八年级下册分式混合运算练习题
分式混合运算(习题及答案)
分式混合运算(习题及答案)混合运算(题)例1:混合运算:解:原式可以化简为:frac{4-x}{x-2} \div \frac{12}{x+2-x^2}$$frac{4-x}{x-2} \times \frac{x+2-x^2}{12}$$frac{-(x-4)}{(x-2)(x+4)}$$例2:先化简,然后在$-2\leq x\leq 2$的范围内选取一个合适的整数$x$代入求值.解:先化简原式:frac{x(x+1)}{(x-1)(1-x)} \div \frac{2x}{x+1}$$frac{x(x+1)}{(x-1)(x-1)} \times \frac{x+1}{2x}$$frac{1}{2}$$由于$-2\leq x\leq 2$,且$x$为整数,因此使原式有意义的$x$的值为$-2$,$-1$或$2$。
代入计算可得:当$x=2$时,原式为$-2$。
巩固练1.计算:1)$$\frac{x-y}{x+2y} \div \frac{1}{2x+4y}$$化简原式:frac{x-y}{x+2y} \times \frac{2x+4y}{1}$$frac{2(x-y)}{x+2y}$$2)$$\frac{\frac{a}{a-1}-1}{a^2-2a+1} \div \frac{1}{a+1}$$ 化简原式:frac{\frac{a}{a-1}-1}{(a-1)^2} \times (a+1)$$frac{a-2}{(a-1)^2}$$3)$$\frac{2a-2ab}{a^2-b^2} \div \frac{a+b}{a+b}$$化简原式:frac{2a-2ab}{a^2-b^2} \times \frac{a+b}{a+b}$$frac{2a-2ab}{(a-b)(a+b)} \times \frac{a+b}{1}$$frac{2(1-b)}{a-b}$$4)$$\frac{y-1-\frac{8}{y-1}}{y^2+y} \div\frac{1}{y(y+1)}$$化简原式:frac{y-1-\frac{8}{y-1}}{y(y+1)} \times \frac{y(y+1)}{1}$$ frac{(y-1)^2-8}{y(y+1)^2}$$5)$$\frac{a^2-2ab+b^2}{b}\div \frac{1}{a-b}-1$$化简原式:frac{(a-b)^2}{b} \times \frac{a-b}{1}-1$$frac{(a-b)^3}{b}-1$$6)$$\frac{x^2-4x+4}{x(x-1)} \div \frac{x+2}{x-1}$$化简原式:frac{(x-2)^2}{x(x-1)} \times \frac{x-1}{x+2}$$frac{(x-2)^2}{x(x+2)}$$7)$$\frac{2}{(x-1)^2} - \frac{1}{(x-1)^2(x+1)}$$化简原式:frac{2(x+1)-1}{(x-1)^2(x+1)}$$frac{2x+1}{(x-1)^2(x+1)}$$8)$$\frac{3-x}{2(x-2)} \div \frac{5}{x-2}-\frac{5}{x-3}$$ 化简原式:frac{3-x}{2(x-2)} \times \frac{x-2}{5} - \frac{5}{x-3}$$ frac{(x-3)(x-1)}{2(x-2)5} - \frac{5}{x-3}$$frac{x^2-4x+7}{10(x-2)(x-3)}$$9)$$\frac{x-1}{x+1} \div \frac{x-3}{x-2} - \frac{5}{x^2-3x}$$化简原式:frac{(x-1)(x-2)}{(x+1)(x-3)} - \frac{5}{x(x-3)}$$frac{x^2-3x-2}{x(x-3)(x+1)(x-3)} - \frac{5(x+1)}{x(x-3)(x+1)(x-3)}$$frac{x^2-3x-2-5x-5}{x(x-3)(x+1)(x-3)}$$frac{x^2-8x-7}{x(x-3)(x+1)^2}$$10)$$\frac{1}{(x-1)(x+1)}-\frac{1}{x(x-1)}$$化简原式:frac{x-(x-1)}{x(x-1)(x+1)}$$frac{1}{x(x+1)}$$11)$$\frac{2}{x+y} - \frac{1}{y-x} \times \frac{y^2-x^2}{11}$$化简原式:frac{2(y-x)}{(y-x)(x+y)} - \frac{y+x}{11(x+y)}$$frac{y-x-2}{11(x+y)}$$2.化简求值:1)先化简,再求值:$\frac{x^2+2x+1}{x+2x+2} \div \frac{1}{x+2}$,其中$x=3-1$。
