高二数学必修一函数的概念习题(Word版)
高中数学必修1单元配套练习试题1.2.1 函数的概念及参考答案
1.2.1 函数的概念姓名:___________班级:______________________1.设集合P ={x|0≤x≤4},Q ={y|0≤y≤4},能表示集合P 到集合Q 的函数关系的有( )A.①②③④ B .①②③C.②③ D .②2.下列四个说法:①若定义域和对应关系确定,则值域也就确定了;②若函数的值域只含有一个元素,则定义域也只含有一个元素;③若f(x)=5(x ∈R),则f(π)=5一定成立;④函数就是两个集合之间的对应关系.其中正确说法的个数为( )A.1B.2C.3D.43.函数1x y -=的定义域是( )A.(0,+∞)B.(-∞,0)C.(0,1)∪(1,+∞)D.(-∞,-1)∪(-1,0)∪(0,+∞)4.下列各组函数表示同一函数的是( ) A.293x y x -=-与y =x +3 B.1y 与y =x -1 C.y =x 0(x≠0)与y =1(x≠0)D.y =2x +1,x ∈Z 与y =2x -1,x ∈Z5.设集合P ={x|0≤x≤2},Q ={y|0≤y≤2},能表示集合M 到集合N 的函数关系的是( )6.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,A.10个B.9个C.8个D.4个7.若()1f xx=的定义域为A,g(x)=f(x−1)-f(x)的定义域为B,那么( )A.A∪B=BB.A BC.A⊆BD.A∩B=∅8.函数()222f xx=+(x∈R)的值域是( )A.(0,1)B.(0,1]C.[0,1)D.[0,1]9.若函数f(x)的定义域是[0,1],则函数f(3x)+f(x+13)的定义域为________.10.设函数()41f xx=+,若f(m)=2,则实数m=_______.11.已知函数f(x)=3x−1,x∈{x∈N|1≤x≤4},则函数f(x)的值域为______________.12.求函数f(x)12x-的定义域.13.已知函数22xf xx-⎛⎫=⎪+⎝⎭,求f(3)的值.14.已知f(x)=12x+ (x≠-2),h(x)=x2+1.(1)求f(2),h(1)的值;(2)求f[h(2)]的值;(3)求f(x),h(x)的值域.参考答案1.C【解析】①的定义域不是集合P;②能;③能;④与函数的定义矛盾.故选C.考点:函数的定义.2.B【解析】①正确;②不正确,如函数f(x)=0(x∈R),值域为{0},只含有一个元素,但是定义域中可能含有无数个元素;③正确;④不正确,函数是定义在两个非空数集上的对应关系.考点:函数的概念.3.C【解析】由10,xx x-≠⎧⎨+>⎩得x>0且x≠1.考点:函数的定义域.4.C【解析】A中的两函数定义域不同,B中的两函数值域不同,D中的两函数对应关系不同,C正确.考点:函数的概念.5.D【解析】选项A、B中函数的定义域不是P,选项C不能构成函数,选项D符合函数的定义,故选D.考点:函数的概念.6.B【解析】由2x2−3=−1,2x2−3=5得x的值为1,−1,2,−2,定义域为2个元素的集合有4个,定义域为3个元素的集合有4个,定义域为4个元素的集合有1个,因此共有9个“孪生函数”.考点:函数的定义域,函数的值域.7.B【解析】由题意得A={x|x≠0},B={x|x≠0,且x≠1},则A∪B=A,则A错;A∩B=B,则D 错;B A,则C错,B正确.考点:函数的定义域.8.B【解析】由于x∈R,所以x2+2≥2,0<212x+≤12,则22012x<≤+,即0<f(x)≤1.考点:函数的值域.9.1 0,3⎡⎤⎢⎥⎣⎦【解析】由031,101,3xx≤≤⎧⎪⎨≤+≤⎪⎩得10,312,33xx⎧≤≤⎪⎪⎨⎪-≤≤⎪⎩即10,3x⎡⎤∈⎢⎥⎣⎦.考点:函数的定义域.10.1【解析】由题意知421m=+,解得m=1.考点:函数求值.11.{2,5,8,11}【解析】∵x=1,2,3,4,∴f(x)=3x−1=2,5,8,11.考点:函数的值域.12.3|,24x x x⎧⎫≥-≠⎨⎬⎩⎭且【解析】要使函数有意义,则430,20,xx+≥⎧⎨-≠⎩即3,24x x≥-≠且.所以函数的定义域为3|,24x x x⎧⎫≥-≠⎨⎬⎩⎭且.考点:函数的定义域.13.1-【解析】由22xx-+=3,解得x=1-,所以f(3)=1-.考点:函数求值.14.(1)14,2 (2)17(3)f(x)的值域为(-∞,0)∪(0,+∞),h(x)值域为[1,+∞)【解析】(1)∵f(x)=12x+,∴f(2)=11224=+.∵h(x)=x2+1,∴h(1)=12+1=2.(2)f(h(2))=f(22+1)=f(5)=11 527= +.(3)∵f(x)=12x+的定义域为{x|x≠-2},∴y≠0,∴函数f(x)的值域为(-∞,0)∪(0,+∞).∵h(x)=x2+1的定义域是R,由二次函数图象知最小值为1,∴函数h(x)值域为[1,+∞).考点:函数求值,函数的值域.。
(完整)高中数学必修一函数练习题.doc
第 1 课函数的概念【考点导读】1.了解构成函数的要素,会求一些简单函数的定义域和值域.2.准确理解函数的概念,能根据函数的三要素判断两个函数是否为同一函数.【基础练习】1.设有函数组:①y x , y x2 ;② y x , y 3 x3;③y x , y x ;④x1 ( x 0), ,x lg x 1 ,y lg x _____.y( x y ;⑤ y .其中表示同一个函数的有1 0), x 102. 设集合M { x 0 x 2} , N { y 0 y 2} ,从 M 到 N 有四种对应如图所示:y y y y2 2 2 2O 1 2 x O1 2 x O 1 2 x O12 x①②③④其中能表示为 M 到 N 的函数关系的有_______.3.写出下列函数定义域:(1) f ( x) 1 3x 的定义域为______;(2) f ( x) 1 的定义域为 ______________;x2 1(3) f ( x) x 1 1的定义域为 ______________ ; (4) f ( x)( x 1)0x x的定义域为 __x4.已知三个函数 :(1) y P(x)y 2n P( x) ( n N *) ;(3) y log Q( x) P( x) .写出使; (2)Q(x)各函数式有意义时,P(x) , Q (x) 的约束条件:(1)_____________________(2)________________ ; (3)______________________________ .5.写出下列函数值域:(1) f ( x) x2 x , x {1,2,3} ;值域是(2) f ( x) x2 2x 2 ;值域是.(3) f ( x) x 1, x (1,2] .值域是.【范例解析】例 1. 设有函数组:①f ( x) x2 1, g ( x) x 1 ;② f (x) x 1 x 1 ,x 1g( x)x 21;③f ( x)x22x,1;④f ( x) 2x,2t 1.其1 g ( x) x 1 g(t)中表示同一个函数的有③④.点评:两个函数当它们的三要素完全相同时,才能表示同一函数.而当一个函数定义域和对应法则确定时,它的值域也就确定,故判断两个函数是否为同一函数,只需判断它的定义域和对应法则是否相同即可.例 2.求下列函数的定义域:①y 1 x2 1 ;② f (x) x ;2 x log 1 (2 x)2例 3.求下列函数的值域:(1)y x2 4x 2 , x [0,3) ;(2)yx2 ( x R);x2 1(3)y x 2 x 1.点评:二次函数或二次函数型的函数求值域可用配方法;逆求法利用函数有界性求函数的值域;用换元法求函数的值域应注意新元的取值范围.【反馈演练】1.函数 f(x)= 1 2x的定义域是___________.2.函数f ( x) 1 的定义域为 _________________ .log 2 ( x2 4x 3)3. 函数 y 1 (x R) 的值域为________________.x214. 函数 y 2x 3 13 4x 的值域为_____________.5.函数y log0.5 (4x2 3x) 的定义域为_____________________.【真题再现】1. (2014 山东 ) 函数 f(x)=1- 2x+1)的定义域为 (x+3lg x+1的定义域是 ( )2.( 2014 广东)函数 y=x-13( 2014 辽宁) .已知函数 f(x) =ln( 1+ 9x2- 3x)+ 1,则 f(lg 2) + f lg 1= ( ) 24.( 2013 山东)函数 f(x)= log2(3x+ 1)的值域为 ( )5.(2013 ·浙江 ) 已知函数 f(x)= x-1, 若 f(a)=3, 则实数 a= .6.( 2013 天津)设函数 g(x)= x2- 2(x∈ R ), f(x)=g x + x+ 4,x< g x ,则 f(x)的值域是 ( g x - x, x≥ g x .第 2 课函数的表示方法【考点导读】1.会根据不同的需要选择恰当的方法(如图像法,列表法,解析法)表示函数.2.求解析式一般有四种情况: ( 1)根据某个实际问题须建立一种函数关系式;( 2)给出函数特征,利用待定系数法求解析式;( 3)换元法求解析式; ( 4)解方程组法求解析式.【基础练习】1.设函数 f (x) 2x 3 , g( x) 3x 5 ,则 f ( g( x)) _________;g ( f ( x)) __________ .2.设函数 f (x)1 , g( x) x2 2 ,则 g( 1)____________; f [ g (2)]; f [ g( x)]1 x3.已知函数 f (x) 是一次函数,且 f (3) 7 , f (5) 1 ,则 f (1) _____.| x1| 2,| x | 1, 1)] = _____________.4.设 f( x) =1,则 f[ f(1x 2,| x | 125.如图所示的图象所表示的函数解析式为 __________________________ .【范例解析】第 5 题例 1.已知二次函数 yf ( x) 的最小值等于 4,且 f (0)f (2) 6 ,求 f ( x) 的解析式.分析:给出函数特征,可用待定系数法求解.例 2.甲同学家到乙同学家的途中有一公园, 甲从家到公园的距离与乙从家到公园的距离都是2km ,甲 10 时出发前往乙家.如图,表示甲从出发到乙家为止经过的路程y ( km )与时间 x(分)的关系.试写出 yf (x) 的函数解析式.【反馈演练】e x e xe x e x()1.若 f ( x)2 , g (x),则 f (2 x)2A. 2 f ( x)B. 2[ f ( x) g (x)] C. 2g (x)D. 2[ f (x) g(x)]2的最大整数 , 则对任意实数x,有().设 [x] 表示不大于 x1y4321O10 20 30 40 50 60x例 2A .[ -x]= - [x] B. [x + [ x] C. [2x]=2[x]D.【真题再现】2]=[x]1[ x] [2 x] 22x , x > 0, 1.( 2013 北京已知函数 ?(x)=若 ?(a)+ ?(1)= 0,则实数 a 的值等于 ( )x + 1,x ≤ 0.2.( 2013 北京 )函数 f(x)=log 1 x , x ≥ 1,2的值域为 ________.2x , x<11, x>0,1, x 为有理数, 3.( 2012 福建)设 f(x)= 0, x = 0,g(x)=则 f(g( π)) 的值为.- 1, x<0,0, x 为无理数,4.( 2010 3x + 2, x <1,若 f(f(0)) = 4a ,则实数 a = ________.陕西)已知函数 f(x) =x 2+ ax , x ≥ 1,5.( 2013 福建)函数 f(x)= ln(x 2+1)的图像大致是 ()6.( 2014 江苏)已知实数 a ≠ 0,函数 f(x)=2x + a , x < 1, 若 f(1- a)= f(1+ a),则 a 的值-x - 2a , x ≥1.为________.7.( 2012 江苏 )设 f(x) 是定义在 R 上且周期为 2 的函数,在区间[ - 1,1] 上, f(x) =ax + 1,- 1≤ x < 0,1 3bx + 2,其中 a , b ∈ R.若 f(0≤ x ≤ 1, 2)= f(2),则 a + 3b 的值为 ________.x + 1第 3 课 函数的单调性【考点导读】1.理解函数单调性,最大(小)值及其几何意义;2.会运用单调性的定义判断或证明一些函数的增减性.【基础练习】1.下列函数中: ① f (x)1;② f xx 2 2x 1;③ f (x) x ; ④ f (x) x 1 .x其中,在区间 (0, 2)上是递增函数的序号有 ______.2.函数 yx x 的递增区间是 ___ _.3.已知函数yf ( x) 在定义域 R 上是单调减函数,且f ( a 1) f (2 a) ,则实数a 的取值范围 __________.4.已知下列命题:①定义在 R 上的函数 f (x) 满足 f (2)f (1),则函数 f ( x) 是 R 上的增函数;②定义在 R 上的函数 f (x) 满足 f (2)f (1),则函数 f ( x) 在 R 上不是减函数;③定义在 R 上的函数 f (x) 在区间 ( ,0] 上是增函数,在区间 [0,) 上也是增函数,则函数 f (x) 在 R 上是增函数;④定义在 R 上的函数 f (x) 在区间 ( ,0] 上是增函数,在区间 (0,) 上也是增函数,则函数 f (x) 在 R 上是增函数.其中正确命题的序号有 _________. 【范例解析】1.下列函数中,既是偶函数又在区间(0,+∞ )上单调递减的是 ()A . y =1B . y = e x-xC .y =- x 2+ 1D. y = lg|x|2.下列函数中,既是偶函数,又在区间(1,2)内是增函数的为 ()A . y = cos 2x , x ∈RB .y = log 2|x|,x ∈ R 且 x ≠ 0ex -e-xC .y =, x ∈ R2D . y = x 3+ 1, x ∈R 【反馈演练】1.已知函数 f ( x)1 ,则该函数在 R 上单调递 ___,(填“增”“减”)值域为 _________.2x 12.已知函数f ( x) 4x 2mx 5 在 (, 2) 上是减函数,在(2, ) 上是增函数,则f (1) _____.3. 函数 f ( x) x 2 1 x 的单调递减区间为【真题再现】1.( 2011 新课标全国) 下列函数中,既是偶函数又在(0,+∞ )单调递增的函数是A . y = x 3B . y = |x|+ 1C .y =- x 2+ 1- xD .y = 2 | |12.(2009 辽·宁 )已知偶函数 f(x)在区间 [0,+∞ )单调增加,则满足 f(2x - 1)< f(3)的 x 的取值范围是 ( )3.( 2012 安徽)若函数 f(x)= |2x + a|的单调递增区间是 [3,+∞ ),则 a = ________.4.( 2013·湖北高考文科) x 为实数,[ x]表示不超过x的最大整数,则函数f (x)x [ x] 在R 上为 ( )A .奇函数B .偶函数C .增函数D . 周期函数第 4 课 函数的奇偶性与周期性【考点导读】1.了解函数奇偶性与周期性的含义,能利用定义判断一些简单函数的奇偶性与周期性;2.定义域对奇偶性的影响:定义域关于原点对称是函数为奇函数或偶函数的必要但不充分条件;不具备上述对称性的,既不是奇函数,也不是偶函数.【基础练习】1. 给 出 455x ; ②x 4 12x 5 ; ④个 函 数 : ① f (x) xf (x)2 ; ③ f (x)xf ( x) e xe x .其中奇函数的有 _____;偶函数的有 ______;既不是奇函数也不是偶函数的有 _______.2. 设函数 f xx 1 xa为奇函数,则实数a.x3.下列函数中,在其定义域内既是奇函数又是减函数的是()A . y x 3, x R B . y sin x, x R C. yx, x RD. y1 x, x R( )2【范例解析】1 定义域为 R 的四个函数 y = x 3, y = 2x , y = x 2+ 1, y = 2sin x 中,奇函数的个数是 ( ) 2. 已知 f(x)是奇函数, g( x)是偶函数, 且 f(- 1)+ g(1)= 2,f(1)+ g(- 1)= 4,则 g(1)等于 ( )3. 已知定义在 R 上的函数 f ( x) 是奇函数,且当 x0 时, f (x) x 22x 2 ,求函数 f (x)的解析式,并指出它的单调区间.【反馈演练】1.已知定义域为R 的函数 f x 在区间 8, 上为减函数,且函数 y f x 8 为偶函数,则()A . f 6 f 7B . f 6 f 9C . f 7f 9D . f 7f 102. 在 R 上定义的函数 f x 是偶函数,且 f x f 2 x ,若 f x 在区间 1,2 是减函数,则函数 f x ( )A. 在区间 2, 1 上是增函数,区间 3,4 上是增函数B. 在区间 2, 1 上是增函数,区间 3,4 上是减函数C.在区间 2, 1 上是减函数,区间 3,4 上是增函数D.在区间2, 1 上是减函数,区间 3,4 上是减函数3. 设1,1, 1,3 ,则使函数 y x 的定义域为R且为奇函数的所有的值为 ____.24.若函数 f (x) 是定义在R上的偶函数,在( ,0] 上是减函数,且 f (2) 0 ,则使得f (x) 0的x的取值范围是【真题再现】1. (2013 山东 ) 已知函数 f(x)为奇函数,且当x>0 时, f(x) =x2+1,则 f(- 1)= ( )x2.( 2011 湖南)已知 f(x)为奇函数, g(x)=f(x)+ 9, g(- 2)= 3,则 f(2) =________.3.( 2010 江苏)设函数 f(x)= x(e x+ae-x)(x∈R )是偶函数,则实数 a 的值为 ________.4. f x 是以 2为周期的函数,且当 x 1,3 时, f x = x 2 ,则f (1)5 .已知函数y f(x)(x R)满足f(x 1) f(x 1) ,且当x 1,1 时,f (x) x2 则 y f(x)与y log 5 x 的图象的交点个数为.第 5 课二次函数,幂函数,指对函数【考点导读】1.理解二次函数的概念,掌握二次函数,幂函数,指对函数图像和性质;2.能结合二次函数的图像判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系.【基础练习】1.二次函数 yx2 2mx m2 3 的图像的对称轴为x 2 0,则 m ____,递增区间为____,递减区间为 ____2. 实系数方程 ax 2 bx c 0( a 0) 有两正根的充要条件为___;有两负根的充要条件为3. 已知函数 f (x) x2 2x 3 在区间 [0, m] 上有最大值3,最小值2,则m的取值范围是__________.【范例解析】1. 已知 a, b, c∈ R,函数 f(x)= ax2+ bx+c.若 f(0) =f(4)> f(1) ,则 ( )A . a>0,4a+ b= 0B . a<0,4a+ b= 0C.a>0,2a+b= 0 D .a<0,2 a+b= 02. 设 a log 3 2 , b log5 2 , c log 2 3 ,则()A. a c bB. b c aC. c b aD. c a b3.函数 f( x) =㏑ x 的图像与函数g( x)=x2-4x+4 的图像的交点个数为()4.函数f x4x 4, x 1log 2 x 的图象的交点个数有_____ x 2 4x 3, x的图象和函数 g x15.已知 a=5-1,函数 f(x)= a x,若实数 m、n 满足 f(m)>f(n),则 m、n 的大小关系为 ________.26.已知函数 f (x) a2x 1 1 ( a 0, a 1) 过定点,则此定点坐标为________7.函数f ( x) a x log a ( x 1)在[0,1] 上的最大值和最小值之和为a,则 a 的值为.8.函数f ( x) a x (a 0且 a 1) 对于任意的实数x, y 都有()A .f (xy) f ( x) f ( y) B.f ( xy) f (x) f ( y)C.f (x y) f ( x) f ( y) D.f ( x y) f ( x) f ( y)9.将 y=2x的图像 ( ) 再作关于直线y=x 对称的图像,可得到函数y log 2 ( x 1) 的图像.A .先向左平行移动 1 个单位B.先向右平行移动 1 个单位C.先向上平行移动 1 个单位D.先向下平行移动 1 个单位ya x b的图象如图,其中10.