PCB用基板材料简介

合集下载

pcb原材料

pcb原材料

pcb原材料
PCB原材料,即印制电路板的制作材料,通常包括基板、金
属箔、印刷油墨、焊膏、覆盖膜等。

下面将对这些主要的
PCB原材料进行详细介绍。

1. 基板: PCB基板是电子元器件连接和固定的主要载体,通
常采用玻璃纤维增强材料,如FR-4。

FR-4是一种强度高、绝
缘性能好的材料,具有良好的机械强度和热稳定性。

2. 金属箔: PCB上的导电层通常由铜箔制成。

铜箔在PCB制
作过程中起着导电和连接电路的作用。

一般情况下,厚度为
1oz的铜箔是最常用的选择,在许多情况下,需要使用更厚的
铜箔以增加电流承载能力。

3. 印刷油墨: PCB制作过程中,需要通过印刷方式将电路图
案印在基板上,这就需要使用印刷油墨。

印刷油墨通常由树脂、溶剂和颜料组成,其主要作用是提供很好的附着力,并形成导电膜。

4. 焊膏:焊膏是PCB制作过程中的重要组成部分,其主要作
用是在焊接元器件时提供焊点。

焊膏是一种含有活性助焊剂的胶状材料,一般采用石蜡或合成树脂作为基础材料,并添加一定比例的活性剂和流动剂。

5. 覆盖膜: PCB制作完成后,为了保护电路和焊点,通常需
要在表面覆盖一层保护膜。

覆盖膜通常由聚合物材料制成,包括聚酰亚胺、环氧树脂、聚丙烯等。

覆盖膜可以提供保护层,
防止电路受到外界的损害,同时也可以起到绝缘和防潮的作用。

以上是PCB制作过程中常用的几种原材料,它们有着各自不
同的性能和优势,以满足不同的应用需求。

通过不同材料的组合和加工工艺,可以制作出具有较高性能和可靠性的印制电路板。

PCB线路板原材料材质及参数介绍

PCB线路板原材料材质及参数介绍

PCB线路板原材料材质及参数介绍1.基板材料:基板材料是PCB线路板的主体材料,常用的基板材料有玻璃纤维布(FR-4)、FR-5、高频基板、金属基板等。

其中,FR-4是最常用的基板材料,具有良好的绝缘性能、机械强度和耐热性。

FR-4基板的热稳定性可达到130℃以上,介电常数在4.5-5之间。

2.小分子增强材料:小分子增强材料是为了提高基板材料的性能而添加的物质。

常用的小分子增强材料有光亮剂、抗氧化剂、稳定剂等。

这些材料可以提高基板的表面光洁度、耐热性和耐腐蚀性。

3.铜箔:铜箔是用来制作线路导体的材料,一般采用电解铜箔。

铜箔的厚度常见的有1/3oz、1/2oz、1oz等。

铜箔的厚度越大,导电性能越好,但成本也相应增加。

4.覆铜:覆铜是通过在基板表面镀上一层铜来形成线路导体。

覆铜层的厚度和分布均匀性对线路导通性能有很大影响。

常见的覆铜厚度有1oz、2oz、3oz等。

覆铜层的厚度越大,导通性能越好。

5.阻焊层:阻焊层是防止线路短路和保护基板的涂层。

常见的阻焊材料有聚酰亚胺(PI)、环氧树脂等。

阻焊层的颜色一般为绿色、红色、蓝色等,用来标记不同线路功能。

6.埋孔填充材料:在多层PCB线路板中,为了连接各层之间的线路,需要使用埋孔填充材料。

常见的埋孔填充材料有环氧树脂、聚酰亚胺等。

7.钻孔材料:在制作PCB线路板时,需要进行钻孔操作,常见的钻孔材料有高速钢、硬质合金等。

钻孔材料应具有良好的耐磨性能和切削性能。

8.表面处理材料:表面处理是为了改善焊接性能、提高耐腐蚀性以及提供良好的附着力等。

常见的表面处理材料有化学镀金、化学镀锡、喷锡等。

以上是PCB线路板常用的原材料材料及参数介绍。

不同的应用场景和要求会对这些材料的选择和使用有所区别,但了解这些基本的原材料及其特性对于正确选择和设计PCB线路板具有重要意义。

pcb基板材料

pcb基板材料

pcb基板材料PCB基板材料。

PCB(Printed Circuit Board)即印刷电路板,是电子产品中不可或缺的一部分。

它作为电子元器件的支撑体,承载着各种电子元器件,并通过导线和电路连接它们,从而实现电子设备的功能。

而PCB基板材料作为PCB的重要组成部分,对PCB的性能、稳定性和可靠性起着至关重要的作用。

在PCB基板的材料选择方面,常见的有FR-4、铝基板、陶瓷基板等。

首先,FR-4是一种玻璃纤维增强的环氧树脂基板,具有良好的绝缘性能和机械强度,适用于大多数电子产品。

其次,铝基板因其优良的导热性能而被广泛应用于LED照明、汽车电子等领域。

此外,陶瓷基板因其高温耐受性和优异的绝缘性能,被广泛应用于高频、高速电路领域。

在选择PCB基板材料时,需要考虑到电路板的使用环境、工作温度、频率要求等因素。

例如,对于高频高速电路,需要选择具有较低介电常数和介电损耗的材料,以保证信号传输的稳定性和可靠性。

而对于高功率电子设备,需要选择具有良好导热性能的基板材料,以确保电子元器件的散热和工作稳定性。

除了材料的选择外,PCB基板的制造工艺也对其性能产生重要影响。

例如,表面处理工艺可以影响焊接质量和防腐能力,影响PCB的可靠性和稳定性。

而板厚、线宽、线距等参数的设计也直接关系到PCB的性能和稳定性。

总的来说,PCB基板材料的选择和制造工艺的优化是保证PCB性能和可靠性的关键。

只有在选择合适的材料和优化的工艺下,才能制造出性能稳定、可靠性高的PCB,从而保证电子设备的正常运行和长期稳定性。

在未来,随着电子产品对性能和稳定性要求的不断提高,PCB基板材料的研发和创新也将持续推进。

新型材料的应用将进一步提升PCB的性能,满足不断发展的电子产品对PCB的需求,为电子行业的发展注入新的活力。

因此,PCB基板材料的研究和应用具有重要的意义,也是电子行业发展的重要支撑。

综上所述,PCB基板材料作为PCB的重要组成部分,对PCB的性能、稳定性和可靠性起着至关重要的作用。

PCB材料特性及应用

PCB材料特性及应用

PCB材料特性及应用PCB即印刷电路板,是一种用于支持和连接电子组件的基板材料。

它具有良好的导电性、绝缘性和耐热性,因此在电子设备中得到广泛应用。

本文将详细介绍PCB材料的特性和应用。

1.导电性:PCB材料具有良好的导电性能,可以实现电子元器件之间的连接。

常见的导电材料有铜和银等金属。

2.绝缘性:PCB材料具有良好的绝缘性能,可以防止电流在电路板上产生短路现象。

常见的绝缘材料有玻璃纤维、环氧树脂和聚酰亚胺等。

3.耐热性:PCB材料需要具有较高的耐热性能,以承受电子设备中的高温环境。

常见的耐热基材有FR4和金属蜂窝板等。

4.机械强度:PCB材料需要具有一定的机械强度,以支撑和保护电子元器件。

常见的机械强度较高的基材有金属基板和陶瓷基板等。

5.尺寸稳定性:PCB材料需要具有良好的尺寸稳定性,以保证电子元器件之间的精确连接。

常见的尺寸稳定性较好的基材有石墨烯和钢板等。

1.通信设备:通信设备中需要大量使用PCB材料,如手机、无线路由器和通信基站等。

PCB材料能够提供稳定的电子连接,并满足高频传输和高速信号处理的需求。

2.计算机和服务器:PCB材料在计算机和服务器中广泛应用,用于支持和连接CPU、内存和其他关键电子组件。

PCB材料能够提供高速信号传输和良好的散热性能。

3.汽车电子:现代汽车中包含大量的电子设备,如发动机控制单元、车载娱乐系统和安全系统等。

PCB材料能够满足汽车电子设备对高温环境和振动环境的要求。

4.医疗设备:医疗设备中需要使用高质量的PCB材料,以保证电子设备的稳定性和可靠性。

PCB材料能够满足医疗设备对高温消毒和电磁兼容性的要求。

5.工业控制设备:工业控制设备中需要使用耐用且高性能的PCB材料,以支持自动化系统的稳定运行。

PCB材料能够满足工业控制设备对高温、高湿度和腐蚀环境的要求。

总结:PCB材料具有导电性、绝缘性、耐热性、机械强度和尺寸稳定性等特性,在电子设备中得到广泛应用。

它是电子元器件之间连接的桥梁,能够提供稳定的电子连接并满足不同领域对PCB材料性能的要求。

pcb基板材料

pcb基板材料

pcb基板材料PCB基板材料。

PCB(Printed Circuit Board)即印刷电路板,是电子元器件的支撑体,也是电子元器件的电气连接体,它是电子元器件的载体,是电子元器件的支撑体,是电子元器件的电气连接体。

