插值法与曲线拟合
免疫学检测中的曲线拟合-资料
ROC曲线的含义:
阳性人群的测定值与阴性人群的测定值重叠程度越小,即测定的识别能力越高, ROC曲线越偏向上,曲线下面积越大。
定量测定---测定待测物的含量
判定结果:浓度(U/L,μg/L)。 判断依据:测定未知标本的同时,以系列浓度标准品
测得的剂量反应曲线(即标准曲线)以此推算未知标 本的浓度。 剂量反应曲线:一般均为非线性的,不同的数学模式 可以用来改善上述剂量反应曲线绘制的精密度,从而 以较少的数据和计算获得较为准确的结果。 应用:非传染性血清学指标。
线性内插与2阶曲线拟合
插值法 interpolative methods
假设:反应变量的已知绝对精密; 曲线构建:以观察到的数据构建曲线; 方法:
点对点(线性插值) 样条插值 spline function
点对点(线性插值)
将临近的校准点以点对点的方式用一条直线连起来。
假设:中间值落在数据点之间的直线上; 当数据点个数增加和它们之间距离减小时,线性插值就更精确; 适用范围:线性范围大或数据点多且相互紧密相连; 处理:为使数据更具有线性关系,可对数据进行某些方式的转换
免疫学检测中的曲线拟 合-资料
免疫测定中的数据处理与曲线拟合
免疫测定中的数据处理 数据处理与科学作图
免疫测定的数据处理及结果报告
临床免疫检测技术:RIA和EIA等; 数据处理的意义和目标:
– 只有在测定结果以一种有意义的方式报告时,测定结果才有用; – 免疫测定结果的客观评价,对改善免疫测定的重复性以及免疫 测定的标准化都有重要意义。 数据处理报告的要求: – 通俗易懂; – 定性结果明确,定量范围明确; – 处理后得到的数据要具有可重复性; – 试验的评价不能建立在假定的正态分布上; – 结果具有用于进一步分析处理(如流行病学)的充分性。 免疫测定以其测定结果的表达方式:定性,定量两类。
常用函数的逼近和曲线拟合
常用函数的逼近和曲线拟合在数学中,函数逼近和曲线拟合都是常见的问题。
函数逼近是指找到一个已知函数,尽可能地接近另一个函数。
而曲线拟合则是给定一组数据点,找到一条曲线来描述这些数据点的分布。
本文将讨论常用的函数逼近和曲线拟合方法。
一、函数逼近1. 插值法插值法是最简单的函数逼近方法之一。
它的基本思想是:给定一组已知点,通过构造一个多项式,使得该多项式在这些点处的函数值与已知函数值相等。
插值法的优点是精度高,缺点是易产生龙格现象。
常用的插值多项式有拉格朗日插值多项式和牛顿插值多项式。
拉格朗日插值多项式的形式为:$f(x)=\sum_{i=0}^{n}y_{i}\prod_{j=i,j\neq i}^{n}\frac{x-x_{j}}{x_{i}-x_{j}}$其中,$x_{i}$是已知点的横坐标,$y_{i}$是已知点的纵坐标,$n$是已知点的数量。
牛顿插值多项式的形式为:$f(x)=\sum_{i=0}^{n}f[x_{0},x_{1},...,x_{i}]\prod_{j=0}^{i-1}(x-x_{j})$其中,$f[x_{0},x_{1},...,x_{i}]$是已知点$(x_{0},y_{0}),(x_{1},y_{1}),...,(x_{i},y_{i})$的差商。
2. 最小二乘法最小二乘法是一种常用的函数逼近方法。
它的基本思想是:给定一组数据点,找到一个函数,在这些数据点上的误差平方和最小。
通常采用线性模型,例如多项式模型、指数模型等。
最小二乘法的优点是适用性广泛,缺点是对于非线性模型要求比较高。
最小二乘法的一般形式为:$F(x)=\sum_{i=0}^{n}a_{i}\varphi_{i}(x)$其中,$a_{i}$是待求的系数,$\varphi_{i}(x)$是一组已知的基函数,$n$是基函数的数量。
最小二乘法的目标是使得$\sum_{i=1}^{m}[f(x_{i})-F(x_{i})]^{2}$最小,其中$m$是数据点的数量。
matlab-曲线拟合
散点图
单击Data按钮
在X data和Y data两个下拉式列表框中选 择变量名,将在Data对话框中显示散点图的 预览效果:
当选择Data sets列表框中的数据集时,单 击View按钮,打开View Data Set对话框
工作表方式
2.数据的预处理
在曲线拟合工具箱中,数据的预处理主要包 括平滑法、排除法和区间排除法等。
