分子间作用力分子晶体1

合集下载

《分子间作用力 分子晶体》课件(教师版)解析

《分子间作用力 分子晶体》课件(教师版)解析
分子晶体要熔化、要汽化都要克服分子间的作用力。 分子间作用力越大,物质熔化和汽化时需要的能量就越 多,物质的熔点和沸点就越高。
分子晶体熔化时,一般只破坏了分子间作用力,不 破坏分子内的化学键,但也有例外,如硫晶体(S8)熔 化时,既破坏了分子间的作用力,同时部分S-S键断裂, 形成更小的分子。
几种类型的晶体结构和性质
2、分子晶体的特点: 熔点低、硬度小、易升华。
某些分子晶体的熔点
分子晶体


白磷

熔点
-218.3 -210.1
44.2
0
分子晶体 硫化氢
甲烷
乙酸
尿素
熔点
-85.6
-182.5
16.7
132.7
3、典型的分子晶体
(1)所有非金属氢化物 如水、硫化氢、氨、氯化氢、甲烷等
(2)部分非金属单质 如卤素(X2)、氧(O2)、硫(S8)、氮 (N2)、 白
分布是否均匀等。
范德华力比化学键弱得多。一般来说,某 物质的范德华力越大,则它的熔点、沸点就越 高。对于组成和结构相似的物质,范德华力一 般随着相对分子质量的增大而增强。
二、氢键的形成
氧族元素的氢化物的熔点和沸点
温度/℃
100
H2O
0 H2O
H2Te 沸点
H2Se H2S
H2Te熔点
H2S H2Se
晶体类型 金属晶体 离子晶体 原子晶体 分子晶体
构成微粒 结 构 微粒间作
用力
金属离子、 自由电子
金属键
阴、阳离子 离子键
原子 共价键
分子
分子间作 用力
熔、沸点 有高有低
较高
ቤተ መጻሕፍቲ ባይዱ
很高

分子晶体

分子晶体

3、典型物质
ቤተ መጻሕፍቲ ባይዱ
(1)碘晶体
长方体
每个晶胞中有 4 个碘分子
什么体? 几个分子?
3、典型物质
(2)干冰 面心立方 每个晶胞中有 4 个二氧化碳分子
什么体? 几个分子?
3、典型物质
(3)冰 氢键具有方向 性
冰中1个水分子周围有4个水分子
冰的结构
4、物理性质 (1)分子晶体有低熔点(破坏的是分子间作用力) (2)不导电(三态下均不存在带电荷的离子,共价 键没有被破坏)(水溶液 中有些导电有些不导电) (3)相似相溶 (4)易挥发、硬度小(分子间作用力弱)
3.下列化学式既能表示物质的组成,又能表示物质 分子式的是 ( C )。 A.NH4NO3 B.SiO2 C.C2H5OH D.Fe 4.氮化铝(AlN)常做砂轮及高温炉衬材料,熔化状态 下不导电,可知它属于 ( C )。 A.离子晶体 B.分子晶体 C.原子晶体 D.金属晶体
1 .当下列物质以晶体形式存在时,其所属晶体类 型和所含化学键类型分别相同的是 ( C )。 A.氯化钠和氯化氢 B.二氧化碳和二氧化硅 C.四氯化碳和四氯化硅 D.单质铁和单质碘 2.下列有关物质的熔点高低顺序不正确的是( C ) A.HF>HCl,HCl<HBr B.CF4<CCl4<CBr4 C.I2>SiO2 D.H2O>H2S,SO2<SeO2
1、定义:分子间通过分子间作用力构成的晶体称 为分子晶体。
注意点: I 构成分子晶体的粒子是分子。 II 在分子晶体中,分子内的原子间以共价键结合, 而相邻分子靠分子间作用力相互吸引。
例 CO2 H2O 存在分子
2、结构特点:由于分子间作用力不具有 方向性 ,所以分子晶体在堆积排列时尽可能的 ________ 利用空间采取紧密堆积的方式。