PCB基板材料的选择对电路板的性能和稳定性有着至关重要的影响。

下面将就PCB基板材料的选择和特性进行介绍。

首先,PCB基板材料的选择要考虑到其机械性能。

不同的应用场景对PCB基板的机械性能要求不同,一般来说,常见的机械性能指标包括弯曲强度、弯曲模量、热膨胀系数等。

在选择PCB基板材料时,需要根据具体的应用场景来确定所需的机械性能指标,以确保PCB基板在使用过程中能够满足机械性能的要求。

其次,PCB基板材料的导热性能也是一个重要的考量因素。

在一些高功率密度的电子设备中,需要使用具有良好导热性能的PCB基板材料,以确保电子元器件在工作时能够有效地散热,避免温度过高对设备性能和寿命造成影响。

常见的导热性能指标包括导热系数、热阻等,选择PCB基板材料时需要根据具体的散热要求来确定导热性能指标。

此外,PCB基板材料的介电性能也是需要考虑的重要因素。

介电常数和介电损耗因数是衡量PCB基板材料介电性能的重要指标,它们直接影响着PCB基板的信号传输性能和电气性能。

在高频应用中,介电性能的选择尤为重要,需要选择具有低介电常数和低介电损耗因数的PCB基板材料,以确保信号传输的稳定性和可靠性。

最后,PCB基板材料的耐环境性能也是需要考虑的重要因素。

不同的应用场景对PCB基板的耐环境性能要求不同,一般来说,常见的环境因素包括温度、湿度、化学物质等。

在选择PCB基板材料时,需要根据具体的环境要求来确定所需的耐环境性能指标,以确保PCB基板在各种恶劣环境下能够正常工作。

综上所述,PCB基板材料的选择需要综合考虑机械性能、导热性能、介电性能和耐环境性能等多个方面的因素,以确保PCB基板能够满足具体应用场景的要求。

PCB线路板基板材料分类

PCB线路板基板材料分类

PCB线路板基板材料分类PCB线路板(Printed Circuit Board,简称PCB)是电子元器件焊接、布线和支撑的重要基础,是电子产品中不可或缺的组成部分。

根据其基板材料的不同,PCB线路板可以分为多种分类。

下面将详细介绍几种常见的PCB线路板基板材料分类。

1.常规FR4材料常规FR4(Flame Retardant 4)材料是目前最常见的PCB基板材料之一,它是一种玻璃纤维衬底,通过环氧树脂粘合剂进行结合。

常规FR4材料具有良好的电气绝缘性能、耐高温性能和机械强度,被广泛应用于消费类电子产品、通信设备、计算机硬件等领域。

常规FR4材料常用的厚度有0.2mm、0.4mm、0.6mm、0.8mm、1.0mm、1.2mm、1.6mm等。

2.高TG材料高TG(Glass Transition Temperature)材料是在常规FR4基础上进一步改进的一种材料,其玻璃化转变温度高于常规FR4材料,通常为150℃以上。

高TG材料在高温环境下具有更好的稳定性,可以提高PCB线路板的耐热性和耐振性,适用于大功率电子设备、汽车电子、航空航天等领域。

3.金属基板材料金属基板材料是一种以金属作为基板的PCB材料,具有优异的散热性能和机械强度。

其中铝基板和铜基板是较为常见的金属基板材料。

铝基板一般采用铝材料和复合材料进行制造,广泛应用于LED照明、电源模块等领域。

铜基板则采用纯铜材料作为基底,适用于需要高导热性和高频信号传输的场合,如功放、雷达、移动通信等。

4.载板材料载板材料主要用于高密度插件封装技术,其中最常见的是陶瓷板。

陶瓷板具有优异的耐热性、导热性和电气绝缘性能,常用于电机控制器、功率模块器件等高性能应用中。

5.特殊材料除了上述常见的PCB基板材料,还存在一些特殊的基板材料,如聚酰亚胺(PI)材料、聚四氟乙烯(PTFE)材料等。

这些材料具有极高的绝缘性能、耐高温性能和化学稳定性,常用于航空航天、国防军工等领域的特殊应用。

PCB材料介绍

PCB材料介绍

Matte Side Drum Side
1.3 铜箔的量度方法:由于铜箔厚度的测量受到仪器\操作
方法及操作环境的限制,所以通常铜箔是按照单位面积的铜 箔重量来衡量.
代码 E Q T H M 1 2 3 意义 意义 厚度(inch) 0.0002 0.0004 0.0005 0.0007 0.001 0.0014 0.0028 0.042 厚度(mm) 0.005 0.009 0.012 0.018 0.025 0.035 0.071 0.106
揮發份含量% 玻璃布基重(g) 100%残铜压合厚度(mil) <0.75 210±5 7.4± 0.5 <0.75 210±5 7.6± 0.5 <0.75 210±5 7.9± 0.5 <0.75 210±5 8.3± 0.5 <0.75 210±5 8.7± 0.5 <0.75 165±5 6.5± 0.5 <0.75 165±5 6.9± 0.5 <0.75 165±5 7.2± 0.5 <0.75 105±5 4.3± 0.5 <0.75 105±5 4.7± 0.5 <0.75 105±5 5.0± 0.5 <0.75 105±5 5.3± 0.5 <0.75 77±5 3.8± 0.5 <0.75 77±5 4.1± 0.5 <0.75 48 ±5 2.8± 0.5 <0.75 48 ±5 3.1± 0.5 <0.75 48 ±5 3.4± 0.5 <0.75 25±5 2.0± 0.5 <0.75 25±5 2.3± 0.5 <0.75 48±5 2.8± 0.5 <0.75 48±5 3.1± 0.5 <0.75 48±5 3.4± 0.5 <0.75 54±5 3.0± 0.5 <0.75 54±5 3.4± 0.5 <0.75 54±5 3.8± 0.5

PCB基础知识

PCB基础知识

第一章PCB基板材料覆铜箔层压板(Copper Clad Laminates,简写为CCL)简称覆铜箔板或覆铜板,在整个印制电路板上,主要担负着导电、绝缘和支撑三个方面的功能。

一、覆铜箔板的分类方法1、按板材的刚柔程度分为刚性覆铜箔板和挠性覆铜箔板两大类。

2、按增强材料不同,分为:纸基、玻璃布基、复合基(CEM系列等)和特殊材料基(陶瓷、金属基等)四大类。

3、按板所采用的树脂粘合剂,分为:(1)纸基板酚醛树脂XPC、XXXPC、FR-1、FR-2等板、环氧树脂FR-3板、聚脂树脂等类型。

(2)玻璃布基板环氧树脂(FR-4、FR-5板)、聚酰亚胺树脂PI、聚四氟乙烯树脂(PTFE)类型、双马酰亚胺改性三嗪树脂(BT)、聚苯醚树脂(PPO)、聚二苯醚树脂(PPE)、马来酸酐亚胺一苯乙烯树脂肪(MS)、聚氰酸酯树脂、聚烯烃树脂等类型。