分式混合运算专题练习
分式的乘除乘方运算例1、下列分式a bc 1215,a b b a --2)(3,)(222b a b a ++,b a b a +-22中最简分式的个数是( ).A.1B.2C.3D.4 例2.计算:3234)1(xy y x • a a a a 2122)2(2+⋅-+ x y xy 2263)3(÷41441)4(222--÷+--a a a a a 例3、 若432z y x ==,求222z y x zx yz xy ++++的值.例4、计算(1)3322)(c b a - (2)43222)()()(x y x y y x -÷-⋅-(3)2332)3()2(c b a bc a -÷- (4)232222)()()(xy xy xy x y y x -⋅+÷-例5计算:1814121111842+-+-+-+--x x x x x练习:1.计算:8874432284211x a x x a x x a x x a x a --+-+-+--例6.计算:2018119171531421311⨯+⨯++⨯+⨯+⨯练习1、()()()()()()()()1011001431321211++++++++++++x x x x x x x x例7、已知21)2)(1(12++-=+-+x B x A x x x ,求A. B 的值。
计算下列各题:(1)2222223223x y y x y x y x y x y x ----+--+ (2)1111322+-+--+a a a a .(3)29631a a --+ (4) 21x x --x -1 (5)3a a --263a a a +-+3a ,(6)xy y y x x y x xy --++-222 ⑺b a b b a ++-22 ⑻293261623x x x -+--+⑼xy y x y x y x 2211-⋅⎪⎪⎭⎫ ⎝⎛+-- ⑽ 222x x x +--2144x x x --+(11)a a a a a a 4)22(2-⋅+--.2.已知x 为整数,且918232322-++-++x x x x 为整数,求所有的符合条件的x 的值的和.3、混合运算:⑴2239(1)x x x x ---÷ ⑵232224x x x x x x ⎛⎫-÷ ⎪+--⎝⎭ ⑶ a a a a a a 112112÷+---+⑷ 444)1225(222++-÷+++-a a a a a a ⑸ )1x 3x 1(1x 1x 2x 22+-+÷-+-⑹ )252(23--+÷--x x x x ⑺ 221111121x x x x x +-÷+--+⑻2224421142x x x x x x x -+-÷-+-+ ⑼2211xyx y x y x y ⎛⎫÷- ⎪--+⎝⎭⑽ (abb a 22++2)÷ba b a --22 ⑾22321113x x x x x x x +++-⨯--+⑿ x x x x x x x x x 416)44122(2222+-÷+----+ (13)、22234()()()x y y y x x-⋅-÷-(14)、)252(423--+÷--m m m m (15)、x x x x x x x --+⋅+÷+--36)3(446222(16)、 ()3212221221------⎪⎭⎫ ⎝⎛ba cb b a (17)、⎪⎭⎫ ⎝⎛---÷⎪⎪⎭⎫ ⎝⎛+--x x x x x 23441823224.计算:x x x x x x x x -÷+----+4)44122(22,并求当3-=x 时原式的值.5、先化简,x x x x x x 11132-⋅⎪⎭⎫ ⎝⎛+--再取一个你喜欢的数代入求值:6、有这样一道题:“计算22211x x x -+-÷21x x x-+-x 的值,其中x=2 004”甲同学把“x=2 004”错抄成“x=2 040”,但他的计算结果也正确,你说这是怎么回事?7、计算、)1(1+a a +)2)(1(1++a a +)3)(2(1++a a +…+)2006)(2005(1++a a 。
分式混合运算专题练习(经典集合)