晶体及分子间作用力

晶体及分子间作用力

金刚石的结构
• 1molC(金刚石)可以形成2molC-C单 键。

石墨晶体中层与层之间相隔 • 340pm • ,距离较大,是以范德华力结合
同层的碳原子形成共价键,石墨晶体中层与层之 间相隔距离较大,是以范德华力结合
白磷的结构
白磷中1molP形成1.5molP-P键
共价键数的计算
• 1、1molSiO2中含有4molSi-O单键 • 2、1molC(金刚石)可以形成2molCC单键 • 3、1mol(石墨)中含3/2molC-C单键 • 4、白磷中1molP形成1.5molP-P键
氢键比化学键弱的多但比分子
间的作用力强。
总结:分子间作用力与化学键的比较
作用微粒
作用力大小
意义 影响化学性质 和物理性质(如稳定 性)
影响物理性质 (熔沸点等)
化学键 分子内原子间 作用力大
范德华力
分子之间
作用力小
注意:分子之间无化学键
二、常见晶体及其键数的计算
1molSiO2中含有4molSi-O单键
键数计算
• 1、金刚石的晶体结构是一种空间网状结构,每一个碳原 子与周围的四个碳原子形成一个正四面体,即正四面体中 心的一个碳原子参与形成4个C-C单键,该碳原子对一个 C-C单键的“贡献”都是1/2,所以,正四面体中心的这 个碳原子参与形成的C-C单键数目相当于4×1/2=2, 故金刚石中,1molC(金刚石)可以形成2molC-C单 键。 2、二氧化硅晶体的结构也是一种空间网状结构,每一个 硅原子与周围的四个氧原子形成一个Si、O正四面体,即 硅原子位于正四面体的中心,四个氧原子位于正四面体的 四个顶点上,每一个氧原子参与形成2个Si、O正四面体, 即每一个硅原子与周围的四个氧原子可以形成四个Si-O 单键,所以,1molSiO2中含有4molSi-O单键 3、石墨的空间结构是一种层状结构,在每一层中,每一 个碳原子参与形成3个平面正六边形,每1个正六边形含6 个碳原子,所以,一个碳原子对形成C-C单键“贡献”都 是1/2,考察每一个共用的碳原子形成的C-C单键数目是 3×1/2=3/2,所以1mol(石墨)中含用力(范德华力)和氢键

分子晶体

分子晶体

A 1、关于晶体的下列说法正确的是 A.在晶体中只要有阴离子就一定有阳离子 B.在晶体中只要有阳离子就一定有阴离子 C.原子晶体的熔点一定比金属晶体的高 D.分子晶体的熔点一定比金属晶体的低
2 、实现下列变化时需克服相同类型作用力的是 A.石墨和干冰的熔化 C.液溴和水的汽化 B.食盐和冰醋酸的熔化 D.碘和萘的升华
氢键具有方向性
冰中1个水分子周围有4个水分子
冰的结构
思考:1mol冰周围有?mol氢键
冰中1个水分子周围有4个水分子形成 什么空间构型?
小结:
⑴、分子间氢键的形成会增大分子间作用力, 使物质的熔沸点升高,硬度增大,黏度增大, 且分子间氢键数量越多,熔沸点越高。 ⑵、分子内氢键的形成则会削弱分子间作用力, 使物质的熔沸点降低,硬度减小,黏度减小 ⑶、物质若能与水形成分子间氢键,则一般在 水中具有较大的溶解度
弱分子间作用力
氢键的种类:
分子内氢键 (不属于分子间作用力) 分子间氢键 (属于分子间作用力)
4、氢键对化合物性质的影响 ⑴对熔沸点的影响
① 分子间氢键的存在 ,当物质从固态转化为液 态或由液态转化为气态时,不仅需要克服分子间 作用力,还需提供足够的能量破坏氢键,因而 使
物质的熔、沸点升高。
NH3、H2O和HF的熔沸点比同族其它氢化物 高就是由于分子间形成了氢键。 ②分子内氢键的存在,由于削弱了分子间作用 力,使物质的熔沸点降低。
几种常见的晶体结构和性质
晶体类型
结构 构成微粒
金属晶体
金属离子和 自由电子 金属 键 较高 较大 好
离子 晶体
阴阳 离子
离子键 较高 较大
原子 晶体
原子
分子 晶体
分子
微粒间作用 力 性质 熔沸点

6-3 分子晶体和分子间作用力

6-3 分子晶体和分子间作用力
也与分子的变形性成正比。
所谓分子的变形性,即分子的 正负电重心的可分离程度。
分子体积越大,电子越多,变 形性越大。
非极性分子在无外电场作用时, 由于运动、碰撞,原子核和电子 的相对位置变化 … … 其正负电重心 可有瞬间的不重合。
极性分子也会由于上述原因改变 正负电重心。
这种由于分子在一瞬间正负 电重心不重合而造成的偶极
在国际单位制中偶极矩
以 C•m(库仑•米)为单位,
当 q = 1 C, d = 1 m 时,
= 1 C•m
C•m 与 D 两种偶极矩单位的 换算关系为
4.8 D = 1.602 10-19 C 1.0 10-10 m 1.602 10-19 1.0 10-10 C•m
1D = 4.8
3. 色散力 瞬间偶极 —— 瞬间偶极 之间有色散力。
由于各种分子均有瞬间偶极, 故色散力存在于
极性分子 —— 极性分子 极性分子 —— 非极性分子 非极性分子 —— 非极性分子
色散力不仅存在广泛,而且在分子 间力中,色散力经常是重要的。
下面的数据可以说明这一点
kJ•mol-1 取向力
Ar
0
HCl
它仅存在于极性分子之间。 取向力的大小与偶极矩的平方成
正比, F 2
2. 诱导力
诱导偶极 —— 永久偶极 之间的作用称为诱导力。
极性分子作为电场,使非极性 分子产生诱导偶极
极性分子作为电场,使极性分 子的偶极增大,产生诱导偶极
这时诱导偶极与永久偶极之间 产生诱导力。
因此诱导力存在于 极性分子 —— 非极性分子 也存在于 极性分子 —— 极性分子
则偶极矩 = q d
当 d = 1.0 10-10 m 即 d 为 1 A°