4、按覆铜箔板的阻燃性能分类,可分为阻燃型(UL94-VO、V1级)非阻燃型(UL94-HB 级)两类板。

5、按基板的厚度及覆铜板厚度可分为:H/0,1/0,2/0-------单面板材;H/H,1/1,2/2--------双面板材;1-1-0.5 OZ(安盎) 1-1 OZ (安盎) 2-2 OZ(安盎)6、覆铜箔板产品型号的表示方法(GB/T 4721-92)(1)第一个字母C,表示铜箔;(2)第二、三两个字母,表示基材所用的树脂;①PF表示酚醛②EP表示环氧③UP表示不饱和聚酯④SI表示有机硅⑤TF表示聚四氟乙烯⑥PI表示聚酰亚胺⑦BT表示双马来酰亚胺三嗪(3)第四、五两个字母,表示基材所用的增强材料:①CP表示纤维素纤维纸②GC表示无碱玻璃布③GM表示无碱玻璃纤维毡④AC表示芳香族聚酰胺纤维布⑤AM表示芳香族聚酰胺纤维毡(4)覆铜箔板的基板内芯以纤维素纸为增强材料,两表面贴附无碱玻璃布者,在CP之后加“G”表示;(5)在字母末尾,用一短横线连着两位数字,表示同类型而不同性能的产品编号;(6)具有阻燃性的覆铜箔板,在产品编号后加有“F”字母表示。

pcb基板的材料参数

pcb基板的材料参数

pcb基板的材料参数PCB基板是电子产品中的重要组成部分,它的材料参数直接影响着电路板的性能和可靠性。

本文将从材料的导电性、绝缘性、热传导性、机械强度和耐候性等方面介绍PCB基板的材料参数。

导电性是PCB基板的重要指标之一。

良好的导电性能可以保证电路信号的传输质量。

常见的导电性材料有铜和银。

铜是最常用的导电材料,因为它具有良好的导电性能和较低的成本,能够满足大多数电路板的需求。

而银的导电性能更好,但成本较高,通常只在特殊要求的高性能电路板中使用。

绝缘性是保证电路板正常工作的重要条件。

好的绝缘材料可以有效地隔离电路之间的干扰,防止信号泄露。

常见的绝缘材料有FR-4玻璃纤维复合材料和PTFE聚四氟乙烯。

FR-4材料具有良好的绝缘性能和机械强度,广泛应用于普通电路板。

而PTFE材料由于其优异的绝缘性能和高频性能,适用于高频电路板和微波电路板。

第三,热传导性是PCB基板的重要特性之一。

良好的热传导性能可以有效地散热,提高电路板的可靠性和寿命。

常见的热传导材料有铝基材料和陶瓷基材料。

铝基材料具有良好的导热性能和机械强度,适用于大功率电子器件的散热。

陶瓷基材料由于其优异的绝缘性能和高温稳定性,适用于高功率和高频电路板。

第四,机械强度是PCB基板的重要指标之一。

良好的机械强度可以保证电路板在加工和使用过程中的稳定性和可靠性。

常见的机械强度材料有玻璃纤维增强材料和环氧树脂材料。

玻璃纤维增强材料具有较高的强度和刚性,适用于一般的电子产品。

而环氧树脂材料由于其良好的黏合性和耐热性,在高要求的电子产品中得到广泛应用。

耐候性是PCB基板的重要指标之一。

良好的耐候性能可以保证电路板在恶劣环境下的稳定性和可靠性。

常见的耐候性材料有聚酰亚胺和聚氨酯。

聚酰亚胺材料具有良好的耐高温性能和耐化学性能,适用于高温和腐蚀性环境下的电路板。

聚氨酯材料具有良好的耐候性和机械性能,适用于户外环境和特殊应用领域。

PCB基板的材料参数对于电路板的性能和可靠性具有重要影响。

PCB基板材料选型与工艺要求

PCB基板材料选型与工艺要求

PCB基板材料选型与工艺要求1. 引言PCB(Printed Circuit Board,印刷电路板)是电子产品中不可或缺的一个组成部分,它承载着电子元器件并提供电气连接和机械支持。

PCB的性能与质量直接影响着整个电子产品的可靠性和性能表现。

本文将重点讨论PCB基板材料的选型和相关工艺要求,帮助读者理解如何选择合适的材料,提高PCB的质量。

2. PCB基板材料选型PCB基板材料的选型是PCB设计过程中的关键步骤之一。

合适的基板材料能够满足电路板的性能和可靠性要求。

以下是一些常用的基板材料及其特点:•FR-4基板:FR-4是一种玻璃纤维增强的环氧树脂材料,具有良好的绝缘性能、机械强度和热稳定性。

FR-4基板广泛用于一般电子产品中,价格适中且性能稳定可靠。

•CEM-3基板:CEM-3是一种玻璃纤维增强的环氧树脂材料,与FR-4相比,CEM-3的导热性能更好。

因此,CEM-3基板常用于高温工作环境下的电子产品中。

•铝基板:铝基板是一种以铝合金为基材的PCB材料,具有良好的散热特性。

铝基板广泛应用于LED照明产品和高功率电子设备中。

•陶瓷基板:陶瓷基板具有良好的高频特性和高温稳定性,常用于高频电子产品和微波电路中。

•高频复合材料:高频复合材料是一种特殊的PCB基板材料,具有优异的高频性能和低传输损耗。

高频复合材料广泛应用于通信设备和雷达系统中。

在选择PCB基板材料时,需要根据具体应用的要求综合考虑电气性能、机械强度、耐热性和成本等因素。

3. PCB基板工艺要求除了选择适合的基板材料外,合适的PCB基板工艺也至关重要。

以下是一些常用的PCB基板工艺要求:•线路布局:合理的线路布局是保证电路性能和可靠性的关键。

在布局过程中,需要注意信号和电源之间的隔离,充分考虑信号传输的路径和长度匹配,避免信号串扰和晶体管饱和等问题。

•封装和焊接:PCB的封装和焊接工艺直接影响着电子元器件的可靠性和连接质量。

合适的封装和焊接工艺包括:选择合适的焊膏和焊垫材料、控制焊接温度和时间、避免过渡力度和过度变形等。

PCB线路板原材料材质及参数

PCB线路板原材料材质及参数

PCB线路板原材料材质及参数1. 玻璃纤维布(Glass Fiber Cloth)玻璃纤维布是最常见的PCB线路板基材,其主要原料是由无机纤维物质和有机胶粘剂混合制备而成。

玻璃纤维布具有良好的绝缘性、机械强度和耐热性能,能够满足大部分电子设备对于绝缘和结构强度的要求。

常用的玻璃纤维布厚度为0.2mm、0.4mm、0.6mm和1.0mm,各种厚度适用于不同电路板的需求。

2. 硬纸板(Phenolic Paper-Based Laminate)硬纸板是一种由纤维纸浸渍难燃性树脂而制成的基材。

硬纸板具有较高的机械强度、绝缘性能和耐热性能,且价格低廉,适用于一些一般性能要求的电子设备。

常用的硬纸板厚度为0.5mm和1.0mm。

3. FX(Flame Retardant Epoxy)FX是一种难燃性环氧树脂基材,具有优异的机械强度、绝缘性能和耐高温性能。

FX材质的线路板广泛应用于高性能电子设备中,如计算机、通信设备、航空航天仪器等领域。

FX板材通常有1oz和2oz的箔厚度可供选择。

4. FR-4(Flame Retardant Glass Fiber Epoxy)FR-4是一种难燃性玻璃纤维环氧树脂基材,是目前最常用的PCB材料。

FR-4具有良好的介电性能、机械性能和耐热性能,可满足大部分电子设备的性能要求。

FR-4线路板的常见厚度有0.8mm、1.0mm和1.6mm等。

FR-4板材的厚度和箔厚度的组合会影响到线路板的性能,如电阻、传导性等。

5. RO4350(Rogers 4350)RO4350是一种高频低介电损耗材料,其主要用于高频和微波领域的电路设计。

RO4350具有较低的介电损耗和稳定的介电常数,适合于高频信号传输和微波功放等应用。

RO4350线路板的常见厚度有0.02mm、0.04mm和0.08mm等。

6. 杂质金属化陶瓷基板(Ceramic Metalized Substrates)杂质金属化陶瓷基板是一种由陶瓷和金属复合材料制成的基材,具有优异的导热性和电磁性能。