分式的运算一、典型例题例1、下列分式a bc 1215,a b b a --2)(3,)(222b a b a ++,b a b a +-22中最简分式的个数是( ).A.1B.2C.3D.4例2.计算:3234)1(x y y x ∙ a a a a 2122)2(2+⋅-+ x y xy 2263)3(÷41441)4(222--÷+--a a a a a 例3、 若432z y x ==,求222zy x zxyz xy ++++的值.例4、计算(1)3322)(c b a - (2)43222)()()(xy x y y x -÷-⋅-(3)2332)3()2(c b a bc a -÷- (4)232222)()()(xy xy xy x y y x -⋅+÷-例5计算:1814121111842+-+-+-+--x x x x x练习:1.计算:8874432284211x a x x a x x a x x a x a --+-+-+--例6.计算:2018119171531421311⨯+⨯++⨯+⨯+⨯练习1、()()()()()()()()1011001431321211++++++++++++x x x x x x x x例7、已知21)2)(1(12++-=+-+x Bx A x x x ,求A. B 的值。
针对性练习:1.计算下列各题:(1)2222223223xy yx y x y x y x y x ----+--+ (2)1111322+-+--+a a a a .(3)29631a a --+ (4) 21x x --x -1 (5)3a a --263a a a +-+3a ,(6)xy yy x x y x xy --++-222 ⑺b a b b a ++-22 ⑻293261623x x x -+--+⑼xy y x y x y x 2211-⋅⎪⎪⎭⎫ ⎝⎛+-- ⑽ 222x x x +--2144x x x --+(11)a a a a a a 4)22(2-⋅+--.2.已知x 为整数,且918232322-++-++x x x x 为整数,求所有的符合条件的x 的值的和.3、混合运算:⑴2239(1)x x x x ---÷ ⑵232224xx x x x x ⎛⎫-÷ ⎪+--⎝⎭⑶ a a a a a a 112112÷+---+⑷ 444)1225(222++-÷+++-a a a a a a ⑸ )1x 3x 1(1x 1x 2x 22+-+÷-+-⑹ )252(23--+÷--x x x x ⑺ 221111121x x x x x +-÷+--+⑻2224421142x x x x x x x -+-÷-+-+ ⑼2211xy x y x y x y ⎛⎫÷- ⎪--+⎝⎭⑽ (ab b a 22++2)÷ba b a --22 ⑾22321113x x x x x x x +++-⨯--+⑿ x x x x x x x x x 416)44122(2222+-÷+----+ (13)、22234()()()x y y y x x-⋅-÷-(14)、)252(423--+÷--m m m m (15)、x x x x xx x --+⋅+÷+--36)3(446222(16)、 ()3212221221------⎪⎭⎫ ⎝⎛ba cb b a (17)、⎪⎭⎫ ⎝⎛---÷⎪⎪⎭⎫ ⎝⎛+--x x x x x 23441823224.计算:x xx x x x x x -÷+----+4)44122(22,并求当3-=x 时原式的值.5、先化简,x x x x x x11132-⋅⎪⎭⎫ ⎝⎛+--再取一个你喜欢的数代入求值:6、有这样一道题:“计算22211x x x -+-÷21x x x -+-x 的值,其中x=2 004”甲同学把“x=2 004”错抄成“x=2 040”,但他的计算结果也正确,你说这是怎么回事?7、计算、)1(1+a a +)2)(1(1++a a +)3)(2(1++a a +…+)2006)(2005(1++a a 。
(完整版)分式混合运算练习题(30题)
分式精华练习题一.解答题1.计算:(1)(2)(﹣2m2n﹣2)2•(3m﹣1n3)﹣3 2.计算:3.化简:.4.化简:5.计算:.6.化简•(x2﹣9)7.计算:.8.计算:+.9.计算:(1);(2).10..11.计算:12.计算:﹣a﹣1.13.计算:(1)(2)14.计算:a﹣2+15.计算:.16.化简:,并指出x的取值范围.17.17.已知ab=1,试求分式:的值.18.计算:﹣19.计算:20.化简21.计算:22.化简:23.计算:(1);(2).24.化简:25.化简:.26化简:27.计算:28.计算:()÷.29.化简.30.计算:﹣x﹣2)1.在下列方程中,关于x 的分式方程的个数(a 为常数)有( )①0432212=+-x x ②.4=a x ③.;4=x a ④.;1392=+-x x ⑤;621=+x ⑥211=-+-ax a x . A.2个 B.3个 C.4个 D.5个 2. 