函数f ( x) a、 b 为常数,则下列结论正确的是()1A .a 1, b 0 B.a 1,b 0 -1 O 1 xC.0 a 1, b 0 D.0 a 1,b 0 第10题11 y ax 在0,1上的最大值与最小值的和为3,则 a 的值为____.函数.【反馈演练】1.函数y x2 bx c x 0, 是单调函数的充要条件是2 A(1,16),且图像在 x 轴上截得的线段长为8,则此二次函数.已知二次函数的图像顶点为的解析式为3. 设 b 0 ,二次函数y ax 2 bx a 2 1 的图象为下列四图之一:则 a 的值为()A . 1 B.- 11 5 1 5 C.2 D. 2【真题再现】1( 2010 山东)函数 y= 2x- x2的图象大致是 ()2.(2013 陕西 )设 a, b, c 均为不等于 1 的正实数,则下列等式中恒成立的是()A.log a b·log c b=log c aB.log a b·log c a=log c bC.log a(bc)= log a b·log a cD. log a(b+ c)= log a b+ log a c3.( 2010 辽宁)设 2a= 5b= m,且1+1=2,则 m= () a b4( 2012 北京)已知函数 f(x) = lg x,若 f(ab)= 1,则 f(a2)+ f(b2) =________.5.( 2011 新课标全国)已知函数 y= f(x)的周期为2,当 x∈ [- 1,1] 时 f(x)= x2,那么函数 y=f(x)的图像与函数 y= |lgx|的图像的交点共有 ( )6(2009 广·东 )若函数 y= f(x)是函数 y= a x(a>0,且 a≠1)的反函数,其图象经过点( a, a),则 f(x)= ( )第 6 课函数与方程【考点导读】1.能利用二次函数的图像与判别式的正负,判断一元二次方程根的存在性及根的个数,了解函数零点与方程根的联系.2.能借助计算器用二分法求方程的近似解,并理解二分法的实质.【基础练习】1.函数f ( x) x2 4x 4 在区间 [ 4, 1] 有_______个零点.2. f (x)的图像是连续的,且x 与f ( x)有如下的对应值表:已知函数x 1 2 3 4 5 6 f (x) -2.3 3.4 0 - 1.3 - 3.4 3.4则 f (x) 在区间 [1,6] 上的零点至少有 _____个.【范例解析】1.函数 f(x)=2x|log0.5x|-1 的零点个数为( )2.若 a<b<c,则函数 f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a) 两个零点分别位于区间()A.(a,b) 和 (b,c)内B.(- ∞ ,a)和 (a,b) 内C.(b,c)和 (c,+∞ )内D.(- ∞ ,a)和 (c,+ ∞)内3.设函数 f (x)x 2 bx c, x0,若 f ( 4)f (0) , f ( 2)2 ,则关于 x 的方程2, x 0.f ( x) x 解的个数为()【真题再现】1.( 2011 福建)若关于 x 的方程 x 2+mx + 1= 0 有两个不相等的实数根,则实数 m 的取值范围是 ()A . (- 1,1)B . (-2,2)C .( -∞,- 2)∪ (2,+∞ )D .(-∞,- 1)∪(1 ,+∞ )2( 2011 天津 )对实数 a 和 b ,定义运算“ ?”: a?b =a ,a -b ≤ 1, 设函数 f(x)= (x 2- 2)?b ,a - b > 1.(x - 1),x ∈ R.若函数 y = f(x)- c 的图像与 x 轴恰有两个公共点, 则实数 c 的取值范围是 ()A . (- 1,1] ∪ (2,+∞ )B .( -2,- 1]∪ (1,2]C .( -∞,- 2)∪ (1,2]D . [- 2,- 1]3.( 2011 陕西)方程 |x|= cosx 在 (-∞,+∞ )内 ()A .没有根B .有且仅有一个根C .有且仅有两个根D .有无穷多个根x 2+ 2x -3, x ≤ 0)4. ( 2010 福建 )函数 f(x)= ,的零点个数为 (-2+ lnx , x > 05( 2014 天津)函数 f(x)= e x + x -2 的零点所在的一个区间是 ()A . (- 2,- 1)B . (-1,0)C .(0,1)D .(1,2)。
(完整版)必修一函数概念与性质练习题大全
函数概念与性质练习题大全函数定义域1、函数x x x y +-=)1(的定义域为 A .{}0≥x x B .{}1≥x x C .{}{}01Y ≥x x D .{}10≤≤x x2、函数x x y +-=1的定义域为 A .{}1≤x x B .{}0≥x x C .{}01≤≥x x x 或 D .{}10≤≤x x3、若函数)(x f y =的定义域是[]2,0,则函数1)2()(-=x x f x g 的定义域是 A .[]1,0 B .[)1,0 C .[)(]4,11,0Y D .()1,04、函数的定义域为)4323ln(1)(22+--++-=x x x x x x f A .(][)+∞-∞-,24,Y B .()()1,00,4Y - C .[)(]1,00,4Y - D .[)()1,00,4Y -5、函数)20(3)(≤<=x x f x 的反函数的定义域为 A .()+∞,0 B .(]9,1 C .()1,0 D .[)+∞,96、函数41lg )(--=x x x f 的定义域为 A .()4,1 B .[)4,1 C .()()+∞∞-,41,Y D .(]()+∞∞-,41,Y7、函数21lg )(x x f -=的定义域为 A .[]1,0 B .()1,1- C .[]1,1- B .()()+∞-∞-,11,Y8、已知函数x x f -=11)(的定义域为M ,)1ln()(x x g +=的定义域为N ,则=N M IA .{}1->x xB .{}1<x xC .{}11<<-x xD .Φ9、函数)13lg(13)(2++-=x x x x f 的定义域是 A .⎪⎭⎫ ⎝⎛+∞-,31 B .⎪⎭⎫ ⎝⎛-1,31 C .⎪⎭⎫ ⎝⎛-31,31 D .⎪⎭⎫ ⎝⎛-∞-31, 10、函数的定义域2log 2-=x y 是A .()+∞,3B .[)+∞,3C .()+∞,4D .[)+∞,411、函数的定义域x y 2log =是 A .(]1,0 B .()+∞,0 C .()+∞,1 D .[)+∞,112、函数)1(log 12)(2---=x x x f 的定义域为 . 函数与值域练习题一、填空题1、定义在R 上的函数()f x 满足()()()2(,),(1)2f x y f x f y xy x y R f +=++∈=,则(0)f = ,(2)f -= 。
人教版高中数学必修1数学第二章课后习题(共10页)Word版
新课程标准数学必修1第二章课后习题解答第二章 基本初等函数(I ) 2.1指数函数 练习(P54)1. a 21=a ,a 43=43a ,a53-=531a,a32-=321a.2. (1)32x =x 32, (2)43)(b a +=(a +b )43, (3)32n)-(m =(m -n )32, (4)4n)-(m =(m -n )2,(5)56q p =p 3q 25,(6)mm 3=m213-=m 25.3. (1)(4936)23=[(76)2]23=(76)3=343216;(2)23×35.1×612=2×321×(23)31×(3×22)61=231311--×3613121++=2×3=6;(3)a 21a 41a 81-=a814121-+=a 85; (4)2x31-(21x 31-2x 32-)=x 3131+--4x 3221--=1-4x -1=1x4-. 练习(P58)1.如图图2-1-2-142.(1)要使函数有意义,需x -2≥0,即x ≥2,所以函数y =32-x 的定义域为{x |x ≥2};(2)要使函数有意义,需x ≠0,即函数y =(21)x 1的定义域是{x ∣x ≠0}.3.y =2x (x ∈N *)习题2.1 A 组(P59)1.(1)100;(2)-0.1;(3)4-π;(4)x -y .2解:(1)623b a ab=212162122123)(⨯⨯⨯b a a b =23232121--⨯b a =a 0b 0=1. (2)a aa2121=212121a a a⨯=2121a a ⨯=a 21.(3)415643)(mm m m m •••=4165413121mm m m m ••=4165413121+++mm=m 0=1.点评:遇到多重根号的式子,可以由里向外依次去掉根号,也可根据幂的运算性质来进行. 3.解:对于(1),可先按底数5,再按键,再按12,最后按,即可求得它的值.答案:1.710 0; 对于(2),先按底数8.31,再按键,再按12,最后按即可. 答案:2.881 0; 对于(3)这种无理指数幂,先按底数3,再按键,再按键,再按2,最后按即可.答案:4.728 8;对于(4)这种无理指数幂,可先按底数2,其次按键,再按π键,最后按即可.答案:8.825 0.4.解:(1)a 31a 43a127=a 1274331++=a 35; (2)a 32a 43÷a 65=a654332-+=a 127;(3)(x 31y43-)12=12431231⨯-⨯yx =x 4y -9;(4)4a 32b 31-÷(32-a 31-b 31-)=(32-×4)31313132+-+b a =-6ab 0=-6a ;(5))2516(462r t s -23-=)23(4)23(2)23(6)23(2)23(452-⨯-⨯-⨯--⨯-⨯rts=6393652----rt s =36964125s r r ;(6)(-2x 41y31-)(3x21-y 32)(-4x 41y 32)=[-2×3×(-4)]x 323231412141++-+-yx=24y ;(7)(2x 21+3y41-)(2x 21-3y41-)=(2x 21)2-(3y 41-)2=4x -9y 21-;(8)4x 41 (-3x 41y31-)÷(-6x21-y32-)=3231214141643+-++-⨯-y x =2xy 31. 点评:进行有理数指数幂的运算时,要严格按法则和运算顺序,同时注意运算结果的形式,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.5.(1)要使函数有意义,需3-x ∈R ,即x ∈R ,所以函数y =23-x 的定义域为R . (2)要使函数有意义,需2x +1∈R ,即x ∈R ,所以函数y =32x +1的定义域为R .(3)要使函数有意义,需5x ∈R,即x ∈R,所以函数y =(21)5x的定义域为R . (4)要使函数有意义,需x ≠0,所以函数y =0.7x1的定义域为{x |x ≠0}.点评:求函数的定义域一是分式的分母不为零,二是偶次根号的被开方数大于零,0的0次幂没有意义.6.解:设经过x 年的产量为y ,一年内的产量是a (1+100p ),两年内产量是a (1+100p )2,…,x 年内的产量是a (1+100p )x ,则y =a (1+100p )x(x ∈N *,x ≤m ). 点评:根据实际问题,归纳是关键,注意x 的取值范围.7.(1)30.8与30.7的底数都是3,它们可以看成函数y =3x ,当x =0.8和0.7时的函数值;因为3>1,所以函数y =3x 在R 上是增函数.而0.7<0.8,所以30.7<30.8.(2)0.75-0.1与0.750.1的底数都是0.75,它们可以看成函数y =0.75x ,当x =-0.1和0.1时的函数值; 因为1>0.75,所以函数y =0.75x 在R 上是减函数.而-0.1<0.1,所以0.750.1<0.75-0.1.(3)1.012.7与1.013.5的底数都是1.01,它们可以看成函数y =1.01x ,当x =2.7和3.5时的函数值; 因为1.01>1,所以函数y =1.01x 在R 上是增函数.而2.7<3.5,所以1.012.7<1.013.5.(4)0.993.3与0.994.5的底数都是0.99,它们可以看成函数y =0.99x ,当x =3.3和4.5时的函数值; 因为0.99<1,所以函数y =0.99x 在R 上是减函数.而3.3<4.5,所以0.994.5<0.993.3.8.(1)2m ,2n 可以看成函数y =2x ,当x =m 和n 时的函数值;因为2>1,所以函数y =2x 在R 上是增函数.因为2m <2n ,所以m <n .(2)0.2m ,0.2n 可以看成函数y =0.2x ,当x =m 和n 时的函数值;因为0.2<1, 所以函数y =0.2x 在R 上是减函数.因为0.2m <0.2n ,所以m >n . (3)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为0<a <1, 所以函数y =a x 在R 上是减函数.因为a m <a n ,所以m >n . (4)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为a >1, 所以函数y =a x 在R 上是增函数.因为a m >a n ,所以m >n .点评:利用指数函数的单调性是解题的关键.9.(1)死亡生物组织内碳14的剩余量P 与时间t 的函数解析式为P=(21)57301.当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量为P=(21)573057309⨯=(21)9≈0.002. 答:当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量约为死亡前含量的2‰, 因此,还能用一般的放射性探测器测到碳14的存在.(2)设大约经过t 万年后,用一般的放射性探测器测不到碳14,那么(21)537010000t <0.001,解得t >5.7.答:大约经过6万年后,用一般的放射性探测器是测不到碳14的.B 组1. 当0<a <1时,a 2x -7>a 4x -12⇒x -7<4x -1⇒x >-3;当a >1时,a 2x -7>a 4x -1⇒2x -7>4x -1⇒x <-3. 综上,当0<a <1时,不等式的解集是{x |x >-3};当a >1时,不等式的解集是{x |x <-3}.2.分析:像这种条件求值,一般考虑整体的思想,同时观察指数的特点,要注重完全平方公式的运用. 解:(1)设y =x 21+x21-,那么y 2=(x 21+x21-)2=x +x -1+2.由于x +x -1=3,所以y =5.(2)设y =x 2+x -2,那么y =(x +x -1)2-2.由于x +x -1=3,所以y =7.(3)设y =x 2-x -2,那么y =(x +x -1)(x -x -1),而(x -x -1)2=x 2-2+x -2=5,所以y =±35. 点评:整体代入和平方差,完全平方公式的灵活运用是解题的突破口. 3.解:已知本金为a 元.1期后的本利和为y 1=a +a ×r =a (1+r ),2期后的本利和为y 2=a (1+r )+a (1+r )×r =a (1+r )2, 3期后的本利和为y 3=a (1+r )3, …x 期后的本利和为y =a (1+r )x .将a =1 000,r =0.022 5,x =5代入上式得y =a (1+r )x =1 000×(1+0.022 5)5=1 000×1.02255≈1118. 答:本利和y 随存期x 变化的函数关系式为y =a (1+r )x ,5期后的本利和约为1 118元. 4.解:(1)因为y 1=y 2,所以a 3x +1=a -2x .所以3x +1=-2x .所以x =51-. (2)因为y 1>y 2,所以a 3x +1>a -2x . 所以当a >1时,3x +1>-2x .所以x >51-. 当0<a <1时,3x +1<-2x .所以x <51-.2.2对数函数 练习(P64)1.(1)2log 83=; (2)2log 325=; (3)21log 12=-; (4)2711log 33=- 2.(1)239=; (2)35125=; (3)2124-=; (4)41381-=3.(1)设5log 25x =,则25255x ==,所以2x =;(2)设21log 16x =,则412216x -==,所以4x =-; (3)设lg1000x =,则310100010x==,所以3x =; (4)设lg 0.001x =,则3100.00110x-==,所以3x =-;4.(1)1; (2)0; (3)2; (4)2; (5)3; (6)5.练习(P68)1.(1)lg()lg lg lg xyz x y z =++;(2)222lg lg()lg lg lg lg lg 2lg lg xy xy z x y z x y z z =-=++=++;(3)33311lg()lg lg lg lg 3lg lg22xy x y z x y z =-=+-=+-;(4)2211lg()lg (lg lg )lg 2lg lg 22y z x y z x y z ==-+=--. 2.(1)223433333log (279)log 27log 9log 3log 3347⨯=+=+=+=;(2)22lg1002lg1002lg104lg104====;(3)5lg 0.00001lg105lg105-==-=-; (4)11ln 22e ==3. (1)22226log 6log 3log log 213-===; (2)lg5lg 2lg101+==; (3)555511log 3log log (3)log 1033+=⨯==;(4)13333351log 5log 15log log log 31153--====-.4.(1)1; (2)1; (3)54练习(P73)1.函数3log y x =及13log y x =的图象如右图所示.相同点:图象都在y 轴的右侧,都过点(1,0) 不同点:3log y x =的图象是上升的,13log y x =的图象是下降的关系:3log y x =和13log y x =的图象是关于x 轴对称的.2. (1)(,1)-∞; (2)(0,1)(1,)+∞; (3)1(,)3-∞; (4)[1,)+∞3. (1)1010log 6log 8< (2)0.50.5log 6log 4< (3)2233log 0.5log 0.6> (4) 1.5 1.5log 1.6log 1.4>习题2.2 A 组(P74) 1. (1)3log 1x =; (2)41log 6x =; (3)4log 2x =; (4)2log 0.5x = (5) lg 25x = (6)5log 6x =2. (1)527x = (2) 87x = (3) 43x = (4)173x=(5) 100.3x= (6) 3xe =3. (1)0; (2) 2; (3) 2-; (4)2; (5) 14-; (6) 2. 4. (1)lg6lg 2lg3a b =+=+; (2) 3lg 42lg 22log 4lg3lg3ab===; (3) 2lg122lg 2lg3lg3log 1222lg 2lg 2lg 2b a +===+=+; (4)3lg lg3lg 22b a =-=- 5. (1)x ab =; (2) mx n=; (3) 3n x m =; (4)b x =.6. 设x 年后我国的GDP 在1999年的GDP 的基础上翻两番,则(10.073)4x+=解得 1.073log 420x =≈. 答:设20年后我国的GDP 在1999年的GDP 的基础上翻两番.7. (1)(0,)+∞; (2) 3(,1]4.8. (1)m n <; (2) m n <; (3) m n >; (4)m n >. 9. 若火箭的最大速度12000v =,那么62000ln 112000ln(1)61402M M M M e mm m m ⎛⎫+=⇒+=⇒+=⇒≈ ⎪⎝⎭答:当燃料质量约为火箭质量的402倍时,火箭的最大速度可达12km/s.10. (1)当底数全大于1时,在1x =的右侧,底数越大的图象越在下方.所以,①对应函数lg y x =,②对应函数5log y x =,③对应函数2log y x =. (2)略. (3)与原函数关于x 轴对称. 11. (1)235lg 25lg 4lg92lg52lg 22lg3log 25log 4log 98lg 2lg3lg5lg 2lg3lg5⋅⋅=⨯⨯=⨯⨯= (2)lg lg lg log log log 1lg lg lg a b c b c a b c a a b c⋅⋅=⨯⨯= 12. (1)令2700O =,则312700log 2100v =,解得 1.5v =. 