA B A B A A n B B A n νννννν-===⎛⎫==- ⎪⎝⎭>=≤≤∞ 3 设是一列集合,作证明:是一列互不相交的集合,而且,证明:用数学归纳法。

当n=2时,B 1=A 1,B 2=A 2-A 1, 显然121212B B B B B B n k =∅== 且,假设当时命题成立,1211,,,kkk B B B B A νννν===两两互不相交,而且,111111111kk k kkkk k n k B A A B A BA B νννννννν++=++====+=-==-⇒下证,当时命题成立,因为而,所以11211+1111111111111,,,;k k k k k k k k k kk k k k k B B B B B B B B B B A A A A A A A νννννννννννννννν++=++===+++====⎛⎫=∅ ⎪⎝⎭⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫=-==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,于是,两两互不相交;由数学归纳法命题得证。

{}21214.0,,(0,),1,2,,n n n A A n n A n-⎛⎫=== ⎪⎝⎭设求出集列的上限集和下限集。

实变函数论与泛函分析(曹广福)1到5章课后答案

实变函数论与泛函分析(曹广福)1到5章课后答案

第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。

若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inf lim )(inf lim x x n nA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf 0=≥x m A n m χ故1)(inf sup )(inf lim ==≥∈x x m n A nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf 0=⇒=⇒∉≥x A x m nk m A nm A k χχ,故0)(inf sup =≥∈x m A nm N b χ ,即)(inf lim x n A nχ=0 ,从而)(inf lim )(inf lim x x n nA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交. (ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i ni i ni A B 11==⋃⊂⋃,现在来证:i ni i ni B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|min 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i ni B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥}1)(|{k a x f x E x m n m N n +≤∈≥∈ =}1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈=}1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。

实变函数第三章测度论习题解答

实变函数第三章测度论习题解答

第三章 测度论习题解答1.证明:若E 有界,则+∞<E m *。

证明 E 有界,必有有限开区间E 使得I E ⊂,因此+∞<≤I m E m **.2.证明可数点集的外测度为零证明 设E ,对任意0>ε,存在开区间i I ,使得i i I x ∈,且i i I 2ε=(在p R 空间中取边长为pi2ε的包含i x 的开区间i I ),所以E Ii i⊃∞= 1,且ε=∑∞=1i i I ,由ε的任意性得0*=E m 。

3.设E 是直线上一有界集合0*>E m ,则对任意小于E m *的正数c ,恒有E 的子集1E , 使c E m =1*。

证明 设x b x a Ex Ex ∈∈==sup ,inf ,则[]b a E ,⊂,令[]E x a E x ,⊂,b x a ≤≤,)(x f =x E m *是[]b a ,上的连续函数;当0>∆x 时,xx x x m E E m E m E m x f x x f x x x x x x ∆=∆+≤-≤-=-∆+∆+∆+),()()()(****于是当0→∆x用类似方法可证明,当0>∆x ,0→∆x 时,)()(x f x x f →∆-,即)(x f 是[]b a ,上的连续函数。

由闭区间上连续函数的介值定理)(a f={}0)(**==a E m E m a ,)(b f =[]E m b a E m **),(= ,因此对任意正数c ,E m c *<,存在[]b a x ,0∈,使c x f =)(0, 即[]c E x a m E m x ==),(0**0 ,令[]E E x a E ⊂= 01,,则c E m =1*。

4.设n S S S ,,,21 是一些互不相交的可测集合,n i S E i i ,,2,1, =⊂,求证 n n E m E m E m E E E m *2*1*21*)(+++=证明 因为n S S S ,,,21 是一些互不相交的可测集合,由§2定理3推论1,对任意T有∑===ni i ni i S T m S T m 1*1*)()( ,特别取 ni i S T 1==,则i i nj j i E S E S T === )(1,ni in i i ES T 11)(===,所以∑∑=======ni i ni i ni i ni i E m S T m S T m E m 1*1*1*1*)())(()( 。

