递推关系式数学
递推关系知识点总结
递推关系知识点总结一、递推关系的基本概念1.1 递推关系的定义递推关系是一种反映事物发展变化规律的数学模型。
通常来说,递推关系是指数列的前项与后项之间的关系。
例如,斐波那契数列就是一个经典的递推关系,它的递推式是F(n)=F(n-1)+F(n-2),其中F(n)表示第n个斐波那契数。
1.2 递推关系的元素递推关系一般包括以下几个元素:- 初始条件:递推关系的第一个数值,通常是已知的特定值。
- 递推公式:描述数列前后项之间关系的公式,用于计算数列后续项的值。
- 递推方程:将递推公式用代数方式表示的方程。
1.3 递推关系的类型根据递推公式的性质和形式,递推关系可以分为线性递推关系、非线性递推关系、齐次递推关系、非齐次递推关系等类型。
不同类型的递推关系有不同的性质和求解方法。
二、递推关系的性质2.1 线性递推关系的性质线性递推关系具有以下性质:- 线性组合性:若数列{an}与{bn}分别满足递推关系an=an-1+an-2和bn=bn-1+bn-2,则任意常数c1和c2的线性组合{c1an+c2bn}也满足递推关系an=an-1+an-2。
- 独立性:若数列{an}和{bn}都满足递推关系an=an-1+an-2,则其线性组合{an+bn}也满足该递推关系。
2.2 齐次递推关系的性质齐次递推关系是指递推关系的递推式中不包含任何常数项或者其他特殊项。
对于齐次递推关系,如果其通解为an=cn1^n+cn2^n2,其中c1和c2是任意常数,n1和n2是特征方程的两个不同实根,那么其特解为包含初始条件的实数数列。
2.3 非齐次递推关系的性质非齐次递推关系是指递推关系的递推式中包含有常数项或者其他特殊项。
对于非齐次递推关系,如果其通解为an=cn1^n+cn2^n2+fn,其中cn1^n+cn2^n2是其对应的齐次递推关系的通解,fn是递推式的非齐次项对应的特解。
三、递推关系的求解方法3.1 通项公式法通项公式法是求解递推关系最直接的方法。
数列的递推公式和通项公式
数列的递推公式和通项公式数列是数学中的一种常见概念,它由一系列按照一定规律排列的数所组成。
数列的递推公式和通项公式是数列的两种重要表示方式,它们可以帮助我们更好地理解和计算数列。
一、数列的递推公式数列的递推公式是指通过前一项或多项来推导出后一项的公式。
一般来说,递推公式可以分为线性递推和非线性递推两种。
1.1 线性递推公式线性递推公式是指数列中的每一项都可以通过前一项乘以一个常数再加上另一个常数得到。
一般可以用如下的形式表示:an = a(n-1) * r + b。
其中an表示数列中的第n项,a(n-1)表示数列中的第(n-1)项,r和b 为常数。
例如,如果数列的前两项分别为a1和a2,且每一项都等于前一项乘以2再加上1,则该数列的递推公式为:an = a(n-1) * 2 + 1。
利用这个递推公式,我们可以轻松求解数列中的任意一项。
1.2 非线性递推公式非线性递推公式是指数列中的每一项不能通过前一项乘以一个常数再加上另一个常数得到。
非线性递推公式的形式较为多样,常见的有多项式递推和递归递推等。
以多项式递推为例,假设数列的前两项分别为a1和a2,而后续项满足如下规律:an = an-1^2 + an-2^2。
在这种情况下,我们无法仅仅通过前一项或多项来计算后一项。
此时,我们需要借助递归或其他更复杂的方法来求解数列中的每一项。
二、数列的通项公式数列的通项公式是指通过数列的位置n来计算该位置上的数值。
通项公式可以直接给出数列前n项的数值,而不需要通过递推关系一步步推导。
通项公式也常被称为数列的一般项公式。
2.1 等差数列的通项公式等差数列是最常见的数列之一,它的通项公式为an = a1 + (n-1)d,其中an表示数列中的第n项,a1表示数列的首项,d表示公差。
例如,如果一个等差数列的首项为3,公差为2,则它的通项公式为an = 3 + (n-1)2。
通过这个通项公式,我们可以轻松计算出等差数列中的任何一项。
数列的递推关系
数列的递推关系数列是由一组按照一定规律排列的数所组成的序列。
在数学中,常常需要通过递推公式来确定数列中的每一项。
递推关系是指根据前几项的值,通过某种规律来计算下一项的值。
1. 递推关系的概念递推关系是指通过前几项的值来计算下一项的值的数学关系。
通常表示为an+1 = f(an, an-1, ..., a1),其中an表示第n项的值,f表示递推函数或递推公式。
递推关系可以是线性的、多项式的、指数的等等。
2. 线性递推关系线性递推关系是指数列中的每一项都可以通过前一项和前几项的线性组合来计算得到。
具体来说,对于线性递推关系an = c1*an-1 +c2*an-2 + ... + ck*an-k,其中c1, c2, ..., ck为常数,且k为一个固定的正整数。
常见的线性递推关系有斐波那契数列等。
3. 多项式递推关系多项式递推关系是指数列中的每一项的计算都涉及前面若干项的多项式函数。
具体来说,对于多项式递推关系an = p(n) = a(n-1) + a(n-2) + ... + a(n-k),其中p(n)为一个多项式函数,a(n-1), a(n-2), ..., a(n-k)为前面的若干项。
多项式递推关系常用于描述一些复杂的数学问题,如组合数学中的排列、组合等。
4. 指数递推关系指数递推关系是指数列中的每一项的计算都涉及指数函数。
具体来说,对于指数递推关系an = a(n-1) ^ k,其中k为常数。
指数递推关系常用于描述一些增长速度非常快的数列,如幂数列等。
5. 递推关系的应用递推关系在数学中具有广泛的应用。
它可以帮助研究数列的性质、推导数列的通项公式,甚至可以用来解决一些实际问题。
例如,在物理学中,递推关系可以用来描述物体的运动轨迹;在计算机科学中,递推关系可以用来描述算法的时间复杂度。