分子晶体

分子晶体

氢键 F H F H
氢键 F H F H
F原子半径小, 原子半径小, 原子半径小 得电子能力强
2.氢键 2.氢键 定义: (1)定义:在某些氢化物分子间存在着一种比分于间 作用力稍强的相互作用,称为氢键。 作用力稍强的相互作用,称为氢键。 其实质是静电吸引作用 强度:比分子间作用力稍强,但比化学键弱得多。 ①强度:比分子间作用力稍强,但比化学键弱得多。 表示方法: 表示( HF、 ②表示方法:用“…”表示(教材中HF、H2O氢键的表示 表示 教材中HF 法) 影响:氢键的存在使物质的熔点、沸点相对较高。 ③影响:氢键的存在使物质的熔点、沸点相对较高。 氢键是化学键吗? 不是。氢键属于特殊的分子间作用力。 氢键是化学键吗? 不是。氢键属于特殊的分子间作用力。 【讨论】1.存在氢键的物质为何熔点、沸点相对较高? 讨论】 .存在氢键的物质为何熔点、沸点相对较高?
(2)表示方法: X-H … Y 表示 “…”表示氢键 表示方法: 表示氢键 用 形成条件: (3)形成条件: 要存在非金属性强半径小的非金属原子如N、 、 要存在非金属性强半径小的非金属原子如 、O、F 氢键的特点: (4) 氢键的特点 : 比化学键弱得多, ①比化学键弱得多,只比分子间作用力稍强 ②氢键的形成增强了分子间作用力,从而增大了物质的 氢键的形成增强了分子间作用力, 沸点( HF、 或在水中的溶解度。 熔、沸点(NH3、HF、H2O),或在水中的溶解度。 (5)氢键的应用 氢键的应用: (5)氢键的应用: 解释一些氢化物熔沸点反常. ①解释一些氢化物熔沸点反常 冰的密度比液态水小。 ②冰的密度比液态水小。
干冰晶体结构示意图
每个CO 分子周围有12个紧邻等距的CO 分子。 每个CO2分子周围有12个紧邻等距的CO2分子。 12个紧邻等距的

分子间作用力分子晶体

分子间作用力分子晶体

分子间作用力分子晶体分子晶体(molecular crystal)是由分子间的非共价作用力形成的晶体结构。

这种晶体结构由分散的分子通过弱的相互作用力组成,而不是由金属键或离子键组成的。

分子晶体是一类非常常见的晶体类型,包括有机晶体、冰晶体等。

范德华力是一种由于分子间电子云的偶极瞬时极化而产生的相互作用力。

它是分子晶体中最弱的一种作用力,但也是最普遍和最重要的。

范德华力随着分子间的距离增加而减弱,但随着分子间电荷分布的改变而变化。

范德华力的强度取决于分子的极性和大小。

氢键是另一种重要的分子间作用力。

它是一种特殊的电荷间相互作用力,通常涉及一个氢原子与一个电负性较大的原子(如氮、氧、氟)之间形成的相互作用。

氢键是一种强作用力,能够使分子更紧密地结合在一起。

它在水分子中的作用是形成水的固态结构(冰)的重要原因。

氢键也在很多有机分子晶体中起到关键作用。

π-π相互作用是一种特殊的分子间力,通常涉及芳香环中的π电子云之间的相互作用。

这种相互作用可以使芳香环平行排列并相互叠加,从而增强晶体的稳定性。

π-π相互作用对于一些有机分子晶体,如芳香族化合物晶体,具有重要的作用。

除了这些主要的分子间作用力,还有其他一些较弱的作用力也可以参与分子晶体的形成,例如离域电子的相互作用和疏水作用等。

分子晶体具有一些独特的性质和应用。

首先,它们通常具有较低的硬度和脆性,这是由于它们之间的非共价作用力较弱所致。

其次,分子晶体通常是电绝缘体,因为它们之间没有可以形成导电电子的共价键。

此外,由于分子晶体中分子之间的间隙,它们通常对溶剂和小分子具有较高的吸附能力。

这些特性使得分子晶体在材料科学、化学和生物学等领域具有广泛的应用,如药物晶体工程、分子传感器、光电器件等。

总之,分子间作用力是分子晶体形成的关键因素。

范德华力、氢键和π-π相互作用等主要作用力共同作用,通过将分子组装在一起形成晶体结构。

分子晶体具有一系列特殊性质和应用,成为材料科学和化学研究中的重要主题。

分子间作用力分子晶体完整版课件

分子间作用力分子晶体完整版课件

A.6
B.8
C.10
D.12
【解析】选D。根据干冰结构特点,干冰晶体是一种面心立方结构,每 个CO2周围等距离且最近的CO2有12个(同层4个,上层4个,下层4个)。
【总结归纳】 1.典型的分子晶体模型:
单质碘
干冰