(2)排除法和区间排除法 排除法是对数据中的异常值进行排除。 区间排除法是采用一定的区间去排除那些用 于系统误差导致偏离正常值的异常值。 在曲线拟合工具中单击Exclude按钮,可以 打开Exclude对话框
Exclusion rule name指定分离规则的名称 Existing exclusion rules列表产生的文件 名,当你选择一个文件名时,可以进行如下操 作: Copy 复制分离规则的文件; Rename重命名;delete 删去一个文件; View以图形的形式展示分离规则的文件。 Select data set 挑选需要操作的数据集; Exclude graphically允许你以图形的形式去 除异常值,排除个别的点用“×”标记。
0.0073
0.0193x 5 0.0110x 4 0.043x 3 0.0073x 2 0.2449x 0.2961
s=
R: [6x6 double] df: 0 normr: 2.3684e-016 mu = 0.1669 0.1499
自由度为 0 标准偏差为 2.3684e-016
.Smoothed data sets 对于所有平滑数 据集进行列表。可以增加平滑数据集,通 过单击Create smoothed data set按 钮,可以创建经过平滑的数据集。 .View按钮 打开查看数据集的GUI,以散点 图方式和工作表方式查看数据,可以选择 排除异常值的方法。 .Rename用于重命名。 .Delete可删去数据组。 .Save to workspace保存数据集。
常用数值分析方法3插值法与曲线拟合
p1(x)y1yx2 2 xy11(xx1)(变形)
xx1xx22y1xx2xx11y2
A1(x)
A2(x)
插值基函数
X.Z.Lin
3.2.3 抛物线插值
已知:三点(x1,y1)、(x2,y2)、(x3,y3) 求:其间任意 x 对应的 y 值
y (x3, y3)
y=f(x) (x2, y2) y=p2(x)
(1)算术平均值
n
xi
x i1 n
(2)标准偏差
n xi2 N xi 2 n
i1
i1
n1
(3)平均标准偏差
E
n
(4)剔出错误数据??可可疑疑数数 据据
Q 数据排序(升):x1,x2,…,xn;
最大与最小数据之差;
值 可疑数据与其最邻近数据之间的差
法 求Q值:
Qxnxn1 或 Qx2x1
3.1 实验数据统计处理
3.1.1 误差
系统误差 经常性的原因
影响比较恒定
偶然误差
偶然因素
正态分布规律
校正
过失误差
统计分析
-3σ -2σ -σ 0 σ 2σ 3σ 图6.1 平行试验数据的正态分布图
操作、计算失误
错误数据
剔出
21:39 07.02.2021
2/37
X.Z.Lin
3.1.2 数据的统计分析
A3(x)(x(x3 xx11))((xx3xx22))
21:39 07.02.2021
9/37
X.Z.Lin
3.2.4 Lagrange插值的一般形式
已知:n点(x1,y1)、(x2,y2)……(xn,yn) 求:其间任意 x 对应的 y 值
MATLAB中的曲线拟合与插值
MATLAB 中的曲线拟合和插值在大量的使用领域中,人们经常面临用一个分析函数描述数据(通常是测量值)的任务。
对这个问题有两种方法。
在插值法里,数据假定是正确的,要求以某种方法描述数据点之间所发生的情况。
这种方法在下一节讨论。
这里讨论的方法是曲线拟合或回归。
人们设法找出某条光滑曲线,它最佳地拟合数据,但不必要经过任何数据点。
图11.1说明了这两种方法。
标有'o'的是数据点;连接数据点的实线描绘了线性内插,虚线是数据的最佳拟合。
11.1 曲线拟合曲线拟合涉及回答两个基本问题:最佳拟合意味着什么?应该用什么样的曲线?可用许多不同的方法定义最佳拟合,并存在无穷数目的曲线。
所以,从这里开始,我们走向何方?正如它证实的那样,当最佳拟合被解释为在数据点的最小误差平方和,且所用的曲线限定为多项式时,那么曲线拟合是相当简捷的。
数学上,称为多项式的最小二乘曲线拟合。
如果这种描述使你混淆,再研究图11.1。
虚线和标志的数据点之间的垂直距离是在该点的误差。
对各数据点距离求平方,并把平方距离全加起来,就是误差平方和。
这条虚线是使误差平方和尽可能小的曲线,即是最佳拟合。
最小二乘这个术语仅仅是使误差平方和最小00.20.40.60.81-2024681012xy =f (x )Second O rder C urv e Fitting图11.1 2阶曲线拟合在MATLAB 中,函数polyfit 求解最小二乘曲线拟合问题。