总结:数列的递推关系是通过前几项的值来计算下一项的数学关系。
它可以是线性的、多项式的、指数的等等。
递推关系在数学中起到了重要的作用,帮助研究数列的性质、推导数列的通项公式,以及解决实际问题。
递推关系式
递推关系式一、引言递推关系式是数学中的一个重要概念,它描述了一个序列中后一项与前一项之间的关系。
通过递推关系式,我们可以根据已知的初始条件逐步计算出序列中的各个项,从而揭示数学规律和模式。
递推关系式在各个领域都有广泛应用,如数列、递归函数和动态规划等。
二、数列与递推关系式2.1 数列的定义数列是由一系列按照一定规律排列的数字组成的序列。
数列中的每个数字称为项,而数列中的规律称为数列的通项公式。
通过数列的通项公式,我们可以方便地计算数列中的任意项。
2.2 递推关系式的定义递推关系式是数列中后一项与前一项之间的关系式。
一般地,递推关系式可以表示为:a n+1=f(a n),其中n为项的序号,a n表示第n项,f表示递推函数。
2.3 递推关系式的作用递推关系式可以帮助我们计算数列中的任意项,从而揭示数列中的规律和模式。
通过分析递推关系式,我们可以得到数列的闭式表达式,即直接根据项的序号计算出项的值的公式。
三、递推关系式的形式递推关系式可以具有多种不同的形式,根据具体情况选择适合的形式进行表示。
下面列举了几种常见的递推关系式形式。
3.1 线性递推关系式线性递推关系式是一种最简单的递推关系式形式,其通项公式可以表示为:a n+1=a n+c,其中c为常数。
线性递推关系式描述了数列中的每个项与前一项之间的恒定差值关系。
3.2 二次递推关系式二次递推关系式是一种形式更为复杂的递推关系式。
其通项公式可以表示为:a n+1=a n2+b,其中b为常数。
二次递推关系式描述了数列中的每个项与前一项的平方加上常数之间的关系。
3.3 递归函数递归函数是一种特殊的递推关系式形式,其通项公式可以表示为:a n=f(a n−1)。
递归函数通过直接调用自身来计算数列中的各个项。
四、递推关系式的应用4.1 数列的求和通过递推关系式,我们可以方便地求解数列的前n项和。
方法是先计算出数列的第n项,然后通过求和公式计算前n项和。
4.2 数列的性质分析递推关系式可以帮助我们深入地分析数列的性质。
数学归纳法与递推关系式
数学归纳法与递推关系式在数学中,有一种经典的证明方法叫做“归纳法”。
归纳法常常用来证明一些关于自然数的命题,也常常和“递推关系式”一起出现。
什么是归纳法?归纳法是指证明一个命题对于所有自然数都成立,只需证明命题对于第一个自然数成立,且证明命题对于任何自然数成立的前提下,可推导出命题对于这个自然数加一成立,那么命题对于所有自然数都成立。
以一个简单的例子来说明归纳法的过程:命题:对于任何正整数n,2 + 4 + 6 + ... + 2n = n(n+1)证明:当n=1时,2+4=6=1(1+1),命题成立。
假设命题对于某个正整数k成立,则将n=k+1代入命题:2 + 4 + 6 + ... + 2(k+1) = (k+1)(k+2)由于命题对于n=k成立,因此有:2 + 4 + 6 + ... + 2k = k(k+1)将此式两边同时加上2(k+1),得到:2 + 4 + 6 + ... + 2k + 2(k+1) = k(k+1) + 2(k+1)整理得:2 + 4 + 6 + ... + 2(k+1) = (k+1)(k+2)由此可知,命题对于n=k+1成立。
因此,根据归纳法的原理,命题对于所有正整数n都成立。
什么是递推关系式?在数学中,递推关系式是指一个数列的通项公式中所包含的递推关系,它使得对于一个数列的前几项,可以通过前面的一些项来推出后面的项。
例如,斐波那契数列就是经典的递推数列。
斐波那契数列的第一项是1,第二项是1,从第三项开始,每一项都等于前两项之和。
根据这个关系,可以得到斐波那契数列的通项公式:f(n) = f(n-1) + f(n-2)其中f(n)表示第n项斐波那契数。
类似地,很多数列都可以通过递推关系式来定义。
归纳法和递推关系式的联系归纳法和递推关系式之间有密切的联系。
在使用归纳法证明某个命题时,往往需要使用递推关系式。
例如,考虑斐波那契数列求和的问题。
设S是斐波那契数列前n项的和,即:S = f(1) + f(2) + f(3) + ... + f(n)显然有:S + f(n+1) = f(1) + f(2) + f(3) + ... + f(n) + f(n+1)由于斐波那契数列的递推关系式为:f(n+1) = f(n) + f(n-1)因此,有:S + f(n+1) = f(n) + f(n-1) + f(n+1)即:S + f(n+1) = f(n+2)于是,可以得到:S = f(n+2) - f(n+1)这样,就得到了斐波那契数列前n项的和的通项公式:f(1) + f(2) + f(3) + ... + f(n) = f(n+2) - f(n+1)这个例子说明,在使用归纳法证明某个命题时,如果需要借助递推关系式来推导,可以先列出递推式,然后再尝试使用归纳法来证明。
数列三项递推求通项特征方程
数列三项递推求通项特征方程数列是我们日常生活中非常常见的数学模型,它们可以描述一种事物或现象的变化规律。
在数列中,常常需要计算出第 n 项,而有些数列可以通过递推关系式来求解第 n 项。
其中,三项递推是一种常见的递推方式。
在这篇文章中,我们将介绍如何利用三项递推求解数列的通项公式,以及如何使用特征方程来解决数列的求解问题。
一、数列三项递推求通项公式对于数列 {a1,a2,a3,…,an},如果它们之间存在递推关系式:an = f(an-1,an-2,an-3),n ≥ 4那么我们可以通过这个递推关系式来求解数列的通项公式。
具体来说,我们可以通过迭代使用递推关系式,通过已知的前三项(a1、a2、a3),逐个求出数列的每一项。