答:鲑鱼的游速为1.5米/秒. (2)令0v =,则31log 02100O=,解得100O =. 答:一条鱼静止时的耗氧量为100个单位.B 组1. 由3log 41x =得:143,43xx-==,于是11044333x x -+=+= 2. ①当1a >时,3log 14a<恒成立; ②当01a <<时,由3log 1log 4a a a <=,得34a <,所以304a <<.综上所述:实数a 的取值范围是3{04a a <<或1}a >3. (1)当1I = W/m 2时,112110lg 12010L -==;(2)当1210I -= W/m 2时,121121010lg 010L --==答:常人听觉的声强级范围为0120dB .4. (1)由10x +>,10x ->得11x -<<,∴函数()()f x g x +的定义域为(1,1)- (2)根据(1)知:函数()()f x g x +的定义域为(1,1)-∴ 函数()()f x g x +的定义域关于原点对称又∵ ()()log (1)log (1)()()a a f x g x x x f x g x -+-=-++=+ ∴()()f x g x +是(1,1)-上的偶函数.5. (1)2log y x =,0.3log y x =; (2)3xy =,0.1x y =.习题2.3 A 组(P79) 1.函数y =21x是幂函数. 2.解析:设幂函数的解析式为f (x )=x α,因为点(2,2)在图象上,所以2=2α.所以α=21,即幂函数的解析式为f (x )=x 21,x ≥0.3.(1)因为流量速率v 与管道半径r 的四次方成正比,所以v =k ·r 4; (2)把r =3,v =400代入v =k ·r 4中,得k =43400=81400,即v =81400r 4; (3)把r =5代入v =81400r 4,得v =81400×54≈3 086(cm 3/s ), 即r =5 cm 时,该气体的流量速率为3 086 cm 3/s .第二章 复习参考题A 组(P82)1.(1)11; (2)87; (3)10001; (4)259. 2.(1)原式=))(()()(212121212212122121b a b a b a b a -+++-=b a b b a a b b a a -++++-2121212122=ba b a -+)(2;(2)原式=))(()(1121----+-a a a a a a =aa a a 11+-=1122+-a a . 3.(1)因为lg 2=a ,lg 3=b ,log 125=12lg 5lg =32lg 210lg2•=3lg 2lg 22lg 1+-,所以log 125=ba a +-21. (2)因为2log 3a =,3log 7b =37147log 27log 56log 27⨯=⨯=2log 112log 377++=7log 2log 11)7log 2(log 33333÷++÷=b ab a ÷++÷111)1(3=13++ab ab . 4.(1)(-∞,21)∪(21,+∞);(2)[0,+∞).5.(32,1)∪(1,+∞);(2)(-∞,2);(3)(-∞,1)∪(1,+∞).6.(1)因为log 67>log 66=1,所以log 67>1.又因为log 76<log 77=1,所以log 76<1.所以log 67>log 76. (2)因为log 3π>log 33=1,所以log 3π>1.又因为log 20.8<0,所以log 3π>log 20.8.7.证明:(1)因为f (x )=3x ,所以f (x )·f (y )=3x ×3y =3x +y .又因为f (x +y )=3x +y ,所以f (x )·f (y )=f (x +y ). (2)因为f (x )=3x ,所以f (x )÷f (y )=3x ÷3y =3x -y . 又因为f (x -y )=3x -y ,所以f (x )÷f (y )=f (x -y ).8.证明:因为f (x )=lgxx+-11,a 、b ∈(-1,1), 所以f (a )+f (b )=lgbb a a +-++-11lg11=lg )1)(1()1)(1(b a b a ++--, f (ab b a ++1)=lg (ab b a ab ba +++++-1111)=lg b a ab b a ab +++--+11=lg )1)(1()1)(1(b a b a ++--. 所以f (a )+f (b )=f (abba ++1).9.(1)设保鲜时间y 关于储藏温度x 的函数解析式为y =k ·a x (a >0,且a ≠1).因为点(0,192)、(22,42)在函数图象上,所以022192,42,k a k a ⎧=⋅⎪⎨=⋅⎪⎩解得⎪⎩⎪⎨⎧≈==.93.0327,19222a k 所以y =192×0.93x ,即所求函数解析式为y =192×0.93x . (2)当x =30 ℃时,y ≈22(小时);当x =16 ℃时,y ≈60(小时),即温度在30 ℃和16 ℃的保鲜时间约为22小时和60小时. (3)图象如图:图2-210.解析:设所求幂函数的解析式为f (x )=x α,因为f (x )的图象过点(2,22), 所以22=2α,即221-=2α.所以α=21-.所以f (x )=x 21-(x >0).图略,f (x )为非奇非偶函数;同时它在(0,+∞)上是减函数.B 组1.A2.因为2a =5b =10,所以a =log 210,b =log 510,所以a 1+b 1=10log 12+10log 15=lg 2+lg 5=lg 10=1. 3.(1)f (x )=a 122+-x在x ∈(-∞,+∞)上是增函数.证明:任取x 1,x 2∈(-∞,+∞),且x 1<x 2.f (x 1)-f (x 2)=a 122+-x -a +1222+x =1222+x -1221+x =)12)(12()22(21221++-x x x x . 因为x 1,x 2∈(-∞,+∞), 所以.012.01212>+>+x x又因为x 1<x 2, 所以2122x x <即2122x x <<0.所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以函数f (x )=a 122+-x在(-∞,+∞)上是增函数. (2)假设存在实数a 使f (x )为奇函数,则f (-x )+f (x )=0,即a 121+--x +a 122+-x =0⇒a =121+-x +121+x =122+x +121+x=1, 即存在实数a =1使f (x )=121+--x 为奇函数.4.证明:(1)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以[g (x )]2-[f (x )]2=[g (x )+f (x )][g (x )-f (x )]=)22)(22(xx x x x x x x e e e e e e e e -----++++ =e x ·e -x =e x -x =e 0=1, 即原式得证.(2)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以f (2x )=222x x e e -+,2f (x )·g (x )=2·2x x e e --·2x x e e -+=222xx e e --.所以f (2x )=2f (x )·g (x ).(3)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以g (2x )=222x x e e -+,[g (x )]2+[f (x )]2=(2x x ee -+)2+(2xx e e --)2=4222222x x x x e e e e --+-+++=222xx e e -+.所以g (2x )=[f (x )]2+[g (x )]2.5.由题意可知,θ1=62,θ0=15,当t =1时,θ=52,于是52=15+(62-15)e -k ,解得k ≈0.24,那么θ=15+47e -0.24t . 所以,当θ=42时,t ≈2.3;当θ=32时,t ≈4.2.答:开始冷却2.3和4.2小时后,物体的温度分别为42 ℃和32 ℃.物体不会冷却到12 ℃.6.(1)由P=P 0e -k t 可知,当t =0时,P=P 0;当t =5时,P=(1-10%)P 0.于是有(1-10%)P 0=P 0e -5k ,解得k =51-ln 0.9,那么P=P 0e t )9.0ln 51(.所以,当t =10时,P=P 0e 9.01051n I ⨯⨯=P 0e ln 0.81=81%P 0.答:10小时后还剩81%的污染物. (2)当P=50%P 0时,有50%P 0=P 0et )9.0ln 51(,解得t =9.0ln 515.0ln ≈33.答:污染减少50%需要花大约33h . (3)其图象大致如下:图2-3。
(完整word)高中数学函数必修一习题含答案,推荐文档
第2卷(选择题 、选择题(本大题共12个小题,每小题四个选项中,只有一项是符合题目要求的)函数 尸log a (x + 2)+ 1的图象过定点(若 2lg(x - 2y)= lg x + lg y(x>0, y>0)则x 的值为()114 B . 1 或4 C . 1 或 4 D.4log 3x ,x>0, 已知函数f(x)= 2x ,x w o.A.1 B . 4 C . 2 D.17. 函数y = ax 2 + bx 与y = log b x (ab ^0,|a|M |b|)在同一直角坐标系中的图象 a (1,2)B .(2,1)C . (-2,1)D .(-1,1) 共60分)5分,共60分,在每小题给出的 2. 3. C .下列函数中与函数y = x 相等的函数是( y = (:'x )2y = 2log 2xB .D .) y = x 2 y = Iog 22x 4.2 函数y = lg 1+x -1的图象关于(A .原点对称B .C . x 轴对称D .y 轴对称 直线y = x 对称 5. F 列关系中正确的是()1log 76<In 2<log 3 n B . 1log 3 n <ln2<log 76C . 1In 2<log 76<log 3 nD .1In 2<log 3n vlogS6.的值为()可能是(8.若函数y = (m 2 + 2m — 2)x m 为幕函数且在第一象限为增函数, 则m 的值为()A . 1B . — 3C .— 1D . 39. 若函数y =f(x)是函数y = a x (a>0且a ^ 1)的反函数,其图象经过点(a , a),则 f(x) =()1 2A . log 2xB . log 1 x C.2x D . x2110 .函数f(x)= log2(x 2— 3x + 2)的递减区间为()B ・(1,2)11.函数f(x)= lg(kx 2 + 4kx + 3)的定义域为R ,则k 的取值范围是()A. 0, 3B.0, 33D . ( — X, 0] u 4,+x12. 设a>0且a ^ 1,函数f(x) = log a |ax 2— x|在[3,4]上是增函数,则a 的取值范围是()1 A. 6, 14 U (1,+X )B.1 1 1, 1 U (1, + X )1 11c. 8, 6 U (1,+X )D. 0, 4 u (1,+ X )第u 卷 (非选择题共90分)、填空题(本大题共4个小题,请把正确答案填在题中横线上)+•7C. 0, 4.1-313.计算27+ lg 0.01 —In v e+ 3log32= ________14. ________________________________________ 函数f(x) = lg(x—1) + p5 —x的定义域为 _____________________________________ .15. 已知函数f(x) = Iog3(x2+ ax+ a+ 5), f(x)在区间(―®, 1)上是递减函数,则实数a的取值范围为_________ .16. 已知下列四个命题:①函数f(x) = 2x满足:对任意X1, *€ R且刃工x2X i —L x2 1 __ 2都有f —2 <2【f(x i) + f(X2)];②函数f(x)= Iog2(x+ 1 + x2), g(x) = 1 + ?x_〔不都是奇函数;③若函数f(x)满足f(x- 1)= —f(x+ 1),且f(1) = 2,则f(7)= —2;④设x i,x2是关于x的方程|log a x|= k(a>0且a^ 1)的两根,贝U X1X2= 1.其中正确命题的序且日序号疋________ .三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17. (本小题满分10分)1 1(1) 计算lg25+ lg 2X Ig 500 —qlg 亦—Iog29X Iog32;(2) 已知Ig 2= a,lg 3 = b,试用a,b表示log125.18. (本小题满分12分)已知函数f(x)= lg(3x—3).(1) 求函数f(x)的定义域和值域;(2) 设函数h(x) = f(x) —lg(3x+ 3),若不等式h(x)>t无解,求实数t的取值范围.19. (本小题满分12分)—2 m2+ m+ 3已知函数f(x) = x (m€ Z)为偶函数,且f(3)<f(5).(1)求m的值,并确定f(x)的解析式;⑵若g(x)= log a[f(x) —2x](a>0 且a^ 1),求g(x)在(2,3]上的值域.20. (本小题满分12分)kx _ 1已知函数f(x)= Ig (k€ R).x—1(1) 若y=f(x)是奇函数,求k的值,并求该函数的定义域;(2) 若函数y= f(x)在[10,+x)上是增函数,求k的取值范围.21. (本小题满分12分)1 一x已知函数f(x)= Iog3〔一mx(m H 1)是奇函数.(1)求函数y= f(x)的解析式;1 一x⑵设g(x)= —,,用函数单调性的定义证明:函数y= g(x)在区间(—1,1)1 —mx上单调递减;(3) 解不等式f(t+ 3)<0.22. (本小题满分12分)已知函数f(x)= log4(4x+ 1) + kx(k€ R)是偶函数.(1) 求实数k的值;(2) 设g(x)= log4(a 2x+ a),若f(x)= g(x)有且只有一个实数解,求实数a的取值范围.1. D解析:定点(—1,1).2. B解析:详解答案由对数函数恒过定点(1,0)知,函数y= log a(x+ 2)+ 1的图象过由对数的性质及运算知,2lg(x—2y) = lg x+ lg y化简为lg(x—2y)2= lg xy,即(x—2y)2= xy,解得x=y或x=4y.所以f的值为1或寸.故选B.3. D 解析:函数y=x的定义域为R.A中,y= ( ,x)2定义域为[0, + );B 中,y= ,x2= |x|;C 中,y = 2log2x=x,定义域为(0, +^);D 中,y= Iog22x=x, 定义域为R.所以与函数y=x相等的函数为y= log22x.24. A 解析:函数y= lg 弟—1的定义域为(—1,1).2 1 一x又设f(x)二尸lg苗-仁lg帀,1 + x 1 —x所以f( —X)二lg 1—x二一lg 二一f(x),所以函数为奇函数,故关于原点对称.15. C 解析:由对数函数图象和性质,得0<log76<1, ln ?<0, Iog3n >1所以1ln 2<log76v log3 n故选C.111 16. A 解析:••• 27>0-f 27 = log3^7= —3,v —3<0, f(—3) = 2—3=8.故选A.b7. D 解析:A 中,由y= ax2+ bx 的图象知,a>0, -<0,由y= log b x 知,a 一ab>0,所以A错;b bB 中,由y= ax2+ bx 的图象知,a<0, -<0,由y= log b x 知,->0,所以B a— aa错;C 中,由y= ax2+ bx 的图象知,a<0,—-<-1,A ->1,由y= log b x 知0<— aa — aa<1,所以C错.故选D.8. A 解析:因为函数y= (m2+ 2m—2)x m为幕函数且在第一象限为增函数,m2+ 2m—2= 1,所以解得m= 1.故选A.m>0,9. B 解析:因为函数y=f(x)图象经过点(.a,a),所以函数y= a x(a>0且a^ 1)1 1 过点(a, .a),所以a = a a即a = Q,故f(x)= log^x.10. D 解析:令t = x2—3x+ 2,则当t= x2—3x+ 2>0 时,解得x€ (— ^, 1)U (2,+x).且t = x2—3x+ 2在区间(一x, 1)上单调递减,在区间(2,+x) 上单调递增;又y= log丄t在其定义域上为单调递减的,所以由复合函数的单调性知,f(x) 2=log】程一3x+ 2)单调递减区间是(2,+ x).211. B 解析:因为函数f(x) = lg(&+ 4kx+ 3)的定义域为R,所以kx2+ 4kxk>0,+ 3>0,x€ R恒成立.①当k= 0时,3>0恒成立,所以k= 0适合题意.②&0,3 3即0<k<4・由①②得0W k<4.故选B.解题技巧:本题实际上考查了恒成立问题,解决本题的关键是让真数kx2+ 4kx+ 3>0, x € R 恒成立.12. A 解析:令u(x)=|ax2—x|,贝U y= log a u,所以u(x)的图象如图所示.当a>1时,由复合函数的单调性可知,区间[3,4]落在 1 1所以4W 石或g<3,故有a>1;1 1 1解得6<a<4.综上所述,a 的取值范围是6,1 1 113. —1 解析:原式=^— 2—2+ 2=14. (1,5] 解析:要使函数f(x) = lg(x — 1) + 5-x 有意义,只需满足;"Jo 即可•解得1<x < 5,所以函数f(x)= lg(x — 1)+ 5 — x 的定义域为(1,5].a15. [ — 3,— 2] 解析:令 g(x) = x 2 + ax + a + 5, g(x)在 x € —8,—-是减 a函数,x € — 2,+ 是增函数.而f(x) = log 3t ,t € (0,+8)是增函数.由复合 函数的单调性,得—2> 1,解得—3< a <— 2.g 1 > 0,解题技巧:本题主要考查了复合函数的单调性, 解决本题的关键是在保证真 数g(x)>0的条件下,求出g(x)的单调增区间.16. ①③④ 解析:①•••指数函数的图象为凹函数,.••①正确; ②函数 f(x) = Iog 2(x + . 1 + x 2)定义域为 R ,且 f(x) + f(—x)= Iog 2(x + .1 + x 2) + log 2(— x + 1 + x 2) = log 21 = 0,二 f(x) = — f( — x),.°. f(x)为奇函数.22x + 1g(x)的定义域为(—8,0)u (0,+8),且 g(x)= 1+ 2—1=2x —1,g(—x)=2—x+ 1 1 + 2x2^+1 二1—x = — g(x),A g(x)是奇函数.②错误;1 、10 -- 或— + 8 上0,2a 或 a ,+ 丄,当0<a<1时,由复合函数的单调性可知,[3,4]? 1 2a ,1 1 11,所以习三3 且a>4,14 u (1, 1 6.③••• f(x —1)=—f(x + 1),二f(7) = f(6+ 1)= —f(6 —1) = —f(5), f(5)= f(4+ 1)二—f(4—1)= —f(3), f(3)二—f(1),••• f(7)= —f(1),③正确;④|log a x|= k(a>0且a^ 1)的两根,贝U log a x i = —Iog a x2,:log a x i + log a X2 = 0, X1 x2= 1..・.④正确.17. 解:(1)原式二lg25 + lg 5 lg 2+ 2lg 2+ lg 5 —log39=lg 5(lg 5 + lg 2) + 2lg 2+ lg 5 — 2二2(lg 5+ lg 2) — 2=0.10__ lg T _ lg 10—lg 2_ 1 —lg 2 (2)log125=lg 12_lg 3X4_ lg3 + lg4 _ lg 3+ 2lg 2'—_ 1 —lg 2 1 —alg 2_a, lg 3_ b, Iog125_ _ .lg 3+ 2lg 2 b + 2a18. 解:(1 )由3x—3>0解得x>1,所以函数f(x)的定义域为(1,+x). 因为(3x—3)€(0,+x),所以函数f(x)的值域为R.3x_ 3(2)因为h(x) _ lg(3x—3) —lg(3x+ 3)_ lg 3+3_lg 1 —3+3的定义域为(1,+x),且在(1,+x)上是增函数,所以函数的值域为(一X, 0).所以若不等式h(x)>t无解,则t的取值范围为[0, +X).19. 