为了阐述这个函数的用法,让我们以上面图11.1中的数据开始。
» x=[0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1]; » y=[-.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2];为了用polyfit ,我们必须给函数赋予上面的数据和我们希望最佳拟合数据的多项式的阶次或度。
如果我们选择n=1作为阶次,得到最简单的线性近似。
插值法和曲线拟合的主要差异
插值法和曲线拟合的主要差异
插值法和曲线拟合是数据处理和分析中常用的方法,它们的主要差异如下:
1. 目标不同:
- 插值法的主要目标是通过已知数据点的函数值推断未知数据点的函数值,以填充数据的空缺部分或者进行数据的重构。
- 曲线拟合的主要目标是通过已知数据点拟合出一条函数曲线,以描述数据点之间的趋势或模式。
2. 数据使用方式不同:
- 插值法使用已知数据点的函数值作为输入,通过构造插值函数来推断未知数据点的函数值。
- 曲线拟合使用已知数据点的函数值作为输入,并通过选择合适的拟合函数参数,使得拟合函数与数据点尽可能接近。
3. 数据点要求不同:
- 插值法要求已知数据点间的函数值比较准确,以保证插值函数的质量,并要求数据点间的间距不会过大,避免出现过度插值或者不稳定的现象。
- 曲线拟合对于数据点的要求相对较松,可以容忍噪声、异常值等因素,因为它不需要将函数曲线完全通过所有数据点。
4. 应用场景不同:
- 插值法常见应用于信号处理、图像处理等领域,可以用于填充缺失数据、图像重构等任务。
- 曲线拟合常见应用于数据分析、模型建立等领域,可以用
于描述数据间的趋势、拟合科学模型等。
综上所述,插值法和曲线拟合在目标、数据使用方式、数据点要求和应用场景等方面存在明显的差异。
免疫学检测中的曲线拟合
y=a+b(1/x) 或(1/y)=p+q(x)
ppt课件完整
25
双曲线模式 hyperbolic curve应用
问题:
标准曲线的端值得不到好的拟合(特别是低浓度端); 测定误差为倒数,与实际误差规律相反; 不具有S形,限制了应用。
双曲线拟合模式:
竞争性免疫测定数据(在限定范围内的值)能拟合很好 的平滑曲线。
Logistic公式(两参数,四参数):
曲线形状:具有单点屈曲的连续性S形函数; 假定校准曲线拟合下述曲线形式:
a-d
logistic公式:Y= 1+(X/+C)d
x以对数表示时曲线呈b p线pt课性件。完整
24
双曲线拟合 hyperbolic curve:
1)将校准物浓度的倒数对测定反应作图或以B0/B对 校
曲线形状:双曲线; 假定数据拟合下式:y=a+b(1/x) 或(1/y)=p+q(x)。
多项式模式:
曲线形状:抛物线; 假定校准曲线拟合下述曲线形式;y=a+bx+cx2+dx3+……+pxn。
Log-Logit转换:
曲线形状:具有单点屈曲的连续性S形函数; 假定校准曲线拟合下述曲线形式: logit(y)=a+b*ln(x),其中logit(z)=ln[z/(1-z)]。
11
数据处理与科学作图
➢ 问题:给定一批离散的数据点,需确定满足特定要求的曲线或 曲面,从而获取整体的规律。
➢ 目标:用一个解析函数描述一组(二维)数据(通常是测量值)。 ➢ 方法:
插值法 -- 数据假定是正确的,要求以某种方法描述数据点之 间所发生的情况;
插值法和曲线拟合的主要差异
插值法和曲线拟合的主要差异引言在数学和统计学中,插值法和曲线拟合是两种常用的数据处理方法。
它们在数据分析、模型构建和预测等领域发挥着重要作用。
本文将详细介绍插值法和曲线拟合的定义、原理、应用以及它们之间的主要差异。
插值法定义插值法是一种通过已知数据点之间的函数关系来推断未知数据点的方法。
它基于一个假设,即已知数据点之间存在一个连续且光滑的函数,并且通过这个函数可以准确地估计其他位置上的数值。
原理插值法通过对已知数据点进行插值操作,得到一个近似函数,然后使用这个函数来估计未知数据点的数值。
常见的插值方法有拉格朗日插值、牛顿插值和样条插值等。
应用插值法在各个领域都有广泛应用,如地图制作中根据少量已知地理坐标点推算其他位置上的坐标;传感器测量中根据离散采样点推断连续时间序列上未采样到的数据;图像处理中通过已知像素点推测其他位置上的像素值等。