当我们求得第 n 项时,我们就可以得到数列的通项公式。
例如,我们考虑这样一个数列:{1,1,2,3,5,8,13,…}我们发现这个数列的特点是,每一项都是前两项之和。
我们可以用以下递推关系式来描述这个数列:an = an-1 + an-2,n ≥ 3利用这个递推关系式,我们可以求出数列中的每一项,如下所示:a1 = 1a2 = 1a3 = a2 + a1 = 2a4 = a3 + a2 = 3a5 = a4 + a3 = 5a6 = a5 + a4 = 8a7 = a6 + a5 = 13…我们发现,这个数列的通项公式可以写成:an = fib(n),n ≥ 1其中,fib(n) 表示斐波那契数列的第 n 项。
这个数列是一个非常著名的数列,每一项都是前两项之和,它的前几项是1,1,2,3,5,8,13,21,34,55,89,144,…二、特征方程的应用除了使用递推关系式来求解数列的通项公式之外,我们还可以使用特征方程的方法来解决这个问题。
特征方程是什么呢?它可以帮助我们求出数列的通项公式。
对于一个递推关系式:an = c1an-1 + c2an-2 + … + cm an-m,n ≥ m我们可以构造一个特征方程:x^m - c1x^(m-1) - c2x^(m-2) - … - cm = 0其中,x 是未知数。
数列的递推与递归关系知识点总结
数列的递推与递归关系知识点总结数列是数学中的一个重要概念,在数学和计算机科学中都有广泛的应用。
数列的递推和递归关系是数列研究中的重要内容,通过递推和递归可以得到数列中后一项和前一项之间的关系。
本文将总结数列的递推和递归关系的知识点。
一、数列的递推关系数列的递推关系是指数列中后一项和前一项之间的关系,通过这种关系可以求解数列中的任意一项。
数列的递推公式分为线性递推和非线性递推两种。
1. 线性递推关系线性递推关系是指数列中后一项和前一项之间的关系为线性函数的情况。
线性递推关系可以表示为:an = a(n-1) + b其中an为数列的第n项,a(n-1)为数列的第n-1项,b为常数。
通过这个递推公式,可以根据已知的第一项和递推关系求得数列中的其他项。
2. 非线性递推关系非线性递推关系是指数列中后一项和前一项之间的关系不为线性函数的情况。
非线性递推关系可以表示为:an = f(a(n-1))其中an为数列的第n项,a(n-1)为数列的第n-1项,f为一个非线性函数。
通过这个递推关系,可以根据已知的第一项和递推关系求得数列中的其他项。
二、数列的递归关系数列的递归关系是指数列中后一项和前一项之间的关系通过递归定义的情况。
数列的递归关系可以表示为:an = f(an-1)其中an为数列的第n项,an-1为数列的第n-1项,f为一个递归函数。
递归关系中的数列可以通过给定的初始条件,即数列的第一项或前几项,求解数列中的其他项。
三、递推与递归的关系递推和递归是两种不同的求解数列的方法,但它们之间存在紧密的联系。
递推是通过前一项和递推公式来计算后一项,递归则是通过前一项和递归函数来计算后一项。
实际上,递推公式可以看作是递归关系的一种特殊形式,即递归函数是一个线性函数的情况。
通过递推和递归,可以发现数列中的规律,预测数列的未知项,解决各种与数列相关的问题。
在数学和计算机科学领域中,递推和递归在数列求解、算法设计等方面有着重要的作用。
04.递推算法(C++版包括习题参考答案)
【例6】过河卒(Noip2002) 【问题描述】 棋盘上A点有一个过河卒,需要走到目标B点。卒行走的规则:可以向 下、或者向右。同时在棋盘上的任一点有一个对方的马(如C点),该马 所在的点和所有跳跃一步可达的点称为对方马的控制点,如图3-1中的C点 和P1,„„,P8,卒不能通过对方马的控制点。棋盘用坐标表示,A点 (0,0)、B点(n, m) (n,m为不超过20的整数),同样马的位置坐标是需要给 出的,C≠A且C≠B。现在要求你计算出卒从A点能够到达B点的路径的条数。
min{m , n}1 i 0
s 1=
(n i ) * (m i )
2.长方形和正方形的个数之和s 宽为1的长方形和正方形有m个,宽为2的长方形和正方形有 m-1个,┉┉,宽为m的长方形和正方形有1个; 长为1的长方形和正方形有n个,长为2的长方形和正方形有n1个,┉┉,长为n的长方形和正方形有1个; 根据乘法原理
【例3】棋盘格数
设有一个N*M方格的棋盘( l≤ N≤100,1≤M≤100)。求出该棋盘中包含有多少 个正方形、多少个长方形(不包括正方形)。 例如:当 N=2, M=3时: 正方形的个数有8个:即边长为1的正方形有6个;边长为2的正方形有2个。 长方形的个数有10个:即2*1的长方形有4个:1*2的长方形有3个:3*1的长 方形有2个:3*2的长方形有1个: 程序要求:输入:N,M 输出:正方形的个数与长方形的个数 如上例:输入:2 3 输出:8 10 【算法分析】 1.计算正方形的个数s1 边长为1的正方形个数为n*m 边长为2的正方形个数为(n-1)*(m-1) 边长为3的正方形个数为(n-2)*(m-2) ………… 边长为min{n,m}的正方形个数为(m-min{n,m}+1)*(n-min{n,m}+1) 根据加法原理得出
数列的求和与递推公式
数列的求和与递推公式在数学中,数列是由一系列按照特定规律排列的数字组成的序列。
求解数列的和以及找到递推公式是数学中常见的问题,本文将介绍数列求和的方法以及递推公式的推导过程。
一、等差数列的求和与递推公式等差数列是指数列中相邻两项之间的差值保持相等的数列。
设等差数列的首项为a,公差为d,第n项为an。
1.1 求和公式对于等差数列来说,我们可以通过求和的方法来快速计算数列的和。
等差数列的前n项和Sn可以通过下式计算得到:Sn = (n/2) * (a + an)其中,n为项数,a为首项,an为第n项。