解:(1)因为f(3)<f(5),所以由幕函数的性质得,—2m2+ m+ 3>0,解得彳3—1<m<2.因为m€ Z ,所以m_ 0或m_ 1. 当m_ 0时,f(x)_x3它不是偶函数. 当m_ 1时,f(x)_x2是偶函数.所以m_ 1, f(x) _x2.(2)由(1)知g(x)_ log a(x2—2x),设t_x2—2x, x€ (2,3],则t € (0,3],此时g(x)在(2,3]上的值域就是函数y_log a t在t€ (0,3]上的值域.当a>1时,y = log a t 在区间(0,3]上是增函数,所以y € (-^, log a 3]; 当0<a<1时,y = log a t 在区间(0,3]上是减函数,所以y € [log a 3,+^ ). 所以当a>1时,函数g(x)的值域为(一X, iog a 3];当0<a<1时,g(x)的值域 为[log a 3, + x ).20. 解:(1)因为f(x)是奇函数,—kx - 1 kx -1-f(—X )二一f(x),即 lg — x —1 二一lg_x —1—kx -1 _ x — 1 —x — 1 _ kx — 1,二 k 2 _ 1, k _ ±, 而k _ 1不合题意舍去, k _ — 1. —x — 1由 >0,得函数y _f(x)的定义域为(一1,1).x — I又 f(x)_ lg kX —1_ lg k + ・ ,x —1 x —1 '即 lg k+ ■ <lg k +『,X 1— 1 X 2- 1 '1 1 > , X 1 — 1 X2 — 1 1综上可知k € 10, 1 .解题技巧:本题主要考查了对数型函数的性质, 解决本题的关键是充分利用 好奇偶性和单调性.21. (1)解:由题意得f( — x) + f(x)_0对定义域中的x 都成立,1 + X .1 — X1 + X 1 — X “(2)v f(x)在[10,+^)上是增函数,•10k — 1 1--------- >0 • k>= 10 — 1 , 10'故对任意的X 1,X 2,当10< X 1VX 2时,恒有f(X )<f(X ), k — 1 k —1X 1 — 1 X 2 — 1,• (k — 1)1 1X 1— 1— X 2— 1 <0,--k — 1<0, • k<1.所以log s + log3 _ 0,即•_ 1,1 + mx 1 —mx 1 + mx 1 —mx 所以1 —x2_ 1 —m2x2对定义域中的x都成立,所以m 2 3= 1又m ^ 1,所以m =— 1,1 一 x所以 f(x) = Iog 3^—.1 + x1 一 x⑵证明:由(1)知,g(x)=-,I 十x设 X 1, X 2€ (— 1,1),且 X 1<X 2,贝U X 1— 1>0 , X 2— 1>0 , X 2— X 1>0.2 x 2 __ x 1因为 g(X 1)_ g(X 2)= 1 — x1 1 — x2 >0,所以 g(X 1)> g(X 2),所以函数y = g(x)在区间(一 1,1)上单调递减.⑶解:函数y = f(x)的定义域为(—1,1),设 X 1, X 2€ (— 1,1),且 X 1<X 2,由 ⑵得 g(x 1)>g(x 2),所以 Iog 3g(x 1)>log 3g(x 2),即 f(x”>f(X 2),所以y = f(x)在区间(—1,1)上单调递减.—1< t 十 3<1 , 因为f(t 十3)<0 = f(0),所以 t 十 3>0 ,解得—3<t<— 2.故不等式的解集为(—3, — 2).22.解:(1)由函数f(x)是偶函数可知f(x) = f(— x),/. Iog 4(4X — 1)— kx = log 4(4 x — 1) — kx ,4X — 1化简得 Iog4.—x 十 1 = — 2kx ,4 十11 即x = — 2kx 对一切x € R 恒成立,二k = — ^.⑵函数f(x)与g(x)的图象有且只有一个公共点, 1 即方程Iog 4(4X 十1) — ?x = Iog 4(a 2X + a)有且只有一个实根,0,此时有a = — 2+ 2 2或a = — 2 — 2 2(舍去);③当a>1时,又g(0) = — 1,方程恒有一个正根与一个负根,符合题意.综 上可2化简得方程2X + 2X = a-2X + a 有且只有一个实根,且 a 2X + a>0成立,则a>0.令t = 2X >0 ,则(a — 1)t 2 + at — 1= 0有且只有一个正根.设 g(t) = (a — 1)t 2 + at — 1,注意到 g(0) = — 1<0,所以①当a = 1时,有t = 1,符合题意;②当0<a<1时,g(t)图象开口向下,且g(0) = — 1<0,则需满足t 对称轴= a 2 a — 1 >0,知,a的取值范围是{ — 2 + 2 2} U [1 ,+x).。
必修一-函数的概念练习题(含答案)
函数的概念(一)一、选择题1.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f (x )→y =12xB .f (x )→y =13xC .f (x )→y =23x D .f (x )→y =x 2.某物体一天中的温度是时间t 的函数:T (t )=t 3-3t +60,时间单位是小时,温度单位为℃,t =0表示12:00,其后t 的取值为正,则上午8时的温度为( )A .8℃B .112℃C .58℃D .18℃3.函数y =1-x2+x2-1的定义域是( )A .[-1,1]B .(-∞,-1]∪[1,+∞)C .[0,1]D .{-1,1}4.已知f (x )的定义域为[-2,2],则f (x 2-1)的定义域为( )A .[-1,3]B .[0,3]C .[-3,3]D .[-4,4]5.若函数y =f (3x -1)的定义域是[1,3],则y =f (x )的定义域是( )A .[1,3]B .[2,4]C .[2,8]D .[3,9]6.函数y =f (x )的图象与直线x =a 的交点个数有( )A .必有一个B .一个或两个C .至多一个D .可能两个以上7.函数f (x )=1ax2+4ax +3的定义域为R ,则实数a 的取值范围是( ) A .{a |a ∈R } B .{a |0≤a ≤34}C .{a |a >34} D .{a |0≤a <34} 8.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润y 与营运年数x (x ∈N )为二次函数关系(如图),则客车有营运利润的时间不超过( )年.A .4B .5C .6D .79.(安徽铜一中高一期中)已知g (x )=1-2x ,f [g (x )]=1-x2x2(x ≠0),那么f ⎝⎛⎭⎫12等于( )A .15B .1C .3D .3010.函数f (x )=2x -1,x ∈{1,2,3},则f (x )的值域是( )A .[0,+∞)B .[1,+∞)C .{1,3,5}D .R二、填空题11.某种茶杯,每个2.5元,把买茶杯的钱数y (元)表示为茶杯个数x (个)的函数,则y =________,其定义域为________.12.函数y =x +1+12-x 的定义域是(用区间表示)________. 三、解答题13.求一次函数f (x ),使f [f (x )]=9x +1.14.将进货单价为8元的商品按10元一个销售时,每天可卖出100个,若这种商品的销售单价每涨1元,日销售量就减少10个,为了获得最大利润,销售单价应定为多少元?15.求下列函数的定义域.(1)y =x +1x2-4; (2)y =1|x|-2;(3)y =x2+x +1+(x -1)0. 16.(1)已知f (x )=2x -3,x ∈{0,1,2,3},求f (x )的值域.(2)已知f (x )=3x +4的值域为{y |-2≤y ≤4},求此函数的定义域.17.(1)已知f (x )的定义域为 [ 1,2 ] ,求f (2x -1)的定义域;(2)已知f (2x -1)的定义域为 [ 1,2 ],求f (x )的定义域;(3)已知f (x )的定义域为[0,1],求函数y =f (x +a )+f (x -a )(其中0<a <12)的定义域.18.用长为L 的铁丝弯成下部为矩形,上部为半圆形的框架(如图),若矩形底边长为2x ,求此框架的面积y 与x 的函数关系式及其定义域.1.2.1 函数的概念答案一、选择题1.[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C. 2.[答案] A[解析] 12:00时,t =0,12:00以后的t 为正,则12:00以前的时间负,上午8时对应的t =-4,故T (-4)=(-4)3-3(-4)+60=8.3.[答案] D[解析] 使函数y =1-x2+x2-1有意义应满足⎩⎪⎨⎪⎧ 1-x2≥0x2-1≥0,∴x 2=1,∴x =±1. 4.[答案] C[解析] ∵-2≤x 2-1≤2,∴-1≤x 2≤3,即x 2≤3,∴-3≤x ≤ 3.5.[答案] C[解析] 由于y =f (3x -1)的定义域为[1,3],∴3x -1∈[2,8],∴y =f (x )的定义域为[2,8]。
高中数学必修一第三章函数的概念与性质必须掌握的典型题(带答案)
高中数学必修一第三章函数的概念与性质必须掌握的典型题单选题1、若函数f (x )=x α的图象经过点(9,13),则f (19)=( ) A .13B .3C .9D .8答案:B分析:将(9,13)代入函数解析式,即可求出α,即可得解函数解析式,再代入求值即可.解:由题意知f (9)=13,所以9α=13,即32α=3−1,所以α=−12,所以f (x )=x −12,所以f (19)=(19)−12=3.故选:B2、已知函数f (x )的定义域为(3,5),则函数f (2x +1)的定义域为( ) A .(1,2)B .(7,11)C .(4,16)D .(3,5) 答案:A分析:根据3<2x +1<5求解即可∵f (x )的定义域为(3,5),∴3<x <5,由3<2x +1<5,得1<x <2,则函数f (2x +1)的定义域为(1,2) 故选:A.3、函数f (x )=x 2−1的单调递增区间是( ) A .(−∞,−3)B .[0,+∞) C .(−3,3)D .(−3,+∞) 答案:B分析:直接由二次函数的单调性求解即可.由f (x )=x 2−1知,函数为开口向上,对称轴为x =0的二次函数,则单调递增区间是[0,+∞). 故选:B.4、已知函数f (x )是定义在R 上的偶函数,f (x )在[0,+∞)上单调递减,且f (3)=0,则不等式(2x −5)f (x −1)<0的解集为( )A .(−2,52)∪(4,+∞)B .(4,+∞)C .(−∞,−2)∪[52,4]D .(−∞,−2) 答案:A分析:根据偶函数的性质及区间单调性可得(−∞,0)上f(x)单调递增且f(−3)=f(3)=0,进而确定f(x)的区间符号,讨论{2x −5>0f(x −1)<0 、{2x −5<0f(x −1)>0求解集即可.由题设,(−∞,0)上f(x)单调递增且f(−3)=f(3)=0, 所以(−∞,−3)、(3,+∞)上f(x)<0,(−3,3)上f(x)>0, 对于(2x −5)f(x −1)<0,当{2x −5>0f(x −1)<0 ,即{x >52x −1<−3 或{x >52x −1>3 ,可得x >4; 当{2x −5<0f(x −1)>0 ,即{x <52−3<x −1<3,可得−2<x <52; 综上,解集为(−2,52)∪(4,+∞). 故选:A5、已知幂函数f(x)=k ⋅x α的图象经过点(3,√3),则k +α等于( ) A .32B .12C .2D .3答案:A分析:由于函数为幂函数,所以k =1,再将点(3,√3)代入解析式中可求出α的值,从而可求出k +α 解:因为f(x)=k ⋅x α为幂函数,所以k =1,所以f(x)=x α, 因为幂函数的图像过点(3,√3), 所以√3=3α,解得α=12,所以k +α=1+12=32,故选:A6、已知幂函数y =x a 与y =x b 的部分图像如图所示,直线x =m 2,x =m (0<m <1)与y =x a ,y =x b 的图像分别交于A ,B ,C ,D 四点,且|AB |=|CD |,则m a +m b =( )A.1B.1C.√2D.22答案:B分析:表示出|AB|,|CD|,由幂函数的图象可得b>1>a>0,从而得(m2)a>(m2)b,m a>m b,再由|AB|=|CD|,代入化简计算,即可求解出答案.由题意,|AB|=(m2)a−(m2)b,|CD|=m a−m b,根据图象可知b>1>a>0,当0<m<1时,(m2)a> (m2)b,m a>m b,因为|AB|=|CD|,所以m2a−m2b=(m a+m b)(m a−m b)=m a−m b,因为m a−m b>0,可得m a+m b=1.故选:B,则f(x)()7、设函数f(x)=x3−1x3A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减答案:A分析:根据函数的解析式可知函数的定义域为{x|x≠0},利用定义可得出函数f(x)为奇函数,再根据函数的单调性法则,即可解出.因为函数f(x)=x3−1定义域为{x|x≠0},其关于原点对称,而f(−x)=−f(x),x3所以函数f(x)为奇函数.又因为函数y=x3在(0,+∞)上单调递增,在(−∞,0)上单调递增,而y =1x 3=x −3在(0,+∞)上单调递减,在(−∞,0)上单调递减,所以函数f(x)=x 3−1x 3在(0,+∞)上单调递增,在(−∞,0)上单调递增. 故选:A .小提示:本题主要考查利用函数的解析式研究函数的性质,属于基础题. 8、下列函数为奇函数的是( ) A .y =x 2B .y =x 3C .y =|x|D .y =√x 答案:B分析:根据奇偶函数的定义判断即可;解:对于A :y =f (x )=x 2定义域为R ,且f (−x )=(−x )2=x 2=f (x ), 所以y =x 2为偶函数,故A 错误;对于B :y =g (x )=x 3定义域为R ,且g (−x )=(−x )3=−x 3=−g (x ), 所以y =x 3为奇函数,故B 正确;对于C :y =ℎ(x )=|x |定义域为R ,且ℎ(−x )=|−x |=|x |=ℎ(x ), 所以y =|x |为偶函数,故C 错误;对于D :y =√x 定义域为[0,+∞),定义域不关于原点对称, 故y =√x 为非奇非偶函数,故D 错误; 故选:B 多选题9、下列各组函数中,两个函数是同一函数的有( ) A .f (x )=x 与g (x )=√x 33B .f (x )=x +1与g (x )=x 2−1x−1C .f (x )=|x |x 与g (x )={1,x >0−1,x <0D .f (t )=|t −1|与g (x )=|x −1| 答案:ACD分析:根据两个函数为同一函数的定义,对四个选项逐个分析可得答案.对于A ,f(x)=x ,g(x)=√x 33=x ,两个函数的对应关系和定义域都相同,所以两个函数为同一函数,故A 正确;对于B,f(x)=x+1,g(x)=x+1(x≠1),两个函数的定义域不同,所以两个函数不为同一函数,故B不正确;对于C,f(x)={1,x>0−1,x<0,g(x)={1,x>0−1,x<0,两个函数的对应关系和定义域都相同,所以两个函数为同一函数,故C正确;对于D,f(t)=|t−1|与g(x)=|x−1|的对应关系和定义域都相同,所以两个函数为同一函数,故D正确. 故选:ACD10、已知函数f(x)={x+2,x≤−1x2,−1<x<2,关于函数f(x)的结论正确的是()A.f(x)的定义域为R B.f(x)的值域为(−∞,4)C.f(1)=3D.若f(x)=3,则x的值是√3E.f(x)<1的解集为(−1,1)答案:BD解析:根据解析式判断定义域,结合单调性求出值域,分段代值即可求解方程,分段解不等式,得出不等式解集.由题意知函数f(x)的定义域为(−∞,2),故A错误;当x≤−1时,f(x)的取值范围是(−∞,1],当−1<x<2时,f(x)的取值范围是[0,4),因此f(x)的值域为(−∞,4),故B正确;当x=1时,f(1)=12=1,故C错误;当x≤−1时,x+2=3,解得x=1(舍去),当−1<x<2时,x2=3,解得x=√3或x=−√3(舍去),故D正确;当x≤−1时,x+2<1,解得x<−1,当−1<x<2时,x2<1,解得−1<x<1,因此f(x)<1的解集为(−∞,−1)∪(−1,1);故E错误.故选:BD.小提示:此题考查分段函数,涉及定义域,值域,根据函数值求自变量取值,解不等式,关键在于分段依次求解.11、已知幂函数f(x)图像经过点(4,2),则下列命题正确的有()A .函数为增函数B .函数为偶函数C .若x ≥9,则f (x )≥3D .若x 2>x 1>0,则f (x 1)+f (x 2)2>f (x 1+x 22)答案:AC解析:先代点求出幂函数的解析式f(x)=x 12,根据幂函数的性质直接可得单调性和奇偶性,由x ≥9时,可得√x ≥3可判断C ,利用(f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2展开和0比即可判断D.设幂函数f(x)=x α将点(4,2)代入函数f(x)=x α得:2=4α,则α=12.所以f(x)=x 12,显然f(x)在定义域[0,+∞)上为增函数,所以A 正确.f(x)的定义域为[0,+∞),所以f(x)不具有奇偶性,所以B 不正确. 当x ≥9时,√x ≥3,即f(x)≥3,所以C 正确. 当若0<x 1<x 2时, (f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2=x 1+x 2+2√x 1x 24−x 1+x 22=2√x 1x 2−x 1−x 24=−(√x 1−√x 2)24<0.即f (x 1)+f (x 2)2<f (x 1+x 22)成立,所以D 不正确.故选:AC小提示:关键点睛:本题主要考查了幂函数的性质,解答本题的关键是由(f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2,化简得到−(√x 1−√x 2)24,从而判断出选项D 的正误,属于中档题.填空题12、已知函数f(x),g(x)分别是定义在R 上的偶函数和奇函数,f(x)+g(x)=2⋅3x ,则函数f(x)=_____. 答案:3x +3−x分析:由已知可得f(−x)+g(−x)=2⋅3−x ,结合两函数的奇偶性可得f (x )−g (x )=2⋅3−x ,利用方程组的思想即可求出f (x ).解:因为f(x)+g(x)=2⋅3x ,所以f(−x)+g(−x)=2⋅3−x ,又f(x),g(x)分别是定义在R 上的偶函数和奇函数,所以f (−x )=f (x ),g (−x )=−g (x ); 所以f(−x)+g(−x)=f (x )−g (x )=2⋅3−x,则{f (x )+g (x )=2⋅3x f (x )−g (x )=2⋅3−x,两式相加得,2f (x )=2⋅3x +2⋅3−x ,所以f (x )=3x +3−x . 故答案为:3x +3−x . 小提示:关键点睛:本题的关键是由函数的奇偶性得到f (x )−g (x )=2⋅3−x ,从而可求出函数的解析式. 13、函数y =log 0.4(−x 2+3x +4)的值域是________. 答案:[−2,+∞)解析:先求出函数的定义域为(−1,4),设f (x )=−x 2+3x +4=−(x −32)2+254,x ∈(−1,4),根据二次函数的性质求出单调性和值域,结合对数函数的单调性,以及利用复合函数的单调性即可求出y =log 0.4(−x 2+3x +4)的单调性,从而可求出值域.解:由题可知,函数y =log 0.4(−x 2+3x +4), 则−x 2+3x +4>0,解得:−1<x <4, 所以函数的定义域为(−1,4), 设f (x )=−x 2+3x +4=−(x −32)2+254,x ∈(−1,4),则x ∈(−1,32)时,f (x )为增函数,x ∈(32,4)时,f (x )为减函数,可知当x =32时,f (x )有最大值为254,而f (−1)=f (4)=0,所以0<f (x )≤254,而对数函数y =log 0.4x 在定义域内为减函数, 由复合函数的单调性可知,函数y =log 0.4(−x 2+3x +4)在区间(−1,32)上为减函数,在(32,4)上为增函数,∴y ≥log 0.4254=−2,∴函数y =log 0.4(−x 2+3x +4)的值域为[−2,+∞). 所以答案是:[−2,+∞).