晶胞或结核模型
微粒间作用力
晶胞微粒数 配位数
范德华力 4
范德华力
4 12
范德华力和 氢键
4
2.分子晶体的变化规律: (1)对于组成和结构相似、晶体中不含氢键的物质来说,随着相对分子 质量的增大,范德华力增大,熔、沸点升高。如卤素单质、四卤化碳、 稀有气体等。 (2)同分异构体中,支链越多,熔、沸点越低。如沸点:正戊烷>异戊烷> 新戊烷。芳香烃及其衍生物的同分异构体熔、沸点一般遵循“邻位> 间位>对位”的顺序。
(5)存在氢键的分子的熔、沸点比一般分子的高。 ( ) 分析:×。分子间氢键的存在会导致物质的熔、沸点升高,但是分子内 氢键的存在会降低物质的熔、沸点。 (6)分子晶体熔化时,只破坏分子间作用力,不破坏分子内的化学 键。 ( ) 分析:√。分子晶体熔化时,只是分子间的距离变大,分子并没有变化, 所以不破坏分子内的化学键。
有方向性、 有饱和性
有方向性、有饱 和性
范德华力
氢键
共价键
强度 比较
共价键>氢键>范德华力
①随着分子极性的增 影响
大而增大 强度
②组成和结构相似的 的
物质,相对分子质量越 因素
大,范德华力越大
A—H…B中A、B的 电负性越大,B原 子的半径越小,氢 键越牢固
成键原子半径越 小,键长越短,键 能越大,共价键 越稳定

16分子间作用力-分子晶体

16分子间作用力-分子晶体

F2 Cl2 Br2 I2
38 71 160 254
-219.6 -101.0 -7.2 113.5
-188.1 -34.6 58.8 184.4
⑴ 组成和结构相似的分子, 相对分子质量越大,范德华力越大,其熔沸点越高 如:分子间作用力F2<Cl2<Br2<I2 CF4<CCl4<CBr4<CI4
范德华力与分子的极性的关系
分子 相对分子质 量
CO N2
28 28
分子的极 性 极性
熔点/℃
沸点/℃
-205.05
-191.49
非极性
-210.00
-195.81
⑵ 相对分子质量相同或相近时, 分子的极性越大(分子结构越不对称),范德华力 越大,其熔沸点越高
例1:下列叙述正确的是: (B ) A. 氧气的沸点低于氮气的沸点 B. 稀有气体原子序数越大,沸点越高 C. 任何分子间在任意情况下都会产生范德华力 D. 同周期元素的原子半径越小,越易失去电子
例2:下列各组物质汽化或熔化时,所克服的粒 子间作用力属于同种类型的是 (A D) A.碘和干冰的升华 B.二氧化硅和生石灰的熔化 C.氯化钠和铁的熔化 D.溴和煤油的蒸发
4.范德华力的成因:(了解)
a.取向力 当极性分子和极性分子相互接近时,它们 的固有偶极的同极相斥而异极相吸,就使得极 性分子按一定方向排列,因而产生了分子间的 作用力,这种力叫取向力。 分子极性越强,取向力越 大。这种力只存在于极性分子 与极性分子之间。
专题3
微粒间作用力与物质性质 第四单元 分子间作用力 分子晶体
气态
范德华力、氢键
水的电解
液态
固态
一、范德华力

分子间力与分子晶体

分子间力与分子晶体
双原子分子分子的极性取决于键的极性有极性键的分子一定是极性分子极性分子一定含有极性键分子的极性键的极性分子的几何构型极性分子co分子中正电荷中心或负电荷中心上的电量与正负电荷中心之间距离的乘积
第三节 分子间力与分子晶体
教学要求:
理解分子间力形成的原因,掌握产生分子极性的条件、 分子间力的种类及其形成过程;理解氢键的形成及其对物质 性质的影响。
分子 非极性分子-非极性分子 非极性分子-极性分子
分子间力种类 色散力 色散力、诱导力 色散力、诱导力、取向 力
极性分子-极性分子
4.分子间力的特点 分子间力的特点
(1)本质是一种电性引力,该作用力较小。 (2)既无饱和性又无方向性。 (3)分子间力的大小随着分子间距离的增大而减弱。
5.分子间力的影响因素 分子间力的影响因素
分子内处于不停运动的电子与核产生瞬间相对位移,使 , 分子产生瞬时偶极。 色散力:由瞬时偶极产生的作用。 α越大,色散作用越强。
2.极性分子和非极性分子间——诱导力 极性分子和非极性分子间 极性分子和非极性
固有偶极和诱导偶极间的吸引力是诱导力。
当极性分子与非极性分子相互靠近时:
_ +
诱导力的大小由两个因素决定:
极性分子
+
_+_取向变形分子的偶极=固有偶极+诱导偶极 极性分子本身是个微电场,因而,极性分子与 极性分子之间,极性分子与非极性分子之间也会 发生极化作用。
二.分子间力(范德华力) 分子间力 范德华力)
固有偶极 分子偶极 诱导偶极 瞬时偶极 分子间力
取向力 诱导力 色散力
1.瞬时偶极与非极性分子间的色散力 瞬时偶极与非极性分子间的色散力 瞬时偶极与非极性分子间的
晶胞的大小、型式——晶胞参数 晶胞要素 晶胞的内容——组成晶胞的原子、分 子及它们在晶胞中的位置 分子晶体:晶体在晶格接点上排列的粒子是分子