1.2 递推公式递推公式是求解等差数列中第n项的常用方法。
根据等差数列的性质,可以得出递推公式为:an = a + (n-1) * d其中,an为第n项,a为首项,d为公差,n为项数。
二、等比数列的求和与递推公式等比数列是指数列中相邻两项之间的比值保持相等的数列。
设等比数列的首项为a,公比为r,第n项为an。
2.1 求和公式对于等比数列而言,我们可以通过求和的公式来计算数列的和。
等比数列的前n项和Sn可以通过下式计算得到:Sn = a * (1 - r^n) / (1 - r)其中,n为项数,a为首项,r为公比。
2.2 递推公式递推公式是求解等比数列中第n项的常用方法。
根据等比数列的定义和性质,可以得出递推公式为:an = a * r^(n-1)其中,an为第n项,a为首项,r为公比,n为项数。
三、斐波那契数列的求和与递推公式斐波那契数列是一种特殊的数列,在数学和自然界中都有广泛的应用。
斐波那契数列的定义如下:首项为1,第二项为1,之后的每一项都是前两项的和。
3.1 求和公式斐波那契数列的前n项和Sn可以通过下式计算得到:Sn = Fn+2 - 1其中,Fn为斐波那契数列的第n项。
3.2 递推公式递推公式是求解斐波那契数列中第n项的常用方法。
根据斐波那契数列的定义和性质,可以得出递推公式为:Fn = Fn-1 + Fn-2其中,Fn为第n项,Fn-1为第n-1项,Fn-2为第n-2项。
二中二公式表
二中二公式表二中二公式是组合数学中的经典定理,是指从n个不同元素中取出k个元素的组合数量,即C(n,k)可以表示为∑C(n-1,m-1),其中m=1,2,...,k。
该公式有两种常见的表达方式,一种是利用递推关系式进行计算,另一种是通过简化组合式的形式推导出来。
一、递推关系式递推关系式是利用已知的n-1个元素取k-1个元素和n-1个元素取k个元素的组合数计算n个元素取k个元素的组合数。
具体来说,可以利用以下两个递推式计算C(n,k):C(n,k) = C(n-1,k-1) + C(n-1,k)C(n,0) = 1,C(n,n) = 1其中C(n,k)表示从n个元素中取出k个元素的组合数。
这两个递推式可以递归地计算所有的组合数,时间复杂度为O(nk)。
二、简化组合式的形式另一种常见的求解二中二公式的方法是通过简化组合式的形式得到。
具体来说,可以利用以下等式计算C(n,k):C(n,k) = n!/[k!(n-k)!]= (n-k+1)/1 * (n-k+2)/2 * ... * n/k= C(n-1,k-1) * n/k其中n!表示n的阶乘,即n!=n*(n-1)*...*2*1。
这种方法的时间复杂度为O(k),比递推关系式的时间复杂度低。
三、应用二中二公式广泛应用于组合数学、概率论、统计学等领域。
例如,在概率论中,可以利用二中二公式计算从n个球中取k个球的概率;在图论中,可以利用二中二公式计算从n个点中取k个点形成的子图的数量;在密码学中,可以利用二中二公式计算从n个字母中取k个字母组成的密码的种数。
总之,二中二公式是组合数学中的核心定理之一,具有广泛的应用价值。
掌握它的计算方法和应用场景,对于深入理解和应用组合数学至关重要。
高中数学数列的递推公式及推导过程
高中数学数列的递推公式及推导过程数列是高中数学中的重要概念,它是由一系列按照一定规律排列的数所组成。
在数列中,递推公式是一种常见的描述数列规律的方式。
本文将详细介绍数列的递推公式及其推导过程,并通过具体题目的分析,帮助读者理解数列的考点和解题技巧。
一、等差数列的递推公式及推导过程等差数列是最常见的数列之一,它的每一项与前一项之差都相等。
对于等差数列,我们可以通过递推公式来描述其规律。
假设等差数列的首项为a₁,公差为d,第n项为aₙ,则等差数列的递推公式为:aₙ = a₁ + (n-1)d其中,a₁为首项,d为公差,n为项数。
例如,考虑等差数列1,4,7,10,13,...,其中首项a₁=1,公差d=3。
我们可以使用递推公式来求解该数列的任意一项。
例如,我们要求第10项a₁₀的值,根据递推公式可以得到:a₁₀ = a₁ + (10-1)×3 = 1 + 9×3 = 28通过递推公式,我们可以很方便地求解等差数列中任意一项的值。
二、等比数列的递推公式及推导过程等比数列是另一种常见的数列,它的每一项与前一项之比都相等。
对于等比数列,我们同样可以使用递推公式来描述其规律。
假设等比数列的首项为a₁,公比为q,第n项为aₙ,则等比数列的递推公式为:aₙ = a₁ × q^(n-1)其中,a₁为首项,q为公比,n为项数。
例如,考虑等比数列2,6,18,54,162,...,其中首项a₁=2,公比q=3。
我们可以使用递推公式来求解该数列的任意一项。
例如,我们要求第6项a₆的值,根据递推公式可以得到:a₆ = a₁ × 3^(6-1) = 2 × 3^5 = 486通过递推公式,我们可以轻松地求解等比数列中任意一项的值。
三、斐波那契数列的递推公式及推导过程斐波那契数列是一种特殊的数列,它的每一项都是前两项之和。
斐波那契数列的递推公式可以通过观察数列的规律得到。
假设斐波那契数列的第n项为Fₙ,则斐波那契数列的递推公式为:Fₙ = Fₙ₋₁ + Fₙ₋₂其中,F₀=0,F₁=1。
利用递推关系求数列通项的九种类型及解法