小提示:关键点点睛:本题考查对数型复合函数的值域问题,考查对数函数的单调性和二次函数的单调性,利用“同增异减”求出复合函数的单调性是解题的关键,考查了数学运算能力.14、已知函数f (x )=x 2−4x +3,g (x )=mx +3−2m ,若对任意x 1∈[0,4],总存在x 2∈[0,4],使f (x 1)=g (x 2)成立,则实数m 的取值范围为______. 答案:(−∞,−2]∪[2,+∞)分析:求出函数f (x )在[0,4]上的值域A ,再分情况求出g (x )在[0,4]上的值域,利用它们值域的包含关系即可列式求解.“对任意x 1∈[0,4],总存在x 2∈[0,4],使f (x 1)=g (x 2)成立”等价于“函数f (x )在[0,4]上 的值域包含于g (x )在[0,4]上的值域”,函数f (x )=(x −2)2−1,当x ∈[0,4]时,f(x)min =f(2)=−1,f(x)max =f(0)=f(4) =3,即f (x )在[0,4]的值域A =[−1,3],当m =0时,g(x)=3,不符合题意,当m >0时,g (x )在[0,4]上单调递增,其值域B 1=[3−2m,3+2m],于是有A ⊆B 1,即有{3−2m ≤−13+2m ≥3,解得m ≥2,则m ≥2,当m <0时,g (x )在[0,4]上单调递减,其值域B 2=[3+2m,3−2m],于是有A ⊆B 2,即有{3+2m ≤−13−2m ≥3,解得m ≤−2,则m ≤−2, 综上得:m ≤−2或m ≥2,所以实数m 的取值范围为(−∞,−2]∪[2,+∞). 所以答案是:(−∞,−2]∪[2,+∞) 解答题15、已知二次函数f (x )=ax 2−2x (a >0) (1)若f (x )在[0,2]的最大值为4,求a 的值;(2)若对任意实数t,总存在x1,x2∈[t,t+1],使得|f(x1)−f(x2)|≥2.求a的取值范围.答案:(1)2;(2)[8,+∞).分析:由解析式可知f(x)为开口方向向上,对称轴为x=1a的二次函数;(1)分别在1a ≥2和0<1a<2两种情况下,根据函数单调性可确定最大值点,由最大值构造方程求得结果;(2)将问题转化为f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,分别在1a ≤t、1a≥t+1、t<1a≤t+12和t+12<1a<t+1,根据f(x)单调性可得f(x)max−f(x)min,将f(x)max−f(x)min看做关于t的函数,利用恒成立的思想可求得结果.由f(x)解析式知:f(x)为开口方向向上,对称轴为x=1a的二次函数,(1)当1a ≥2,即0<a≤12时,f(x)在[0,2]上单调递减,∴f(x)max=f(0)=0,不合题意;当0<1a <2,即a>12时,f(x)在[0,1a]上单调递减,在[1a,2]上单调递增,∴f(x)max=max{f(0),f(2)},又f(0)=0,f(2)=4a−4,f(x)在[0,2]的最大值为4,∴f(x)max=f(2)=4a−4=4,解得:a=2;综上所述:a=2.(2)若对任意实数t,总存在x1,x2∈[t,t+1],使得|f(x1)−f(x2)|≥2,则f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,①当1a≤t时,f(x)在[t,t+1]上单调递增,∴f(x)max−f(x)min=f(t+1)−f(t)=2at+a−2≥2,当t≥1a时,y=2at+a−2单调递增,∴(2at+a−2)min=2a⋅1a+a−2=a,∴a≥2;②当1a ≥t+1,即t≤1a−1时,f(x)在[t,t+1]上单调递减,∴f(x)max−f(x)min=f(t)−f(t+1)=−2at−a+2≥2,当t≤1a−1时,y=−2at−a+2单调递减,∴(−2at−a+2)min=−2a(1a−1)−a+2=a,∴a≥2;③当t<1a ≤t+12,即1a−12≤t<1a时,f(x)在[t,1a]上单调递减,在[1a,t+1]上单调递增,∴f(x)max−f(x)min=f(t+1)−f(1a )=a(t+1)2−2(t+1)+1a≥2,当1a −12≤t<1a时,又a>0,12<1a+12≤t+1<1a+1,令m=t+1,则y=am2−2m+1a 在[1a+12,1a+1)上单调递增,∴a(1a +12)2−2(1a+12)+1a≥2,解得:a≥8;④当t+12<1a<t+1,即1a−1<t<1a−12时,f(x)在[t,1a]上单调递减,在[1a,t+1]上单调递增,∴f(x)max−f(x)min=f(t)−f(1a )=at2−2t+1a≥2,当1a −1<t<1a−12时,y=at2−2t+1a在(1a−1,1a−12)上单调递减,∴a(1a −12)2−2(1a−12)+1a≥2,解得:a≥8;综上所述:a的取值范围为[8,+∞).小提示:关键点点睛:本题考查根据二次函数最值求解参数值、恒成立问题的求解,本题解题关键是能够将问题转化为f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,从而通过对于函数单调性的讨论得到最值.。
(完整版)高中数学必修一函数练习题及答案
高中数学必修一函数试题一、选择题: 1、若()f x =(3)f = ( )A 、2B 、4 C、 D 、10 2、对于函数()y f x =,以下说法正确的有 ( )①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来。
A 、1个B 、2个C 、3个D 、4个 3、下列各组函数是同一函数的是( )①()f x =与()g x =;②()f x x =与2()g x =;③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--。
A 、①②B 、①③C 、③④D 、①④4、二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 、7- B 、1 C 、17 D 、25 5、函数y =的值域为 ( )A 、[]0,2B 、[]0,4C 、(],4-∞D 、[)0,+∞ 6、下列四个图像中,是函数图像的是 ( )A 、(1)B 、(1)、(3)、(4)C 、(1)、(2)、(3)D 、(3)、(4) 7、若:f A B →能构成映射,下列说法正确的有 ( )(1)A 中的任一元素在B 中必须有像且唯一;(2)B 中的多个元素可以在A 中有相同的原像;(3)B中(1)(2)(3)(4)的元素可以在A 中无原像;(4)像的集合就是集合B 。
A 、4个B 、3个C 、2个D 、1个 8、)(x f 是定义在R 上的奇函数,下列结论中,不正确...的是( ) A 、()()0f x f x -+= B 、()()2()f x f x f x --=- C 、()()0f x f x -≤ D 、()1()f x f x =-- 9、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥5 10、设函数()(21)f x a x b =-+是R 上的减函数,则有 ( )A 、12a >B 、12a <C 、12a ≥D 、12a ≤ 11、定义在R 上的函数()f x 对任意两个不相等实数,ab ,总有()()0f a f b a b->-成立,则必有( )A 、函数()f x 是先增加后减少B 、函数()f x 是先减少后增加C 、()f x 在R 上是增函数D 、()f x 在R 上是减函数 12、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
高中数学必修一函数概念练习题(附答案)
函数的概念姓名: 班级: 学号:1. (多选题)下面选项中,变量y 是变量x 的函数的是( )A. x 表示一天中的时刻,y 表示对应的某地区的气温B. x 表示年份,y 表示对应的某地区的GDP (国内生产总值)C. x 表示某地区学生的某次数学考试成绩,y 表示学生的对应考号D. x 表示某人的月收入,y 表示对应的个税2. 下列四组函数中,表示同一个函数的是( )A. x y =与33x y =B. 2x y =与()2t s = C. 12+=t y 与12+=u yD. 1=y 与0x y =3. 下列四组函数中,表示同一个函数的是( )A. 2x y =与2x y =B.3x y -=与x x y -=B. x x y 12+=与1+=x y D. 123++=x x x y 与x y = 4. 下列各式中能确定y 是x 的函数的是 ( )A. 122=+y xB.0112=-+-y xB. x x y -+-=12 D.111=-+-y x5. 函数)(x f y =的图像与直线)(R a a x ∈=的交点( )A. 至多有一个B.至少有一个B. 有且仅有一个 D.有两个以上6. 函数21)(--=x x x f 的定义域为 ( ) A. [)+∞,1 B.[)21,B. [)),(,∞+⋃221C.),2()2,1(+∞⋃7. 函数16)(2--+=x x x x f 的定义域为 ( ) A. []2,3- B.[)(]2,11,3⋃-B. []3,2- D.[)(]3,11,2⋃-8. 函数)12(+x f 的定义域为⎥⎦⎤⎢⎣⎡-2123,,则函数)3()2()(-•-=x f x f x g 的定义域为 ( )A. []4,1B.[]5,0C.[]20,0D.[]9,19. 若函数x x x f 2)(2+-=在定义域[]m ,0上的值域为[]10,,则( ) A. 21≤≤m B.1>m C.2=m D.21≤<m10.函数x x y 211-++=的值域是 ( )A. (]2,∞-B.⎥⎦⎤ ⎝⎛∞-815,C.⎪⎭⎫⎢⎣⎡+∞,23 [)+∞,0 11.已知集合{}4≥=x x A ,函数ax x f +-=21)( 的定义域为集合B ,若∅=⋂B A ,则实数a 的取值范围是 ( )A. ()2,2-B.()+∞,2C.()2,∞-D.(]2,∞-12.已知定义在R 上的函数)(x f 满足),(2)()()(R y x xy y f x f y x f ∈++=+, 且2)(=x f ,则=-)3(f ( )A. 2B.3C.6D.913.已知某矩形的周长为定值a ,若该矩形的面积S 是这个矩形的一边长x 的函数,则这个函数的定义域是14.已知函数xx x f 21)(2-=,则)(x f 的值域为 15.已知函数)(x f 的定义域是[]10,,值域是[]21,,则这样的函数可以是=)(x f16.能说明命题“如果函数)(x f 与)(x g 的对应关系和值域都相同,那么函数)(x f 与)(x g 是同一个函数”为假命题的一组函数可以是=)(x f=)x g ( 17.已知函数.1)(2-+=x x x f(1)求)2(f ,)1(xf ;(2)若5)(=x f ,求x 的值18.求下列函数值域. (1)152222+-+-=x x x x y ; (2)12++=x x y参考答案1. ABD2.C3.D4.D5.A6.C7.D8.A9.A 10.A10. D 12.C13. ⎪⎭⎫ ⎝⎛2,0a 14.(]()∞+⋃-∞-,,01 151)(+=x x f ,[]1,0∈x (答案不唯一) 16. ()1,1,2-∈x x ;[)1,0,2∈x x (答案不唯一)17. (1)512222=-+=)(f ,.1111)1(222xx x x x x f -+=-+⎪⎭⎫ ⎝⎛= (2)因为,51)(2=-+=x x x f 所以062=-+x x ,解得2=x 或3-=x 18. (1)解法一:1321522222+-+=+-+-=x x x x x x y ,令12+-=x x t ,则43)21(2+-=x t , 所以430≤<t ,6322≤+<t,即62≤<y .所以函数的值域为(]62, 解法二:易知函数的定义域为R .由152222+-+-=x x x x y 得05)2(22=-+---y x y x y )(,此方程必有实数解.若2=y ,则03=-,显然不成立,故2≠y ,所以()[]0)5)(2(422≥-----=∆y y y ,整理得0)6)(2(≤--y y ,所以62≤<y ,所以函数的值域为(]62,. (2) 令12+=x t ,则21,02-=≥t x t ,则)0(1)1(212122≥-+=+-=t t t t y ,则21≥y , 故函数的值域为⎪⎭⎫⎢⎣⎡∞+-,21.。
函数的概念试题及答案高中
函数的概念试题及答案高中一、选择题1. 下列哪个选项正确描述了函数的概念?A. 函数是一种运算B. 函数是一种关系C. 函数是一种映射D. 函数是一种变量2. 如果f(x) = 2x + 3,那么f(-1)的值是多少?A. -1B. 1C. 3D. 53. 函数y = x^2 + 1在x = -2时的值是多少?A. 5B. 4C. 3D. 1二、填空题4. 如果一个函数f(x)的定义域是所有实数R,那么这个函数被称为_________函数。
5. 函数f(x) = 3x - 2的反函数是_________。
三、简答题6. 函数的三要素是什么?7. 请解释什么是函数的值域,并给出一个例子。
四、计算题8. 给定函数f(x) = x^2 - 4x + 4,求出当x = 0, 1, 2, 3时的函数值。
答案一、选择题1. C. 函数是一种映射2. A. -1(计算过程:f(-1) = 2*(-1) + 3 = -2 + 3 = 1)3. A. 5(计算过程:y = (-2)^2 + 1 = 4 + 1 = 5)二、填空题4. 无界5. f^(-1)(x) = (x + 2) / 3三、简答题6. 函数的三要素包括:定义域(Domain)、值域(Range)和对应法则(Rule of correspondence)。
7. 函数的值域是指函数所有可能的输出值的集合。
例如,函数y =x^2的值域是所有非负实数,即[0, +∞)。
四、计算题8. 当x = 0时,f(x) = 0^2 - 4*0 + 4 = 4;当x = 1时,f(x) = 1^2 - 4*1 + 4 = 1;当x = 2时,f(x) = 2^2 - 4*2 + 4 = 0;当x = 3时,f(x) = 3^2 - 4*3 + 4 = 1。
结束语:通过本试题的练习,希望同学们能够加深对函数概念的理解,掌握函数的基本性质和计算方法。
函数是数学中的基础工具,对后续的数学学习至关重要。
人教A版必修第一册第三章《函数的概念与性质》章末测试Word版含解析
第三章 函数的概念与性质章末检测一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、(2022·宿州月考)函数y =1-x2x 2-3x -2 的定义域为( )A .(-∞,1]B .⎝ ⎛⎭⎪⎫-∞,-12C .(-∞,2]D .⎝ ⎛⎭⎪⎫-∞,-12 ∪⎝ ⎛⎦⎥⎤-12,12、(2022·怀宁期中)已知函数f (2x -1)=x 2-3,则f (3)=( )A .1B .2C .4D .63、在下列函数中,值域为(0,+∞)的是( )A .y =xB .y =1xC .y =1xD .y =x 2+14、已知函数f (x )=(m -1)x 2-2mx +3是偶函数,则在(-∞,0)上此函数( )A .是增函数B .不是单调函数C .是减函数D .不能确定5、(2022·浙江模拟)已知函数f (x )=ax 2+bx +c 的图象如图所示,则( )A .b <a +c ,c 2<abB .b <a +c ,c 2>abC .b >a +c ,c 2<abD .b >a +c ,c 2>ab6、已知函数f (x )=x 2+(k -2)x 在[1,+∞)上是增函数,则k 的取值范围为( )A .(-∞,0]B .[0,+∞)C .(-∞,1]D .[1,+∞)7、已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( D )A .c >a >bB .c >b >aC .a >c >bD .b >a >c8、(2022·湖北月考)已知定义在R 上的奇函数f (x )在(-∞,0]上单调递减,若f (-2)=1,则满足|f (2x )|≤1的x 的取值范围是( )A .[-1,1]B .[-2,2]C .(-∞,-1]∪[1,+∞)D .(-∞,-2]∪[2,+∞)二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得2分,有选错的得0分)9、下列各组函数是同一函数的为( )A.f (x )=x 2-2x -1,g (s )=s 2-2s -1B.f (x )=x -1,g (x )=x 2-1x +1C.f (x )=x 2,g (x )=⎩⎨⎧x ,x ≥0,-x ,x <0D.f (x )=-x 3,g (x )=x -x10、已知函数y =x α(α∈R )的图象过点(3,27),下列说法正确的是( )A .函数y =x α的图象过原点B .函数y =x α是奇函数C .函数y =x α是单调减函数D .函数y =x α的值域为R11、已知y =f (x )是定义在R 上的奇函数,则下列函数中为奇函数的是( )A .y =f (|x |)B .y =f (-x )C .y =xf (x )D .y =f (x )+x12、(2022·北京模拟)已知函数f (x )=⎩⎨⎧x +2,x ≤-1,x 2+1,-1<x <2,关于函数f (x )的结论正确的是( )A .f (x )的定义域是RB .f (x )的值域是(-∞,5)C .若f (x )=3,则x 的值为 2D .f (x )图象与y =2有两个交点三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13、已知函数f (x )=⎩⎨⎧x +1,x ≥0,4x ,x <0,若f (a )=2,则实数a =___________.14、(2022·广东模拟)已知函数f (x )是定义在R 上的奇函数,当x ∈(0,+∞)时,f (x )=x 2-x -1,则当x ∈(-∞,0)时,f (x )=________.15、若函数f (2x -1)定义域为[0,1],则y =f (2x +1)的定义域是________. 16、定义:如果在函数y =f (x )定义域内的给定区间[a ,b ]上存在x 0(a <x 0<b ),满足f (x 0)=f (b )-f (a )b -a ,则称函数y =f (x )是[a ,b ]上的“平均值函数”,x 0是它的一个均值点,如y =x 4是[-1,1]上的平均值函数,0就是它的均值点.现有函数f (x )=-x 2+mx +1是[-1,1]上的平均值函数,则实数m 的取值范围是________. 四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17、已知函数f (x )的解析式为f (x )=⎩⎨⎧3x +5,x ≤0,x +5,0<x ≤1,-2x +8,x >1.(1)求f ⎝ ⎛⎭⎪⎫32,f ⎝ ⎛⎭⎪⎫1π,f (-1)的值;(2)画出这个函数的图象; (3)求f (x )的最大值.18、设f (x )是R 上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1)求f (π)的值;(2)当-4≤x ≤4时,求f (x )的图象与x 轴所围成图形的面积.19、已知幂函数f(x)=x-m2+2m+3(m∈Z)为偶函数,且在区间(0,+∞)上单调递增.(1)求函数f(x)的解析式;(2)设函数g(x)=f(x)+2x+c,若g(x)>2对任意的x∈R恒成立,求实数c 的取值范围.20、(2022·柳州模拟)已知定义在R上的函数f(x)满足:①f(x+y)=f(x)+f(y)+1;②当x>0时,f(x)>-1.(1)求f(0)的值,并证明f(x)在R上是单调增函数;(2)若f(1)=1,解关于x的不等式f(x2+2x)+f(1-x)>4.21、“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v(单位:千克/年)是养殖密度x(单位:尾/立方米)的函数.当x不超过4尾/立方米时,v的值为2千克/年;当4<x≤20时,v是x的一次函数;当x达到20尾/立方米时,因缺氧等原因,v的值为0千克/年.(1)当0<x≤20时,求函数v关于x的函数解析式;(2)当养殖密度x为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.22、已知f(x)是定义在区间[-1,1]上的奇函数,且f(1)=1,当a,b∈[-1,1],a+b≠0时,有f(a)+f(b)a+b>0成立.(1)判断f(x)在区间[-1,1]上的单调性,并证明;(2)若f(x)≤m2-2am+1对所有的a∈[-1,1]恒成立,求实数m的取值范围.