分子间的作用力 分子晶体

分子间的作用力  分子晶体

(2)每个环平均拥有:
1
个C-C键, 1/2个C原子。
个六元环所共有,每个C
(3)晶体中每个C原子被 12 原子占有 2 个C-C键。


1.下列物质中,固态时一定是分子晶体的 是 D A. 酸性氧化物 B. 非金属单质 C. 碱性氧化物 D. 含氧酸
2.下列哪种情况下,一对物质中有且只有同 一种作用力被克服 D A. 使H2 和HF气化 B. 熔融C和Ca C. 溶解LiCl和ICl D. 熔融CCl4和I2
这使得它的熔点 比分子量相近的醋酸、 硝酸高。
问题解决:
1.氨气极易溶与水 2.氟化氢的熔点高于氯化氢 3.硝酸的熔点比醋酸低 4.水的密度比冰的密度大
冰浮在水 面上
在水蒸气中水以单个的H20分子形 式存在;在液态水中,经常是几个 水分子通过氢键结合起来,形成 (H20)n;在固态水(冰)中,水 分子大范围地以氢键互相联结,形 成相当疏松的晶体,从而在结构中 有许多空隙,造成体积膨胀,密度 减小,因此冰能浮在水面上.
氢键的书写形式
H2O中的氢键 O H O H H H
HF中的氢键
H F NH3中的氢键 N H N H H H H H H F
H
F
【交流与讨论】
邻羟基苯甲醛和对羟基苯甲醛是同分 异构体,邻羟基苯甲醛的熔点2℃,沸点 115℃,对羟基苯甲醛的熔点196.5℃,沸 点250℃。请从它们的结构特点分析它们所 形成的氢键的不同,以及导致两者熔点差 异的原因。
(2) 部分非金属单质: X2, N2, O2, H2, S8, P4, C60 ,惰气。
(3) 部分非金属氧化物: CO2, SO2, N2O4, P4O6, P4O10
(4) 几乎所有的酸: H2SO4, HNO3, H3PO4

分子间作用力分子晶体

分子间作用力分子晶体
氢键
从H2O NH3 HF的成键情况和中心原子价 层电子等讨论形成氢键的条件
子的原子
氢键成因探究
3.氢键的存在与分类
分 子 的 性 质
分子间氢键:
分子内氢键:
3、氢键对物质性质的影响
(1)对熔点和沸点的影响
分子间形成氢键会导致物质的熔沸点 升高, 分子内形成氢键则会导致物质的熔沸点 降低
(2)对溶解度的影响 • 溶质分子与溶剂分子之间形成氢键使溶 质溶解度增大。
应用与拓展
为什么NH3极易溶于水? 为什么冰的密度比液态水小?

在固态水(冰)中,水分子大范围地以 怎样解释接近水的沸点的水蒸气 氢键互相联结,形成相当疏松的晶体, 的相对分子质量测定值比用化学 从而在结构中有许多空隙,造成体积膨 式H2O计算出来相对分子质量大一 胀,密度减小,因此冰能浮在水面上。 些? (H2O)n
4.晶体分子结构特征
(1)只有范德华力,无分子间氢键-分子密堆 积(每个分子周围有12个紧邻的分子,如: C60、干冰 、I2、O2) (2)有分子间氢键-不具有分子密堆积特征 (如:HF 、冰、NH3 )
分子的密堆积
(与每个分子距离最近的相同分子分子共有12个 )
干 冰 的 晶 体 结 构 图
结论:结构相似,相对分子质量越大,范德华力越大,
熔沸点越高
(3)范德华力与分子的极性的关系 分子 CO N2 相对分 子质量 28 28 分子的 极性 极性 非极性 熔点/℃ -205.05 -210.00 沸点/℃ -191.49 -195.81
结论:相对分子质量相同或相近时,分子的极性越大, 范德华力越大, ,其熔沸点越高
3.典型的分子晶体
(1)所有非金属氢化物: H2O, H2S, NH3, CH4, HX

分子间作用力_分子晶体

分子间作用力_分子晶体

石墨的晶体结构模型
混合晶体


1.下列物质中,固态时一定是分子晶体的是 A. 酸性氧化物 B. 非金属单质 C. 碱性氧化物 D. 含氧酸
D
2.下列哪种情况下,一对物质中有且只有同一种作 用力被克服 D A. 使H2 和HF气化 B. 熔融C和Ca C. 溶解LiCl和ICl D. 熔融CCl4和I2
I2
254
113.5
184.4
CO2和SiO2的一些物理性质如下表所 示。请你从两种晶体的构成微粒及微粒间 作用力的角度,分析导致干冰和二氧化硅 晶体性质差异的原因。处
拓展视野
阅读教材P52页: 理解氢键在生命活动中的重要作用(氢 键是地球的美容师,描绘着生命的蓝 图)
晶莹的水珠
氨气溶于水时,大部分NH3 与H2O以氢键(用…表示)结 合成NH3 ·H2O分子。根据氨水的性质可推知NH3 ·H2O 的结构式为( ) D A.H B. H │ │ N—H …O—H N—H …H—O │ │ │ │ H H H H C. H D. H │ │ H—N…O—H H— N … H— O │ │ │ │ H H H H
几种类型晶体的结构和性质比较
晶体类型 结 构成微粒 构 微粒间作用力 金属晶体 金属阳离子 和自由电子 离子晶体 原子晶体 分子晶体
阴、阳 离子 离子键 较高 较大
原子 共价键 很高 很大
分子
分子间作用力
金属键
差异大 差异大