曹广福版实变函数第三章习题解答

曹广福版实变函数第三章习题解答

第三章习题参考解答1.设f 是E 上的可测函数,证明:R a '∈∀,})(|{a x f x E ==是可测.解:R a '∈∀,因为)(x f 是E 上的可测,所以})(|{a x f x E ==与})(|{a x f x E ≤=均是可测集.从而})(|{a x f x E ==})(|{a x f x E ≥==})(|{a x f x E ≤= 可测.2.设f 是E 上的函数,证明:f 在E 上的可测当且仅当对一切有理数r ,})(|{r x f x E >=是可测集.证:)(⇐R a '∈∀,取单调递减的有理数序列∞=1}{k k r 使得a r k k =+∞→lim ,则})(|{})(|{1k k r x f x E a x f x E >=>=∞= .由每个k r x f x E >)(|{}的可测性,知})(|{a x f x E >=可测.从而,)(x f 在E 上的可测.)(⇒设f 在E 上的可测,即R a '∈∀,})(|{a x f x E >=可测.特别地,当r a =时有理数时,})(|{r x f x E >=可测.3. 设f 是R '上的可测函数,证明:对于任意的常数α,)(x f α是R '上的可测函数. 为证上述命题,我们先证下面二命题:命题1.若E 是R '中的非空子集,则R '∈∀α,有E m E m *||*αα=证明:当0=α时,因为}0{=E α,则E m E m *||*αα=.不妨设,0≠α.因为E I I E m i i i i ⊃=∞=∞=∑11||inf{* ,i I 为开区间}.0>∀ε,存在开区间序列∞=1}{i i I ,E I i i ⊃∞=1 ,||*||*1αε+<≤∑∞=E m I E m i i .又因为E I i i ⊃∞=α1 (注:若),(i i i I βα=,则 ⎩⎨⎧=ααααβααβααα),,(),,(i i i i i I .所以εααααα+⋅<==≤∑∑∑∞=∞=∞=E m I I IE m i i i i i i*||||||||||||*111.由ε得任意性,有i i i i i I E I I E m ,||inf{*11αα⊃≤∞=∞=∑ 为开区间}故存在开区间∞=1}{i i I ,使E I i i α⊃∞=1,且εα+<≤∑∞=E m I E m i i *||*1.又因为E I i i ⊃∞=α11,故εαα+<≤∑∞=E m I E m i i *|1|*1.由ε得任意性,有E m E m αα**||≤从而E m E m αα**||=.命题2.设R E '⊂,+∞<E m *,则E可测⇔R '∈∀α,E α可测.(由P54.19题的直接推论).证:)(⇐是直接的,我们仅需证明)(⇒R '∈∀α,如果0=α,则}0{=E α为零测集.故E α可测.不妨设0≠α.现在证明R T '⊆∀,)(*)(**E C T m E T m T m αα +=.事实上,对于R T '⊆∀,则R T '⊆α1,因为E 在R '可测,所以)1(*)1(*)1(*CE T m E T m T m ααα+=,即)(*||1)(*||1*||1CE T m E T m T m αααα+=)(*)(**E C T m E T m T m αα +=即E α可测.3.设f 是R '上的可测函数,证明:对于任意常数α,)(E f α仍是R '上的可测函数.解:记R E '=,对于R '∈∀α,当0=α时,R a '∈∀,⎩⎨⎧>'=≤∅=>af R E af a f x E )0(,)0(,})0(|{.故})(|{a x f x E >α可测所以:)(x f α可测.当0≠α时,R '∈∀α,令x y α=,则})(|{})(|{a y f xyE a x f x E >=>α= })(|{1a y f y E >α.在因为f 在R '可测,故})(|{a y f y E >可测,又由命题2,})(|{})(|{a x f x E a y f y E >=>可测.从而)(x f α使R E '=上哦可测函数.4.设)(x f 是E 上的可测函数,证明:3)]([x f 在E 上可测.证明:R '∈∀α,因为)(x f 在E 上可测.所以})(|{3a x f x E >是可列集.即})(|{})(|{33a x f x E a x f x E >=>可测.从而3)]([x f 在E 上可测.5.若],[b a 上的函数)(x f 在任意线段],[βα)(b a <<<βα上可测,试证它在整个闭区间上也可测.证明:N k ∈∀,),(]21,21[11b a b b b a E k k k ⊆---+=++,)(x f 在k E 上可测,记 ),(*b a E =,则k k E E ∞==1.又因为R '∈∀α,})(|{})(|{*1αα>=>∞=x f x E x f x E k k .由每个})(|{α>x f x E k 的可测性,得})(|{*α>x f x E 可测.所以)(x f 在),(*b a E =可测.令},{0b a E =,],[b a E =即E E E *=.})(|{})(|{*})(|{0ααα>>=>x f x E x f x E x f x E故})(|{α>x f x E 可测,从而)(x f 在E 上可测.],[βα=E7.设f 是E 上的可测函数,证明: (i )对R '上的任意开集O ,)(1O f -是可测集; (ii) 对R '中的任何开集F ,)(1F f-是可测集;(iii )对R '中的任何δG 型集或σF 型集M ,)(1M f-是可测集.证:(i )当O 时R '中有界开集时,由第一章定理11(P.30),O 是至多可数个互不相交的开区间i i i )},{(βα的并,即),(i i iO βα =.})(|{)],[()],([)(111i i ii i ii i ix f E f f O fβααβαβα<<===---由f 在E 上哦可测性,知:每个})(|{i i x f x E βα<<可测,从而)(1O f-可测.若O 是R '的误解开集,N n ∈∀,记],[n n E n -=,则n n E O O =是R '中有界开集,且n n O O ∞==1,故][][)(11111n n n O f O f O f-∞=∞=--== .故由)(1n O f-得可测性,知)(1O f -可测.(ii) 设F 是R '中的任一闭集,记F R O -'=是R '中开集.)()(11F R f O f-'=--=)()(11F f R f ---',即)()()(111O f R f F f----'= .由)(1O f-与)(1R f '-得可测性,知,)(1F f -可测.(iii )设G ,F 分别为R '中δG 型集和σF 型集.即,存在开集列∞=1}{k k G ,闭集列∞=1}{k k F 使得k k G G ∞==1k k F F ∞==1,从而,][)(111k k G f G f-∞=-= 且][)(111k k F f F f-∞=-= .由)(1k G f -与)(1k F f -的可测性,知)(1G f -与)(1F f -均可测.8.证明:E 上两个可测函数的和仍是可测函数.证明:设)(x f ,)(x g 是E 上的两个可测函数,令})(|{0±∞=-=x g x E E E ,R a '∈∀ )}(})(|{})()(|{00x g a x f x E a x g x f x E ->=>+=)()(|{01X g a r x f x E i i ->>∞= =i i r x f x E >∞=)(|{[01}])(|{0i r a x g x E ->.由)(x f ,)(x g 在E 可测,知)(x f ,)(x g 在0E 可测. 从而N i ∈∀,}])(|{0i r x f x E >与}])(|{0i r a x g x E ->可测. 故})()(|{0a x g x f x E >+可测.又因})(|{±∞=x g x E })()(|{a x g x f x E >+ 是零测集,故可测.从而g f +在E 上可测. 9.证明:若)(x f 是1E 及2E 上的非负可测函数,则f 也是21E E 上的非负可测函数.证明:因为)(x f 是1E 及2E 上的非负可测函数,则R a '∈∀,})(|{1a x f x E >与})(|{2a x f x E >均可测.于是,记21E E E =,则=>})(|{a x f x E })(|{1a x f x E >})(|{2a x f x E > 可测.从而)(x f 在21E E E =上非负可测.10.设E 是nR 中有界可测集,f 是E 上几乎处处有限的可测函数,证明:0>∀ε,存在闭集E F ⊂,使得ε<-)(F E m ,而在F 上)(x f 有界.证明:(法一)由sin lu 定理,0>∀ε,∃闭集E F ⊂,使得ε<-)(F E m 且)(x f 在F 上连续,现在证)(x f 在F 上有界.如果)(x f 在F 无界,即0>∀M ,F x m ∈∃使得M x f m >|)(|.特别的,当11=M 时, F x ∈∃1有11|)(|M x f >;当}2,1|)(ma x{|2+=x f M ,F x ∈∃2,使得22|)(|M x f >; ; 当},1|)(max{|k x f M k +=时,F x k ∈∃,使得k k M x f >|)(|,从而,得F 中互异点列F x k ⊂}{,使得N k >∀,k x f k >|)(|,即+∞=∞→|)(|lim k k x f .另一方面,因为F 为有界,且F x k k ⊂∞=1}{,故∞=1}{k k x 有一收敛子列∞=1}{k k x ,不妨设0lim x x k n k =∞→,则F x ∈0,又因为)(x f 在0x 连续.对1=ε,N k ∈∃0,0k k ≥∀时,恒有1|)(||)(||)(||)(|000<-≤-x f x f x f x f k k n n ,即)(|1|)(|0x f x f k n +≤.取N k ∈*, |)(|1*0x f k +>,则*|)(|*k x f kn ≤,但由*kn x 得定义,有***|)(|k n x f k n k≥>,这是一矛盾.从而)(x f 在F 有界.证明:(法二)由sin lu 定理,0>∀ε,∃闭集E F ⊂,使得ε<-)(F E m 且)(x f 在F 上连续,现在用有限覆盖定理证:)(x f 在F 上有界.F x ∈∀0,因为)(x f 在0x 连续.所以对1=ε,00>∃x δ使得F x O x x ),(00δ∈∀,恒有:1|)()(||)()(|00<-<-x f x f x f x f ,即1|)(||)(|0+<x f x f .从而),(000x Fx x O F δ∈⊂ .因为F 是有界闭集,故由有限覆盖定理,存在)1(0x ,)2(0x ,, F x k ∈)(0,N k ∈,使得),()(0)(01i x i ki x O F δ=⊂ .取}11|({|)(0k i x f nax M i ≤≤+=,则F x ∈∀,有),(0)(x i o x O x δ∈,M x f x f i ≤+≤1|)(|)(|)(0.从而)(x f 在F 有界.11.设}{n f 是E 上的可测函数序列,证明:如果0>∀ε,都有+∞<>∑∞=}|)(|{1εx f xmE n n ,则必有0)(lim =∞→x f n n ][,E e a .证:0>∀ε,因为+∞<>∑∞=}|)(|{1εx f xmE n n ,故0}|)(|{lim 1=>∑∞=∞→εx f x mE n n N . 又因为})1|)(|{(}0)(|{11kx f x E x f x E n N n N k n >=→/∞=∞=∞=故})]1|)(|{([}0)(|{11kx f x E m x f x mE n N n N k n >=→/∞=∞=∞=}]1|)(|{[lim }1)(|{lim 11k x f x E m k x f x E m n N n N k n N k >=>≤∞=∞→∞=∞→∞=∑∑∑∑∑∞=∞=∞→∞==>≤110}]1|)(|{lim k n Nn N k k x f x mE ,故0)(lim =∞→x f n n ][,E e a12.证明:如果)(x f 是nR 上的连续函数,则)(x f 在nR 的任何可测自己E 上都可测. 证明:(1)先证:)(x f 在nR 上可测.令nR E =,R a '∈∀,因为)),((})(|{1+∞=>-a fa x f x E .现在证:)),((1+∞-a f 是一个开集.事实上,)),((10+∞∈∀-a fx ,),[)(0+∞∈a x f ,取2)(0ax f -=ε.因为)(x f 在0x 连续,则对于02)(0>-=ax f ε,0>∃δ,使),(0δx O x ∈∀时,ε<-|)()(|0x f x f ,即 ))(,)(()(00εε+-∈x f x f x f =-+--=)2)()(,.2)()((0000ax f x f a x f x f )2)()(,.2)()((0000ax f x f a x f x f -+--),()2)()(,.2)((000+∞⊂-++=a a x f x f a x f ,故)],[(),(10+∞⊂-a f x O δ,从而)],[(1+∞-a f 为开集,可测.即,)(x f 在n R 上可测.(2)再证:nR E ⊆∀可测,f 在E 可测.事实上,这是P59性质2的直接结果.14.设}{n f ,}{n h 是E 上的两个可测函数序列,且f f n ⇒,h h n ⇒,h f ,(都是E 上的有限函数)证明: (i )h f ,是E 上可测函数(ii )对于任意实数α ,β,h f h f n n βαβα+⇒+若+∞<mE ,则还有(iii )h f h f n n ⋅⇒⋅若+∞<mE ,且n h ,h 在E 上几乎处处不等于0,则(iv )hf h f n n ⇒.证明:(i )因为f f n ⇒,n f 是可测函数列,由Riesz 定理,}{n f 有一个子列}{k n f ,使得f f k n ⇒ ][,E e a .再由P62性质4,f 是在E 可测,同理,h 在E 可测.(ii )先证:当f f n ⇒时,R '∈∀α,有f f n αα⇒.事实上,当0=α时,0>∀ε,∅=≥-}|{εααf f x E n .所以∅=≥-∞→}|{lim εααf f x mE n n .当0≠α时,因为}||||{}||{αεεαα≥-=≥-f f x E f f x E n n ,故 }||||{}||{lim αεεαα≥-=≥-∞→f f x E f f x mE n n n 0}||||{lim =≥-=∞→αεf f x mE n n .从而f f n αα⇒.再证:h f h f n n βαβα+⇒+. 事实上,0>∀ε,⊆≥-+-⊆≥+-+}|)|||{}|)()|{εββααεβαβαh h f f x E h f h f x E n n n n}2|)|{}2||{εββεαα≥-≥-h h x E f f x E n n .≤≥-+-≤≥+-+}|)|||{}|)()|{εββααεβαβαh h f f x mE h f h f x mE n n n n)(0}2|)|{}2||{∞→→≥-+≥-n h h x mE f f x mE n n εββεαα. 0}|)()({lim =≥+-+∞→εβαααh f f f x mE n n所以:h f h f n n βαβα+⇒+. (iii )现在证:h f h f n n ⋅⇒⋅. 先证:f f n ⇒,必有22f f n ⇒.事实上,若0}|{lim 022≠≥-∞→εf f x mE n n (对于某个00>ε).因为+∞<mE ,而N n ∈∀,mE f f x E n ≤≥-≤}|{0022ε,则∞=≥-1022}|{{n n f f x mE ε是有界无穷数列.故存在}{n f 的子列}{k n f 使得0}|{lim 022>=≥-∞→l f f x mE k n k ε.事实上,如果每个}{n f 的收敛子列}{k n f 都0}|{lim 022=≥-∞→εf f x mE k n k .故0>∀δ,N ∈∃N 时,恒有),0(}|{022δεU f f x mE kn ∈≥-.倘若不然,∃无穷个∞=1}{k m k f ,使得 ),0(],0[}|{022δεU mE f f x mE km -∈≥-.即∞=≥-1022}}|{{k m f f x mE k ε是有界无穷点列,它有一收敛子列.不妨设这收敛子列就是它本身.因为N k ∈∀,δ≥-|}{22f f x mE kn ,故0}|{lim 022=≥-∞→εf f x mE k n k .故 .}|{lim *022δε≥=≥-∞→l f f x mE k m k 这与}{k n f 得每个收敛子列都为零极限矛盾,从而0>∀δ,N ∈∃N ,使得N n ≥∀时,有δε<≥-}|{022f f x mE n .即0}|{lim 022=≥-∞→εf f x mE n k ,这与.0}|{lim 022≠≥≥-∞→εεf f x mE k m k 矛盾.所以 }{n f 有子列}{k n f 使得0}|{lim 022>=≥-∞→l f f x mE kn k ε.另一方面:因为f f n ⇒,所以f f k n ⇒.故由Riesz 定理}{n f 有一子列}{k n f ',有f f k n →' ][,E e a ,从而22f f kn →'][,E e a .故.0}|{lim 022=≥-∞→εf f x mE km k 这与l f f x mE k m k =≥-'∞→}|{lim 022ε矛盾.从而,.0}|{lim 022=≥-∞→εf f x mE k n k 最后证:h f h f n n ⋅⇒⋅. 事实上,])()[(4122n n n n n n h f h f h f --+=⋅h f h f h f ⋅=--+⇒])()[(4122. 习题14(iii )引理例1,设)(x f ,)2,1)(( =n x f n 都是E 上的可测函数列且+∞<mE ,如果f f n ⇒,则22f f n ⇒.证明:设f f n ⇒,若22f f n ⇒/,即0>∃0ε使得.0}|{lim 022=/≥-∞→εff x mE k n k 即0>∃0δ,N ∈∀N ,N n N ≥∃,有0022}|{1δε≥≥-f f x mE n . 特别的,当1=N 时,N n ≥∃1,有00022}|{1δε≥≥-f f x mE n ;当11+=n N 时,N n ≥∃2,有0022}|{2δε≥≥-f f x mE n ;当12+=n N 时,N n ≥∃3,有0022}|{3δε≥≥-f f x mE n这样继续下去,得}{n f 的一子列∞=1}{k n k f 使得N k ∈∀,+∞<≤≥-≤mE f f x mE kn }|{0220εδ,即∞=≥-1022}|{{k n f f x mE kε是一个有界的无穷数列,有一收敛子列∞='≥-1022}|{{k n f f x mE k ε,0}|{{lim 0022>≥=≥-'∞→δεl f f x mE k n k .另一方面,因为f f n ⇒,所以f f k n ⇒',由Ri e s z 定理,∞=1}{k n k f 必有一子列∞=1}{k m k f 使得f f k m ⇒ ][,E e a .所以22f f km ⇒ ][,E e a .从而22f f km ⇒.即0}|{lim 022=≥-∞→εf f x mE k m k ,这与0}|{{lim 0022>≥=≥-'∞→δεl f f x mE k n k 矛盾. 例2,设f f n ⇒,h h n ⇒,则h f h f n n ⋅⇒⋅ 证:因为h f h f h f h f h f h f n n n n n n ⋅=--+⇒--+=⋅])()[(41])()[(41222215.设}{n f 是E 上的可测函数,+∞<mE ,则当f f n ⇒且f 是有限函数时,对于Np ∈∀,有(i )p p n f f ||||⇒(ii )对于E 上的任意可测函数h ,有p p n h f h f ||||-⇒-证:先证:当f f n ⇒,有||||f f n ⇒,对于o >∀ε,因为f f f f n n -≤-||||,故}|)()(|{}||{εε≥-⊃≥-x f x f x E f f x E n n所以≤≥-≤}|)()(|{0εx f x f x E n 0}|)()(|{→≥-εx f x f x mE n故0}|)(||)(|{lim =≥-∞→εx f x f x mE n n ,从而||||f f n ⇒. (i )N p ∈∀,ppn f f ||||⇒当2=p 时,||||f f n ⇒,由14题(iii )有22||||||||||||f f f f f f n n n =⋅⇒⋅=.假设kkn f f ||||⇒,又因为||||f f n ⇒,所以111||||||||||||++=⇒⋅=k k n k n k n f f f f f f .故N p ∈∀,ppn f f ||||⇒.(ii)因为0>∀ε,0}|(|{lim }|)()(|{lim =≥-=≥---∞→∞→εεf f x mE h f h f x mE n n n n所以当f f n ⇒时,对任何可测函数h ,有h f h f n -⇒-.再由前面的证明:||||h f h f n -⇒-.再由(i )的结论,p p n h f h f ||||-⇒-.。