关于x 的分式方程15mx =-,下列说法正确的是( )A .方程的解是5x m =+B .5m >-时,方程的解是正数C .5m <-时,方程的解为负数D .无法确定3.方程x x x-=++-1315112的根是( ) A.x =1 B.x =-1 C.x =83D.x =24.,04412=+-x x 那么x2的值是( ) A.2 B.1 C.-2 D.-15.下列分式方程去分母后所得结果正确的是( )A.11211-++=-x x x 去分母得,1)2)(1(1-+-=+x x x ; B.125552=-+-x x x ,去分母得,525-=+x x ; C.242222-=-+-+-x x x x x x ,去分母得,)2(2)2(2+=+--x x x x ; D.,1132-=+x x 去分母得,23)1(+=-x x ; 6. .赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半书时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( )A.21140140-+x x =14 B.21280280++x x =14 C.21140140++x x =14 D.211010++x x =1 7.若关于x 的方程0111=----x xx m ,有增根,则m 的值是( ) A.3 B.2 C.1 D.-18.若方程,)4)(3(1243+-+=++-x x x x B x A 那么A 、B 的值为( ) A.2,1 B.1,2 C.1,1 D.-1,-1 9.如果,0,1≠≠=b b a x 那么=+-ba b a ( ) A.1-x 1 B.11+-x x C.x x 1- D.11+-x x 10.使分式442-x 与6526322+++-+x x x x 的值相等的x 等于( ) A.-4 B.-3 C.1 D.10 二、填空题(每小题3分,共30分) 11. 满足方程2211-=-x x 的x 的值是___ 12. 当x =____时,分式x x ++51的值等于21. 13.分式方程0222=--x xx 的增根是 . 14. 一汽车从甲地开往乙地,每小时行驶v 1千米,t 小时可到达,如果每小时多行驶v 2千米,那么可提前到达________小时.15. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走40分钟后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x 千米/时,则所列方程为 .16.已知,54=y x 则=-+2222yx y x . 17.=a 时,关于x 的方程53221+-=-+a a x x 的解为零. 18.飞机从A 飞到B 的路程S ’、速度是,1v ,返回的速度是2v ,往返一次的平均速度是 . 19.当=m 时,关于x 的方程313292-=++-x x x m 有增根. 20. 某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路x m ,则根据题意可得方程 . 三、解答题(共5大题,共60分) 21. .解下列方程 (1)x x x --=+-34231 (2) 2123442+-=-++-x x x x x (3)21124x x x -=--.22. 有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?24.小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室内发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元钱,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多53倍,问她第一次在供销大厦买了几瓶酸奶?。
(完整版)分式混合运算练习题(30题)(最新整理)
D. 2 1 , 去分母得,2 (x 1) x 3 ; x 3 x 1
6. .赵强同学借了一本书,共 280 页,要在两周借期内读完.当他读了一半书时,发现平均每天要多
读 21 页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读 x
页,则下面所列方程中,正确的是( )
3
用去 18.40 元钱,买的瓶数比第一次买的瓶数多 倍,问她第一次在供销大厦买了几瓶酸奶?