熔、沸点
硬 度
较低 较小
固体及熔化不导 电,有些溶于水 能导电 干冰、冰
HCl PH3 SiH4 CH4
H2Se AsH3 HBr
SbH3
HI SnH4

高中化学 3.4《分子间作用力 分子晶体》范德华力 教案 苏教版选修3

高中化学 3.4《分子间作用力 分子晶体》范德华力 教案 苏教版选修3

[课堂练习]1.二氧化碳由固体(干冰)变为气体时,下列各项发生变化的是()A、分子间距离B、极性键C、分子之间的作用力D、离子键被破坏2.固体乙醇晶体中不存在的作用力是()A、离子键B、范德华力C、极性键D、非极性键3.SiCl4的分子结构与CH4类似,下列说法中不正确的是()A.SiCl4具有正四面体的构型B.在SiCl4和CCl4晶体中,前者分子间作用力比后者大C.常温下SiCl4是气体D.SiCl4的分子中硅氯键的极性比CCl4中的碳氯键强4.下列各组物质气化或熔化时,所克服的微粒间的作用力,属同种类型的是( ) A.碘和干冰的升华 B.二氧化硅和生石灰的熔化C.氯化钠和铁的熔化 D.苯和已烷的蒸发5.分子间存在着分子作用间力的实验事实是()A.食盐、氯化钾等晶体易溶于水B.氯气在加压、降温时会变成液氯或固氯C.融化的铁水降温可铸成铁锭D.金刚石有相当大的硬度6.有关分子间作用力的说法中正确的是()A、分子间作用力可以影响某些物质的熔、沸点B、分子间作用力可以影响到由分子构成的物质的化学性质C、分子间作用力与化学健的强弱差不多D、电解水生成氢气与氧气,克服了分子间作用力7.根据人们的实践经验,一般来说,极性分子组成的溶质易溶于极性分子组成的溶剂,非极性分子组成的溶质易溶于非极性分子组成的溶剂,称为“相似相溶原理”,根据“相似相溶原理”判断,下列物质中,易溶于水的是,易溶于CCl4的是。

A、NH3B、HFC、I2D、Br28.下列物质的微粒中:A、氨气B、氯化钡C、氯化铵D、干冰E、苛性钠F、食盐G、冰H、氦气I、过氧化钠J、双氧水K、氢气。

⑴只有非极性键的是;⑵只有离子键的是;⑶只有极性键的是,其中又是非极性分子的是;⑷既有极性键又有非极性键的是;⑸既有离子键又有非极性键的是;⑹既有离子键又有极性键的是;⑺无任何化学键的是;⑻上述物质中存在范德华力的是;(用序号填空)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四单元分子间作用力分子晶体208.下列说法错误的是()A. 原子晶体中只存在非极性共价键B. 分子晶体的状态变化,只需克服分子间作用力C. 金属晶体通常具有导电、导热和良好的延展性D. 离子晶体在熔化状态下能导电209.下列物质中微粒间作用力最弱的是()A.金属钠晶体B.氯化钠晶体C.金刚石晶体D.碘晶体210.干冰气化时,下列所述内容发生变化的是()A. 分子内共价键B. 分子间的作用力C. 分子间的距离D. 分子内共价键的键长211.SiCl4的分子结构与CH4类似,下列说法中不正确的是()A.SiCl4具有正四面体的构型B.在SiCl4和CCl4晶体中,前者分子间作用力比后者大C.常温下SiCl4是气体D.SiCl4的分子中硅氯键的极性比CCl4中的碳氯键强212.下列各组物质气化或熔化时,所克服的微粒间的作用力,属同种类型的是( ) A.碘和干冰的升华B.二氧化硅和生石灰的熔化C.氯化钠和铁的熔化D.苯和已烷的蒸发213.分子间存在着分子作用间力的实验事实是()A.食盐、氯化钾等晶体易溶于水B.氯气在加压、降温时会变成液氯或固氯C.融化的铁水降温可铸成铁锭D.金刚石有相当大的硬度214.下列晶体中,不属于原子晶体的是( )A.干冰B.水晶C.晶体硅D.金刚石215.下列变化或数据与氢键无关的是(D)A.甲酸蒸气的密度在373K时为1.335g·L-1,在293K时为2.5 g·L-1B.氨分子与水分子形成一水合氨C.丙酮在己烷和三氟甲烷中易溶解,其中在三氟甲烷中溶解时的热效应较大D.SbH3的沸点比PH3高216.下列各组物质的晶体中,化学键类型相同、晶体类型也相同的是 ( ) A.SO2、SiO2B.CO2、H2OC.NaCl、HCl D.CCl4、KCl217.关于晶体的下列说法正确的是( )A.在晶体中只要有阴离子就一定有阳离子B.在晶体中只要有阳离子就一定有阴离子C.原子晶体的熔点一定比金属晶体的高D.分子晶体的熔点一定比金属晶体的低218.下列物质属于分子晶体的化合物是( )A.石英B.硫磺C.干冰D.食盐219.在解释下列物质性质的变化规律与物质结构间的因果关系时,与键能无关的变化规律是()A.HF、HCl、HBr、HI的热稳定性依次减弱B.NaF、NaCl、NaBr、NaI的熔点依次降低C.F2、Cl2、Br2、I2的熔沸点逐渐升高D.H2S的熔沸点小于H2O的熔沸点220.下列物质为固态时,必定是分子晶体的是( )A.酸性氧化物B.非金属单质C.碱性氧化物D.含氧酸221.下列各组物质各自形成的晶体,均属于分子晶体的化合物是A.NH3,HD,C10H8B.PCl3,CO2,H2SO4C.SO2,SiO2,P2O5D.CCl4,Na2S,H2O2222.下列化学式可表示一个分子的是( )A.SiO2B.NH4Cl C.CCl4D.C 223.下列各组物质中,按熔点由低到高排列正确的是()A.O2 I2Hg B.CO2 KCl SiO2C.Na K Rb D.SiC NaCl SO2224.石墨是层状晶体,每一层内,碳原子排列成正六边形,一个个六边形排列成平面的网状结构。