实变函数(程其襄版)第一至四章课后习题答案

实变函数(程其襄版)第一至四章课后习题答案
第一章 集合
早在中学里我们就已经接触过集合的概念,以及集合的并、交、补的运算,因此这章的前两节具有复习性质,不过,无限多个集合的并和交,是以前没有接触过的,它是本书中常常要用到,是学习实变函数论时的一项基本功。
康托尔在19世纪创立了集合论,对无限集合也以大小,多少来分,例如他断言:实数全体比全体有理数多,这是数学向无限王国挺近的重要里程碑,也是实变函数论的出发点。
{ : >1}=
习惯上,N表示自然数集,(本书中的自然数集不包含0),Z表示整数集,Q表示有理数集,R表示实数集.
设 是定义在E上的函数,记 ={ : ∈E},称之为f的值域。若D是R中的集合,则 ={ : ∈E ,},称之为D的原像,在不至混淆时,{ : ∈E, 满足条件p}可简写成{ : 满足条件 }.
1.集合的表示
一个具体集合A可以通过例举其元素 来定义,可记
也可以通过该集合中的各个元素必须且只需满足的条件p来定义,并记为
A={x:x满足条件p}
如例1可以表示为{4,7,8,3}例3可以表示为
设A是一个集合,x是A的元素,我们称x属于A,记作 ,x不是A的元素,记作 。
为方便表达起见, 表示不含任何元素的空集,例如
顺便说明一下,一个集合的各个元素必须是彼此互异的,哪些事物是给定集合的元素必须是明确的,下面举出几个集合的例子。
例14,7 ,8,3四个自然数构成的集合。
例2全体自然数
例30和1之间的实数全体
例4 上的所有实函数全体
例5A,B,C三个字母构成的集合
例6平面上的向量全体
全体高个子并不构成一个集合,因为一个人究竟算不算高个子并没有明确的界限,有时难以判断他是否属于这个集合。
若 ,说明所有的 没有公共的元素。

实变函数论课后答案第三章3

实变函数论课后答案第三章3
实变函数论课后答案第三章3 第三章第三节习题 1.证明集合的测度为零,并在上作一测度大于零的无处稠密的完备集, 进而证明存在开集,使. 证明:回忆集的产生过程:先从中删除中间的开区间, 剩下两个闭区间,再删除这两个区间的中间的, 第一次删去一个开区间,其长度为; 第二次删去二个开区间,其长度为; 第三次删去四个开区间,其长度为; 故集是由删去了可列个开区间之并而成,删去的区间都互不相交,总长 度 设这可列个开区间之并为, 则 则. 故由定理1知,为可测集. 用下面的方法在闭区间上作集:已给正数的降序列,, 使,从中去掉中心在闭区间中点,而长为的开区间; 其次,从剩下的两个闭区间中去掉中心在这些闭区间中点,而长为的开 区间; 再其次从剩下的四个闭区间中去掉中心在这些闭区间中点,而长为的开 区间,如此作可数多次之后,剩下的集记为, 则为闭集,这里为去掉那些互不相交的开区间, 如何证明集是完备的无处稠密集一样,可证是完备的无处稠密集. 是自密的,这个证明与证明集是自密的是一致的,只需注意以下的关 键: 第一次删去一个长为的开区间后,剩下两个闭区间,总长度为,每个长 度为,设为;第二步在中删去两个长为的开区间后,剩下四个闭区间, 每个长度为 ;第步后剩下每个长度为的个闭区间. 现设包含的任一开区间,令,则,故只要充分大,便有,既然是永远删 不去的点,也应该属于删去次后所余下的某一个闭区间,则,(),于 是它的两个端点也应该在中,但它们都是中的点,所以至少有一异于的 点属于,这说明. 无处稠密:由上一步已知, 包含,,取充分大,使,则, 但第步将删去一个中的开区间,删去的部分不在中,这说明无内点,即 无处稠密.故是上的无处稠密的完备集.
使得 则从 ,
是至多可数集,从而知也是至多可数集,从而有 (P54习题2)
(,,) 令,我们来证明是完备集 1)是闭集:,存在, 则,推出, 若,则,,为至多可数集, ,充分大时,, ()