5
2
B. m 5 时,方程的解是正数
C. m 5 时,方程的解为负数
D.无法确定
3.方程
1
5
3
的根是(
)
1 x2 x 1 1 x
A. x =1 B. x =-1
C. x = 3 8
D. x =2
4.1 4 4 0, 那么 2 的值是(
x x2
x
) A.2
B.1 C.-2 D.-1
5.下列分式方程去分母后所得结果正确的是( )
① 1 x 2 2 x 4 0 ②. x 4
23
a
③. a 4; ④. x 2 9 1; ⑤ 1 6;
x
x3
x2
⑥ x 1 x 1 2 . A.2 个 aa
B.3 个
C.4 个
D.5 个
2. 关于 x 的分式方程 m 1,下列说法正确的是( ) x5
A.方程的解是 x m 5
的值. 18.计算:
﹣
19.计算: 21.计算:
20.化简
22.化简: 23.计算:(1)
24.化简:
; (2)
.
25.化简: 27.计算: 29.化简
. 26 化简:
分式混合运算专项理解练习158题(有答案解析)
.
(127)
.
(123) (124) (125)
(128)
.
.
(129)
﹣
.
(130)
分式混合运算---- 13
(131)1﹣
÷
.
(136)
.
(132)(﹣ )3÷ •(﹣ )2;
(137)
(133)
.
(138)
.
(134) (135)
(139)
.
(140)
.
分式混合运算---- 14
(141)
•
﹣
=
﹣
=
(134)原式= •
•=
(135)原式=[
﹣
=
•
=
]•
=[
﹣
]•
(136) 原式=
(137)
=
=
﹣
=
;
(138)
=
,
分式混合运算---- 26
= (139) (140) = (141)原式=
= (142)原式=
=
.
=
•
=(x+y)(x﹣y)=x2﹣y2;
= =
+
+
=
=
=
=
= =
=2;
(143)原式=
.
(104)
;
(109)
÷﹣
.
(105)
.
(110)
分式混合运算---- 11
(111)
.
(116)
(112)
.
(117)
(113)
(118)
(114)
.
(119)
(115)
分式的混合运算练习题(打印版)
分式的混合运算练习题(打印版)### 分式的混合运算练习题题目一:解下列分式方程:\[\frac{1}{x+2} + \frac{2}{x-1} = \frac{3x-3}{x^2-x-2} \]题目二:计算:\[\frac{3x^2-6x+2}{x^2-4} \div \frac{x^2-9}{4x}\]题目三:化简:\[\frac{2x^2-2x}{x^2-9} \cdot \frac{x^2-4}{x}\]题目四:解下列方程:\[\frac{1}{x} - \frac{1}{x+1} = \frac{1}{x+1} - \frac{1}{x+2} \]题目五:求值:\[\frac{1}{\frac{1}{x} + \frac{1}{y}} \cdot \left( \frac{x}{y} + \frac{y}{x} \right)\]题目六:计算:\[\frac{(x+1)^2}{x^2-4} - \frac{2x-1}{x^2-4} + \frac{1}{x-2} \]题目七:化简:\[\frac{(x-1)(x+2)}{x^2-4} \div \left( \frac{x}{x-2} +\frac{1}{x+2} \right)题目八:解下列方程:\[\frac{2}{x-1} + \frac{1}{x+1} = \frac{3}{x^2-1}\]题目九:求值:\[\frac{(x-1)^2}{x^2-4} \cdot \frac{x^2-4}{x-1}\]题目十:计算:\[\frac{(x+2)(x-3)}{x^2-4} \cdot \frac{x^2-4}{x-2} \div \frac{x+3}{x+2}\]解答提示:1. 首先确定分母,将分式方程转化为整式方程。
2. 对于分式的加减运算,先找到公共分母,然后进行合并。
3. 对于分式的乘除运算,将分子乘以分子,分母乘以分母。