如果将每对相邻的碳原子的化学键看成一个化学键,则石墨晶体的每一层中碳原子数与C-C化学键数的比是A.1︰1 B.1︰2 C.1︰3 D.2︰3225.关于氢键,下列说法不正确的是()A.每一个水分子内含有两个氢键B.冰、水中都存在氢键C.水是一种非常稳定的化合物,这是由于水分子之间能形成氢键D.由于N、O、F的电负性比较大,所以NH3、、H20、HF分子间都可以形成氢键226.下列现象,不能用氢键知识解释的是()A.葡萄糖易溶于水B.在4℃时水的密度最大C.H2ClO3是一种强酸D.水通常情况下是液态227.下列纯净物所形成的晶体中,均为分子晶体的化合物组合为()A.C6H6、CO2、SiO2B.D2O、SO3、PCl5、NaClC.C8H10、HD、NH3D.H2SO4、P2O5、C3H8228.已知某些晶体的熔点:①NaCl 801℃、②AlCl3 190℃、③BCl3 107℃、④Al2O3 2045℃、⑤SiO21723℃、⑥CO2 -56.6℃。

其中可能是分子晶体的是()A.①②④B.②③⑥C.④⑤⑥D.③⑤⑥229.下列物质是分子晶体,且熔沸点最高的是()A.N60B.C60C.Si60C60D.Si60230.下列叙述中不正确的是( ) A.含有阳离子的晶体不一定是离子晶体B.分子晶体中一定含有共价键C.原子晶体中一定含有非极性键D.双原子化合物分子一定是极性分子231.共价键、金属键、离子键和分子间作用力都是构成物质微粒间的不同相互作用,含有上述中两种相互作用的晶体是()A.SiO2晶体B.CCl4晶体C.NaCl晶体D.NaOH晶体232.自然界中往往存在许多有趣也十分有效的现象,下表列出了若干化合物的结构式、化学式、相对分子质量和沸点。

从它们的沸点可以说明什么问题?233.氢键可以表示为A—H…B,其产生的条件是A电负性大,它强烈地吸引氢的电子云,受体B具有能与氢原子强烈地相互作用的高电子云密度区(如孤对电子)。

(1)分子间形成的氢键会使化合物的熔、沸点;分子内形成氢键会使化合物的熔、沸点。

(2)在极性溶剂中,溶质和溶剂的分子间形成氢键会使溶质的溶解度(填“增大”或“减小”);溶质的分子内形成氢键时,在极性溶剂中溶质的溶解度将(填“增大”或“减小”);在非极性溶剂中溶质的溶解度将(填“增大”或“减小”)。

(3)IBr在CCl4中的溶解度比Br2 ,其原因是(4)二聚甲酸解聚反应(HCOOH)2→2HCOOH,该反应需吸收60kJ·mol-1的能量,吸收能量的原因是。

234.在一定条件下,单质X和单质Y反应,生成化合物Z,Z与水作用可生成气体G和白色沉淀P(如下框图所示),已知气体G的相对分子质量为36.5。

请完成下列填空:(1)组成单质X和Y的元素分别属第族和第族(2)化合物Z形成的晶体属于晶体(3)每生成1mol的气体G,同时应得到mol的沉淀P(4)沉淀P经高温煅烧所得到的化合物K为,该化合物形成晶体(5)化合物K经反应可得到单质X,化合物K转化为单质X的化学方程式为。