实变函数试题库(3)及参考答案

实变函数试题库(3)及参考答案

实变函数试题库及参考答案(3) 本科一、填空题1.设,A B 为集合,则()\B A B A I U A B U2.设A 为无理数集,则A c (其中c 表示自然数集[]0,1的基数)3.设n E ⊂¡,如果E 中没有不是内点的点,则称E 是4.任意个闭集的交是5.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈¡,()E x a f xb ⎡⎤≤<⎣⎦是可测,(a b ≤)则称()f x 在E 上6.可测函数列的上确界也是7.设()()n f x f x ⇒,()()n g x g x ⇒..a e ,则()()n n f x g x ⇒8.设()()n f x f x ⇒,那么由黎斯定理,(){}n f x 有子列()k n f x ,使 ..a e 于E二、选择题1.下列集合关系成立的是( ) A c c A A αααα∈Λ∈Λ⎛⎫= ⎪⎝⎭I I B cc A A αααα∈Λ∈Λ⎛⎫= ⎪⎝⎭I U C c c A A αααα∈Λ∈Λ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭I U D c c c A A αααα∈Λ∈Λ⎛⎫= ⎪⎝⎭I U 2.设n R E ⊂,则( ) A E E ⊃ B E E '⊂ C E E '⊂ D E E =3.设P 为康托集,则( )A P 是可数集B 0mP =C P 是不可数集D P 是开集4.下列集合关系成立的是( )A 若AB ⊂则c c B A ⊂ B 若A B ⊂则c c A B ⊂C 若A B ⊂则A B B =ID 若A B ⊂则A B B =U三、多项选择题(每题至少有两个以上的正确答案)1.设()D x 是狄利克莱函数,即()[][]10,100,1x D x x ⎧⎪=⎨⎪⎩为中有理数为中无理数,则( ) A ()D x 几乎处处等于1 B ()D x 几乎处处等于0 C ()D x 是非负可测函数 D ()D x 是L 可积函数2.设n E ⊂¡,*0m E =,则( ) A E 是可测集 B E 的任何子集是可测集 C E 是可数集 D E 不一定是可数集3.设n E ⊂¡,()10E c x E x x E χ∈⎧=⎨∈⎩,则( ) A 当E 是可测集时,()E x χ是可测函数 B 当()E x χ是可测函数时,E 是可测集 C 当E 是不可测集时,()E x χ可以是可测函数D 当()E x χ是不是可测函数时,E 不一定是可测集4.设()f x 是(),a b 上的连续函数,则( )A ()f x 在(),a b 上有界B ()f x 在(),a b 上可测C ()f x 在(),a b 上L 可积D ()f x 在(),a b 上不一定L 可积四、判断题。

实变函数论课后答案

实变函数论课后答案

λ∈∧
λ∈∧
λ∈∧
定理 4 中的(4): ∪ ( Aλ ∪ Bλ ) = ( ∪ Aλ ) ∪ ( ∪ Bλ ) .
λ∈∧
λ∈∧
λ∈∧
证 : 若 x ∈ ∪ ( Aλ ∪ Bλ ) , 则 有 λ ' ∈ ∧ , 使 λ∈∧
x

(
A λ
'

Bλ'
)

(∪
λ∈∧
Aλ ) ∪ ( ∪ λ∈∧
Bλ ) .


An ⊃ An+1 )对一切 n 都成立,则
lim
n→∞
=

n=1
An
(相应地)
lim
n→∞
=

n=1
An
.

证明:若 An ⊂ An+1 对 ∀n ∈ N 成立,则 ∩ Ai = Am .故从定理 8 知 i=m
∞∞

lim inf
n→∞
An
=
∪∩
m=1 i=m
Ai
=

m=1
Am

另一方面 ∀m, n ,令 Sm = ∪ Ai ,从 Am ⊂ Am+1 对 ∀m ∈ N 成立知 i=m
.
{ } F {A1} = {∅, S} ∪ A ∪ K A为B的子集,K = C或K = ∅ ≜ �A .
证明:
因为
{1}
,
⎧ ⎨ ⎩
1 3
⎫ ⎬ ⎭
,⋯,
⎧ ⎨ ⎩
1 2i −
1
⎫ ⎬ ⎭
,⋯

A,
B
的任何子集
F
(

实变函数论课后答案第三版

实变函数论课后答案第三版

1. 证明:()B A A B -=的充要条件是A B ⊂.证明:若()B A A B -=,则()A B A A B ⊂-⊂,故A B ⊂成立. 反之,若A B ⊂,则()()B A A B A B B -⊂-⊂,又x B ∀∈,若x A ∈,则()x B A A ∈-,若x A ∉,则()x B A B A A ∈-⊂-.总有()x B A A ∈-.故()B B A A ⊂-,从而有()B A A B -=。

证毕2. 证明c A B A B -=.证明:x A B ∀∈-,从而,x A x B ∈∉,故,c x A x B ∈∈,从而x A B ∀∈-, 所以c A B A B -⊂.另一方面,c x A B ∀∈,必有,c x A x B ∈∈,故,x A x B ∈∉,从而x A B ∈-, 所以 c A B A B ⊂-.综合上两个包含式得c A B A B -=. 证毕3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式和定理9.证明:定理4中的(3):若A B λλ⊂(λ∈∧),则A B λλλλ∈∧∈∧⊂.证:若x A λλ∈∧∈,则对任意的λ∈∧,有x A λ∈,所以A B λλ⊂(∀λ∈∧)成立知x A B λλ∈⊂,故x B λλ∈∧∈,这说明A B λλλλ∈∧∈∧⊂.定理4中的(4):()()()A B A B λλλλλλλ∈∧∈∧∈∧=.证:若()x A B λλλ∈∧∈,则有'λ∈∧,使 ''()()()x A B A B λλλλλλ∈∧∈∧∈⊂.反过来,若()()x A B λλλλ∈∧∈∧∈则x A λλ∈∧∈或者x B λλ∈∧∈.不妨设x A λλ∈∧∈,则有'λ∈∧使'''()x A A B A B λλλλλλ∈∧∈⊂⊂.故()()()A B A B λλλλλλλ∈∧∈∧∈∧⊂.综上所述有()()()A B A B λλλλλλλ∈∧∈∧∈∧=.定理6中第二式()c c A A λλλλ∈∧∈∧=.证:()c x A λλ∈∧∀∈,则x A λλ∈∧∉,故存在'λ∈∧ ,'x A λ∉所以'c c x A A λλλ∈∧∉⊂从而有()c c A A λλλλ∈∧∈∧⊂.反过来,若c x A λλ∈∧∈,则'λ∃∈∧使'c x A λ∉,故'x A λ∉,x A λλ∈∧∴∉,从而()c x A λλ∈∧∈()c c A A λλλλ∈∧∈∧∴⊃. 证毕定理9:若集合序列12,,,,n A A A 单调上升,即1n n A A +⊂(相应地1n n A A +⊃)对一切n 都成立,则 1lim n n n A ∞→∞==(相应地)1lim n n n A ∞→∞==.证明:若1n n A A +⊂对n N ∀∈成立,则i m i mA A ∞==.故从定理8知11liminf n i m n m i mm A A A ∞∞∞→∞=====另一方面,m n ∀,令m i i mS A ∞==,从1m m A A +⊂对m N ∀∈成立知11111()()m i mi m i i m i mi m i m i m S A A A A A A S ∞∞∞∞++==+=+=+==⊂==.故定理8表明1111limsup liminf n i m m n n n m i mm m A A S S A A ∞∞∞∞→∞→∞=========故1lim limsup liminf n n n m n n n m A A A A ∞→∞→∞→∞====.4. 证明()()A B B A B B -=-的充要条件是B =∅. 证:充分性若B =∅,则()()A B B A A A A A -=-∅∅=-∅==∅=∅-∅必要性 若()()A B B A B B -=-,而B ≠∅则存在x B ∈.所以()()x A B B A B B ∈-=-即所以,x A B x B ∈∉这与x B ∈矛盾, 所以x B ∈.4. 设{}{}{}{}1,2,3,4,1,2,3,4S A ==,求()F A .又如果1;1,2,3,,S n n⎧⎫==⎨⎬⎩⎭01;A n ⎧⎫=⎨⎬⎩⎭为奇数,{}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭,问()()01,F A F A 是什么. 解:若{}{}{}{}1,2,3,4,1,2,3,4S A ==,则(){}{}{}{},1,2,3,4,1,2,3,4F A =∅.若011111;1,2,3,,;1,,,,3521S n A nni ⎧⎫⎧⎫⎧⎫====⎨⎬⎨⎬⎨⎬-⎩⎭⎩⎭⎩⎭为奇数, 则从1111111,,,,,,,3521242ci i ⎧⎫⎧⎫=⎨⎬⎨⎬-⎩⎭⎩⎭, 易知()111111,,1,,,,,,,,3521242F A S i i ⎧⎫⎧⎫⎧⎫=∅⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭. {}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭. 令11;1,2,,;1,2,212B i C i i i⎧⎫⎧⎫====⎨⎬⎨⎬-⎩⎭⎩⎭. {}{}{}1,F A S AK A B K C K A =∅==∅为的子集,或.证明: 因为{}111,,,,,321A B i ⎧⎫⎧⎫∈⎨⎬⎨⎬-⎩⎭⎩⎭的任何子集()1F A .所以有()1B F A ∈,而c B C =,故()1C F A ∈,又()1F A ∅∈. 任取B 的一子集A ,()1A A F A ∅=∈,且()1A C F A ∈. 显S A ∈,故只用证A 的确是一个σ-域.(1) ,c c S S A ∅==∅∈,且B ∀的子集A ,若K =∅,则,c KA A A C ∅==(B A -是B 的子集,故()()cc A A C F A ∅=∈) 又B ∀的子集A ,()cc c c A C A C A B ==. 显然是B 的子集,所以()()cc A C A B A =∅∈.又若n A 为B 的子集()1,2,3,,n n K C ==或∅.则()111nn n n n n n A K A K A K ∞∞∞===⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.这里1n n A A B ∞==⊂是B 的子集.1n n K K C ∞===或∅.所以()1n n n A K A ∞=∈.若n A 中除B 的子集外,还有S ,则()1n n n A K S A ∞==∈.若n A 中有∅,不影响1n n A B ∞=⊂.故A 是σ-域,且()1F A A =. 证毕.6.对于S 的子集A ,定义A 的示性函数为()10A x Ax x A ϕ∈⎧=⎨∉⎩证明:(1)()()liminf liminf nnA A x x ϕϕ=(2)()()limsup limsup nnA A x x ϕϕ=证明:x S ∀∈,若()liminf nA x x ϕ∈则()liminf 1nA x ϕ=。