PCB板,各种基材的区别

PCB板,各种基材的区别
2.CEM-3和FR-4性能相当.
3.CEM-3的玻璃化温度、耐浸焊性、抗剥强度、吸水率、电击穿、绝缘电阻、UL指标等均能达到FR-4标准,所不同的是CEM-3抗弯强度低
4.于FR-4,热膨胀大于FR-4。
5.性能正在不断完善中,普及起来需要一段时间.前景很好.
比FR-4便宜10-15%左右
网上资料:确实要从外观上来区分CEM-1、CEM-3和22F是很难做到的,顶多也是从PCB板的侧面刀口上来区分个大概,并不是很准确。从刀口上看也是要好多年的经验才能年出来,这个很难用语言来描述!
1.CEM-1这种复合基板,它是以木浆纤维纸或棉浆纤维纸作芯材增强材料。
2.单面玻纤板(必须ຫໍສະໝຸດ 电脑钻孔,不能模冲)3.CEM-1基板只有上下表面是玻璃纤维的,中间是浸酚醛树脂的纸质材料,其电气和机械性能不如FR-4。
4.CEM-1最便宜(外包一层波纤布,用的阻燃粘合剂),应该就是通常说的纸板。
价格低
CEM-1断层中间是白色树脂
22F
单面半玻纤板(模冲孔)
22F覆铜板材质结构与CEM-1板一样,都是半玻纤板(板材表面是玻纤布,中间是木浆纸),可用于冲孔,综合性能比CEM-1板材要稍差.
价格相对CEM-1也便宜些。
外观跟CEM-1一样,断层中间是白色树脂
CEM-3
双面半玻纤板
1.CEM-3与FR-4不同是采用了玻璃布与玻璃毡复合基材,也称复合型基材,而非单纯玻璃布。
PCB板,板材的区别:
型号
材质
特点
价格
主要区别-从断层上看
PCB颜色
FR-4
玻璃纤维板
1.FR-4是由铜箔与经浸渍阻燃性环氧树脂玻璃纤维布层压而成
2.它的原材料采用的是进口电子级玻璃纤维布制成的,是制作多层印制电路板的重要基材

PCB 用基板材料

PCB 用基板材料

®
p PCB用基板材料
高性能板材:耐CAF板材

耐CAF板材
随着电子工业的飞速发展,电子产品轻、薄、短、 小化,PCB的孔间距和线间距就会变的越来越小,线 路也越来越细密,这样一来PCB的耐离子迁移性能就 变的越来越重视。离子迁移(Conductive Anodic Filament 简称CAF),最先是由贝尔实验室的研究人 员于1955年发现的,它是指金属离子在电场的作用下 在非金属介质中发生的电迁移化学反应,从而在电路 的阳极、阴极间形成一个导电通道而导致电路短路。 ®
覆铜板
半固化片
®
p PCB用基板材料
覆铜板生产流程
®
p PCB用基板材料
覆铜板主要生产设备
压机
上胶机
®
p PCB用基板材料
生益科技自动剪切线
↓生益小板自动开料机
↑生益CCL自动分发线
®
p PCB用基板材料
半固化片
在多层电路板层压时使用的半固化片, 是覆铜板在制作过程中的半成品。 在环氧玻纤布覆铜板生产过程中,玻 纤布经上胶机上胶并烘干至“B”阶( B” 阶是指高分子物已经相当部分关联,但此 时物料仍然处于可溶、可熔状态),此种 半成品俗称黏结片。它有两种用途,一是 直接用于压制覆铜板,通常称为黏结片; 另一种直接作为商品出售,供应印制板厂, 该片用于多层板的压合,通常称为半固化 片;二者的英文名均为prepreg。它们的 生产过程是一样的。
®
p PCB用基板材料
铜箔
按照铜箔的不同制法可分为压延铜箔和电解铜箔两大类。 (1)压延铜箔是将铜板经过多次重复辊轧而制成的原箔(也 叫毛箔),根据要求进行粗化处理。由于压延加工工艺 的限制,其宽度很难满足刚性覆铜板的要求,所以在刚 性覆铜板上使用极少;由于压延铜箔耐折性和弹性系数 大于电解铜箔,故适于柔性覆铜箔上; (2)电解铜箔是将铜先溶解制成溶液,再在专用的电解设备 中将硫酸铜电解液在直流电的作用下,电沉积而制成铜 箔,然后根据要求对原箔进行表面处理、耐热层处理和 防氧化等一系列的表面处理。

PCB用基板材料简介

PCB用基板材料简介

PCB用基板材料簡介PCB用基材的分类:1、按增强材料不同(最常用的分类方法)纸基板(FR-1,FR-2,FR-3)环氧玻纤布基板(FR-4,FR-5)复合基板(CEM-1,CEM-3)HDI板材(RCC)特殊基材(金属类基材、陶瓷类基材、热塑性基材等) 2、按树脂不同来分酚酫树脂板环氧树脂板聚脂树脂板BT树脂板PI树脂板3、按阻燃性能来分阻燃型(UL94-VO,UL94-V1)非阻燃型(UL94-HB级)基材常见的性能指标:玻璃化转变温度(Tg)目前FR-4板的Tg值一般在130-140度,而在印制板制程中,有几个工序的问题会超过此范围,对制品的加工效果及最终状态会产生一定的影响。

因此,提高Tg是提高FR-4耐热性的一个主要方法。

其中一个重要手段就是提高固化体系的关联密度或在树脂配方中增加芳香基的含量。

在一般FR-4树脂配方中,引入部分三官能团及多功能团的环氧树脂或是引入部分酚酫型环氧树脂,把Tg值提高到160-200度左右。

基材常见的性能指标:介电常数DK介电常数DK随着电子技术的迅速发展,信息处理和信息传播速度提高,为了扩大通讯通道,使用频率向高频领域转移,它要求基板材料具有较低的介电常数e和低介电损耗正切tg。