主要特点•插值法可以精确地通过已知数据点估计未知数据点的数值,适用于需要高精度估计的场景。
•插值法对输入数据的要求较高,需要保证已知数据点之间存在连续且光滑的函数关系。
•插值法只能在已知数据点之间进行插值,无法对整个数据集进行全局拟合。
曲线拟合定义曲线拟合是一种通过选择合适的函数形式,并调整函数参数来使得函数与给定数据集最为接近的方法。
它不仅可以对已知数据进行拟合,还可以根据拟合结果进行预测和模型构建。
原理曲线拟合首先选择一个适当的函数形式,如多项式、指数函数、对数函数等。
然后使用最小二乘法或最大似然估计等方法来确定函数参数,使得函数与给定数据集之间的误差最小化。
应用曲线拟合广泛应用于各个领域,如经济学中根据历史数据构建经济模型进行预测;物理学中通过实验数据来验证理论模型;生物学中根据实验测量数据拟合生长曲线等。
主要特点•曲线拟合可以对整个数据集进行全局拟合,能够更好地描述数据的整体趋势。
•曲线拟合可以选择不同的函数形式和参数,灵活性较高。
•曲线拟合可能存在过拟合或欠拟合的问题,需要通过模型评估和调整来提高拟合效果。
数值计算04-插值与拟合
二维插值的定义
第一种(网格节点):
y
O
x
已知 mn个节点 其中 互不相同,不妨设
构造一个二元函数
通过全部已知节点,即
再用
计算插值,即
第二种(散乱节点):
y
0
x
已知n个节点
其中 互不相同,
构造一个二元函数
通过全部已知节点,即
再用
计算插值,即
最邻近插值
y
( x1 , y2 ) ( x2 , y2 )
( x1 , y1 ) ( x2 , y1 )
x
O
注意:最邻近插值一般不连续。具有连续性的最简单 的插值是分片线性插值。
分片线性插值
速度最快,但平滑性差
linear
占有的内存较邻近点插值方法多,运算时间 也稍长,与邻近点插值不同,其结果是连续 的,但在顶点处的斜率会改变 运算时间长,但内存的占有较立方插值方法 要少,三次样条插值的平滑性很好,但如果 输入的数据不一致或数据点过近,可能出现 很差的插值结果 需要较多的内存和运算时间,平滑性很好 二维插值函数独有。插值点处的值和该点值 的导数都连续
x=0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 y=0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
海拔高度数据为: z=89 90 87 85 92 91 96 93 90 87 82 92 96 98 99 95 91 89 86 84 82 84 96 98 95 92 90 88 85 84 83 81 85 80 81 82 89 95 96 93 92 89 86 86 82 85 87 98 99 96 97 88 85 82 83 82 85 89 94 95 93 92 91 86 84 88 88 92 93 94 95 89 87 86 83 81 92 92 96 97 98 96 93 95 84 82 81 84 85 85 81 82 80 80 81 85 90 93 95 84 86 81 98 99 98 97 96 95 84 87 80 81 85 82 83 84 87 90 95 86 88 80 82 81 84 85 86 83 82 81 80 82 87 88 89 98 99 97 96 98 94 92 87
数学建模插值法与曲线拟合讲课
插值法的matlab实现—一维插值
命令:interp1(x0,y0,x,’method’) 其中:x0:插值节点;
y0:插值节点处的函数值; x:要计算函数值的点;
method:
l i n e a r :分段线性插值; c u b i c :分段三次埃尔米特插值; s p l i n e :三次样条插值。
z4
8
686
8
8
x 157.5 107.5 77 81 162 162 117.5
y -6.5 -81 3 56.5 -66.5 84 -33.5
z9
9
88
94
9
水深和流速的问题
在水文数据测量中,不同水深的流速是不同的. 水文数据的测量 时天天进行的,为了减少测量的工作,希望得到确定的水深和水 流之间的关系. 为此测量了一系列不同水深和流速值. 下表给出了 对某河流的测量数据,其中水深和流速根据适当的单位进行了规 范化,共10个值.