利用递推关系求数列通项的九种类型及解法1.形如)(1n f a a n n =-+型(1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法. 方法如下: 由 )(1n f a a n n =-+得:2≥n 时,)1(1-=--n f a a n n ,)2(21-=---n f a a n n ,)2(23f a a =-)1(12f a a =-所以各式相加得 )1()2()2()1(1f f n f n f a a n +++-+-=-即:∑-=+=111)(n k n k f a a .为了书写方便,也可用横式来写:2≥n 时,)1(1-=--n f a a n n ,∴112211)()()(a a a a a a a a n n n n n +-++-+-=---=1)1()2()2()1(a f f n f n f ++++-+- . 例 1. (2003天津文) 已知数列{a n }满足)2(3,1111≥+==--n a a a n n n ,证明213-=nn a证明:由已知得:故,311--=-n n n a a112211)()()(a a a a a a a a n n n n n +-++-+-=---=.213133321-=++++--nn n ∴213-=nn a .例 2.已知数列{}n a 的首项为1,且*12()n n a a n n N+=+∈写出数列{}n a 的通项公式.答案:12+-n n例3.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:na n 12-=评注:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。
递推关系式
递推关系式
在数学中,递推关系式是一种数学方法,用于定义数列中每一项
与它前面一项之间的关系。
递推关系式在许多领域中都有应用,包括
计算机科学、物理、统计学和经济学等。
递推关系式有两种类型:递归关系和迭代关系。
递归关系是指,
递归地使用一个函数来计算每个项。
而迭代关系是指在计算每个项时
使用相同的算法。
递推关系式可以用于解决各种数学问题,例如求和、求积和求阶乘等。
在计算机科学中,递推关系式被广泛应用于算法和数据结构。
例如,在动态规划算法中,递推关系式被用来计算问题的最优解。
另一
个例子是在图形处理领域中,递推关系式被用来计算数字信号处理和
滤波器设计中的滤波器系数。
递推关系式也被广泛应用于统计学中。
例如,在时间序列分析中,递推关系式被用来分析时间序列数据,以了解它们之间的关系。
在经
济学中,递推关系式被用来分析货币政策的影响和效果,以及预测未
来的经济趋势。
总之,递推关系式是一种强大的数学工具,可以用于各种领域和
问题。
其互相关联的计算过程给我们提供了一种非常有意义和实用的
解决问题方法。
我们可以通过深入学习递推关系式的特性和应用,将
其发挥到极致,帮助我们更好地理解和解决我们所面对的数学问题。
通项公式和递推关系
通项公式和递推关系
通项公式是指数列中的每一项与项号之间的关系式。
通项公式可以通过观察数列的规律、使用递推关系或利用数学方法推导得出。
递推关系是数列中相邻项之间的关系式。
通过已知的前几项,可以通过递推关系计算出后面的项数。
递推关系可以是线性关系、二次关系、几何关系等。
举例来说:
1.等差数列的通项公式和递推关系:
通项公式:an = a1 + (n-1)d
其中,an表示第n项,a1表示首项,d表示公差。
递推关系:an = an-1 + d
2.等比数列的通项公式和递推关系:
通项公式:an = a1 * r^(n-1)
其中,an表示第n项,a1表示首项,r表示公比。
递推关系:an = an-1 * r
除了等差数列和等比数列,还有其他类型的数列,如斐波那契数列、等差三角数列等,它们都有各自的通项公式和递推关系。
拓展:
还有一种特殊的数列称为递归数列,它的每一项都是前面若干项
的函数。
递归数列的通项公式无法通过递推关系直接得出,而是需要
找到项之间的递推规律,通过前面的项算出后面的项。
递归数列常见
的例子是费氏数列,其通项公式为:
Fn = Fn-1 + Fn-2,其中F1 = F2 = 1。
有时候,数列的规律不仅仅通过递推关系来确定,还需要借助于
其他数学工具,如组合数学中的排列组合、二项式定理等。
在某些情
况下,数列的通项公式可能无法通过已知的方法求得,这时候需要借
助于数值计算、数学推论或者近似方法来获取数列的一些特性和性质。
利用几类经典的递推关系式求通项公式
利用几类经典的递推关系式求通项公式经典的递推关系式是一种常见的数学问题,其中通项公式是递推关系式的一般解。
在数学中,几类经典的递推关系式包括等差数列、等比数列以及斐波那契数列。
一、等差数列等差数列是一种常见的数列,每一项与前一项之差保持不变。
等差数列的递推关系式如下:an = a1 + (n-1)d其中,an表示第n项,a1表示首项,d表示公差。
利用等差数列的递推关系式可以求得通项公式:an = a1 + (n-1)d二、等比数列等比数列是一种常见的数列,每一项与前一项之比保持不变。
等比数列的递推关系式如下:an = a1 * r^(n-1)其中,an表示第n项,a1表示首项,r表示公比。
利用等比数列的递推关系式可以求得通项公式:an = a1 * r^(n-1)三、斐波那契数列斐波那契数列是一种著名的数列,每一项是前两项之和。
斐波那契数列的递推关系式如下:fn = fn-1 + fn-2其中,fn表示第n项,f1和f2分别表示斐波那契数列的前两项。
利用斐波那契数列的递推关系式可以求得通项公式:fn = [(1+sqrt(5))^n - (1-sqrt(5))^n] / (2^n * sqrt(5))其中,sqrt(5)表示5的平方根。
四、其他递推关系式除了等差数列、等比数列和斐波那契数列,还有许多其他经典的递推关系式。
例如,阶乘数列是一种常见的递推关系式,每一项是前一项与当前项之积。
阶乘数列的递推关系式如下:an = an-1 * n其中,an表示第n项,n表示当前项。
利用阶乘数列的递推关系式可以求得通项公式:an = n!其中,n!表示n的阶乘。
总结起来,利用等差数列、等比数列、斐波那契数列以及其他经典递推关系式,可以推导出它们的通项公式。