实变函数论课后答案第三章1

实变函数论课后答案第三章1

实变函数论课后答案第三章1第三章第一节习题1.证明:若E 有界,则m E *<∞.证明:若n E R ⊂有界,则存在一个开区间(){}120,,;n M n E R I x x x M x M ⊂=-<<.(0M >充分大)使M E I ⊂.故()()()111inf ;2n nn n m n n i m E I E I I M M M ∞∞*===⎧⎫=⊂≤=--=<+∞⎨⎬⎩⎭∑∏.2.证明任何可数点集的外测度都是零.证:设{}12,,,n E a a a =是n R 中的任一可数集.由于单点集的外测度为零,故{}{}{}()12111,,,00n i i i i i m E m a a a m a m a ∞∞∞****===⎛⎫==≤== ⎪⎝⎭∑∑.3.证明对于一维空间1R 中任何外测度大于零的有界集合E 及任意常数μ,只要0m E μ*≤≤,就有1E E ⊂,使1m E μ*=.证明:因为E 有界,设[],E a b ⊂(,a b 有限), 令()(),f x m E a x b *=∅<<,则()()()()[]()()0,,f a m E m f b m a b E m E ****=∅=∅===. 考虑x x x +∆与,不妨设a x x x b ≤≤+∆≤, 则由[])[]())()[](),,,,,a x x E a x x x x E a x E x x x E +∆=+∆=+∆⎡⎡⎣⎣.可知())()[](),,f x x m a x E m x x x E **+∆≤++∆⎡⎣()[]()(),f x m x x x f x x *≤++∆=+∆.对0x ∆<,类似得到()()f x f x x x ≤+∆+∆. 故总有()(),f x x f x x a x b +∆-≤∆<<.这说明()f x 在[],a b 上连续,由中介值定理知 (),a b ξ∃∈,使得()f c ξ=. 令[)1,E a E ξ=,则()11,m E f c E E ξ*==⊂. 若0μ=,则取11,0E E m E *=∅⊂=. 若1m E μ*=,取11,E E m E m E **==. 证毕.4.证明如果()f x 是[],a b 上的连续函数,则2R 中的点集()(){},;,x y a x b y f x ≤≤=的外测度为零.证明:n N ∀∈,将[],a b n 等分,即取分点012n x x x x b <<<<=,1,i i b ax x n---=1,2,i n =.因为()f x 在有界闭区间[],a b 连续,从而一致连续,故()0,0εδδε∀>∃=>,使当[]'"'",,,x x x x a b δ-<∈时()()()'"16f x f x b a ε-<-.所以存在()00N N ε=>,使n N ≥时()4b a nδ-<. 令()()()()()()()()22,;,1616ni i i i i b a b a I x y x x x f x y f x n n b a b a εε⎧⎫--⎪⎪=-<<+-<<+⎨⎬--⎪⎪⎩⎭.则()n i I 均为开区间,()()()482n i b a I n b a nεε-=⋅=-,且 ()(){}()1,,;,ni i i i i A x y x x x y f x I +∀=≤≤=⊂.事实上,()(), ,i x f x A ∀∈1,i i x x x +≤≤()12i i i b a b a x x x x n nδ+--∴-≤-=<< 从而()()()16i f x f x b a ε-<-.故()()22i i b a b a x x x n n---<<+ ()()()()()1616i i f x f x f x b a b a εε-<<+--即()(),n i x f x I ∈ 而()(){}0,;,n n i i Ax y a x b y f x I =≤≤=⊂()0122nnni i i n m A I nnεεε*==+∴≤==⋅≤∑∑由ε的任意性,则0m A *=.若[],a b 无界。

实变函数周民强思考题

实变函数周民强思考题

实变函数周民强思考题概述实变函数是数学中的一个重要概念,它在分析学、微积分和差分方程等领域中起着重要的作用。

本文将通过对实变函数的周民强思考题的讨论,深入探讨实变函数的相关性质和应用。

实变函数的定义实变函数是定义在实数集上的函数,其定义域为实数集,值域为实数集。

对于实变函数f(x),变量x是实数,函数值f(x)也是实数。

实变函数的性质实变函数有许多重要的性质,下面列举了一些常见的性质:1.连续性:实变函数在其定义域上可以是连续的,也可以是间断的。

连续性是实变函数的一个重要性质,连续函数在定义域上的取值变化连续,没有跳跃或间断。

2.可导性:实变函数在某个点处可导,意味着它在这个点附近存在切线,并且切线的斜率可以用导数表示。

可导性是实变函数的另一个重要性质,导数描述了函数的变化速率。

3.单调性:实变函数可以是单调递增的或单调递减的。

单调性描述了函数的增减趋势,单调递增意味着随着变量增大,函数值也增大;单调递减则相反。

4.极值点:实变函数在某些点上取得极大值或极小值。

极值点是函数取值的局部最大或最小点,它们在函数图像上对应于波峰或波谷。

实变函数的周民强思考题周民强思考题是对实变函数性质的一系列问题和思考,下面将分别对几个具体问题进行讨论。

问题1:连续函数与可导函数的关系连续函数是指在定义域上连续的函数,可导函数是指在某个点处存在导数的函数。

那么连续函数和可导函数之间有什么关系呢?连续函数一定是可导的吗?可导函数一定是连续的吗?答:连续函数不一定是可导的,但可导函数一定是连续的。

证明连续函数不一定是可导的考虑函数f(x)=|x|,它在x=0处不可导,因为在该点左右两侧的斜率不相等。

证明可导函数一定是连续的可导函数在某个点处存在导数,即该点的左右导数存在且相等。

根据导数定义和极限的性质,可以证明可导函数一定是连续的。

问题2:实变函数与单调性的关系实变函数的单调性是指随着变量的增大(或减小),函数值的增减趋势。

实变函数论课后答案第三版

实变函数论课后答案第三版

1. 证明:()B A A B -=的充要条件是A B ⊂.证明:若()B A A B -=,则()A B A A B ⊂-⊂,故A B ⊂成立. 反之,若A B ⊂,则()()B A A B A B B -⊂-⊂,又x B ∀∈,若x A ∈,则()x B A A ∈-,若x A ∉,则()x B A B A A ∈-⊂-.总有()x B A A ∈-.故()B B A A ⊂-,从而有()B A A B -=。