插值与拟合的不同点
插值: 过节点; ; 拟合: 不过点, 整体近似;
插值法
拉格朗日插值 牛顿插值 三次埃尔米特插值法 分段线性插值 分段三次埃尔米特插值法 三次样条插值
1、 拉格朗日插值公式
(1)定义
对给定的n+1个节点x0 , x1,x2,…,xn及对应的函数值y0 , y1,y2,…,yn, 构造一个n次插值多项式:
f(x)=1/(1+x2) , 但对于3.63≤∣x∣≤1的x,Pn(x)严重发散。 用图形分析问题。
for n=10:2:20
%从10等份到20等份
x0=[-5:10/n:5]; %插值节点
y0=1./(1+x0.^2); %插值节点处的精确函数值
Matlab 曲面插值和拟合
Matlab 曲面插值和拟合插值和拟合都是数据优化的一种方法,当实验数据不够多时经常需要用到这种方法来画图。
在matlab中都有特定的函数来完成这些功能。
这两种方法的确别在于:当测量值是准确的,没有误差时,一般用插值;当测量值与真实值有误差时,一般用数据拟合。
插值:对于一维曲线的插值,一般用到的函数yi=interp1(X,Y,xi,method) ,其中method包括nearst,linear,spline,cubic。
对于二维曲面的插值,一般用到的函数zi=interp2(X,Y,Z,xi,yi,method),其中method也和上面一样,常用的是cubic。
拟合:对于一维曲线的拟合,一般用到的函数p=polyfit(x,y,n)和yi=polyval(p,xi),这个是最常用的最小二乘法的拟合方法。
对于二维曲面的拟合,有很多方法可以实现,但是我这里自己用的是Spline Toolbox里面的函数功能。
具体使用方法可以看后面的例子。
对于一维曲线的插值和拟合相对比较简单,这里就不多说了,对于二维曲面的插值和拟合还是比较有意思的,而且正好胖子有些数据想让我帮忙处理一下,就这个机会好好把二维曲面的插值和拟合总结归纳一下,下面给出实例和讲解。
原始数据x=[1:1:15];y=[1:1:5];z=[0.2 0.24 0.25 0.26 0.25 0.25 0.25 0.26 0.26 0.29 0.25 0.29;0.27 0.31 0.3 0.3 0.26 0.28 0.29 0.26 0.26 0.26 0.26 0.29;0.41 0.41 0.37 0.37 0.38 0.35 0.34 0.35 0.35 0.34 0.35 0.35;0.41 0.42 0.42 0.41 0.4 0.39 0.39 0.38 0.36 0.36 0.36 0.36;0.3 0.36 0.4 0.43 0.45 0.45 0.51 0.42 0.4 0.37 0.37 0.37];z是一个5乘12的矩阵。
插值拟合MATLAB实现
3.3 插值与拟合的MATLAB实现简单的插值与拟合可以通过手工计算得出,但复杂的只能求助于计算机了。
3.3.1 线性插值在MATLAB 中,一维的线性插值可以用函数interpl 来实现。
函数interpl 的调用格式如下:yi = interpl ( x , y , xi ) ,其中yi 表示在插值向量xi 处的函数值,x 与y 是数据点。
这个函数还有如下两种形式:yi = interpl(y , xi),省略x,x 此时为l : N,其中N 为向量y 的长度。
yi = interpl(x , y , xi , method ) ,其中method 为指定的插值方法,可取以下凡种:nearest :最近插值。
linear :线性插值。
spline :三次样条插值。
cubic :三次插值。
注意:对于上述的所有的调用格式,都要求向量x 为单调。
例如:对以下数据点:( 2 * pi , 2 ) , ( 4 * pi , 3 ) , ( 6 * pi , 5 ) , ( 8 * pi , 7 ) , ( 10 * pi , 11 ) , ( 12 * pi , 13 ) , ( 14 * pi , 17) 进行插值,求x = pi , 6 的函数值。