第三章 函数的概念与性质章末检测(答案)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、(2022·宿州月考)函数y =1-x2x 2-3x -2 的定义域为( D )A .(-∞,1]B .⎝ ⎛⎭⎪⎫-∞,-12C .(-∞,2]D .⎝ ⎛⎭⎪⎫-∞,-12 ∪⎝ ⎛⎦⎥⎤-12,12、(2022·怀宁期中)已知函数f (2x -1)=x 2-3,则f (3)=( A )A .1B .2C .4D .63、在下列函数中,值域为(0,+∞)的是( B )A .y =xB .y =1xC .y =1xD .y =x 2+14、已知函数f (x )=(m -1)x 2-2mx +3是偶函数,则在(-∞,0)上此函数( )A .是增函数B .不是单调函数C .是减函数D .不能确定解析:A 因为函数f (x )=(m -1)x 2-2mx +3是偶函数,所以函数图象关于y 轴对称,即mm -1=0,解得m =0.所以f (x )=-x 2+3为开口向下的抛物线,所以在(-∞,0)上此函数单调递增.故选A .5、(2022·浙江模拟)已知函数f (x )=ax 2+bx +c 的图象如图所示,则( )A .b <a +c ,c 2<abB .b <a +c ,c 2>abC .b >a +c ,c 2<abD .b >a +c ,c 2>ab解析:D 由题图知,a >0,b >0,c <0,f (1)=a +b +c =0,f (-1)=a -b +c <0,所以c =-(a +b ),b >a +c ,所以c 2-ab =[-(a +b )]2-ab =a 2+b 2+ab >0,即c 2>ab .故选D .6、已知函数f (x )=x 2+(k -2)x 在[1,+∞)上是增函数,则k 的取值范围为( )A .(-∞,0]B .[0,+∞)C .(-∞,1]D .[1,+∞)解析:B 函数f (x )=x 2+(k -2)x 的对称轴为x =-k -22,且开口向上,因为f (x )在[1,+∞)上是增函数,所以-k -22≤1,解得k ≥0.故选B . 7、已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( D )A .c >a >bB .c >b >aC .a >c >bD .b >a >c解析:由已知得f (x )在(1,+∞)上单调递减,又f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52,∵e>52>2,∴f (e)<f ⎝ ⎛⎭⎪⎫52<f (2),即c <a <b .故选D .8、(2022·湖北月考)已知定义在R 上的奇函数f (x )在(-∞,0]上单调递减,若f (-2)=1,则满足|f (2x )|≤1的x 的取值范围是( )A .[-1,1]B .[-2,2]C .(-∞,-1]∪[1,+∞)D .(-∞,-2]∪[2,+∞)解析:A 根据奇函数的性质,得f (x )在R 上单调递减,且f (2)=-1.由|f (2x )|≤1,得-1≤f (2x )≤1,即f (2)≤f (2x )≤f (-2),所以2≥2x ≥-2,解得-1≤x ≤1,故选A .二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得2分,有选错的得0分)9、下列各组函数是同一函数的为( AC )A.f (x )=x 2-2x -1,g (s )=s 2-2s -1B.f (x )=x -1,g (x )=x 2-1x +1C.f (x )=x 2,g (x )=⎩⎨⎧x ,x ≥0,-x ,x <0D.f (x )=-x 3,g (x )=x -x10、已知函数y =x α(α∈R )的图象过点(3,27),下列说法正确的是( )A .函数y =x α的图象过原点B .函数y =x α是奇函数C .函数y =x α是单调减函数D .函数y =x α的值域为R解析:ABD 因为函数y =x α(α∈R )的图象过点(3,27),所以27=3α,即α=3,所以f (x )=x 3,A 项,因为f (0)=0,所以函数y =x 3的图象过原点,因此本说法正确;B 项,因为f (-x )=(-x )3=-x 3=-f (x ),所以函数y =x 3是奇函数,因此本说法正确;C 项,因为y =x 3是实数集上的单调递增函数,所以本说法不正确;D 项,因为y =x 3的值域是全体实数集,所以本说法正确.故选A 、B 、D . 11、已知y =f (x )是定义在R 上的奇函数,则下列函数中为奇函数的是( )A .y =f (|x |)B .y =f (-x )C .y =xf (x )D .y =f (x )+x解析:BD 由奇函数的定义f (-x )=-f (x )验证,A 项,f (|-x |)=f (|x |),为偶函数;B 项,f [-(-x)]=f (x )=-f (-x ),为奇函数;C 项,-xf (-x )=-x ·[-f(x)]=xf (x ),为偶函数;D 项,f (-x )+(-x )=-[f(x)+x],为奇函数.可知B 、D 正确.12、(2022·北京模拟)已知函数f (x )=⎩⎨⎧x +2,x ≤-1,x 2+1,-1<x <2,关于函数f (x )的结论正确的是( )A .f (x )的定义域是RB .f (x )的值域是(-∞,5)C .若f (x )=3,则x 的值为 2D .f (x )图象与y =2有两个交点解析:BC 由函数f (x )=⎩⎨⎧x +2,x ≤-1,x 2+1,-1<x <2知,定义域为(-∞,-1]∪(-1,2),即(-∞,2),A 错误;x ≤-1时,f (x )=x +2∈(-∞,1],-1<x <2时,x 2∈(0,4),故f (x )=x 2+1∈(1,5),故值域为(-∞,5),B 正确;由分段函数的取值可知f (x )=3时x ∈(-1,2),即f (x )=x 2+1=3,解得x =2或x =-2(舍去),故C 正确;由分段函数的取值可知f (x )=2时x ∈(-1,2),即f (x )=x 2+1=2,解得x =1或x =-1(舍去),故f (x )图象与y =2有1个交点,故D 错误.故选B 、C .三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13、已知函数f (x )=⎩⎨⎧x +1,x ≥0,4x ,x <0,若f (a )=2,则实数a =___________.解析:当a ≥0时,f (a )=a +1=2,解得a =1,符合条件.当a <0时,f (a )=4a =2,解得a =12,不符合条件,所以实数a =1.14、(2022·广东模拟)已知函数f (x )是定义在R 上的奇函数,当x ∈(0,+∞)时,f (x )=x 2-x -1,则当x ∈(-∞,0)时,f (x )=________.解析:函数f (x )是定义在R 上的奇函数,当x ∈(0,+∞)时,f (x )=x 2-x -1,则当x ∈(-∞,0)时,-x ∈(0,+∞),f (-x )=(-x )2-(-x )-1=x 2+x -1,故f (x )=-f (-x )=-x 2-x +1.答案:-x 2-x +115、若函数f (2x -1)定义域为[0,1],则y =f (2x +1)的定义域为________.解析:∵y =f (2x -1)定义域为[0,1].∴-1≤2x -1≤1,要使y =f (2x +1)有意义应满足-1≤2x +1≤1,解得-1≤x ≤0,因此y =f (2x +1)定义域为[-1,0].16、定义:如果在函数y =f (x )定义域内的给定区间[a ,b ]上存在x 0(a <x 0<b ),满足f (x 0)=f (b )-f (a )b -a ,则称函数y =f (x )是[a ,b ]上的“平均值函数”,x 0是它的一个均值点,如y =x 4是[-1,1]上的平均值函数,0就是它的均值点.现有函数f (x )=-x 2+mx +1是[-1,1]上的平均值函数,则实数m 的取值范围是__(0,2)______. 四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17、已知函数f (x )的解析式为f (x )=⎩⎨⎧3x +5,x ≤0,x +5,0<x ≤1,-2x +8,x >1.(1)求f ⎝ ⎛⎭⎪⎫32,f ⎝ ⎛⎭⎪⎫1π,f (-1)的值;(2)画出这个函数的图象; (3)求f (x )的最大值.解:(1)∵32>1,∴f ⎝ ⎛⎭⎪⎫32=-2×32+8=5.∵0<1π<1,∴f ⎝ ⎛⎭⎪⎫1π=1π+5=5π+1π.∵-1<0,∴f (-1)=-3+5=2. (2)这个函数的图象如图.在函数f (x )=3x +5的图象上截取x ≤0的部分, 在函数f (x )=x +5的图象上截取0<x ≤1的部分, 在函数f (x )=-2x +8的图象上截取x >1的部分. 图中实线组成的图形就是函数f (x )的图象. (3)由函数图象可知,当x =1时,f (x )取最大值6.18、设f (x )是R 上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1)求f (π)的值;(2)当-4≤x ≤4时,求f (x )的图象与x 轴所围成图形的面积. 解:(1)由f (x +2)=-f (x )得,f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ),所以f (x )是以4为周期的周期函数,又f (x )为奇函数,所以f (π)=f (-1×4+π)=f (π-4)=-f (4-π)=-(4-π)=π-4. (2)由f (x )是奇函数且f (x +2)=-f (x ), 得f [(x -1)+2]=-f (x -1)=f [-(x -1)], 即f (1+x )=f (1-x ).故函数y =f (x )的图象关于直线x =1对称.又当0≤x ≤1时,f (x )=x ,且f (x )的图象关于原点成中心对称,则f (x )的图象如图所示.当-4≤x ≤4时,设f (x )的图象与x 轴围成的图形面积为S ,则S =4S △OAB =4×⎝ ⎛⎭⎪⎫12×2×1=4. 19、已知幂函数f (x )=x -m 2+2m +3(m ∈Z )为偶函数,且在区间(0,+∞)上单调递增.(1)求函数f (x )的解析式;(2)设函数g (x )=f (x )+2x +c ,若g (x )>2对任意的x ∈R 恒成立,求实数c 的取值范围.解:(1)∵f (x )在区间(0,+∞)上单调递增,∴-m 2+2m +3>0,即m 2-2m -3<0,解得-1<m <3.又m ∈Z ,∴m =0,1,2.当m =0或2时,f (x )=x 3,不是偶函数;当m =1时,f (x )=x 4,是偶函数.故函数f (x )的解析式为f (x )=x 4.(2)由(1)知f (x )=x 4,则g (x )=x 2+2x +c =(x +1)2+c -1.由g (x )>2对任意的x ∈R 恒成立,得g (x )min >2(x ∈R ).∵g (x )min =g (-1)=c -1,∴c -1>2,解得c >3.故实数c 的取值范围是(3,+∞).20、(2022·柳州模拟)已知定义在R 上的函数f (x )满足:①f (x +y )=f (x )+f (y )+1;②当x >0时,f (x )>-1.(1)求f (0)的值,并证明f (x )在R 上是单调增函数;(2)若f (1)=1,解关于x 的不等式f (x 2+2x )+f (1-x )>4.解:(1)令x =y =0,得f (0)=-1.在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>-1.又f (x 1)=f [(x 1-x 2)+x 2]=f (x 1-x 2)+f (x 2)+1,所以f (x 1)-f (x 2)=f (x 1-x 2)+1>0,所以f (x 1)>f (x 2),所以函数f (x )在R 上是单调增函数.(2)由f (1)=1,得f (2)=3,f (3)=5.由f (x 2+2x )+f (1-x )>4,得f (x 2+2x )+f (1-x )+1>5,即f (x 2+x +1)>f (3),又函数f (x )在R 上是增函数,故x 2+x +1>3,解得x <-2或x >1,故原不等式的解集为{x |x <-2或x >1}.21、“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当x 不超过4尾/立方米时,v 的值为2千克/年;当4<x ≤20时,v 是x 的一次函数;当x 达到20尾/立方米时,因缺氧等原因,v 的值为0千克/年.(1)当0<x ≤20时,求函数v 关于x 的函数解析式;(2)当养殖密度x 为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.解 (1)由题意得当0<x ≤4时,v =2;当4<x ≤20时,设v =ax +b ,显然v =ax +b 在(4,20]内是减函数,由已知得⎩⎨⎧20a +b =0,4a +b =2,解得⎩⎪⎨⎪⎧a =-18,b =52,所以v =-18x +52,故函数v =⎩⎪⎨⎪⎧2,0<x ≤4,-18x +52,4<x ≤20. (2)设年生长量为f (x )千克/立方米,依题意并由(1)可得,f (x )=⎩⎪⎨⎪⎧2x ,0<x ≤4,-18x 2+52x ,4<x ≤20, 当0<x ≤4时,f (x )为增函数,故f (x )max =f (4)=4×2=8;当4<x≤20时,f(x)=-18x2+52x=-18(x2-20x)=-18(x-10)2+252,f(x)max=f(10)=12.5.所以当x=10时,f(x)的最大值为12.5.即当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米.22、已知f(x)是定义在区间[-1,1]上的奇函数,且f(1)=1,当a,b∈[-1,1],a+b≠0时,有f(a)+f(b)a+b>0成立.(1)判断f(x)在区间[-1,1]上的单调性,并证明;(2)若f(x)≤m2-2am+1对所有的a∈[-1,1]恒成立,求实数m的取值范围. 解(1)f(x)在区间[-1,1]上单调递增.证明如下:任取x1,x2∈[-1,1],且x1<x2,则-x2∈[-1,1].∵f(x)为奇函数,∴f(x1)-f(x2)=f(x1)+f(-x2)=f(x1)+f(-x2)x1+(-x2)·(x1-x2).由已知条件得f(x1)+f(-x2)x1+(-x2)>0.又x1-x2<0,∴f(x1)-f(x2)<0,即f(x1)<f(x2).∴f(x)在区间[-1,1]上单调递增.(2)∵f(1)=1,f(x)在区间[-1,1]上单调递增,∴在区间[-1,1]上,f(x)≤1.∵f(x)≤m2-2am+1对所有的a∈[-1,1]恒成立,∴m2-2am+1≥1,即m2-2am≥0对所有的a∈[-1,1]恒成立.设g(a)=-2ma+m2.①若m=0,则g(a)=0≥0,对a∈[-1,1]恒成立.②若m≠0,则g(a)为a的一次函数,若g(a)≥0,对a∈[-1,1]恒成立,必须有g(-1)≥0,且g(1)≥0,∴m≤-2或m≥2.综上所述,实数m的取值范围是{m|m=0,或m≥2,或m≤-2}.。
高中数学函数的概念课堂练习题(附解析)
高中数学函数的概念课堂练习题(附解析)必修一人教A版函数的概念课堂练习题(附答案)一、选择题:1.下列四个图象中,不是函数图象的是().2.已知函数,则().A. 0B. 1C. 3D. 23.已知函数的值为().A. 1B. 2C. 3D. 4.集合,,给出下列四个图形,其中能表示以M为定义域,N 为值域的函数关系的是().5.下列式子中不能表示函数y=f(x)的是().A.x=y2+1 B.y =2x2+1C.x-2y=6 D.x=y6.函数y=1-x+x的定义域是().A .{x|x B.{x |x1}C.{x|x{0} D .{x|01}二、填空题:7.函数的定义域为.8.函数的值域是.三、解答题:9.下列哪一组中的函数f(x)与g(x)相等?(1)f(x)=x-1,g(x)= ;(2)f(x)=x2,g(x)= ;10*. 若f(1)=f(2)=0,(1)求f(-2)的值;(2)若f(x)=6,求x的值.1 .2.1(1)函数的概念(课时练)答案一、选择题:1.B2.B3.C4.B5.A6.D二、填空题:7. 8.三、解答题:9.(2)课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也专门难做到恰如其分。
什么缘故?依旧没有完全“记死”的缘故。
要解决那个问题,方法专门简单,每天花3-5分钟左右的时刻记一条成语、一则名言警句即可。
能够写在后黑板的“积存专栏”上每日一换,能够在每天课前的3分钟让学生轮番讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。
如此,一年就可记300多条成语、30 0多则名言警句,日积月累,终究会成为一笔不小的财宝。
这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会为所欲为地“提取”出来,使文章增色添辉。
10.(1)12,“教书先生”可能是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当如何说也确实是让国人景仰甚或敬畏的一种社会职业。
高中数学必修一函数题库