这些递推关系式和通项公式在数学问题中具有广泛的应用,能够帮助我们快速计算数列中任意项的数值。
三项递推关系求通项
三项递推关系求通项要求一个递推关系的通项,需要知道递推关系的初始条件和递推公式。
以下是三种常见的递推关系的通项求解方法:1. 线性递推关系:假设线性递推关系为 a_n = p*a_(n-1) + q*a_(n-2),其中p和q为常数,a_n为第n项的值。
我们需要知道的初始条件为 a_0和 a_1。
假设通项形如a_n = x^n,其中x为常数。
将其代入递推关系,得到:x^n = p*x^(n-1) + q*x^(n-2)整理,得到特征方程:x^2 - p*x - q = 0解特征方程,得到x1和x2,这两个根就是递推关系的通项的形式。
2. 非线性递推关系:假设递推关系为 a_n = f(a_(n-1), a_(n-2)),其中f为一个函数。
我们需要知道的初始条件为 a_0 和 a_1。
通常情况下,求非线性递推关系的通项比较困难,没有统一的解法。
需要根据具体的递推关系和函数f的性质来进行分析和求解。
3. 递归递推关系:递归递推关系是一种常见的递推关系形式,常用于定义数列的递推关系。
比如斐波那契数列的递推关系为:F_n = F_(n-1) + F_(n-2),初始条件为 F_0 = 0 和 F_1 = 1。
可以通过数学归纳法证明,斐波那契数列的通项为F_n = (φ^n - (-φ)^(-n)) / √5,其中φ=(1+√5)/2为黄金分割比。
总结来说,要求一个递推关系的通项,需要根据具体的递推关系形式进行分析和解决。
对于线性递推关系,可以通过特征方程解得通项表达式;对于非线性递推关系,需要具体问题具体分析;对于递归递推关系,可以通过数学归纳法证明通项的形式。
数列的递推与递归公式
数列的递推与递归公式数列是数学中常见的一种数值序列,它由一个或多个数字按照特定的规律排列组成。
数列可以通过递推公式和递归公式来定义。
递推公式是指通过前一项或多项数值来计算后一项的公式。
递推公式常用于计算数列的前几项,然后利用这些已知的项来计算后面的项。
例如,斐波那契数列就可以通过递推公式来计算,其递推关系为f(n) =f(n-1) + f(n-2),其中f(n)表示第n个斐波那契数。
递归公式是指一个数列中的某一项可以通过该数列中的其他项来定义的公式。
递归公式常常用于计算数列中的任意一项。
例如,阶乘数列就可以通过递归公式来计算,其递归关系为f(n) = n * f(n-1),其中f(n)表示n的阶乘。
递推公式和递归公式是数列中两种常见的定义方法,它们可以根据实际情况灵活运用。
在实际应用中,我们常常需要根据问题的要求选择适合的定义方法来计算数列。
数列的递推和递归公式有着广泛的应用。
在数学中,数列的递归公式常用于证明数学定理和解决数学问题。
而在计算机科学中,数列的递推公式常用于编写程序,计算数列的任意一项。
以斐波那契数列为例,斐波那契数列是指从1开始,后一项是前两项之和的数列。
斐波那契数列的递推关系f(n) = f(n-1) + f(n-2),其中f(1) = 1,f(2) = 1。
利用递推公式,我们可以计算斐波那契数列的前几项:f(1) = 1f(2) = 1f(3) = f(2) + f(1) = 2f(4) = f(3) + f(2) = 3f(5) = f(4) + f(3) = 5...通过递推公式,我们可以计算出斐波那契数列的任意一项。
递推公式和递归公式是数列中常用的定义方法,它们在解决问题时有着不可替代的作用。
通过递推公式和递归公式,我们可以轻松地计算数列的任意一项。
无论是在数学领域还是在计算机科学领域,数列的递推和递归公式都是不可或缺的工具。
以上是关于数列递推和递归公式的一些介绍和应用。
通项公式和递推公式的联系和区别
通项公式和递推公式在数学中都是重要的概念,它们在代数、数论和组合数学等领域有着广泛的应用。
本文将从简单到复杂逐步探讨通项公式和递推公式的联系和区别,以帮助读者更深入地理解这两个概念。
1. 通项公式和递推公式的定义通项公式是一个数列中,第n个项与n之间的关系式,通常表示为An=f(n),其中An代表第n个项,f(n)是n的函数。
通项公式可以用来直接计算数列中任意项的值。
而递推公式是一个数列中,第n个项与前面某些项的关系式,通常表示为An=An-1+An-2,或者An=f(An-1,An-2),其中An代表第n个项,An-1和An-2代表前两个项。
递推公式通过确定初始值,然后通过前一项来递推得到后一项的值。
2. 联系:通项公式可以通过递推公式求得在一些情况下,我们很难直接写出数列的通项公式。
这时,递推公式就显得非常重要了。
通过递推公式,我们可以通过已知的初始值,不断地递推求得数列的每一项的值,直到得到我们想要的结果。
斐波那契数列就是一个典型的例子。
其递推公式为Fn=Fn-1+Fn-2,初始值为F0=0,F1=1。
通过递推公式,我们可以得到斐波那契数列的每一项的值。
而这些值可以帮助我们找到斐波那契数列的通项公式。
3. 区别:通项公式是直接计算数列中任意项的值,而递推公式是通过前一项递推得到后一项的值通项公式和递推公式在求解数列中的项的值时有着不同的方式。
通项公式是一个对n的函数,直接通过n的值计算出数列中第n个项的值。
而递推公式则是通过已知的一些项,利用前一项的值来得到后一项的值。
4. 个人观点和总结在实际应用中,通项公式和递推公式都有其独特的优势。
通项公式能够直接给出数列中任意项的值,适用于直接计算数列中某一项的情况;而递推公式则适合于通过前一项递推得到后一项的场景,它更贴近实际问题的建模和求解过程。
掌握通项公式和递推公式的联系和区别,对于理解和运用数列以及在数学建模和解决实际问题中有着重要的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=2an-t,则 t=-3.