只有降低e 才能获得高的信号传播速度,也只有降低tg,才能减少信号传播损失。

热膨胀系数(CTE)随着印制板精密化、多层化以及BGA,CSP等技术的发展,对覆铜板尺寸的稳定性提出了更高的要求。

覆铜板的尺寸稳定性虽然和生产工艺有关,但主要还是取决于构成覆铜板的三种原材料:树脂、增强材料、铜箔。

通常采取的方法是(1)对树脂进行改性,如改性环氧树脂(2)降低树脂的含量比例,但这样会降低基板的电绝缘性能和化学性能;铜箔对覆铜板的尺寸稳定性影响比较小。

UV阻挡性能今年来,在电路板制作过程中,随着光敏阻焊剂的推广使用,为了避免两面相互影响产生重影,要求所有基板必须具有屏蔽UV的功能。

阻挡紫外光透过的方法很多,一般可以对玻纤布和环氧树脂中一种或两种进行改性,如使用具有UV-BLOCK和自动化光学检测功能的环氧树脂。

基板的主要成分

基板的主要成分

基板的主要成分
基板是印刷电路板(PCB)的重要组成部分,它是一个薄片型的板材,用于支持和连接电子器件和其他电气组件。

基板的材料和成分通常是根据其应用和性能需求而选定。

常见的几种基板的主要成分如下:
1. 玻璃纤维:玻璃纤维是一种常见的基板材料,由玻璃纤维和树脂组成。

它通常使用于高速高频电路板和耐高温电路板。

2. 树脂:树脂是一种在基板材料中广泛使用的材料,包括环氧树脂、聚酰亚胺树脂、聚酯树脂等。

聚酰亚胺树脂常用于高温工况下的电路板,环氧树脂常用于普通电路板。

3. 陶瓷:陶瓷是一种高密度和高稳定性的基板材料,具有较好的抗高温性能和很低的介电损耗。

它通常在要求高精度、高稳定性、高可靠性的电路板中使用。

4. 金属基板:金属基板通常由铝基板、铜基板、钨基板等制成,它是一种高热导、高导电的基板材料,可用于高功率电子器件和高频率电路板。

5. 聚酰胺基板:聚酰胺基板具有优异的电气性能和耐高温性能,
可用于高可靠性电路板,如航空航天用电路板等。

以上是常见的几种基板的主要成分,不同的基板材料和成分也会对电路板的性能和应用范围产生不同的影响。

pcb板成分

pcb板成分

PCB板成分1. PCB板简介PCB(Printed Circuit Board)即印刷电路板,是一种用于支持和连接电子元件的非导体基板。

它在现代电子设备中广泛应用,如计算机、手机、电视等。

PCB板由多层不同材料构成,每一层都承担着特定的功能。

2. PCB板的主要成分2.1 基材PCB板的基材是指最底层的材料,通常由玻璃纤维增强的环氧树脂构成。

这种基材具有良好的绝缘性能、机械强度和热稳定性,能够承受高温和高压。

2.2 铜箔铜箔是PCB板中最重要的成分之一。

它被用于制作导线和连接电子元件。

铜箔具有良好的导电性能和可焊性,能够有效地传输电流和信号。

2.3 阻焊层阻焊层位于铜箔上方,用于保护导线并防止短路。

它通常由绿色或红色的阻焊油组成,可以抵抗化学腐蚀和高温。

2.4 焊接层焊接层位于阻焊层上方,用于焊接电子元件。

它通常由铅和锡的合金组成,具有良好的可焊性和可靠性。

2.5 印刷层印刷层位于焊接层上方,用于打印电路图案。

它通常由导电油墨或导电胶组成,可以形成导线和连接点。

2.6 阻抗控制层阻抗控制层位于印刷层上方,用于控制信号在PCB板上的传输速度和阻抗匹配。

它通常由特殊材料如陶瓷或聚酰亚胺组成。

2.7 衬底衬底是PCB板的最外层材料,用于保护板面不受损伤。

它通常由耐磨、耐高温的材料如聚酰亚胺或玻璃纤维增强树脂构成。

3. PCB板成分的作用3.1 基材的作用基材是PCB板的支撑结构,能够固定和保护其他成分。

它具有良好的绝缘性能,可以防止电流泄漏和短路。

3.2 铜箔的作用铜箔是PCB板的导电层,用于传输电流和信号。

它具有低电阻和高导电性能,能够提供稳定的电气连接。

3.3 阻焊层的作用阻焊层可以保护导线不受污染和腐蚀,并防止短路。

它还可以提供对PCB板的标识,方便组装和维护。

3.4 焊接层的作用焊接层用于连接电子元件和PCB板。

它具有良好的可焊性和可靠性,能够确保焊接点的稳定性和耐久性。

3.5 印刷层的作用印刷层可以形成导线和连接点,实现电路功能。

PCB板材质介绍

PCB板材质介绍

PCB板材质介绍印刷电路板是以铜箔基板( Copper-clad Laminate 简称CCL )做为原料而制造的电器或电子的重要机构组件,故从事电路板之上下游业者必须对基板有所了解:有那些种类的基板,它们是如何制造出来的,使用于何种产品, 它们各有那些优劣点,如此才能选择适当的基板.表3.1简单列出不同基板的适用场合. 基板工业是一种材料的基础工业, 是由介电层(树脂 Resin ,玻璃纤维 Glassfiber ),及高纯度的导体 (铜箔 Copper foil )二者所构成的复合材料( Composite material),其所牵涉的理论及实务不输于电路板本身的制作. 以下即针对这二个要紧组成做深入浅出的探讨.3.1介电层3.1.1树脂 Resin3.1.1.1前言目前已使用于线路板之树脂类别专门多,如酚醛树脂( Phonetic )、环氧树脂( Epoxy )、聚亚醯胺树脂( Polyamide )、聚四氟乙烯(Polytetrafluorethylene,简称PTFE或称TEFLON),B一三氮树脂(Bismaleimide Triazine 简称 BT )等皆为热固型的树脂(Thermosetted Plastic Resin).3.1.1.2 酚醛树脂 Phenolic Resin是人类最早开发成功而又商业化的聚合物.是由液态的酚(phenol)及液态的甲醛( formaldehyde 俗称formalin )两种廉价的化学品, 在酸性或碱性的催化条件下发生立体架桥( Crosslinkage )的连续反应而硬化成为固态的合成材料.其反应化学式见图3.1 1910 年有一家叫 Bakelite 公司加入帆布纤维而做成一种坚硬强固,绝缘性又好的材料称为 Bakelite,俗名为电木板或尿素板. 美国电子制造业协会(NEMA-Nationl Electrical Manufacturers Association) 将不同的组合冠以不同的编号代字而为业者所广用, 现将酚醛树脂之各产品代字列表,如表NEMA 关于酚醛树脂板的分类及代码表中纸质基板代字的第一个 "X" 是表示机械性用途,第二个 "X" 是表示可用电性用途. 第三个 "X" 是表示可用有无线电波及高湿度的场所. "P" 表示需要加热才能冲板子( Punchable ),否那么材料会破裂, "C" 表示能够冷冲加工( cold punchable ),"FR" 表示树脂中加有不易着火的物质使基板有难燃 (Flame Retardent) 或抗燃(Flame resistance) 性.纸质板中最畅销的是XXXPC及FR-2.前者在温度25 ℃以上,厚度在.062in以下就能够冲制成型专门方便,后者的组合与前完全相同,只是在树脂中加有三氧化二锑增加其难燃性.以下介绍几个较常使用纸质基板及其专门用途:A 常使用纸质基板a. XPC Grade:通常应用在低电压、低电流可不能引起火源的消费性电子产品, 如玩具、手提收音机、机、运算器、遥控器及钟表等等.UL94对XPC Grade 要求只须达到HB难燃等级即可.b. FR-1 Grade:电气性、难燃性优于XPC Grade,广泛使用于电流及电压比XPC Grade稍高的电器用品,如彩色电视机、监视器、VTR、家庭音响、洗衣机及吸尘器等等.UL94要求FR-1难燃性有V-0、V-1与V-2不同等级,只是由于三种等级板材价位差异不大,而且考虑安全起见,目前电器界几乎全采纳V-0级板材. c. FR-2 Grade:在与FR-1比较下,除电气性能要求稍高外,其它物性并没有专门之处,近年来在纸质基板业者努力研究改进FR-1技术,FR-1与FR-2的性质界线已渐模糊,FR-2等级板材在不久今后可能会在偏高价格因素下被FR-1 所取代.B. 其它专门用途:a. 铜镀通孔用纸质基板要紧目的是打算取代部份物性要求并不高的FR-4板材,以便降低PCB的成本.b. 银贯孔用纸质基板时下最流行取代部份物性要求并不专门高的FR-4作通孔板材,确实是银贯孔用纸质基板印刷电路板两面线路的导通,可直截了当借由印刷方式将银胶(Silver Paste) 涂布于孔壁上,经由高温硬化,即成为导通体,不像一样FR-4板材的铜镀通孔,需经由活化、化学铜、电镀铜、锡铅等纷杂手续.b-1 基板材质1) 尺寸安定性:除要留意X、Y轴(纤维方向与横方向)外,更要注意Z轴(板材厚度方向),因热胀冷缩及加热减量因素容易造成银胶导体的断裂.2) 电气与吸水性: 许多绝缘体在吸湿状态下,降低了绝缘性,以致提供金属在电位差趋动力下发生移行的现象,FR-4在尺寸安性、电气性与吸水性方面都比FR-1及XPC 佳,因此生产银贯孔印刷电路板时,要选用特制FR-1及XPC的纸质基板 .板材.b.-2 导体材质 1) 导体材质银及碳墨贯孔印刷电路的导电方式是利用银及石墨微粒镶嵌在聚合体内, 藉由微粒的接触来导电,而铜镀通孔印刷电路板,那么是借由铜本身是连贯的结晶体而产生专门顺畅的导电性.2) 延展性:铜镀通孔上的铜是一种连续性的结晶体,有专门良好的延展性,可不能像银、碳墨胶在热胀冷缩时,容易发生界面的分离而降低导电度. 3) 移行性: 银、铜差不多上金属材质,容易发性氧化、还原作用造成锈化及移行现象,因电位差的不同,银比铜在电位差趋动力下容易发生银迁移(Silver Migration).c. 碳墨贯孔(Carbon Through Hole)用纸质基板.碳墨胶油墨中的石墨不具有像银的移行特性,石墨所担当的角色仅仅是作简单的讯号传递者,因此PCB业界对积层板除了碳墨胶与基材的密着性、翘曲度外,并没有专门要求.石墨因有良好的耐磨性,因此Carbon Paste最早期是被应用来取代Key Pad及金手指上的镀金,而后延伸到扮演跳线功能.碳墨贯孔印刷电路板的负载电流通常设计的专门低,因此业界大都采纳XPC 等级,至于厚度方面,在考虑轻、薄、短、小与印刷贯孔性因素下,常通选用0.8、1.0或1.2mm厚板材.d. 室温冲孔用纸质基板其特点是纸质基板表面温度约40℃以下,即可作Pitch 为1.78mm的IC密集孔的冲模,孔间可不能发生裂痕,同时以减低冲模时纸质基板冷却所造成线路精准度的偏差,该类纸质基板专门适用于细线路及大面积的印刷电路板.e. 