4. 注意分式中的约分,简化表达式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式练习题一.解答题1.计算:(1)(2)(﹣2m2n﹣2)2•(3m﹣1n3)﹣3 2.计算:3.化简:.4.(2007•双柏县)化简:5.(2006•襄阳)计算:.6.(2005•江西)化简•(x2﹣9)7.(2007•北京)计算:.8.(2005•宜昌)计算:+.9.(2001•吉林)计算:(1);(2).10.(2001•常州).11.计算:12.计算:﹣a﹣1.13.计算:(1)(2)14.计算:a ﹣2+15.计算:.(2)()31031624π--⎛⎫⎛⎫-⋅-÷- ⎪ ⎪⎝⎭⎝⎭(3)2211y x xy y x y x -÷⎪⎪⎭⎫ ⎝⎛++-16.化简:,并指出x 的取值范围.17.已知ab=1,试求分式:的值. 18.计算:﹣19.(2010•新疆)计算:20.(2009•太原)化简:21.(2009•上海)计算:.22.(2009•眉山)化简:23.(2009•江苏)计算:(1);(2).24.(2009•东营)化简:25.(2008•白银)化简:.26.(2007•南昌)化简:27.(2007•巴中)计算:28.(2006•宜昌)计算:()÷.29.(2006•十堰)化简:.30.(2006•南充)计算:﹣x ﹣2)18.先化简代数式1121112-÷⎪⎭⎫ ⎝⎛+-+-+x x x x x x ,然后选取一个使你喜欢的x的值代入求值.分式方程练习题一、填空、选择题:1.以下是方程211x x x-=-去分母的结果,其中正确的是 A .2(1)1x x --= B .2221x x --= C .2222x x x x --=- D .2222x x x x -+=- 2.在下列方程中,关于x的分式方程的个数有 .①0432212=+-x x ②.4=a x ③;4=x a ④.;1392=+-x x ⑤;621=+x⑥211=-+-a x a x . A.2个 B.3个 C.4个 D.5个 3.分式25m +的值为1时,m 的值是 . A .2 B .-2 C .-3 D .3 4.不解下列方程,判断下列哪个数是方程21311323x x x x =+++--的解 . A .x=1 B .x=-1 C .x=3 D .x=-3 6.若分式x 2-12(x+1) 的值等于0,则x 的值为 .A 、1B 、±1C 、12D 、-18.关于x的方程2354ax a x +=-的根为x=2,则a应取值 . A.1 B.3 C.-2D.-37.赵强同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,发现平时每天要多读21页才能在借期内读完.他读了前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下列方程中,正确的是 . A 、1421140140=-+x xB 、1421280280=++x x C 、1211010=++x x D 、1421140140=++x x8.关于x 的方程2354ax a x+=-的根为x =2,则a 应取值 .A.1B.3C.-2D.-310.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加游览的同学共x 人,则所列方程为 . A .32180180=+-x xB .31802180=-+xx C .32180180=--x x D .31802180=--xx一、填空题: 13.若分式11--x x 的值为0,则x 的值等于14.若分式方程xmx x -=--2524无解,那么m 的值应为 16.阅读材料: 方程1111123x x x x -=-+--的解为1x =, 方程1111134x x x x -=----的解为x=2, 方程11111245x x x x -=-----的解为3x =,… 请写出能反映上述方程一般规律的方程,并直 接写出这个方程的解是 . 二、解答题: 17.解方程)2)(1(311+-=--x x x x19.若方程122-=-+x ax 的解是正数,求a 的取值范围。
20.若解关于x 的分式方程234222+=-+-x x mx x 会产生增根,求m 的值。
21.A 、B 两地的距离是80公里,一辆公共汽车从A 地驶出3小时后,一辆小汽车也从A 地出发,它的速度是公共汽车的3倍,结果小汽车比公共汽车迟20分钟到达B 地,求两车的速度.22.华联商厦进货员在苏州发现一种应季衬衫,预料能畅销市场,就用80000元购进所有衬衫,还急需2倍这种衬衫,经人介绍又在上海用了176000元购进所需衬衫,只是单价比苏州贵4元,商厦按每件58元销售,销路很好,最后剩下的150件按八折销售,很快销售完,问商厦这笔生意赢利多少元?23.现有一项工程由甲乙两个工程队来做,若甲队先做10天,余下的由乙队单独完成还需30天;若甲队先做9天后,因故抽走甲队一半去做其它工作,剩下任务由乙队和甲队剩余人员合做18天完成。
(1)问两队单独完成这项工作各需多少天?(2)又已知甲队每天的施工费用是1000元,乙队每天的施工费用是600元,若该工程要求在40天内完成(因受场地限制,两工程队不能同时施工),问应如何安排施工,费用最少,最少费用是多少?24.阅读下面对话:小红妈:“售货员,请帮我买些梨。