证毕2. 证明c A B A B -=.证明:x A B ∀∈-,从而,x A x B ∈∉,故,c x A x B ∈∈,从而x A B ∀∈-, 所以c A B A B -⊂.另一方面,c x A B ∀∈,必有,c x A x B ∈∈,故,x A x B ∈∉,从而x A B ∈-, 所以 c A B A B ⊂-.综合上两个包含式得c A B A B -=. 证毕3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式和定理9.证明:定理4中的(3):若A B λλ⊂(λ∈∧),则A B λλλλ∈∧∈∧⊂.证:若x A λλ∈∧∈,则对任意的λ∈∧,有x A λ∈,所以A B λλ⊂(∀λ∈∧)成立知x A B λλ∈⊂,故x B λλ∈∧∈,这说明A B λλλλ∈∧∈∧⊂.定理4中的(4):()()()A B A B λλλλλλλ∈∧∈∧∈∧=.证:若()x A B λλλ∈∧∈,则有'λ∈∧,使 ''()()()x A B A B λλλλλλ∈∧∈∧∈⊂.反过来,若()()x A B λλλλ∈∧∈∧∈则x A λλ∈∧∈或者x B λλ∈∧∈.不妨设x A λλ∈∧∈,则有'λ∈∧使'''()x A A B A B λλλλλλ∈∧∈⊂⊂.故()()()A B A B λλλλλλλ∈∧∈∧∈∧⊂.综上所述有()()()A B A B λλλλλλλ∈∧∈∧∈∧=.定理6中第二式()c c A A λλλλ∈∧∈∧=.证:()c x A λλ∈∧∀∈,则x A λλ∈∧∉,故存在'λ∈∧ ,'x A λ∉所以'c c x A A λλλ∈∧∉⊂从而有()c c A A λλλλ∈∧∈∧⊂.反过来,若c x A λλ∈∧∈,则'λ∃∈∧使'c x A λ∉,故'x A λ∉,x A λλ∈∧∴∉,从而()c x A λλ∈∧∈()c c A A λλλλ∈∧∈∧∴⊃. 证毕定理9:若集合序列12,,,,n A A A 单调上升,即1n n A A +⊂(相应地1n n A A +⊃)对一切n 都成立,则 1lim n n n A ∞→∞==(相应地)1lim n n n A ∞→∞==.证明:若1n n A A +⊂对n N ∀∈成立,则i m i mA A ∞==.故从定理8知11liminf n i m n m i mm A A A ∞∞∞→∞=====另一方面,m n ∀,令m i i mS A ∞==,从1m m A A +⊂对m N ∀∈成立知 11111()()m i mi m i i m i mi m i m i m S A A A A A A S ∞∞∞∞++==+=+=+==⊂==.故定理8表明1111limsup liminf n i m m n n n m i mm m A A S S A A ∞∞∞∞→∞→∞=========故1lim limsup liminf n n n m n n n m A A A A ∞→∞→∞→∞====.4. 证明()()A B B A B B -=-的充要条件是B =∅. 证:充分性若B =∅,则()()A B B A A A A A -=-∅∅=-∅==∅=∅-∅必要性 若()()A B B A B B -=-,而B ≠∅则存在x B ∈.所以()()x A B B A B B ∈-=-即所以,x A B x B ∈∉这与x B ∈矛盾, 所以x B ∈.4. 设{}{}{}{}1,2,3,4,1,2,3,4S A ==,求()F A .又如果1;1,2,3,,S n n⎧⎫==⎨⎬⎩⎭01;A n ⎧⎫=⎨⎬⎩⎭为奇数,{}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭,问()()01,F A F A 是什么. 解:若{}{}{}{}1,2,3,4,1,2,3,4S A ==,则(){}{}{}{},1,2,3,4,1,2,3,4F A =∅.若011111;1,2,3,,;1,,,,3521S n A nni ⎧⎫⎧⎫⎧⎫====⎨⎬⎨⎬⎨⎬-⎩⎭⎩⎭⎩⎭为奇数, 则从1111111,,,,,,,3521242ci i ⎧⎫⎧⎫=⎨⎬⎨⎬-⎩⎭⎩⎭, 易知()111111,,1,,,,,,,,3521242F A S i i ⎧⎫⎧⎫⎧⎫=∅⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭. {}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭. 令11;1,2,,;1,2,212B i C i i i⎧⎫⎧⎫====⎨⎬⎨⎬-⎩⎭⎩⎭. {}{}{}1,F A S AK A B K C K A =∅==∅为的子集,或.证明: 因为{}111,,,,,321A B i ⎧⎫⎧⎫∈⎨⎬⎨⎬-⎩⎭⎩⎭的任何子集()1F A .所以有()1B F A ∈,而c B C =,故()1C F A ∈,又()1F A ∅∈. 任取B 的一子集A ,()1A A F A ∅=∈,且()1A C F A ∈. 显S A ∈,故只用证A 的确是一个σ-域.(1) ,c c S S A ∅==∅∈,且B ∀的子集A ,若K =∅,则,c KA A A C ∅==(B A -是B 的子集,故()()cc A A C F A ∅=∈) 又B ∀的子集A ,()cc c c A C A C A B ==. 显然是B 的子集,所以()()cc A C A B A =∅∈.又若n A 为B 的子集()1,2,3,,n n K C ==或∅.则()111nn n n n n n A K A K A K ∞∞∞===⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.这里1n n A A B ∞==⊂是B 的子集.1n n K K C ∞===或∅.所以()1n n n A K A ∞=∈.若n A 中除B 的子集外,还有S ,则()1n n n A K S A ∞==∈.若n A 中有∅,不影响1n n A B ∞=⊂.故A 是σ-域,且()1F A A =. 证毕.6.对于S 的子集A ,定义A 的示性函数为()10A x Ax x A ϕ∈⎧=⎨∉⎩证明:(1)()()liminf liminf nnA A x x ϕϕ=(2)()()limsup limsup nnA A x x ϕϕ=证明:x S ∀∈,若()liminf nA x x ϕ∈则()liminf 1nA x ϕ=。

实变函数第三章习题答案

实变函数第三章习题答案
由连续函数的介值定理
*
知,对
c ( f ( a ), f ( b )) ( 0 , m E ), [ a , b ], 使得 f ( ) m ([ a , ] E ) c .
*
即 E 0 [ a , ] E E , 使得 m E 0 c .
n
lim mE ( f n f ) 0 .
又 f n ( x ) g n ( x ) a .e 于 E ,所以 mE ( f n g n ) 0 .
记 E 0 E ( f n g n ),则 mE 0 0 .
n 1

对 x E E 0 , 有 f n ( x ) g n ( x ),且
1
证明:(1“ ” ). 由于 f ( x ) 在 E 上可测,所以对 a R , E ( f a ) 可测 . 特别地,对 r Q , E ( f r ) 可测 .
1

( rn
{ rn }:
n 1
[ a
“ ” a R , 严格单增有理数列
rn a ( n ), 有 rn a , E ( f a ) E ( f r ). 且 n
于是 m ( lim E n ) 0 , 故 lim E n 可测,且 m ( lim E n ) 0 .
n n n
5 .证明: F 为 F 型集 CF 为 G 型集 .
证明: F 为 F 型集 F Fi ( I a , Fi闭 )
i I
CF C ( Fi ) CF i ( I a , CF i 开 ).
知, 子列 f n i ( x ) f ( x ) a .e 于 E .于是 mE ( f n i f ) 0 .

实变函数习题3思考题参考答案

实变函数习题3思考题参考答案

k = 1, 2, ,使得开集类 A 的可数子开集类 B Ak U ( x k , k ) | k 1, 2, A 也覆
盖了集合 E ,也即
U (x
k 1 x E

k
, k ) E .从而有
x ) U (xk , k ) E , k 1
k 1 k 1
故 m* E 0 。
7. 证明: (1)Cantor 集 C 是一个可测集,且为一个零测集; (2)空间 R 上可测集类 M(R )的势为 2 ,其中 c 表示连续统势.
1
1
c
证明: (1) 设 Fn 表示构造 Cantor 集 C 的过程中, 第 n 步构造手续中所保留下来的 2 个 长度为 3
G G Ai G E i E i , i = 1, 2, , k .于是有 G (G Ai ) 。故而
i 1
k
m G m (G Ai ) m (G Ai ) m * (G Ai ) m * ( E i ) ,
i 1 i 1 i 1 i 1
k
k
k
k
由于 G 是包含集 E 的任意一个开集,故有
m * E inf m G m * ( E i ) ,
GE i 1
k
综上可得
k k m * Ei m * Ei 。 i 1 i 1
1 2
4.设 f ( x) 是闭区间 [ a, b] R 上的连续函数,令 G {( x, y )| a x b, y f ( x)} R 证明: m* G 0 。 证明:设 f ( x) 是闭区间 [ a, b] R 上的连续函数,并设

《实变函数论》课后答案

《实变函数论》课后答案

Xn c, (0, 0, · · · , 0, x∗ , 0 , · · · ) ∈ / Pn (Dn ), n

Dn < c, Pn (Dn ) ≤ Dn < c, ∀n, ∃x∗ n, ∗ ∗ ∗ (x1 , x2 , · · · , xn , · · ·) ∈ / Dn , (x1 , x2 , · · · , x∗ / n , · · ·) ∈ Dn0 = c, An0 = c.
(ii) Ex 5: {(x, y ) : x2 + y 2 < 1} {(x, y ) : x2 + y 2 < 1} {(x, y ) : x2 + y 2 ≤ 1} [0, 1) [0, 1]
r ∈[0,1]
f (x) = x2 , X = [−1, 1], Y = [0, 1], A = [0, 1]. {(x, y ) : x2 + y 2 ≤ 1}
n=1
An ∼ [0, 1]∞ .
An
E
ቤተ መጻሕፍቲ ባይዱ

ww ¿À ' · T S Á¿À C õ d WÃX ÃÄ T WX à « Å Æ ÇÈ ' WXÉÊ UV Å« ! "#ËÌ"Í$%')({|12 t vw # 8 u#2v
n→∞
F
lim En = [a, b] \ E .
HGI T P
n→∞
lim fn (x) = χ[a,b]\E (x) =
Ex 4: f : X → Y, A ⊂ X, B ⊂ Y , (i)f −1 (Y \ B ) = f −1 (Y ) \ f −1 (B ); (ii)f (X \ A) = f (X ) \ f (A). (i)

实变函数周民强思考题

实变函数周民强思考题

实变函数周民强思考题摘要:一、实变函数周民强思考题背景介绍1.实变函数周民强简介2.思考题的意义和作用二、实变函数周民强思考题具体内容1.思考题一a.题目描述b.解题思路与方法c.答案与解析2.思考题二a.题目描述b.解题思路与方法c.答案与解析3.思考题三a.题目描述b.解题思路与方法c.答案与解析三、实变函数周民强思考题的启示与意义1.对实变函数学习的帮助2.对提高学生思考能力的促进3.对我国数学教育的积极影响正文:实变函数周民强思考题是针对实变函数这门课程而设计的一系列思考题目,由我国著名数学家周民强教授编写。