抗漏电压(Anti-Track)用纸质基板人类的生活越趋精巧,对物品的要求且也就越讲就短小轻薄,当印刷电路板的线路设计越密集,线距也就越小,且在高功能性的要求下,电流负载变大了,那么线路间就容易因发生电弧破坏基材的绝缘性而造成漏电,纸质基板业界为解决该类问题,有供应采纳专门背胶的铜箔所制成的抗漏电压用纸质基板2.1.2 环氧树脂 Epoxy Resin 是目前印刷线路板业用途最广的底材.在液态时称为清漆或称凡立水(Varnish) 或称为 A-stage, 玻璃布在浸胶半干成胶片后再经高温软化液化而出现黏着性而用于双面基板制作或多层板之压合用称B-stage prepreg ,经此压合再硬化而无法回复之最终状态称为 C-stage.2.1.2.1传统环氧树脂的组成及其性质用于基板之环氧树脂之单体一向差不多上Bisphenol A 及Epichlorohydrin 用dicy 做为架桥剂所形成的聚合物.为了通过燃性试验(Flammability test), 将上述仍在液态的树脂再与Tetrabromo-Bisphenol A 反应而成为最熟知FR-4 传统环氧树脂.现将产品之要紧成份列于后: 单体 --Bisphenol A, Epichlorohydrin架桥剂(即硬化剂) -双氰 Dicyandiamide简称Dicy速化剂 (Accelerator)--Benzyl-Dimethylamine ( BDMA ) 及 2- Methylimidazole ( 2-MI )溶剂 --Ethylene glycol monomethy ether( EGMME ) Dimethy formamide (DMF) 及稀释剂 Acetone ,MEK.填充剂(Additive) --碳酸钙、硅化物、及氢氧化铝或化物等增加难燃成效. 填充剂可调整其Tg.A. 单体及低分子量之树脂典型的传统树脂一样称为双功能的环气树脂 ( Difunctional Epoxy Resin),见图3.2. 为了达到使用安全的目的,特于树脂的分子结构中加入溴原子,使产生部份碳溴之结合而出现难燃的成效.也确实是说当显现燃烧的条件或环境时,它要不容易被点燃,万一已点燃在燃烧环境消逝后,能自己熄灭而不再连续延烧.见图3.3.此种难燃材炓在 NEMA 规范中称为 FR-4.(不含溴的树脂在 NEMA 规范中称为 G-10) 此种含溴环氧树脂的优点专门多如介电常数专门低,与铜箔的附着力专门强,与玻璃纤维结合后之挠性强度专门不错等.B. 架桥剂(硬化剂)环氧树脂的架桥剂一向差不多上Dicey,它是一种隐性的 (latent) 催化剂 ,在高温160℃之下才发挥其架桥作用,常温中专门安定,故多层板 B-stage 的胶片才不致无法储存. 但 Dicey的缺点却也许多,第一是吸水性(Hygroscopicity),第二个缺点是难溶性.溶不掉自然难以在液态树脂中发挥作用.早期的基板商并不了解下游电路板装配工业问题,那时的 dicey 磨的不是专门细,其溶不掉的部份混在底材中,经长时刻集合的吸水后会发生针状的再结晶, 造成许多爆板的问题.因此现在的基板制造商都专门清处它的严峻性,因此已改善此点.C. 速化剂用以加速 epoxy 与 dicey 之间的架桥反应, 最常用的有两种即BDMA 及2-MI.D. Tg 玻璃态转化温度高分子聚合物因温度之逐步上升导致其物理性质渐起变化,由常温时之无定形或部份结晶之坚硬及脆性如玻璃一样的物质而转成为一种黏滞度专门高,柔软如橡皮一样的另一种状态.传统 FR4 之 Tg 约在115-120℃之间,已被使用多年,但近年来由于电子产品各种性能要求愈来愈高,因此对材料的特性也要求日益严苛,如抗湿性、抗化性、抗溶剂性、抗热性 ,尺寸安定性等都要求改进,以适应更广泛的用途, 而这些性质都与树脂的 Tg 有关, Tg 提高之后上述各种性质也都自然变好.例如 Tg 提高后, a.其耐热性增强, 使基板在 X 及 Y 方向的膨胀减少,使得板子在受热后铜线路与基材之间附着力不致减弱太多,使线路有较好的附着力. b.在 Z 方向的膨胀减小后,使得通孔之孔壁受热后不易被底材所拉断.c. Tg 增高后,其树脂中架桥之密度必定提高专门多使其有更好的抗水性及防溶剂性,使板子受热后不易发生白点或织纹显露,而有更好的强度及介电性.至于尺寸的安定性,由于自动插装或表面装配之严格要求就更为重要了.因而近年来如何提高环氧树脂之 Tg 是基板材所追求的要务.E. FR4 难燃性环氧树脂传统的环氧树脂遇到高温着火后假设无外在因素予以扑灭时,会不停的一直燃烧下去直到分子中的碳氢氧或氮燃烧完毕为止.假设在其分子中以溴取代了氢的位置,使可燃的碳氢键化合物一部份改换成不可燃的碳溴键化合物那么可大大的降低其可燃性.此种加溴之树脂难燃性自然增强专门多,但却降低了树脂与铜皮以及玻璃间的黏着力,而且万一着火后更会放出剧毒的溴气,会带来的不良后果.3.1.2.2高性能环氧树脂(Multifunctional Epoxy)传统的 FR4 对今日高性能的线路板而言差不多力不从心了, 故有各种不同的树脂与原有的环氧树脂混合以提升其基板之各种性质,A. Novolac最早被引进的是酚醛树脂中的一种叫 Novolac 者 ,由 Novolac 与环氧氯丙烷所形成的酯类称为 Epoxy Novolacs,见图3.4之反应式. 将此种聚合物混入 FR4 之树脂, 可大大改善其抗水性、抗化性及尺寸安定性, Tg 也随之提高,缺点是酚醛树脂本身的硬度及脆性都专门高而易钻头,加之抗化性能力增强,关于因钻孔而造成的胶渣 (Smear) 不易除去而造成多层板PTH制程之困扰.B. Tetrafunctional Epoxy另一种常被添加于 FR4 中的是所谓 " 四功能的环氧树脂 " (Tetrafunctional Epoxy Resin ).其与传统 " 双功能 " 环氧树脂不同之处是具立体空间架桥 ,见图3.5,Tg 较高能抗较差的热环境,且抗溶剂性、抗化性、抗湿性及尺寸安定性也好专门多,而且可不能发生像 Novolac那样的缺点.最早是美国一家叫Polyclad 的基板厂所引进的.四功能比起 Novolac来还有一种优点确实是有更好的平均混合.为保持多层板除胶渣的方便起见,此种四功能的基板在钻孔后最好在烤箱中以 160 ℃烤 2-4 小时, 使孔壁露出的树脂产生氧化作用,氧化后的树脂较容易被蚀除,而且也增加树脂进一步的架桥聚合,对后来的制程也有关心.因为脆性的关系, 钻孔要专门注意.上述两种添加树脂都无法溴化,故加入一样FR4中会降低其难燃性. 3.1.2.3 聚亚醯胺树脂 Polyimide(PI)A. 成份要紧由Bismaleimide 及Methylene Dianiline 反应而成的聚合物,见图3.6.B. 优点电路板对温度的适应会愈来愈重要,某些专门高温用途的板子,已非环氧树脂所能胜任,传统式 FR4 的 Tg 约 120℃左右,即使高功能的 FR4 也只到达 180-190 ℃,比起聚亚醯胺的 260 ℃还有一大段距离.PI在高温下所表现的良好性质,如良好的挠性、铜箔抗撕强度、抗化性、介电性、尺寸安定性皆远优于 FR4.钻孔时不容易产生胶渣,对内层与孔壁之接通性自然比 FR4 好. 而且由于耐热性良好,其尺寸之变化甚少,以X 及 Y方向之变化而言,对细线路更为有利,不致因膨胀太大而降低了与铜皮之间的附着力.就 Z 方向而言可大大的减少孔壁铜层断裂的机会.C. 缺点:a.不易进行溴化反应,不易达到 UL94 V-0 的难燃要求.b.此种树脂本身层与层之间,或与铜箔之间的黏着力较差,不如环氧树脂那么强,而且挠性也较差.c.常温时却表现不佳,有吸湿性 (Hygroscopic), 而黏着性、延性又都专门差.d.其凡立水(Varnish,又称生胶水,液态树脂称之)中所使用的溶剂之沸点较高,不易赶完,容易产生高温下分层的现象.而且流淌性不行,压合不易填满死角 . e.目前价格仍旧专门昂贵约为 FR4 的 2-3倍,故只有军用板或 Rigid- Flex 板才用的起. 在美军规范MIL-P-13949H中, 聚亚醯胺树脂基板代号为GI. 3.1.2.4 聚四氟乙烯 (PTFE)全名为 Polyterafluoroethylene ,分子式见图3.7. 以之抽丝作PTFE纤维的商品名为 Teflon 铁弗龙 ,其最大的特点是阻抗专门高 (Impedance) 对高频微波(microwave) 通信用途上是无法取代的,美军规范赋与 "GT"、"GX"、及 "GY" 三种材料代字,皆为玻纤补强type,其商用基板是由3M 公司所制,目前这种材料尚无法大量投入生产,其缘故有: A. PTFE 树脂与玻璃纤维间的附着力问题;此树脂专门难渗入玻璃束中,因其抗化性特强,许多湿式制程中都无法使其反应及活化,在做镀通孔时所得之铜孔壁无法固着在底材上,专门难通过 MILP-55110E 中4.8.4.4 之固着强度试验. 由于玻璃束未能被树脂填满,专门容易在做镀通孔时造成玻璃中渗铜 (Wicking) 的显现,阻碍板子的可信任度. B. 此四氟乙烯材料分子结构,专门强劲无法用一样机械或化学法加以攻击, 做蚀回时只有用电浆法.C. Tg 专门低只有 19 度 c, 故在常温时呈可挠性, 也使线路的附着力及尺寸安定性不行. 表为四种不同树脂制造的基板性质的比较. 3.1.2.5 BT/EPOXY树脂BT树脂也是一种热固型树脂,是日本三菱瓦斯化成公司(Mitsubishi Gas Chemical Co.)在1980年研制成功.是由Bismaleimide及Trigzine Resin monomer二者反应聚合而成.其反应式见图3.8.BT树脂通常和环氧树脂混合而制成基板. A. 优点a. Tg点高达180℃,耐热性专门好,BT作成之板材,铜箔的抗撕强度(peel Strength),挠性强度亦专门理想钻孔后的胶渣(Smear)甚少b. 可进行难燃处理,以达到UL94V-0的要求c. 介质常数及散逸因子小,因此关于高频及高速传输的电路板专门有利.d. 耐化性,抗溶剂性良好e. 绝缘性佳 B. 应用 a. COB设计的电路板由于wire bonding过程的高温,会使板子表面变软而致打线失败.BT/EPOXY高性能板材可克服此点. b. BGA ,PGA, MCM-Ls等半导体封装载板半导体封装测试中,有两个专门重要的常见问题,一是漏电现象,或称CAF(Conductive Anodic Filament),一是爆米花现象(受湿气及高温冲击).这两点也是BT/EPOXY板材能够幸免的. 3.1.2.6 Cyanate Ester Resin 1970年开始应用于PCB基材,目前Chiba Geigy有制作此类树脂.其反应式如图3.9. A. 