故递推公式为 an+1+3=2(an+3). 令 bn=an+3,则 b1=a1+3=4,且 bn+1 an+1+3 = =2. bn an+3
∴{bn}是以 b1=4 为首项,2 为公比的等比数列. ∴bn=4×2n-1=2n+1,即 an=2n+1-3. 4、 an+1=pan+qn(其中 p,q 均为常数,pq(p-1)≠0)型 an+1 p an 1 = · + ,引入辅助数列 qn+1 q qn q
1 1 -1 . ∴ -1= an 3 an+1 1 2 又 -1= , a1 3 1 -1 2 1 ∴ an 是以 为首项, 为公比的等比数列, 3 3 1 2 1 2 ∴ -1= · n-1= n, an 33 3 ∴an= 3n . 3n+2
二、破解数列中的 3 类探索性问题 1.条件探索性问题 此类问题的基本特征是:针对一个结论,条件未知需探求,或条件增删需 确定,或条件正误需判定,解决此类问题的基本策略是:执果索因,先寻找结 论成立的必要条件,再通过检验或认证找到结论成立的充分条件,在“执果索 因”的过程中,常常会犯的一个错误是不考虑推理过程的可逆与否,误将必要 条件当作充分条件,应引起注意.
即 由
m2 n = . 2 4m +4m+1 6n+3 m2 n 3 -2m2+4m+1 = ,可得 = , n 4m2+4m+1 6n+3 m2 6 6 <m<1+ . 2 2
∴-2m2+4m+1>0,从而 1-
化简后与原递推式比较,得
令 bn=an+n+1.(*)则 bn=3bn-1,又 b1=6,故 bn=6·3n-1=2·3n, 代入(*)式,得 an=2·3n-n-1. 6、an+1=pa(p>0,an>0)型 这种类型一般是等式两边取对数后转化为 an+1=pan+q 型数列,再利用待 定系数法求解. [例 6] [解] 已知数列{an}中,a1=1,an+1= 1 对 an+1= ·a 2 n的两边取对数, a 1 2 ·an(a>0),求数列{an}的通项公式. a
[例 1]
已知数列{an}中, a1=2 ,a2= 3,其前 n 项和 Sn 满足 Sn+2 +Sn
=2Sn+1+1(n∈N*);数列{bn}中,b1=a1,bn+1=4bn+6(n∈N*). (1)求数列{an},{bn}的通项公式; (2)设 cn=bn+2+(-1)n-1λ·2an(λ为非零整数,n∈N*),试确定λ的 值,使得对任意 n∈N*,都有 cn+1>cn 成立. [思路点拨] 处理第(2)问中的 cn+1>cn 恒成立问题, 可通过构造函数将问
1 得 lg an+1=2lg an+lg . a 1 令 bn=lg an,则 bn+1=2bn+lg . a 1 bn+lg 1 1 由此得 bn+1+lg =2 a ,记 cn=bn+lg ,则 cn+1=2cn, a a
1 1 ∴数列{cn}是以 c1=b1+lg =lg 为首项,2 为公比的等比数列. a a 1 ∴cn=2n-1·lg . a 1 1 1 ∴bn=cn-lg =2n-1·lg -lg a a a n - 1 1 1-2 - =lg a· a 2n 1 =lga , 即 lg an=lga 七、
3、
an+1=pan+q(其中 p,q 均为常数,pq(p-1)≠0)型 对于此类问题,通常采用换元法进行转化,假设将递推公式改写为 an+1+t q ,可令 an+1+t=bn+1 换元即可转化为等比数列 p-1
=p(an+t),比较系数可知 t= 来解决. [例 3] [ 解]
已知数列{an}中,a1=1,an+1=2an+3,求 an. 设递推公式 an +1= 2an+3 可以转化为 an +1- t=2(an- t),即 an+1
专家讲坛:由递推公式求通项的 7 种方法及破解数列中的 3 类探索性问题 一、由递推公式求通项的 7 种方法 1、 an+1=an+f(n)型 把原递推公式转化为 an+1-a n=f(n),再利用累加法(逐差相加法)求解, 即 an =a1 + (a2 -a1) +(a3 - a2) +…+ (an -an - 1) =a1 + f(1) + f(2) + f(3) +…+ f(n-1). [例 1] 1 1 已知数列{an}满足 a1= ,an+1=an+ 2 ,求 an. 2 n +n 由条件,知 an+1-an= 1 1 1 1 = = - ,则(a2-a1)+(a3-a2)+ n +n nn+1 n n+1
{bn}
an q 1 n n ,得 b p n+1-bn= p ,再利用叠加法(逐差相加法)求解. p
n +1
[例 4]
1 5 1 已知数列{an}中,a1= ,an+1= an+ 2 6 3 1 1 法一:在 an+1= an+ 2 3
n+ 1 两边乘以
,求 an.