这些思考题旨在帮助学生更好地理解实变函数的基本概念、方法和应用,提高学生的独立思考能力和解决问题的能力。

以下是实变函数周民强思考题中的三个具体题目及其解答:思考题一:设f(x) 在区间[a, b] 上连续,证明f(x) 在[a, b] 上可积。

解答:a.题目描述:证明f(x) 在区间[a, b] 上连续时,f(x) 在[a, b] 上可积。

b.解题思路与方法:通过使用实数延拓定理,将连续函数的性质扩展到可积函数的范围内。

c.答案与解析:根据实数延拓定理,我们可以找到一个可积函数g(x),使得g(x) 在[a, b] 上等于f(x),从而证明f(x) 在[a, b] 上可积。

思考题二:设f(x) 在区间[a, b] 上可积,证明f(x) 在[a, b] 上连续。

解答:a.题目描述:证明f(x) 在区间[a, b] 上可积时,f(x) 在[a, b] 上连续。

b.解题思路与方法:通过使用可积函数的四则运算性质和连续函数的可积性,将可积函数的性质扩展到连续函数的范围内。

c.答案与解析:根据可积函数的四则运算性质和连续函数的可积性,我们可以得到f(x) 在[a, b] 上连续的结论。

思考题三:证明勒贝格积分与黎曼积分的互化定理。

解答:a.题目描述:证明勒贝格积分与黎曼积分的互化定理。

b.解题思路与方法:通过分析勒贝格积分的定义和黎曼积分的性质,找到它们之间的联系和转换方法。

实变函数课后习题答案

实变函数课后习题答案

实变函数课后习题答案实变函数课后习题答案在学习数学的过程中,实变函数是一个重要的概念。

它描述了自变量和因变量之间的关系,是数学分析中的基础。

为了更好地掌握实变函数的知识,我们需要进行大量的练习和习题。

下面是一些实变函数课后习题的答案,希望对大家的学习有所帮助。

1. 求函数f(x) = 2x + 3在区间[-1, 2]上的最大值和最小值。

解:首先,我们需要找到函数f(x)在区间[-1, 2]上的驻点和端点。

驻点是指函数的导数为零的点,端点是指区间的两个边界点。

求导得到f'(x) = 2,由此可得驻点为x = -1/2。

又因为区间[-1, 2]的端点为-1和2,所以我们需要计算f(-1),f(2)和f(-1/2)的值。

f(-1) = 2(-1) + 3 = 1f(2) = 2(2) + 3 = 7f(-1/2) = 2(-1/2) + 3 = 2因此,在区间[-1, 2]上,函数f(x)的最大值为7,最小值为1。

2. 求函数g(x) = x^2 - 4x + 5的零点。

解:零点是指函数的值为零的点,即g(x) = 0。

我们可以使用求根公式来解这个方程。

首先,将方程g(x) = x^2 - 4x + 5 = 0转化为一元二次方程的标准形式。

然后,根据求根公式x = (-b ± √(b^2 - 4ac))/(2a),我们可以得到:x = (4 ± √((-4)^2 - 4(1)(5)))/(2(1))= (4 ± √(16 - 20))/2= (4 ± √(-4))/2由于√(-4)是虚数,所以方程g(x) = x^2 - 4x + 5 = 0没有实数解。

3. 求函数h(x) = 3x^3 - 6x^2 + 3x - 1的极值点。

解:极值点是指函数的导数为零的点,即h'(x) = 0。

我们可以先求导数h'(x),然后解方程h'(x) = 0,得到极值点的横坐标。

《实变函数论与泛函分析(曹广福)》1到5章课后习题答案

《实变函数论与泛函分析(曹广福)》1到5章课后习题答案

第一章习题参考解答3.等式(A -B) ⋃C =A - (B -C) 成立的的充要条件是什么?解: 若(A -B) ⋃C =A - (B -C),则 C ⊂ (A -B) ⋃C =A - (B -C) ⊂A .即, C ⊂A .反过来, 假设C ⊂A , 因为B -C ⊂B . 所以,A -B ⊂A - (B -C) . 故,( A -B) ⋃C ⊂A - (B -C) .最后证, A - (B -C) ⊂ (A -B) ⋃C事实上,∀x ∈A - (B -C) , 则x ∈A 且x ∉B -C 。

若x ∈C,则x ∈(A -B) ⋃C ;若x ∉C,则 x ∉B ,故 x ∈A -B ⊂ (A -B) ⋃C. 从而, A - (B -C) ⊂ (A -B) ⋃C.C ⊂ (A -B) ⋃C =A - (B -C) ⊂A -∅=A . 即 C ⊂A .反过来,若C ⊂A ,则因为B -C ⊂B 所以A -B ⊂A - (B -C) 又因为C ⊂A ,所以C ⊂A - (B -C) 故 (A -B) ⋃C ⊂A - (B -C)另一方面,∀x ∈A - (B -C) ⇒x ∈A 且x ∉B -C ,如果x ∈C则x ∈(A -B) C ;如果x ∉C, 因为x ∉B -C ,所以x ∉B 故x ∈A -B . 则x ∈(A -B) ⋃C . 从而A - (B -C) ⊂ (A -B) ⋃C于是, (A -B) ⋃C =A - (B -C)⎧1,x ∈A4.对于集合A,定义A 的特征函数为χA (x) =⎨,假设A1 , A2 , , A n 是⎩0, x ∉A一集列,证明:(i)χliminf A(x) = lim inf χA (x)n n n n(ii)χ(x) = lim sup χA (x)limsup An n n n证明:(i)∀x∈lim inf A n =⋃(⋂A n ),∃n0 ∈N,∀m ≥n0 时,x ∈A m .n n∈N m≥n所以 χA (x) = 1,所以 inf χA(x) = 1故lim inf χA (x) = supinf χA(x) = 1 m m≥nm n n b∈N m≥n m= i i1 1 ,使 m n n m nn n =1 1 1∀x ∉ lim inf A n ⇒ ∀n ∈ N ,有 x ∉ ⋂ A n ⇒ ∃k n ≥ nnm ≥n有 x ∉ A k ⇒ χ A = 0 ⇒ inf χ A (x ) = 0 ,故 s u p n f i χ A (x ) = 0,即 limn f iχ A (x ) =0 ,mk nm ≥n mb ∈N m ≥nmn n从而 χliminf A (x ) = lim inf χ A(x )nnnni -1 5. 设{A n } 为集列, B 1 = A 1 , B i = A i - ⋃ A j (i > 1) 证明j 1(i ) {B n } 互相正交n n(ii ) ∀n ∈ N , A i = B ii =1i =1n -1 证明:(i )∀n , m ∈ N , n ≠ m ;不妨设n>m ,因为 B n = A n - A i ⊂ A n - A m ,又因 i =1为 B ⊂ A ,所以 B ⊂ A - A ⊂ A - B , 故 B B = ∅ ,从而 {B }∞相互正交.n nnn(ii )因为 ∀i (1 ≤ i ≤ n ),有 B i ⊂ A i ,所以⋃ B i ⊂ ⋃ A i ,现在来证: ⋃ A i ⊂ ⋃ B i当n=1 时, A 1 = B 1 ; i =1i =1i =1i =1nn当 n ≥ 1时,有: A i = B ii =1i =1n +1 n n +1 n n n 则 A i = ( A i ) A n +1 = ( A i ) ( A n +1 - A i ) = ( B i ) (B n +1 - B i )i =1i =1i =1i =1i =1i =1n事实上, ∀x ∈ ⋃ A ,则∃i (1 ≤ i ≤ n ) 使得 x ∈ A ,令i = min i | x ∈ A 且1 ≤ i ≤ ni =1i 0 -1 n i 0 -1 n n则 x ∈ A i 0 - A i = B i 0 ⊂ B i ,其中,当 i 0 = 1 时, A i = ∅ ,从而, A i = B ii =1i =1i =1i =1i =16. 设 f (x ) 是定义于E 上的实函数,a 为常数,证明:∞(i ) E {x | f (x ) > a }= { f (x ) ≥ a + }n =1 n(ii) ∞E {x | f (x ) ≥ a }= { f (x ) > a - }n =1 n证明:(i ) ∀x ∈ E {x | f (x ) > a } ⇒ x ∈ E 且 f (x ) > a⇒ ∃n ∈ N ,使得f (x ) ≥ a + 1 > a 且x ∈ E ⇒ x ∈ E {x | f (x ) ≥ a + 1}⇒ x ∈ n ∞ E {x | f (x ) ≥ a + }⇒ E {x | f (x ) > a } ⊂ n∞E {x | f (x ) ≥ a + } n =1 n n =1 n反过来,∀x ∈ ∞E {x {x | f (x ) ≥ a + 1},∃n ∈ N x ∈ E {x | f (x ) ≥ a + 1} n =1 n nm n m m= n 0 1 1即 f (x ) ≥ a + 1 n∞> a 且x ∈ E 1故 x ∈ E {x | f (x ) > a }所 以 ⋃ E {x | f (x ) ≥ a + n =1 } ⊂ E {x | f (x ) > a } 故nE {x | f (x ) > a } ∞ E {x | f (x ) ≥ a + 1}n =1 n7. 设{ f n (x )} 是E 上的实函数列,具有极限 f (x ) ,证明对任意常数 a 都有:E {x | f (x ) ≤ a } = ∞lim inf E {x | f(x ) ≤ a + 1} = ∞lim inf E {x | f (x ) < a + 1} k =1 n n k k =1 n n k证明: ∀x ∈ E {x | f (x ) ≤ a },∀k ∈ N ,即 f (x ) ≤ a ≤ a + 1,且 x ∈ Ek因为 lim f n →∞(x ) = f (x ),∃n ∈ N ,使∀m ≥ n ,有 f n(x ) ≤ a + 1 ,故 kx ∈ E {x | f m (x ) ≤ a + 1}(∀m ≥ n ) k 所以x ∈ E {x | f m m ≥n (x ) ≤ a + 1} kx ∈ E {x | f (x ) ≤ a + 1}= lim inf E {x | f (x ) ≤ a + 1},由 k 的任意性:n ∈N m ≥n m k n mk∞ ∞ x ∈ lim inf E {x | f n (x ) ≤ a + },反过来,对于∀x ∈ lim inf E {x | f n (x ) ≤ a + },k =1 n k k =1 n k ∀k ∈ N ,有 x ∈ lim inf E {x | f (x ) ≤ a + 1} =E {x | f (x ) ≤ a + 1} , 即n m k n ∈N m ≥n m k∃n ∈ N ,∀m ≥ n 时,有: f (x ) ≤ a + 1 且 x ∈ E ,所以, lim f (x ) ≤ f (x ) ≤ a + 1且 m k m mkx ∈ E . 又令k → ∞ ,故 f (x ) ≤ a 且x ∈ E 从而 x ∈ E {x | f (x ) ≤ a }∞ 1故 E {x | f (x ) ≤ a }= lim inf E {x | f n (x ) ≤ a + }k =1 n k8.设{ f n (x )} 是区间(a ,b )上的单调递增的序列,即f 1 (x ) ≤ f 2 (x ) ≤ ≤ f n (x ) ≤∞若 f n (x ) 有极限函数 f (x ) ,证明: ∀a ∈ R , E { f (x ) > a } = ⋃ E { f n (x ) > a }n 1证明: ∀x ∈ E { f (x ) > a },即: x ∈ E 且 f (x ) > a ,因为lim f (x ) = n →∞f (x )所以∃n 0 ∈ N ,∀n ≥ n 0 ,恒有: f n (x ) > a 且x ∈ E ,从而, x ∈ E { f n(x ) > a }∞⊂ E { f n (x ) > a }n =1nn n k1 2 3 n n∞反过来, ∀x ∈ E { f n (x ) > a },∃n 0 ∈ N ,使 x ∈ E { f n (x ) > a },故∀n ≥n 0 ,因此,n =1lim f (x ) = n →∞f (x ) ≥ f (x ) > a 且 x ∈ E ,即, x ∈ E { f (x ) > a },∞从而, E { f (x ) > a } = E { f n (x ) > a }n =110.证明: R 3 中坐标为有理数的点是不可数的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