1. 函数的概念1. 著名的Dirichlet 函数⎩⎨⎧=取无理数时取有理数时x x x D ,0,1)(,则)2(D =__________2. 如果()21f x x =+,则(((())))n ff f f f x 个=3. k n f =)((其中*N n ∈),k 是π的小数点后的第n 位数字, 1415926535.3=π,则=ff f f f 个100)]}10([{ ___________4. 设{}{}2|0,|02x M x N y y ≤≤==≤≤,给出的4个图形中能表示集合M 到集合N 的映射的是5. 集合{|04},{|02}P x x Q y y =≤≤=≤≤,下列对应不表示从P 到Q 的函数是( )6. 设()φ≠+∞=⊆A B B A ,,0,,从A 到B 的两个函数分别为|log |)(5.0x x f =,xx g ⎪⎭⎫ ⎝⎛=21)(,若对于A 中的任意一个x ,都有)()(x g x f =,则集合A 中元素的个数为 1个或2个 2. 函数的定义域和值域1. 右图为函数()y f x =的图象,则该函数的定义域是 值域是 ________2. 若函数)(x f 的定义域是[]1,1-,则函数的定义域是xx f )12(-__________ 3. 若函数2743kx y kx kx +=++的定义域为R ,则k ∈4. 已知一个函数的解析式为y=x 2,它的值域为[1,4],这样的函数的个数为B.C.A.5. 函数12++=x x y 的值域为 ;函数216x y -=值域为函数251xy x =+的值域为 ;6. 已知两个函数()f x 和()g x 的定义域和值域都是集合{1,2,3},其定义如下表:则方程[()]g f x x =的解为7. 下表表示x y 是的函数,则函数的值域是 .8. 若函数2(2)f x -的定义域是[1-,1],则函数(32)f x +的定义域为____________ 9. 设函数()0)f x a =<的定义域为D ,若所有点(,())(,)s f t s t D ∈构成一个正方形区域,则a 的值为10. 函数()[[]]f x x x =,其中[]x 表示不超过x 的最大整数,如[ 2.1]3,-=-[2]2,-=-[2.2]2=,如果[2,0]x ∈-,那么()y f x =的值域为 ____11. 函数2y x =-的值域为[],a b ,则函数(2)y f x =+的值域为__________ 12. 函数122(2)y x x -=-的定义域是___________变式:函数 31)1()(--=x x f 的定义域为13. 函数6)1(3)1()(22+-+-=x a x a x f(1)若)(x f 的定义域为[-2,1],求实数a 的值. (2)若)(x f 的定义域为R ,求实数a 的取值范围.14. 已知函数[]()211,5f x x x =+∈,则函数(23)f x -的解析式为___________15. 已知)(x f 是一次函数, 且14))((-=x x f f ,则)(x f 的表达式为____________ 16. 若函数()y f x =的定义域是[-2,4],则函数()()()g x f x f x =+-的定义域_______ 17.函数()ln(1)f x x =-的定义域为18. 函数2()2()g x x x R =-∈,()4,12()(),12g x x x x f x g x x x ++<->⎧=⎨--≤≤⎩或,()f x 的值域是 ___19. 函数f :{1,2}→{1,2}满足f [f (x )]>1的这样的函数个数有________个 20. 如图,函数f (x ) 的图象是曲线段OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f (1f (3))的值等于________.21. 已知函数)2(l o g 22-=x y 定义域是[]b a ,,值域是[]14log ,12,则a b +的值为_____22. (2010年济南市高三模拟考试)函数y =x |x |·a x (a >1)的值域为_______3. 函数的奇偶性1. 定义在R 上的两个函数中,)(x f 为偶函数,)(x g 为奇函数,2)1()()(+=+x x g x f ,则=)(x f ____________变式:定义在区间(-1,1)上的函数f (x )满足2f (x )-f (-x )=lg(x +1),则f (x )的解析式为______ 结论:任意一个定义在R 上的函数均可以表示为一个偶函数与一个奇函数之和 教材P 52 7 已知()f x 是一个定义在R 上的函数,求证: (i )()()()g x f x f x =+-是偶函数; (ii ) ()()- ()h x f x f x =-是奇函数.2. 函数()()122-+-+=a x b a ax x f 是定义在()()22,00,--a a 上的偶函数,则=⎪⎪⎭⎫ ⎝⎛+522b a f _________________ 3. 设)(x f 是定义在R 上的奇函数,且)(x f y =的图象关于直线21=x 对称,则 )5()4()3()2()1(f f f f f ++++=______4. 已知函数f(x)=1122xxm ∙-+为奇函数,则m 的值等于_____变式:函数xxk k x g 212)(⋅+-=为奇函数,则实数k 的取值集合为_____ 5. 函数)11()(+--=x x x x f ,函数|3||4|1)(2-++-=x x x x g ,则F(x)= )()(x g x f ∙的奇偶性为 函数.思考:和函数与积函数的奇偶性有何规律?6. 函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2+2x ,则函数g (x )的解析式为________ 变式1:已知f (x +2)=f (x )(x ∈R ),并且当x ∈[-1,1]时,f (x )=-x 2+1,求当 x ∈[2k -1,2k +1](k ∈Z )时f (x )的解析式.变式2:(2010年山东青岛质检) 已知f (x )=(13)x ,若f (x )的图象关于直线x =1对称的图象对应的函数为g (x ),则g (x )的表达式为________. 变式3:已知函数f (x )=-22x -a +1.(1) 求证:f (x )的图象关于点M (a ,-1)对称;(2) 若f (x )≥-2x 在x ≥a 上恒成立,求实数a 的取值范围. 7. 下列说法中,正确命题的序号为______________(1)定义在R 上的函数()f x ,若()2(2)f f -=,则函数()f x 是偶函数 (2)定义在R 上的函数()f x ,若()2(2)f f -≠,则函数()f x 不是偶函数(3)定义在R 上的函数()f x ,若()2(2)f f -=,则函数()f x 不是奇函数8. 设()f x 是定义在R 上的奇函数,当0x ≥时,()22xf x x b =++(b 为常数),则(1)f -=_______9. 已知 f (x )是奇函数,当x ≥0时,f (x )=e x -1(其中e 为自然对数的底数),则f (ln 21)=________ 10. 设偶函数f (x )满足3()8(0)f x x x =-≥,则{}(2)0=_______x f x ->11. 已知定义在R 上的函数f (x )在区间(8,+∞)上为减函数,且函数(8)y f x =+为偶函数,则(6).(7),(9),(10)f f f f 的大小关系为____________12. 函数))(1|(|)(a x x x f +-=为奇函数,则)(x f 的增区间为 13. R 上的奇函数()f x 和偶函数()g x 满足()()2(01)xxf xg x a a a a -+=-+>≠且若(2),g a =则(2)_______f = 15414. 已知函数211ln)(++-=x x x f ,则)21(lg )2(lg f f += .4 15. 函数22()(1)(1)x axf x x x +=+-为奇函数的充要条件是a = .- 116. 已知函数14)(++=x x ax x f 是偶函数,则常数a 的值为 12-4. 函数奇偶性与单调性的关系1. 已知函数()y f x =是定义在[],22-上的偶函数,而且在[],20上是增函数,且)(x f 满足不等式)()1(m f m f <-,则实数m 的取值范围为__________2. 若f(x),g(x)均为奇函数,1)()()(++=x bg x af x F 在(0,+∞)上有最大值5,则在)0,(-∞上,F(x)的最值情况为_________3. 设奇函数()f x 的定义域为[]6,6-,当[]0,6x ∈时()f x 的图象如右图,不等式()0f x >的解集用区间表示为4. 设奇函数)(x f 在),0(+∞上为增函数,且,0)1(=f 则不等式0)()(<--xx f x f 的解集为___________5. R 上的奇函数,且它是减函数,若实数a ,b ___ _____0(填>、=、<)6. 下列说法中:① 若2()(2)2f x ax a b x =+++(其中[21,4]x a a ∈-+)是偶函数,则实数2b =; ② 20132013)(22-+-=x x x f 既是奇函数又是偶函数;③ 已知 ()f x 是定义在R 上的奇函数,若当[0,)x ∈+∞时,()(1)f x x x =+,则当x R ∈时,()(1)f x x x =+; 其中正确说法的序号是 ____(填写正确命题的序号)7. 定义在R 上的偶函数)(x f ,且()f x 在[)0,+∞上单调递减,则不等式(lg )(1)f x f <的解集是8. 已知函数)()1f x a =≠在[1,0]-上是增函数,则实数a 的取值范围是 5. 函数的单调性 1. 函数121)(+-=x x f 的单调递增区间是 ______ . ()()+∞--∞-,1,1, 2. 设函数xx x f λ+=)(,其中常数0>λ.是否存在正的常数λ,使)(x f 在区间),0(+∞上单调递增?若存在,求λ的取值范围;若不存在,请说明理由.(不存在)3.4. 已知函数()),0(2R a x xax x f ∈≠+= (1)讨论函数()x f 的奇偶性;(2)()x f 在区间[)+∞,2是增函数,求实数a 的取值范围. 5. 下列说法中,正确命题的序号为_________________(1)若定义在R 上的函数()f x 满足()2(1)f f >,则函数()f x 是R 上的单调增函数 (2)若定义在R 上的函数()f x 满足()2(1)f f >,则函数()f x 在R 上不是单调减函数 (3)若定义在R 上的函数()f x 在区间(],0-∞上是单调增函数,在区间[)0,+∞上也是单调增函数,则函数()f x 在R 上是单调增函数(4)若定义在R 上的函数()f x 在区间(],0-∞上是单调增函数,在区间()0,+∞上也是单调增函数,则函数()f x 在R 上是单调增函数 6. 若32+-=ax x y 在区间[]2,1上是单调增函数,求a 的取值范围为________7. 函数()y f x =,定义域为]2,2[-=D ,以下命题正确的是(写出命题的序号)______ ① 若(1)(1),(2)(2)f f f f -=-=,则()y f x =是D 上的偶函数;② 若对于]2,2[-∈x ,都有0)()(=+-x f x f ,则()y f x =是D 上的奇函数; ③ 若函数)(x f y =在D 上具有单调性且)1()0(f f >则()y f x =是D 上的递减函数; ④ 若(1)(0)(1)(2)f f f f -<<<,则()y f x =是D 上的递增函数; 8. 设0a >,0b >,已知函数()1ax bf x x +=+. (Ⅰ) 当a b ≠时,讨论函数()f x 的单调性(直接写结论); (Ⅱ) 当0x >时,(i)证明2)]([)()1(ab f a b f f =⋅; (ii)若ab x f ba ab≤≤+)(2,求x 的取值范围.解:(Ⅰ)由1)(+-+=x ab a x f ,得 当b a >时,)(x f 分别在()()+∞--∞-,1,1,上是增函数; ……………2分 当b a <时,)(x f 分别在()()+∞--∞-,1,1,上是减函数; ……………2分(Ⅱ)(i )∵2)1(b a f +=,ab ab b a baabf b a ab a b f =++=+=1)(,2)( …………2分 ∴2])([)()1(a b f ab a b f f ==,∴2)]([)()1(ab f a b f f = …………1分 (ii )∵ab x f ba ab≤≤+)(2 ∴由(i )可知,)()()(abf x f ab f ≤≤, ……………2分 ①当b a =时,a x f =)(,H=G=a ,x 的取值范围为0>x . ……………2分 ②当b a >时,∵1<ab,∴a b a b <由(Ⅰ)可知,)(x f 在()+∞,0上是增函数,∴x 的取值范围为abx ab≤≤ …2分 ③当b a <时,∵1>ab,∴a b a b >由(Ⅰ)可知,)(x f 在()+∞,0上是减函数,∴x 的取值范围为abx a b ≤≤ …2分 综上,当b a =时,x 的取值范围为0>x ;当b a >时,x 的取值范围为ab x ab≤≤;当b a <时,x 的取值范围为abx a b ≤≤。
(word完整版)高中数学必修一3.1函数与方程练习题及答案
高中数学必修一 3.1函数与方程练习题及答案上述函数是幕函数的个数是 ( A. 0个 B.1个 C.2个 D.3个A. 有且仅有一个根B. 至多有一个根C. 至少有一个根D.以上结论都不对A.14400亩B . 172800亩C .17280 亩D . 20736亩8. 若函数f x 既是幕函数又是反比例函数 ,则这个函数是f X = ________9. 幕函数f(x)的图象过点⑶丿27),则f (x)的解析式是 ______________________2.已知f(x)唯一的零点在区间(1,3)、(1,4)、 (1,5)内,那么下面命题错误的(A.函数 f(x)在(1,2)或 2,3内有零点 B.函数 f(x)在(3,5)内无零点 C 屈数 f (X )在(2,5)内有零点 D.函数 f(x)在(2,4)内不一定有零点 3.若a0,b 0, ab 1 2 ,则l(log a b log 1 alog a blog 1 a A .2B. 2log a b log 1 alog a b log 1 aC . 2D.24. 求函数 f(x) 2x33x 1零点的个数为 D. 4C. 3( )ab与A. 1B. 2 log 1 a ln 2 log 】a2的关系是5.已知函数yf(x)有反函数,则方程f(x) 0(26.如果二次函数y x mx (m3)有两个不同的零点,则 m 的取值范围是(A. 2,6B. 2,6C.2,6D. , 2 U 6 ,7.某林场计划第一年造林10000亩,以后每年比前一年多造林 20%,则第四年造林(1.若y x2八八心i,y(x 1)2,y x,y a x (a 1)10. 用二分法”求方程X 3 2x 5 °在区间23]内的实根,取区间中点为 X 。
2.5,那么下一个有根的区间是 __________________11. 函数f (x ) lnx X 2的零点个数为 _________________ 12.设函数y f (x )的图象在a,b 上连续,若满足 ________________ ,方程f (x ) °在a,b 上有实根.1f (x ) x — x 113.用定义证明:函数x在减少1个,为了获得最大利润,则此商品的最佳售价应为多少?上是增函数14.设x1与x 2分别是实系数方程ax 2 bx c ° 禾a 2OX 0,求证:方程畀bx C°有仅有一根介于x1和x2之间.15.函数f(x)x 22ax 1 a在区间°」上有最大值2,求实数a 的值16.某商品进货单价为 4°元,若销售5°元,可卖出5°个,如果销售单价每涨1元,销售量就17.函数y xA.是奇函数,且在R 上是单调增函数B. 是奇函数,且在R 上是单调减函数C.是偶函数,且在R 上是单调增函数D. 是偶函数,且在R 上是单调减函数18.已知a log2 °.3,b2,c 0.2 ,则a,b,c 的大小关系是(22. 一个高中研究性学习小组对本地区2000年至2002年快餐公司发展情况进行了调查,制成了该地区快餐公司个数情况的条形图和快餐公司盒饭年销售量的平均数情况条形图(如图) ,根据图中提供的信息可以得出这三年中该地区每年平均销售盒饭 ___________ 万盒.A . a b cB . cC.a c bD.b19.函数f(x) x 5x 3的实数解落在的区间是(20.函数 根的和为C 」2,3]D .【3,4]f(x )对一切实数x ),并且方程f (x )有三个实根,则这三个实21.若函数f(x) 4x x 2a的零点个数为3,则a126. 函数y = x +1的单调区间为 _____________ .27. 函数f (x )= 2X 2— 3 | x |的单调减区间是 ____________x log 2 x23.已知 2x 256且2 ,求函数住) x 仮 log22 g’T 的最大值和最小值.224.函数y = = x - 6x + 10在区间( 2, 4)上是(A.递减函数B .递增函数 C. 先递减再递增D. 选递增再递减.25.函数 f (x )=- x 2 + 2 (a - 1) x + 2在(―汽 4) 上是增函数,则a 的范围是( A. a >5B . a > 3C. a w 3D. a w- 528. 确定函数y = x + x(x >0)的单调区间,并用定义证明.29. 快艇和轮船分别从A地和C地同时开出,如右图,各沿箭头方向航行,快艇和轮船的速度分别是45千米/时和15千米/时,已知AO 150千米,经过多少时间后,快艇和轮船之间的距离最短?30. 设f (x)是定义在R上的增函数,f (xy)= f (x) + f(y), f (3)= 1,求解不等式f (x) + f(x- 2)> 1.2答案1. C. y x ,y X 是幕函数 2. C •唯一的零点必须在区间(1,3),而不在3,5log 1 a ln 2 0,得0 a 1,b1log a b 0,log 1 a 03. A. 224 C f (x) 2x 33x 1 2x 32x x21 2x(x 1) (x 1)(x 1)(2x 2 2x 1), 2x 2 2x1 0显然有两个实数根,共二个;5. B.可以有一个实数根,例如 y X 1,也可以没有实数根,例如y2X6. D. 2m 4(m 3)0,m 6或 m 237 C 10000(1 0.2)1728018. x 设 f (x) x ,则 139f(x)仮3 f (x) x ,图象过点(3,^27),3丁27 3,3310. [2,2.5)令 f (x) x 2x 5, f(2) 1 0, f (2.5) 2.5 1011. 2分别作出f(x) ln x , g(x) x 2的图象;12. f (a )f (b )0见课本的定理内容1 f(X 2)(捲 X 2)(1 )x-|x 2即 f(x 1) f (X 2)1 x-i13.证明:设X 2, f (xj2f(x) X —• ••函数X在上是增函数xa 14.解:令 f(x) -X2bx c,由题意可知2ax1bx 1 c 2 0, ax 2bx2c 0ax 22, f(x 1) a 2bx 1 ca 2 2a 2bx 1 c ax 12, bx 2 c尹2X1ax 1尹f(X 2)a 2 ,a 223a 2x 2 bxcx 2 ax 2 2~2 X2,因为a0,X 1 0,X 215.解:对称轴x a ,所以a40x 50017. A. 18. C. 19. B.当x 20时,y取得最大值,所以应定价为f( x) ( x)3a log 2 0.3 0,b f (0) 3 0, f(1) 70元X 3 f (x)为奇函数且为增函数2°11,c 1 0, f(2)0.21.3 131 0, f(1)f(2)320. 2对称轴为1x _2,可见 2是个实根,另两个根关于1 2对称21. 4 作出函数x 2 4x与函数y 4的图象,发现它们恰有3个交点.f (X 1)f(X 2)0,即方程 2-x 2 bx有仅有一根介于X 2之间.当a 0, 0,1是f(x)的递减区间,f (x)max f(0) 当a 1, 0,1是f (X )的递增区间,f(x)maxf(1) a 2f (x)max f (a) aa 1 2,a1矛盾;16•解: 设最佳售价为(50 x)元,最大利润为y 元,y (50x)(50 x)(50 x) 4022. 85 2000年 30 1.0 30 (万) ; 2001 年 45 2.0 90 (万);-30 90 135 x ------------------- 2002年:90 匸5 135 (万) ;31 23.解:由 2x 256 得 x 8 , log 2x 3 即 2f(x) (log 2 x 1)(log 2X 2) (log 2 x 3)222 _____________________24. C 解析:本题可以作出函数 y = x - 6x + 10的图象,根据图象可知函数在(2, 4) 上是先递减再递 增. 25. A 解析:本题作出函数 f ( x )=- x 2 + 2 ( a - 1) x + 2的图象,可知此函数图象的对称轴是x = a—1,由图象可知,当 a -1 >4,即当 a >5时,函数 f (x )=- x 2 + 2 (a - 1) x + 2在(一^, 4)上 是增函数.26. ( — 8, — 1) , (- 1 ,+◎3327. :0,4L (-m ,- 4 )28. 解:本题可利用计算机作出该函数的图象,通过图象求得单调区间,最后用单调性的定义证明. 答案:增区间(1,+8),减区间(0, 1).29. 解:设经过x 小时后快艇和轮船之间的距离最短,距离设为 y ,y = .. (150-45x)2 + (15x)2 (0<x3 ,可求得当x = 3时,y 有最小值.答案:3小时.30. 解:由条件可得 f (x )+ f (x - 2)= f : x (x - 2)], 1 = f (3).所以 f [ x (x - 2) > f (3), 又f ( x )是定义在R 上的增函数,所以有x ( x - 2) > 3,可解得x > 3或x <- 1. 答案:x > 3或x <- 1.当log2x3f (x ) imil 2min14 当 log 2 x 3, f (X )max285 (万)log 2x 3。
(完整word版)高等数学第一章函数与极限试题
高等数学第一章函数与极限试题一. 选择题1.设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(A ) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数. (C ) F(x)是周期函数⇔f(x)是周期函数. (D ) F(x)是单调函数⇔f(x)是单调函数 2.设函数,11)(1-=-x xe xf 则 (A ) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点(C ) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (D ) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点.3.设f (x)=xx 1-,x ≠0,1,则f [)(1x f ]= ( )A ) 1-xB ) x-11 C ) X1 D ) x4.下列各式正确的是 ( ) A )lim0+→x )x1+1(x=1 B ) lim 0+→x )x1+1(x=e C ) lim ∞→x )x 11-(x=-e D ) lim ∞→x )x1 +1(x-=e 5.已知9)(lim =-+∞→xx ax a x ,则=a ( )。