>> x=linspace(0, 2 * pi, 8 );>> y=[2, 3, 5, 7, 11, 13, 17, 19 ];>> xl=[pi , 6 ];>> yl=interpl(x, y, xl)yl =90000 1836903.3.2 Lagrange 插值Lagrange 插值比较常用,是MATLAB 中相应的函数,但根据Lagrange 插值函数公式,可以用M 文件实现:Lagrange.mfunctions = Larange(x, y, x0 )% Lagrange 插值,x 与y 为已知的插值点及其函数值,x0 为需要求的插值点的值nx = length( x );ny = length( y );if nx ~=nywaming( ‘向量x 与y 的长度应该相同’)return;endm = length ( x0 ) ;%按照公式,对需要求的插值点向量x0 的元素进行计算for i = l: mt =0.0;for j = l : nxu = 1.0;for k = l : nxif k~=ju=j * ( x0( i )-x ( k ) ) / ( x( j )-( k ) ) ;endendt = t + u * y( j );ends( i ) = t ;endreturn例如:对(l , 2 ) , ( 2 , 4 ) , ( 3 , 6 ) , ( 4 , 8 ) , ( 5 , 10 ) 进行Lagrange 插值,求x = 23 , 3.7 的函数值。
插值和拟合
插值和拟合都是函数逼近或者数值逼近的重要组成部分他们的共同点都是通过已知一些离散点集M上的约束,求取一个定义在连续集合S(M包含于S)的未知连续函数,从而达到获取整体规律的目的,即通过"窥几斑"来达到"知全豹"。
简单的讲,所谓拟合是指已知某函数的若干离散函数值{f1,f2,…,fn},通过调整该函数中若干待定系数f(λ1, λ2,…,λ3), 使得该函数与已知点集的差别(最小二乘意义)最小。
如果待定函数是线性,就叫线性拟合或者线性回归(主要在统计中),否则叫作非线性拟合或者非线性回归。
表达式也可以是分段函数,这种情况下叫作样条拟合。
而插值是指已知某函数的在若干离散点上的函数值或者导数信息,通过求解该函数中待定形式的插值函数以及待定系数,使得该函数在给定离散点上满足约束。
插值函数又叫作基函数,如果该基函数定义在整个定义域上,叫作全域基,否则叫作分域基。
如果约束条件中只有函数值的约束,叫作Lagrange插值,否则叫作Hermite插值。
从几何意义上将,拟合是给定了空间中的一些点,找到一个已知形式未知参数的连续曲面来最大限度地逼近这些点;而插值是找到一个(或几个分片光滑的)连续曲面来穿过这些点。
一、概念的引入1. 插值与拟合在现实生活中的应用l 机械制造:汽车外观设计l 采样数据的重新建构:电脑游戏中场景的显示,地质勘探,医学领域(CT)2.概念的定义l 插值:基于[a,b]区间上的n个互异点,给定函数f(x),寻找某个函数去逼近f(x)。
若要求φ(x)在xi处与f(xi)相等,这类的函数逼近问题称为插值问题,xi即是插值点l 逼近:当取值点过多时,构造通过所有点的难度非常大。
此时选择一个次数较低的函数最佳逼近这些点,一般采用最小二乘法l 光顾:曲线的拐点不能太多,条件:①二阶几何连续②不存在多余拐点③曲率变化较小l 拟合:曲线设计过程中用插值或通过逼近方法是生成的曲线光滑(切变量连续)光顾二、插值理论设函数y=f(x)在区间[a,b]上连续,在[a,b]上有互异点x0,x1,…,xn处取值y 0,y1,…,yn。
插值与拟合的实验报告心得
插值与拟合的实验报告心得1.引言1.1 概述插值与拟合是数值分析和数据处理领域中常见的重要技术方法,通过对已知数据点进行插值计算,得到未知点的数值估计。
插值方法可以帮助我们填补数据间的空缺、平滑曲线和预测未来趋势,因此在科学研究、工程建模和数据分析中具有广泛的应用价值。
本实验报告将对插值的基本概念进行介绍,探讨插值方法的分类和在实际应用中的意义。
同时,我们将总结实验结果,评述插值与拟合的优缺点,并提出对进一步研究的建议,希望通过本报告对插值与拟合的方法和应用有一个全面的了解。
1.2文章结构文章结构部分的内容可以包括:在本报告中,将包括以下几个部分的内容:1. 引言:介绍插值与拟合的基本概念,以及本实验的目的和意义。
2. 正文:包括插值的基本概念、插值方法的分类以及插值在实际应用中的意义。
我们将深入探讨这些内容,并解释它们在实验中的具体应用。
3. 结论:总结本次实验的结果,分析插值与拟合的优缺点,并提出对进一步研究的建议。
通过以上内容的分析和探讨,我们希望能够全面地了解插值与拟合的理论基础和实际应用,为进一步的研究和实践提供一定的参考和启发。