[解]
2 2n+1,得 2n+1·an+1= (2n·an)+1. 3
题转化为函数的最值问题,再来研究所构造的函数的最值. [解] (1)由已知得 Sn+2-Sn+1-(Sn+1-Sn)=1, ∴an+2-an+1=1(n≥1). 又 a2-a1=1, ∴数列{an}是以 a1=2 为首项,1 为公差的等差数列. ∴an=n+1. ∵bn+1=4bn+6, 即 bn+1+2=4(bn+2), 又 b1+2=a1+2=4, ∴数列{b2+2}是以 4 为公比,4 为首项的等比数列. ∴bn=4n-2. (2)∵an=n+1,bn=4n-2, ∴cn=4n+(-1)n-1λ·2n+1.要使 cn+1>cn 成立, 需 cn+1-cn=4n+1-4n+(-1)nλ·2n+2-(-1)n-1λ·2n +1>0 恒成立, 化简得 3·4n-3λ(-1)n-12n+1>0 恒成立, 即(-1)n-1λ<2n-1 恒成立, ①当 n 为奇数时,即λ<2n-1 恒成立,当且仅当 n=1 时,2n-1 有最小值 1,∴λ<1; ②当 n 为偶数时,即λ>-2n-1 恒成立,当且仅当 n=2 时,-2n -1 有最大值-2,∴λ>-2,即-2<λ<1. 又λ为非零整数,则λ=-1. 综上所述,存在λ=-1,使得对任意 n∈ N*,都有 cn+1>cn 成 立. [点评] 对于数列问题,一般要先求出数列的通项,不是等差数列和等
令 bn=
3n·a
3 n,则 bn+1= bn+ 2
n+ 1.
3 3 n 所以 bn-bn-1= 2 ,bn-1-bn-2= 2 3 b2-b1= 2 2. 将以上各式叠加, 3 3 2 得 bn-b1= 2 +…+ 2 5、
n-1
n-1
,…,
3 + 2 n.
an+1=pan+an+b(p≠1,p≠0,a≠0)型 这种类型一般利用待定系数法构造等比数列,即令 an + 1 + x(n + 1)+ y =
2
[解]
(a4-a3)+…+(an-an-1)= 1 ∴an-a1=1- . n
1-
1 1 1 1 1 1 1 - - - 2 + 2 3 + 3 4 +…+ n-1 n ,
1 1 1 3 1 ∵a1= ,∴an= +1- = - . 2 2 n 2 n 2、 an+1 a =f(n),再利用累乘法(逐商相乘法)求解,即由 2= a1 an an a3 an f(1), =f(2),…, =f(n-1),累乘可得 =f(1)f(2)…f(n-1). a2 a1 an-1 n 2 [例 2] 已知数列{an}满足 a1= ,an+1= ·an,求 an. 3 n+1 an 1 n n [解] 由 an+1= ·an,得 + = , n+1 an n+1 把原递推公式转化为 故 an= an an-1 n-1 n-2 a 12 2 2 · ·…· 2·a1= · ·…· · = .即 an= . a1 2 3 3n 3n an-1 an-2 n n-1 an+1=f(n)an 型
(1)一般地,要先在递推公式两边同除以 qn+1,得 其中 bn=
{bn}
an p 1 qn ,得 bn+1= ·bn+ ,再用待定系数法解决; q q q an+1 an 1 = + · p n ,引入辅助数列 n n+1 p p p
(2)也可以在原递推公式两边同除以 pn + 1 ,得 其中 bn=
把 m,n 转化为一个变量求出这个变量的范围,根据正整数求其值,若在所求范 围内能够得到适合题目的值,则存在,否则就不存在.第(3)问中 Tn 与 9 的大小 比较可以通过构造函数,根据函数的性质比较 Tn 与 9 的大小 [解] (1)∵a=2a+anan+1,
即(an+an+1)(2an-an+1)=0. 又 an>0,∴2an-an+1=0,即 2an=an+1. ∴数列{an}是公比为 2 的等比数列. 由 a2+a4=2a3+4,得 2a1+8a1=8a1+4,解得 a1=2. 故数列{an}的通项公式为 an=2n(n∈N*). nan n = , n 2n+12 2n+1 m n 1 ∴b1= ,bm= ,bn= . 3 2m+1 2n+1 m n 1 若 b1,bm,bn 成等比数列,则 2m+1 2= 2n+1 , 3 (2)n-1..
an+1=
Aan (A,B,C 为常数)型 Ban+C
对于此类递推数列,可通过两边同时取倒数的方法得出关系式 [例 7] 项公式. [解析] 1 ∵an+1= 3an 1 2 1 ,∴ = + , 2an+1 an+1 3 3an 3 3a 已知数列{an}的首项 a1= ,an+1= n ,n=1,2,3,…求{an}的通 5 2an+1
2 令 bn=2n·an,则 bn+1= bn+1, 3 2 根据待定系数法,得 bn+1-3= (bn-3). 3 5 4 ∴数列{bn-3}是以 b1-3=2× -3=- 为首项, 6 3 2 以 为公比的等比数列. 3 2 2 4 -1 n ∴bn-3=- · 3 ,即 bn=3-2 3 n. 3 1 1 bn n 于是,an= n=3 2 -2 3 n. 2 1 1 b n an= n = 3 - 2 2 3 n. n 2 1 1 + + a a 法二:在 n+1= n+ 2 n 1 两边乘以 3n 1,得 3 3 n +1 n 3 an+1=3 an+ 2 n+1.