m A mB m ( A \ B ) 。
(3)对于任何两个集合 A 和 B ,有 A B A ( B \ A) A ( B \ A B ) ,以及
A B A, A B B 。
由测度的可加性知, m ( A B ) m [ A ( B \ A B )] m A m ( B \ A B ) . (2) 若 m A , mB 都成立,则 m ( A B ) m ( A B ) m A mB 成立. 若 m A , mB 中至少有一个成立,则必有 m( A B ) ,根据(2)式以及 定理 3.8 知,
m *(G ) = m *( J i ) £
i =1
m
m i =1
m *( J i ) =
m
| Ji |.
i =1
(1)
对于每一个闭矩形 J i ,作与 J i 的中心相同,但底边长和高都是 J i 的相应的变长的 2 倍, 也 即以
2 ( b - a) 2 为底边长,以 2 | f ( x i ) - f ( x i ) | ( £ ) 为高的开矩形 I i ,显然 I i É J i , m n
T : a = x 0 < x1 < x 2 < < x m-1 < x m = b ,
将 [ a, b] 平均分成 m 个小闭区间 [ x i-1 , x i ] ,其中 x i = a +
b-a i ,每个小区间的长度为 m
Dxi =
1 b-a ,并且使 D x i = < δ n ,以 x i , x i 分别表示函数 f ( x) 在小闭区间 [ x i-1 , x i ] m m
1
(解法二)证明:根据外测度的次可加性,有
k k m * Ei m * Ei 。 i 1 i 1
另一方面,令 E

i 1
k
E i ,则对于任意开集 G E E i ,有 G (G E i ) 。
i 1 i 1
k
k
又由于各个 G E i 互不相交,且 G E E i , Ai E i , i = 1, 2, , k ,从而有
A A U ( x, x ) | x E , m*( E U ( x, x ) ) 0 ,
Байду номын сангаас
3
显然
A A

A
x E
U ( x,
x
)E
根据 Lindelof (林德洛夫)至多可数覆盖定理,存在至多可数个开球 Ak U ( x k , k ) ,
n
且 m E1 m E 2 . 证明:设 E 1 , E 2 均是 R 中的子集,则有
n
E 1 E 2 E 1 \ ( E 1 E 2 ) E 2 \ ( E 1 E 2 ) ,

m*( E1 E 2 ) 0 ,从而, E1 E 2 可测,且 m ( E1 E 2 ) 0 .于是
m ( A B) m A m B m ( A B) ,
由于 m( A B ) ,故该项 m( A B ) 可从上述(7)式右端移到左端,得到
(3)
m ( A B ) m ( A B ) m A mB 。
9. 设 E 1 , E 2 均是 R 中的子集, E 1 是可测集,且 m*( E1E 2 ) 0 .试证: E 2 是可测集,
且 | Ii |=
2 ( b - a) m
i
2 n
4 ( b - a) , mn
i = 0,1, 2, , m .
于是有: G

i =1
m
Ji
I
i =1
m
,也即,开区间序列 I 1 , I 2 , , I m-1 , I m 覆盖了集合 G .从而,
对于 " =
m 1 > 0 ,必存在开区间序列 { I 1 , I 2 , , I m-1 , I m } ,使得 G Ì I i . n i =1
G G Ai G E i E i , i = 1, 2, , k .于是有 G (G Ai ) 。故而
i 1
k
m G m (G Ai ) m (G Ai ) m * (G Ai ) m * ( E i ) ,
i 1 i 1 i 1 i 1
上的最小值点和最大值点.那么, f ( x) 位于小闭区间 [ x i-1 , x i ] 上的曲线可以用底边长为
2
Dxi =

b-a 2 , 高为 f ( x i ) - f ( x i ) 的 R 中的闭矩形区间 J i 完全覆盖, 该闭矩形的高不超 m
m m 1 , i = 0,1, 2, , m .显然, J i 覆盖了点集 G ,即 J i É G ,从而必有: n i =1 i =1
n
k k m * Ei m * Ei 。 i 1 i 1
(解法一)证明:当 k = 2 时,E1 A1 ,E 2 A2 A1 ,且 A1 是可测集,由定理 3.2
c
知,
m*( E1 E 2 ) m *E1 m* E 2 。
然后,对集合个数 k 使用数学归纳法,可以证明结论成立。
证明:设 E 1 , E 2 是 R 中任意两个可测集,且集 E 1 测度有限,即 m* E1 .由
n
E1 E 2 E1 [ E 2 \ ( E1 E 2 )] , 且 m ( E1 E 2 ) mE1 ,
于是根据定理 3.8 知, 从而
m [ E 2 \ ( E1 E 2 )] mE 2 m ( E1 E 2 ) 。
k 1 k 1
故 m* E 0 。
7. 证明: (1)Cantor 集 C 是一个可测集,且为一个零测集; (2)空间 R 上可测集类 M(R )的势为 2 ,其中 c 表示连续统势.
1
1
c
证明: (1) 设 Fn 表示构造 Cantor 集 C 的过程中, 第 n 步构造手续中所保留下来的 2 个 长度为 3
由外测度的定义知,
m *(G ) =
令 n ,得到
m
m
| Ii |
i =1 i =1
4 ( b - a) mn
4 ( b - a) , n = 1, 2, . n
(2)
m *(G ) = lim m *(G ) £ lim
n n
4 ( b - a) = 0, n
即 m* G 0 。
5. 设集 E R ,且 m* E 0 ,试证: E 必定不是至多可数集。
1
n
自然数集,虽然 m *E 0 ,但集合 E 无界。 (2)反证法:设集 E 有界,由(1)中结论知,m* E ,这与已知条件 m *E 矛盾。故结论得证.逆命题类似证明。
2.设 E 1 , E 2 是 R 中任意两个可测集,且至少有一个集测度有限.试证:
n
m ( E1 E 2 ) mE1 mE 2 m ( E1 E 2 ) 。
E1 E 2 E 1 \ ( E1 E 2 ) 可测.因为 E 2 \ E1 E 2 E1 E 2 ,从而 E 2 \ E1 E 2 可测,且为
k = 1, 2, ,使得开集类 A 的可数子开集类 B Ak U ( x k , k ) | k 1, 2, A 也覆
盖了集合 E ,也即
U (x
k 1 x E

k
, k ) E .从而有
x ) U (xk , k ) E , k 1
m ( E1 E 2 ) m ( E1 [ E 2 \ ( E1 E 2 )]) mE1 m [ E 2 \ ( E1 E 2 )] mE1 mE 2 m ( E1 E 2 ) 。
3.设 A1 , A2 , , Ak 是 R 中有限个互不相交的可测集,且 E i Ai , i 1, 2, , k .试证:
k
k
k
k
由于 G 是包含集 E 的任意一个开集,故有
m * E inf m G m * ( E i ) ,
GE i 1
k
综上可得
k k m * Ei m * Ei 。 i 1 i 1
1 2
4.设 f ( x) 是闭区间 [ a, b] R 上的连续函数,令 G {( x, y )| a x b, y f ( x)} R 证明: m* G 0 。 证明:设 f ( x) 是闭区间 [ a, b] R 上的连续函数,并设
第一部分
习题 3 参考答案或提示
(A 组题)
1.证明: (1)若集 E R 有界, 则 m* E ;但反之不然。
n
(2)设集 E R ,若 m *E ,则集 E 无界;但反之不然。
n
证明: (1)因为 E 有界,故存在一个有限正数 δ > 0 ,使得空间 R 中以原点为中心且 边长为 2δ 的区间 I 覆盖集合 E ,从而 m* E | I | 。反之,设集合 E = N 为空间 R 中
U ( x,
(1)
以及
x E
( E U ( x, x ) ( E U ( x k , k )) E ,
k 1
(2)
于是
m * E m * [ ( E U ( x k , k )) ] m *( E U ( x k , k )) 0 ,
,从而
相关文档
最新文档