1.3 目的本实验的目的在于通过对插值和拟合的实验研究,探索和了解这两种数学方法在现实生活中的应用。
通过实验,我们将深入了解插值的基本概念和分类方法,以及插值在实际应用中的意义。
同时,我们还将对插值和拟合的优缺点进行分析,为进一步的研究提供建议和启示。
通过本实验,我们的目的是掌握插值与拟合方法的应用和特点,为实际问题的求解提供更多的数学工具和思路。
2.正文2.1 插值的基本概念插值是指通过已知数据点构建出一个函数,该函数经过这些数据点,并且在每个数据点上都有相应的函数值。
换句话说,插值是一种通过已知离散数据点来推断未知数据点的方法。
在数学上,插值可以用于近似未知函数的值,或者用于填补数据间的空隙。
在插值过程中,我们通常会选择一个合适的插值函数,比如多项式函数、三角函数或者样条函数等,来拟合已知的数据点。
关于几种曲线拟合基本方法的比较
关于几种曲线拟合基本方法的比较学院:材料科学与工程学院专业:材料学(博)姓名:郑文静学号:1014208040 在实际工作中,变量之间的关系未必都是线性关系,更多时候,它们之间呈现出了曲线关系,在科学实验或社会活动中,通过实验或观测得到一些x和y数据,为了对位置点进行研究,很多时候,我们通过曲线拟合的方式,将这些离散点近似为一条连续的曲线,从而来预测或者得到所需结果。
曲线拟合的方法很多,本文中,主要讨论了曲线拟合的三种基础方法--插值法、磨光法、最小二乘法的特点,并对其在科学实验和生产实践中的应用性进行了比较。
插值法是函数逼近的一种基本方法,插值法就是通过函数在有限个点处的取值情况,估算出函数在其他点处的近似值。
插值法中,选取不同的插值公式,来满足实际或运算需求,得到拟合的函数。
其中,最基础的插值方法是三弯矩法,该方法是利用拉格朗日插值为基础,已知平面中的n+1个不同点,寻找一条n次多项式曲线通过这些点。
该曲线具有唯一性。
另外,还有三转角法,该方法是利用Henmiter插值为基础,其思路与三弯矩法相同,已知条件有所差别,在Henmiter插值中,不仅已知函数在一些点的函数值,而且,还知道它在这些点的导数值,甚至知道其高阶导数值,要求所求函数不仅满足过这些点,同时也要求其导函数,甚至高阶导函数满足条件。
采用Henmiter插值法求得的多项式比拉格朗日法求得的多项式有较高的光滑逼近要求。
此外,还有以分段和B-样条函数为基础的δ-基函数法,其中,样条函数是:对于[a,b]上的划分,称函数S(x)为[a,b]上关于划分△的k次样条函数,记做S k,△[a,b]。
该方法避免了高次插值可能引起的大幅度波动现象,在实际中通常采用分段低次插值来提高近似程度。
插值法常用于填充图像变换时像素之间的空隙。
磨光法是适应保凸性要求的数据拟合方法。
积分可以改变函数的光滑度,而微商是积分的逆运算,对函数进行积分,然后在微商,可以将函数还原。
插值法与曲线拟合
故用线性插值求得的近似值为
y
(x , y ) 00
y L2x
(x , y ) 11
y f x
(x , y ) 22
0
x0
x1
x
图2-3
11515 100
121 121
11*115 100 121 100
10.714
15
仿上,用抛物插值公式(2.7)所求得的近似值为
例1 已知 100 10, 121 11, 144 12分别用线性插值和抛物插值
求 115 的值。
14
解 因为115在100和121之间,故取节点x0=100,x1=121相应地有
y0=10,y1=11,于是,由线性插值公式(2.5)可得
L1
(x)
10
*
x 121 100 121
11*
x 100 121 100
为插值多项式Pn (x) 的余项。
17
关于误差有如下定理2中的估计式。
定理2 设 f (x) 在区间 a,b
上有直到n+1阶导数,x0, x1,, xn
为区间 a,b 上n+1个互异的节点, Pn (x) 为满足条件:
Pn (xi ) f (xi )(i 0,1,, n)
(2.9)
的n次插值多项式,则对于任何 x a,b ,有
的n次插值多项式(2.2),这样,由(2.2)式可以求出n+1个n次插 插多项式 l0 (x), l1(x),,ln (x) 。容易看出,这组多项式仅与节点的取
法有关,称它们为在n+1个节点上的n次基本插值多项式或n次插值
基函数。
11
2.2 拉格朗日插值多项式