优点 a. Tg可达250℃,使用于专门厚之多层板 b. 极低的介电常数(2.5~3.1)可应用于高速产品.B. 问题 a. 硬化后脆度高. b. 对湿度敏锐,甚至可能和水起反应. 3.1.2玻璃纤维 3.1.2.1前言玻璃纤维(Fiberglass)在PCB基板中的功用,是作为补强材料.基板的补强材料尚有其它种,如纸质基板的纸材, Kelvar(Polyamide聚醯胺)纤维,以及石英(Quartz)纤维.本节仅讨论最大宗的玻璃纤维. 玻璃(Glass)本身是一种混合物,其组成见表它是一些无机物经高温融熔合而成,再经抽丝冷却而成一种非结晶结构的坚硬物体.此物质的使用,已有数千年的历史.做成纤维状使用那么可追溯至17世纪.真正大量做商用产品,那么是由Owen-Illinois及Corning Glass Works两家公司其共同的研究努力后,组合成Owens-Corning Fiberglas Corporation于1939年正式生产制造. 3.1.2.2 玻璃纤维布玻璃纤维的制成可分两种,一种是连续式(Continuous)的纤维另一种那么是不连续式(discontinuous)的纤维前者即用于织成玻璃布 (Fabric),后者那么做成片状之玻璃席(Mat).FR4等基材,即是使用前者,CEM3基材,那么采纳后者玻璃席. A. 玻璃纤维的特性原始融熔态玻璃的组成成份不同,会阻碍玻璃纤维的特性,不同组成所出现的差异,表中有详细的区别,而且各有专门及不同应用之处.按组成的不同(见表),玻璃的等级可分四种商品:A级为高碱性,C级为抗化性,E级为电子用途,S级为高强度.电路板中所用的确实是E级玻璃,要紧是其介电性质优于其它三种.-玻璃纤维一些共同的特性如下所述:a.高强度:和其它纺织用纤维比较,玻璃有极高强度.在某些应用上,其强度/重量比甚至超过铁丝.b.抗热与火:玻璃纤维为无机物,因此可不能燃烧c.抗化性:可耐大部份的化学品,也不为霉菌,细菌的渗入及昆虫的功击. d.防潮:玻璃并不吸水,即使在专门潮湿的环境,依旧保持它的机械强度. e.热性质:玻纤有专门低的熬线性膨胀系数,及高的热导系数,因此在高温环境下有极佳的表现. f.电性:由于玻璃纤维的不导电性,是一个专门好的绝缘物质的选择. PCB基材所选择使用的E级玻璃,最要紧的是其专门优秀的抗水性.因此在专门潮湿,恶劣的环境下,仍旧保有专门好的电性及物性一如尺寸稳固度. -玻纤布的制作: 玻璃纤维布的制作,是一系列专业且投资全额庞大的制程本章略而不谈. 3.2 铜箔(copper foil) 早期线路的设计粗粗宽宽的,厚度要求亦不挑剔,但演变至今日线宽3,4mil,甚至更细(现国内已有工厂开发1 mil线宽),电阻要求严苛.抗撕强度,表面Profile等也都详加规定.因此对铜箔进展的现况及驱势就必须进一步了解.3.2.1传统铜箔 3.2.1.1辗轧法 (Rolled-or Wrought Method) 是将铜块经多次辗轧制作而成,其所辗出之宽度受到技术限制专门难达到标准尺寸基板的要求(3 呎*4呎) ,而且专门容易在辗制过程中造成报废,因表面粗糙度不够,因此与树脂之结合能力比较不行,而且制造过程中所受应力需要做热处理之回火轫化(Heat treatment or Annealing),故其成本较高. A. 优点. a. 延展性Ductility 高,对FPC使用于动态环境下,信任度极佳. b. 低的表面棱线Low-profile Surface,关于一些Microwave电子应用是一利基. B. 缺点. a. 和基材的附着力不行. b. 成本较高. c. 因技术问题,宽度受限. 3.2.1.2 电镀法(Electrodeposited Method) 最常使用于基板上的铜箔确实是ED铜.利用各种废弃之电线电缆熔解成硫酸铜镀液,在殊特深入地下的大型镀槽中,阴阳极距专门短,以专门高的速度冲动镀液,以 600 ASF 之高电流密度,将柱状 (Columnar)结晶的铜层镀在表面专门光滑又经钝化的 (passivated) 不锈钢大桶状之转胴轮上(Drum),因钝化处理过的不锈钢胴轮上对铜层之附着力并不行,故镀面可自转轮上撕下,如此所镀得的连续铜层,可由转轮速度,电流密度而得不同厚度之铜箔,贴在转胴之光滑铜箔表面称为光面(Drum side ), 另一面对镀液之粗糙结晶表面称为毛面 (Matte side) .此种铜箔: A. 优点 a. 价格廉价. b. 可有各种尺寸与厚度. B. 缺点. a. 延展性差, b. 应力极高无法挠曲又专门容易折断. 3.2.1.3 厚度单位一样生产铜箔业者为运算成本, 方便订价,多以每平方呎之重量做为厚度之运算单位, 如1.0 Ounce (oz)的定义是一平方呎面积单面覆盖铜箔重量1 oz (28.35g)的铜层厚度.经单位换算 35 微米 (micron)或1.35 mil. 一样厚度1 oz 及1/2 oz而超薄铜箔可达 1/4 oz,或更低. 3.2.2 新式铜箔介绍及研发方向 3.2.2.1 超薄铜箔一样所说的薄铜箔是指 0.5 oz (17.5 micron ) 以下,表三种厚度那么称超薄铜箔 3/8 oz 以下因本身太薄专门不容易操作故需要另加载体 (Carrier) 才能做各种操作(称复合式copper foil),否那么专门容易造成损害.所用之载体有两类,一类是以传统 ED 铜箔为载体,厚约2.1 mil.另一类载体是铝箔,厚度约3 mil.两者使用之前须将载体撕离. 超薄铜箔最不易克服的问题确实是 " 针孔 " 或" 疏孔 "(Porosity),因厚度太薄,电镀时无法将疏孔完全填满.补救之道是降低电流密度,让结晶变细. 细线路,专门是5 mil以下更需要超薄铜箔,以减少蚀刻时的过蚀与侧蚀. 3.2.2.2 辗轧铜箔对薄铜箔超细线路而言,导体与绝缘基材之间的接触面专门狭小,如何能耐得住二者之间热膨胀系数的庞大差异而仍坚持足够的附着力,完全依靠铜箔毛面上的粗化处理是不够的,而且高速镀铜箔的结晶结构粗糙在高温焊接时容易造成 XY 的断裂也是一项难以解决的问题.辗轧铜箔除了细晶之外还有另一项长处那确实是应力专门低 (Stress).ED 铜箔应力高,但后来线路板业者所镀上的一次铜或二次铜的应力就没有那么高.因此造成二者在温度变化时使细线容易断制.因此辗轧铜箔是一解决之途.假设是成本的考量,Grade 2,E-Type的 high-ductility或是Grade 2,E-Type HTE铜箔也是一种选择. 国际制造铜箔大厂多致力于开发ED细晶产品以解决此问题. 3.2.2.3 铜箔的表面处理 A 传统处理法 ED铜箔从Drum撕下后,会连续下面的处理步骤: a. Bonding Stage-在粗面(Matte Side)上再以高电流极短时刻内快速镀上铜, 其长相如瘤,称"瘤化处理""Nodulization"目的在增加表面积,其厚度约 2000~4000A b. Thermal barrier treatments-瘤化完成后再于其上镀一层黄铜(Brass,是Gould 公司专利,称为JTC处理),或锌(Zinc是Yates公司专利,称为TW处理).也是镀镍处理其作用是做为耐热层.树脂中的Dicy于高温时会攻击铜面而生成胺类与水份,一旦生水份时,会导致附着力降底.此层的作用即是防止上述反应发生,其厚度约500~1000A c. Stabilization-耐热处理后,再进行最后的"铬化处理"(Chromation),光面与粗面同时进行做为防污防锈的作用,也称"钝化处理"(passivation)或"抗氧化处理"(antioxidant) B新式处理法 a. 两面处理(Double treatment)指光面及粗面皆做粗化处理,严格来说,此法的应用己有20年的历史,但今日为降低多层板的COST而使用者渐多.在光面也进行上述的传统处理方式,如此应用于内层基板上,能够省掉压膜前的铜面理处理以及黑/棕化步骤. 美国一家Polyclad铜箔基板公司,进展出来的一种处理方式,称为DST 铜箔,其处理方式有异曲同工之妙.该法是在光面做粗化处理,该面就压在胶片上,所做成基板的铜面为粗面,因此对后制亦有关心. b. 硅化处理(Low profile) 传统铜箔粗面处理其Tooth Profile (棱线) 粗糙度 (波峰波谷),不利于细线路的制造( 阻碍just etch时刻,造成over-etch),因此必须设法降低棱线的高度.上述Polyclad的DST铜箔,以光面做做处理,改善了那个问题, 另外,一种叫"有机硅处理"(Organic Silane Treatment),加入传统处理方式之后,亦可有此成效.它同时产生一种化学键,关于附着力有关心. 3.3.3 铜箔的分类按 IPC-CF-150 将铜箔分为两个类型,TYPE E 表电镀铜箔,TYPE W 表辗轧铜箔,再将之分成八个等级, class 1 到 class 4 是电镀铜箔,class 5 到 class 8 是辗轧铜箔.现将其型级及代号分列于表3.4 PP(胶片 Prepreg)的制作 "Prepreg"是"preimpregnated"的缩写,意指玻璃纤维或其它纤维浸含树脂,并经部份聚合而称之.其树脂现在是B-stage. Prepreg又有人称之为"Bonding sheet" 3.4.1胶片制作流程3.4.2制程品管制造过程中,须定距离做Gel time, Resin flow, Resin Content 的测试,也须做Volatile成份及Dicy成份之分析,以确保品质之稳固. 3.4.3 储放条件与寿命大部份EPOXY系统之储放温度要求在5℃以下,其寿命约在3~6个月,储放超出现在间后须取出再做3.3.2的各种分析以判定是否可再使用.而各厂牌prepreg可参照其提供之Data sheet做为作业时的依据. 3.4.4常见胶片种类,其胶含量及Cruing后厚度关系,见表3.4基板的现在与以后趋使基板不断演进的两大趋动力(Driving Force),一是极小化(Miniaturization),一是高速化(或高频化). 3.4.1极小化如分行动 ,PDA,PC卡,汽车定位及卫星通信等系统. 美国是尖端科技领先国家,从其半导体工业协会所预估在Chip及Package 方面的以后演变-见表(a)与(b),可知基板面临的挑战颇为艰辛. 3.4.2高频化从个人运算机的演进,可看出CPU世代交替的速度愈来愈快,消费者应接不应暇,因此对大众而言是好事.但对PCB的制作却又是进一步的挑戢.因为高频化, 须要基材有更低的Dk与Df值.最后,表归纳出PCB一些特性的现在与以后演变的指标。