”售货员:“小红妈,您上次买的那种梨都卖完了,我们还没来得及进货,我建议这次您买些新进的苹果,价格比梨贵一点,不过苹果的营养价值更高。
” 小红妈:“好,你们很讲信用,这次我照上次一样,也花30元钱。
”对照前后两次的电脑小票,小红妈发现:每千克苹果的价是梨的1.5倍,苹果的重量比梨轻2.5千克。
试根据上面对话和小红妈的发现,分别求出梨和苹果的单价。
分式方程解方程:1、3386x x +-=2、8633x x =+-(3)12112-=-x x (1)14-x =1;(2)3513+=+x x ; (6)255522-++x x x =1(1) 2124111x x x +=+--. (2) 2227461x x x x x +=+--(4)11322x x x -+=--- (4)512552x x x=--- (3) 6165122++=-+x x x x(9) 223433x x x x +-=+ (10)224111x x x x +=-+-分式方程练习题1.在下列方程中,关于x 的分式方程的个数(a 为常数)有( )①0432212=+-x x ②.4=a x ③.;4=x a ④.;1392=+-x x ⑤;621=+x ⑥211=-+-ax a x . A.2个 B.3个 C.4个 D.5个 2. 关于x 的分式方程15mx =-,下列说法正确的是( ) A .方程的解是5x m =+B .5m >-时,方程的解是正数C .5m <-时,方程的解为负数D .无法确定3.方程xx x -=++-1315112的根是( ) A.x =1 B.x =-1 C.x =83 D.x =2 4.,04412=+-x x 那么x2的值是( ) A.2 B.1 C.-2 D.-15.下列分式方程去分母后所得结果正确的是( ) A.11211-++=-x x x 去分母得,1)2)(1(1-+-=+x x x ; B.125552=-+-xx x ,去分母得,525-=+x x ; C.242222-=-+-+-x x x xx x ,去分母得,)2(2)2(2+=+--x x x x ; D.,1132-=+x x 去分母得,23)1(+=-x x ;6. .赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半书时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( ) A.21140140-+x x =14 B.21280280++x x =14 C.21140140++x x =14 D.211010++x x =1 7.若关于x 的方程0111=----x x x m ,有增根,则m 的值是( )A.3B.2C.1D.-18.若方程,)4)(3(1243+-+=++-x x x x B x A 那么A 、B 的值为( ) A.2,1 B.1,2 C.1,1 D.-1,-19.如果,0,1≠≠=b b a x 那么=+-b a b a ( ) A.1-x 1 B.11+-x x C.xx 1- D.11+-x x 10.使分式442-x 与6526322+++-+x x x x 的值相等的x 等于( ) A.-4 B.-3 C.1 D.10二、填空题(每小题3分,共30分)11. 满足方程:2211-=-x x 的x 的值是________.12. 当x =________时,分式x x ++51的值等于21. 13.分式方程0222=--x x x 的增根是 .14.一汽车从甲地开往乙地,每小时行驶v 1千米,t 小时可到达,如果每小时多行驶v 2千米,那么可提前到达________小时.15. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走40分钟后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x 千米/时,则所列方程为 .16.已知,54=y x 则=-+2222yx y x . 17.=a 时,关于x 的方程53221+-=-+a a x x 的解为零. 19.当=m 时,关于x 的方程313292-=++-x x x m 有增根. 20. 某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路x m ,则根据题意可得方程 .三、解答题(共5大题,共60分)21.解下列方程 (1)x x x --=+-34231 (2) 2123442+-=-++-x x x x x(3)21124x x x -=--.。