利用插值基函数立即可以写出满足插值条件(1.3)的n次插值
Matlab数学建模学习笔记——插值与拟合
Matlab数学建模学习笔记——插值与拟合⽬录插值与拟合插值和拟合的区别图⽚取⾃知乎⽤户yang元祐的回答插值:函数⼀定经过原始数据点。
假设f(x)在某区间[a,b]上⼀系列点上的值y_i=f(x_i),i=0,1,\dots,n。
插值就是⽤较简单、满⾜⼀定条件的函数\varphi(x)去代替f(x)。
插值函数满⾜条件\varphi(x_i)=y_i,i=0,1,\dots,n拟合:⽤⼀个函数去近似原函数,不要求过已知数据点,只要求在某种意义下它在这些点上的总偏差最⼩。
插值⽅法分段线段插值分线段插值就是将每两个相邻的节点⽤直线连起来,如此形成的⼀条折线就是就是分段线性插值函数,记作I_n(x),它满⾜I_n(x_i)=y_i,且I_n(x)在每个⼩区间[x_i,x_{i+1}]上是线性函数(i=0,1\dots,n-1)。
I_n(x)可以表⽰为I_n(x)=\sum_{i=0}^n y_il_i(x),其中l_i(x)= \begin{cases} \frac{x-x_{i-1}}{x_i-x_{i-1}},&x\in [x_{i-1},x_i],i \neq 0,\\ \frac{x-x_{i+1}}{x_i-x_{i+1}},&x\in [x_i,x_{i+1}],i \neq n,\\ 0,&其他 \end{cases}I_n(x)有良好的收敛性,即对x\in [a,b],有\lim _{n \rightarrow \infin}I_n(x)=f(x)⽤I_n(x)计算x点的插值的时候,只⽤到x左右的两个点,计算量与节点个数n⽆关。
但是n越⼤,分段越多,插值误差越⼩。
拉格朗⽇插值多项式朗格朗⽇(Lagrange)插值的基函数为\begin{aligned} l_i(x)&=\frac{(x-x_0)\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_n)}{(x_i-x_0)\cdots(x_i-x_{i-1})(x_i-x_{i+1})\cdots(x_i-x_n)}\\ &= \prod_{j=0\\j\neq i}^{n} \frac{x-x_j}{x_i -x_j},i=0,1,\cdots,n。
matlab曲线拟合方法大全
Check to exclude point 挑选个别的点 进行排除,可以通过在数据表中打勾来选 择要排除的数据。 Exclude Sections 选定区域排除数据: Exclude X选择预测数据X要排除的数据 范围; Exclude Y选择响应数据Y要排除的数据 范围。
(3)其他数据预处理方法
其他的预处理方法不便通过曲线拟合工具箱 来完成,主要包括两部分: 响应数据的转换和去除无穷大、缺失值和异 常值。 响应数据的转换一般包括对数转换、指数转 换,用这些转换可以使非线性的模型线性 化,便于曲线拟合。变量的转换一般在命令 行里实现,然后把转换后的数据输入曲线拟 合工具箱,进行拟合。
无穷大、不定值在曲线拟合中可以忽略,如 果想把他们从数据集中删除,可以用isinf和 isnan置换无穷大值和缺失值。
例 >> x=[0 0.0385 0.0963 0.1925 0.2888 0.385]; >> y=[0.042 0.104 0.186 0.338 0.479 0.612]; >> [p,s,mu]=polyfit(x,y,5)
输出结果为: p= Columns 1 through 5 0.0193 -0.0110 -0.0430 0.2449 Column 6 0.2961 说明拟合的多项式为:
曲线拟合工具箱
曲线拟合定义 在实际工程应用和科学实践中,经常需要寻求 两个(或多个)变量间的关系,而实际去只能 通过观测得到一些离散的数据点。针对这些分 散的数据点,运用某种你和方法生成一条连续 的曲线,这个过程称为曲线拟合。 曲线拟合可分为: (1)参数拟合 ---- 最小二乘法 (2)非参数拟合 ---- 插值法
>> x1=[17:2:29]; >> x=[x1 x1]; >> y=[20.48 25.13 26.15 30.0 26.1 20.3 19.35 24.35 28.11 26.3 31.4 26.92 25.7 21.3]; >> plot(x,y,'r+')