A.1; B.∞; C.3ln ; D.3ln 2。
6.极限:=+-∞→xx x x )11(lim ( ) A.1; B.∞; C.2-e ; D.2e7.极限:∞→x lim 332x x +=( )A.1;B.∞;C.0;D.2.8.极限:xx x 11lim-+→=( ) A.0; B.∞; C 21; D.2.9. 极限:)(lim 2x x x x -+∞+→=( )A.0;B.∞;C.2;D.21.10.极限: xxx x 2sin sin tan lim 30-→=( ) A.0; B.∞; C.161; D.16.二. 填空题11.极限12sin lim 2+∞→x xx x = . 12. lim→x xarctanx =_______________.13. 若)(x f y =在点0x 连续,则)]()([lim 0→-0x f x f x x =_______________;14.=→x xx x 5sin lim0___________; 15. =-∞→n n n)21(lim _________________; 16. 若函数23122+--=x x x y ,则它的间断点是___________________17. 绝对值函数 ==x x f )(⎪⎩⎪⎨⎧<-=>.0,;0,0;0,x x x x xx 其定义域是 ,值域是18. 符号函数 ==x x f sgn )(⎪⎩⎪⎨⎧<-=>.0,1;0,0;0,1x x x其定义域是 ,值域是三个点的集合()()x x x x f 25lg 12-+-+=19. 无穷小量是 20. 函数)(x f y =在点x0 连续,要求函数yf (x) 满足的三个条件是三. 计算题21.求).111(lim 0x ex xx --+-→ 22.设f(e 1-x )=3x-2,求f(x)(其中x>0); 23.求lim 2 x →(3-x)25--x x ;24.求lim ∞→ x (11-+x x )x; 25.求lim x →)3(2tan sin 22x x x x +26. 已知9)(lim =-+∞→xx ax a x ,求a 的值; 27. 计算极限nnnn 1)321(lim ++∞→28.求它的定义域。
高中数学必修一第三章函数的概念与性质知识总结例题(带答案)
高中数学必修一第三章函数的概念与性质知识总结例题单选题1、已知定义在R 上的奇函数f (x )在(0,+∞)上单调递增,且f(1)=0,若实数x 满足xf (x −12)≤0,则x 的取值范围是( )A .[−12,0]∪[12,32]B .[−12,12]∪[32,+∞)C .[−12,0]∪[12,+∞)D .[−32,−12]∪[0,12] 答案:A分析:首先根据函数的奇偶性和单调性得到函数f (x )在R 上单调递增,且f (1)=f (−1)=0,从而得到x ∈(−∞,−1),f (x )<0,x ∈(−1,0),f (x )>0,x ∈(0,1),f (x )<0,x ∈(1,+∞),f (x )>0,再分类讨论解不等式xf (x −12)≤0即可.因为奇函数f (x )在(0,+∞)上单调递增,定义域为R ,f(1)=0,所以函数f (x )在R 上单调递增,且f (1)=f (−1)=0.所以x ∈(−∞,−1),f (x )<0,x ∈(−1,0),f (x )>0,x ∈(0,1),f (x )<0,x ∈(1,+∞),f (x )>0.因为xf (x −12)≤0,当x <0时,f (x −12)≥0,即−1≤x −12≤0或x −12≥1,解得−12≤x <0.当x =0时,符合题意.当x >0时,f (x −12)≤0,x −12≤−1或0≤x −12≤1, 解得12≤x ≤32. 综上:−12≤x ≤0或12≤x ≤32. 故选:A2、若函数f (x )=x α的图象经过点(9,13),则f (19)=( )A .13B .3C .9D .8分析:将(9,13)代入函数解析式,即可求出α,即可得解函数解析式,再代入求值即可. 解:由题意知f (9)=13,所以9α=13,即32α=3−1,所以α=−12,所以f (x )=x −12,所以f (19)=(19)−12=3.故选:B3、若函数f(x)=x 2−mx +10在(−2,1)上是减函数,则实数m 的取值范围是( )A .[2,+∞)B .[−4,+∞)C .(−∞,2]D .(−∞,−4]答案:A分析:结合二次函数的对称轴和单调性求得m 的取值范围.函数f(x)=x 2−mx +10的对称轴为x =m 2,由于f (x )在(−2,1)上是减函数,所以m 2≥1⇒m ≥2. 故选:A4、函数f (x )=x 2−1的单调递增区间是( )A .(−∞,−3)B .[0,+∞)C .(−3,3)D .(−3,+∞)答案:B分析:直接由二次函数的单调性求解即可.由f (x )=x 2−1知,函数为开口向上,对称轴为x =0的二次函数,则单调递增区间是[0,+∞).故选:B.5、若函数f (x )=x ln (x +√a +x 2)为偶函数,则a 的值为( )A .0B .1C .﹣1D .1或﹣1答案:B分析:由f (x )=x ln (x +√a +x 2)为偶函数,则设g (x )=ln (x +√a +x 2)是奇函数,由g (0)=0,可解:∵函数f(x)=x ln(x+√a+x2)为偶函数,x∈R,∴设g(x)=ln(x+√a+x2)是奇函数,则g(0)=0,即ln√a=0,则√a=1,则a=1.故选:B.6、函数f(x)=log2x−1x的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)答案:B解析:判断函数的单调性,结合函数零点存在性定理,判断选项.f(1)=0−1=−1<0,f(2)=1−12=12>0,且函数f(x)=log2x−1x 的定义域是(0,+∞),定义域内y=log2x是增函数,y=−1x也是增函数,所以f(x)是增函数,且f(1)f(2)<0,所以函数f(x)=log2x−1x的零点所在的区间为(1,2).故选:B小提示:方法点睛:一般函数零点所在区间的判断方法是:1.利用函数零点存在性定理判断,判断区间端点值所对应函数值的正负;2.画出函数的图象,通过观察图象与x轴在给定区间上是否有交点来判断,或是转化为两个函数的图象交点判断.7、函数y=√2x+4x−1的定义域为()A.[0,1)B.(1,+∞)C.(0,1)∪(1,+∞)D.[0,1)∪(1,+∞)答案:D分析:由题意列不等式组求解由题意得{2x≥0x−1≠0,解得x≥0且x≠1,故选:D8、设a为实数,定义在R上的偶函数f(x)满足:①f(x)在[0,+∞)上为增函数;②f(2a)<f(a+1),则实数a 的取值范围为()A.(−∞,1)B.(−13,1)C.(−1,13)D.(−∞,−13)∪(1,+∞)答案:B分析:利用函数的奇偶性及单调性可得|2a|<|a+1|,进而即得.因为f(x)为定义在R上的偶函数,在[0,+∞)上为增函数,由f(2a)<f(a+1)可得f(|2a|)<f(|a+1|),∴|2a|<|a+1|,解得−13<a<1.故选:B.多选题9、某杂志以每册2元的价格发行时,发行量为10万册.经过调查,若单册价格每提高0.2元,则发行量就减少5000册.要该杂志销售收入不少于22.4万元,每册杂志可以定价为()A.2.5元B.3元C.3.2元D.3.5元答案:BC分析:设每册杂志定价为x(x>2)元,根据题意由(10−x−20.2×0.5)x≥22.4,解得x的范围,可得答案.依题意可知,要使该杂志销售收入不少于22.4万元,只能提高销售价,设每册杂志定价为x(x>2)元,则发行量为10−x−20.2×0.5万册,则该杂志销售收入为(10−x−20.2×0.5)x万元,所以(10−x−20.2×0.5)x≥22.4,化简得x2−6x+8.96≤0,解得2.8≤x≤3.2,故选:BC小提示:关键点点睛:理解题意并求出每册杂志定价为x(x>2)元时的发行量是解题关键.10、已知函数f(x)={|x |+2,x <1x +2x,x ≥1 ,下列说法正确的是( ) A .f(f(0))=3B .函数y =f(x)的值域为[2,+∞)C .函数y =f(x)的单调递增区间为[0,+∞)D .设a ∈R ,若关于x 的不等式f(x)≥|x 2+a|在R 上恒成立,则a 的取值范围是[−2,2]答案:ABD解析:作出函数f(x)的图象,先计算f(0),然后计算f(f(0)),判断A ,根据图象判断BC ,而利用参变分离可判断D .画出函数f(x)图象.如图,A 项,f(0)=2,f(f(0))=f(2)=3,B 项,由图象易知,值域为[2,+∞)C 项,有图象易知,[0,+∞)区间内函数不单调D 项,当x ≥1时,x +2x ≥|x 2+a|恒成立,所以−x −2x ≤x 2+a ≤x +2x 即−32x −2x ≤a ≤x 2+2x 在[1,+∞)上恒成立,由基本不等式可得x 2+2x ≥2,当且仅当x =2时等号成立,3x 2+2x ≥2√3,当且仅当x =2√33时等号成立, 所以−2√3≤a ≤2.当x <1时,|x |+2≥|x 2+a|恒成立,所以−|x |−2≤x 2+a ≤|x |+2在(−∞,1)上恒成立,即−|x |−2−x 2≤a ≤|x |+2−x 2在(−∞,1)上恒成立 令g (x )=|x |+2−x 2={−32x +2,x ≤0x 2+2,0<x <1 ,当x ≤0时,g (x )≥2,当0<x <1时,2<g (x )<32,故g (x )min =2;令ℎ(x )=−|x |−2−x 2={12x −2,x ≤0−3x 2−2,0<x <1 ,当x ≤0时,ℎ(x )≤−2,当0<x <1时,−72<ℎ(x )<−2,故ℎ(x )max =−2; 所以−2≤a ≤2.故f(x)≥|x 2+a|在R 上恒成立时,有−2≤a ≤2. 故选:ABD .小提示:关键点点睛:本题考查分段函数的性质,解题方法是数形结合思想,作出函数的图象,由图象观察得出函数的性质,绝对值不等式恒成立,可以去掉绝对值符号,再利用参变分离求参数的取值范围.11、已知函数f (x )={x 2,−2≤x <1−x +2,x ≥1关于函数f (x )的结论正确的是( ) A .f (x )的定义域为RB .f (x )的值域为(−∞,4]C .若f (x )=2,则x 的值是−√2D .f (x )<1的解集为(−1,1)答案:BC分析:求出分段函数的定义域可判断A ;求出分段函数的值域可判断B ;分x ≥1、−2≤x <1两种情况令f (x )=2求出x 可判断C ;分x ≥1、−2≤x <1两种情况解不等式可判断D.函数f (x )={x 2,−2≤x <1−x +2,x ≥1的定义域是[−2,+∞),故A 错误; 当−2≤x <1时,f (x )=x 2,值域为[0,4],当x ≥1时,f (x )=−x +2,值域为(−∞,1],故f (x )的值域为(−∞,4],故B 正确;当x ≥1时,令f (x )=−x +2=2,无解,当−2≤x <1时,令f (x )=x 2=2,得到x =−√2,故C 正确; 当−2≤x <1时,令f (x )=x 2<1,解得x ∈(−1,1),当x ≥1时,令f (x )=−x +2<1,解得x ∈(1,+∞),故f (x )<1的解集为(−1,1)∪(1,+∞),故D 错误.故选:BC.填空题12、写出一个同时具有下列性质的函数f(x)=___________.①f(x)是奇函数;②f(x)在(0,+∞)上为单调递减函数;③f(x1x2)=f(x1)f(x2).答案:x−1(答案不唯一,符合条件即可)分析:根据三个性质结合图象可写出一个符合条件的函数解析式.f(x)是奇函数,指数函数与对数函数不具有奇偶性,幂函数具有奇偶性,又f(x)在(0,+∞)上为单调递减函数,同时f(x1x2)=f(x1)f(x2),故可选,f(x)=xα,α<0,且α为奇数,所以答案是:x−113、已知幂函数f(x)=(m2−3m+3)x m+1的图象关于原点对称,则满足(a+1)m>(3−2a)m成立的实数a 的取值范围为___________.答案:(23,4)分析:利用幂函数的定义及性质求出m值,再解一元二次不等式即可得解.因函数f(x)=(m2−3m+3)x m+1是幂函数,则m2−3m+3=1,解得m=1或m=2,当m=1时,f(x)=x2是偶函数,其图象关于y轴对称,与已知f(x)的图象关于原点对称矛盾,当m=2时,f(x)=x3是奇函数,其图象关于原点对称,于是得m=2,不等式(a+1)m>(3−2a)m化为:(a+1)2>(3−2a)2,即(3a−2)(a−4)<0,解得:23<a<4,所以实数a的取值范围为(23,4).所以答案是:(23,4)14、若幂函数y=f(x)的图像经过点(18,2),则f(−18)的值为_________.答案:−2分析:根据已知求出幂函数的解析式f(x)=x−13,再求出f(−18)的值得解.设幂函数的解析式为f(x)=x a ,由题得2=(18)a =2−3a ,∴−3a =1,∴a =−13,∴f(x)=x −13.所以f(−18)=(−18)−13=(−12)3×(−13)=−2.所以答案是:−2.小提示:本题主要考查幂函数的解析式的求法和函数值的求法,意在考查学生对这些知识的理解掌握水平. 解答题15、美国对中国芯片的技术封锁激发了中国“芯”的研究热潮.某公司研发的A ,B 两种芯片都已经获得成功.该公司研发芯片已经耗费资金2千万元,现在准备投入资金进行生产.经市场调查与预测,生产A 芯片的毛收入与投入的资金成正比,已知每投入1千万元,公司获得毛收入0.25千万元;生产B 芯片的毛收入y (千万元)与投入的资金x (千万元)的函数关系为y =kx a (x >0),其图像如图所示.(1)试分别求出生产A ,B 两种芯片的毛收入y (千万元)与投入资金x (千万元)的函数关系式;(2)现在公司准备投入40千万元资金同时生产A ,B 两种芯片,求可以获得的最大利润是多少.答案:(1)生产A ,B 两种芯片的毛收入y (千万元)与投入资金x (千万元)的函数关系式分别为y =0.25x ,y =√x (x >0),(2)9千万元分析:(1)根据待定系数法可求出函数解析式,(2)将实际问题转换成二次函数求最值的问题即可求解解:(1)因为生产A 芯片的毛收入与投入的资金成正比,所以设y =mx (m >0),因为当x =1时,y =0.25,所以m =0.25,所以y =0.25x ,即生产A 芯片的毛收入y (千万元)与投入资金x (千万元)的函数关系式为y =0.25x ,对于生产B 芯片的,因为函数y =kx a (x >0)图像过点(1,1),(4,2),所以{1=k k⋅4a=2,解得{k=1a=12,所以y=x12,即生产B芯片的毛收入y(千万元)与投入的资金x(千万元)的函数关系为y=√x(x>0),(2)设投入x千万元生产B芯片,则投入(40−x)千万元生产A芯片,则公司所获利用f(x)=0.25(40−x)+√x−2=−14(√x−2)2+9,所以当√x=2,即x=4千万元时,公司所获利润最大,最大利润为9千万元。
高二数学必修一函数的概念习题
B. yy
C. y x,y
D. y |x|,y 2 6
.函数y的定义域为( ). A. ( ,1] 1111 B. ( ,2] C. ( , ) ( ,1] D. ( , ) ( ,1] 2222 7.集合M x 2 x 2 ,N y0 y 2 ,给出下列四个图形,其中能表示以M为定义域,N为值域的函数关系的是( ).
8.下列四个图象中,不是函数图象的是( ). A. B.
C. D.9.已知函数f(x)的定义域为[.[0,-2) C.[0,-3) D.[-2,1) 10.已知f(x)=x2+x+1
,则f=______;f[f(2)]=______. 11.已知f(2x+1)=x2-2x,则f(3)12.(1
集合m??x?2?x?2?n??y0?y?2?给出下列四个图形其中能表示以m为定义域n为值域的函数关系的是
函数的概念 1.求下列函数的定义域: (1)y 2.求下列函数的定义域与值域:(1)y 3、已知函数f x 1 的定义域为 2,3 ,则f x 2 的定义域为( A. 2,3 4、函数f x B. 1,4 C. 16, ) ) 3x 2 ; (2)y x2 x 2. 5 4x1 ;(2
)求函数y= (2)求函数y=2x+1 1-3x的定义域与值域. 13、函数f(x)=x2+2x,x∈[-2,1]的值域是_______________________。 14、函数f(x)=1 x2+1(x∈R)的值域是______________________。 11 15、已知a2+a-2=3,求a+a-1,a2+a-2的值。
(word完整版)高中数学必修一函数大题(含详细解答)
高中函数大题专练1、已知关于x 的不等式(kx k 2 4)( x 4) 0,其中k R 。
⑴试求不等式的解集 A ;⑵对于不等式的解集 A ,若满足AI Z B (其中Z 为整数集)。
试探究集合B 能否为有 限集?若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表示集合B ;若不能,请说明理由。
2、对定义在[0, 1]上,并且同时满足以下两个条件的函数f(x)称为G 函数。
① 对任意的x [0, 1],总有f(x) 0 ; ② 当 x-i 0 ,x 2 0, x-i x 2 1 时,总有 仁为 x 2)f (x () f (x 2)成立。
已知函数g(x) x 2与h(x) a 2x 1是定义在[0, 1]上的函数。
(1 )试问函数g(x)是否为G 函数?并说明理由; (2)若函数h(x)是G 函数,求实数a 的值;(3 )在(2)的条件下,讨论方程g(2x 1) h(x) m (m R)解的个数情况。
0, x 0.(1) 求f (x)在(,0)上的解析式. (2) 请你作出函数f(x)的大致图像.(3) 当0 a b 时,若f (a) f (b),求ab 的取值范围•(4)若关于x 的方程f 2(x) bf (x) c 0有7个不同实数解,求b,c 满足的条件.K5.已知函数 f (x) a 一 (x 0)。
|x|(1) 若函数f(x)是(0,)上的增函数,求实数 b 的取值范围;(2) 当b 2时,若不等式f (x) x 在区间(1,)上恒成立,求实数 a 的取值范围; (3) 对于函数g(x)若存在区间[m,n ](m n),使x [m,n ]时,函数g(x)的值域也是3.已知函数f (x)(1) 若 f(x)2x2,求x 的值;(2)若 2t f (2t) mf (t) 0 对于 t[2, 3]恒成立,求实数m 的取值范围4.设函数f (x)是定义在R 上的偶函数•若当x 0时,f(x)1 — , x 0;x: 2[m, n],则称g(x)是[m, n]上的闭函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学必修一函数的概念习题
(2021最新版)
作者:______
编写日期:2021年__月__日
函数的概念1.求下列函数的定义域:(1)y2.求下列函数的定义域与值域:(1)y3、已知函数fx1的定义域为2,3,则fx2的定义域为(A.2,3 4、函数fxB.1,4C.16,))3x2;(2)yx2x2. 54x1;(2
)yx21.D.4,11的值是(1x1xB.A.4 55 4C.3 4D.4 35.下列各组函数中,表示同一函数的是().A. y1,yxx
B. yy
C. yx,y
D. y|x|,y2 6
.函数y的定义域为().A. (,1]1111B. (,2] C. (,)(,1] D. (,)(,1]22227.集合Mx2x2,Ny0y2,给出下列四个图形,其中能表示以M为定义域,N为值域的函数关系的是().
8.下列四个图象中,不是函数图象的是().A. B.
C.D.9.已知函数f(x)的定义域为[-1,2),则f(x-1)的定义域为().A.[-1,2) B.[0,-2) C.[0,-3) D.[-2,1)10.已知f(x)=x2+x+1
,则f=______;f[f(2)]=______.11.已知f(2x+1)=x2-2x,则f(3)12.(1
)求函数y= (2)求函数y=2x+11-3x的定义域与值域.13、函数f(x)=x2+2x,x∈[-2,1]的值域是_______________________。
14、函数f(x)=1x2+1(x∈R)的值域是______________________。
1115、已知a2+a-2=3,求a+a-1,a2+a-2的值。
16
、求函数y=2x。