235.右图为CO2分子晶体结构的一部分。

(1)观察图形,试说明每个CO2分子周围有______个与之紧邻等距的CO2分子;(2) 在一定温度下,测得干冰晶胞(即图示)的边长a=5.72×10-8cm,则该温度下干冰的密度为g/cm3。

(3) 试判断:①CO2、②CS2、③SiO2晶体的沸点由高到低排列的顺序是______>______>______(填写相应物质的编号)。

第四单元分子间作用力分子晶体208.A[说明]A选项的错误在于:由一种元素形成的原子晶体中只存在非极性共价键(如金刚石、硅晶体等),而由两种元素形成的原子晶体中就存在极性共价键(如二氧化硅、碳化硅等)209.D[说明]金属钠晶体中微粒间的作用力是金属键,氯化钠晶体中,微粒间的作用力是离子键,金刚石晶体中,微粒间的作用力是共价键,碘晶体中,微粒间的作用力是分子间作用力。

这几种作用力相比较,分子间作用力最弱。

210.BC[说明]二氧化碳是分子晶体,组成二氧化碳固体和二氧化碳气体的基本微粒都是二氧化碳分子,干冰气化时,只需要克服分子间的作用力,分子内的共价键不会发生变化。

211.C[说明]常温下SiCl4是液体,CCl4在常温下是液体,是大多数人都知道的常识,SiCl4和CCl4都是分子晶体,且SiCl4的分子量大于CCl4,所以分子间作用力大于CCl4,由此也可以推出常温下SiCl4是液体。

212.AD[说明]碘和干冰的升华以及苯和己烷的蒸发,克服的都是分子间作用力;二氧化硅的熔化克服的是共价键,生石灰和氯化钠的熔化克服的是离子键,铁的熔化克服的是金属键。

213.B[说明]食盐、氯化钾是离子晶体,铁是金属晶体,金刚石是原子晶体,它们的晶体中都没有单个的分子,不能证明分子间存在着分子间作用力。

214.A[说明]干冰是分子晶体,水晶、晶体硅、金刚石都是原子晶体215.D[说明]甲酸在低温时通过氢键形成双聚分子,温度升高时,双聚被破坏;氨分子和水分子易形成氢键;三氟甲烷由于氟强烈吸电子,使三氟甲烷中的氢带明显的正电荷,可以和丙酮形成氢键,放出能量,因此溶解时的热效应较大;SbH3和PH3都不能形成氢键,SbH3的沸点比PH3高是因为SbH3的分子量比PH3大,分子间作用力比PH3大。

216.B[说明]SO2是分子晶体,SiO2是原子晶体;CO2、H2O都是分子晶体,CO2、H2O分子中原子都是以共价键相结合;NaCl为离子晶体,晶体中只有离子键,HCl为分子晶体,HCl分子之间以分子间作用力结合,HCl分子中,氢原子和氯原子以共价键结合;CCl4为分子晶体,CCl4分子之间以分子间作用力结合,CCl4分子中,碳原子和氯原子以共价键结合;KCl为离子晶体,晶体中只有离子键。

217.A[说明]金属晶体是由金属阳离子和自由电子构成的,不存在阴离子;金属钨的熔点高于原子晶体硅的熔点;分子晶体碘常温下为固态,而汞为液态。

218.C[说明]石英是原子晶体,食盐是离子晶体,硫磺是分子晶体,但不是化合物,是单质,只有干冰是属于分子晶体的化合物。

219.C[说明] HF、HCl、HBr、HI的热稳定性依次减弱,是因为氢原子和卤素原子间共价键的键能依次减小;NaF、NaCl、NaBr、NaI的熔点依次降低,是因为钠离子和卤素离子间的离子键依次减弱;H2S的熔沸点小于H2O的熔沸点,是因为水分子之间形成氢键,氢键的键能要大于分子间作用力;F2、Cl2、Br2、I2的熔沸点逐渐升高,是因为卤素单质分子间作用力依次增大,与键能无关。

220.D[说明]酸性氧化物可以是原子晶体(如二氧化硅);非金属单质可以是原子晶体(如金刚石);碱性氧化物可以是离子晶体(如氧化镁等)。

221.B[说明]A选项中HD为单质(H和D为同种元素的不同原子);C选项中SiO2为原子晶体,D选项中Na2S为离子晶体。

222.C[说明] SiO2是原子晶体,NH4Cl是离子晶体,C单质是原子晶体或者混合型晶体,晶体中没有单个分子,它们的化学式只表示这几种物质的组成。

223.B[说明] 常温下,O2为气体,I2为固体,Hg为液体,熔点由低到高排列为:O2 Hg I2;Na、K、Rb晶体中的金属键依次减弱,熔点依次降低;SiC是原子晶体,NaCl 是离子晶体,SO2是分子晶体,熔点依次降低。

224.D[说明]在石墨层状晶体的每一层内,每个碳原子与周围的三个碳原子成键,而每个碳碳键为两个碳原子所共有,对应于每一个碳原子的碳碳键为3/2个,所以石墨晶体的每一层中碳原子数与C-C化学键数的比是2︰3225.A[说明]在水分子中,氢与氧以共价键结合,水分子之间存在氢键。

相关文档
最新文档