pcb板是什么材料做的

pcb板是什么材料做的

pcb板是什么材料做的
PCB板是什么材料做的。

PCB板,即印刷电路板,是一种用于支持和连接电子元件的基板。

它通常由一
种绝缘材料作为基底,上面覆盖着导电铜箔,并且经过化学腐蚀等工艺形成电路连接。

那么,PCB板是由什么材料做的呢?接下来,我们将详细介绍PCB板的材料
及其特点。

首先,PCB板的基底材料通常采用玻璃纤维、环氧树脂和聚酰亚胺等。

玻璃纤
维具有优良的机械性能和绝缘性能,能够有效支撑和固定电子元件;环氧树脂具有良好的耐热性和耐化学性,能够保护电路不受外界环境的影响;聚酰亚胺则具有优异的高温性能和尺寸稳定性,适用于高频高速电路的制作。

这些基底材料都具有不同的特点,可以根据电路的需求选择合适的材料。

其次,PCB板的导电层通常采用铜箔。

铜箔具有良好的导电性能和加工性能,
能够满足电路的导电需求。

此外,根据电路的要求,导电层的厚度也会有所不同,一般有1oz、2oz、3oz等不同厚度的选项。

厚度越大,导电性能越好,但相应的成
本也会增加。

最后,PCB板的覆盖层通常采用焊膜、阻焊油和标识油等。

焊膜用于覆盖焊盘,防止焊接时短路和飞锡现象的发生;阻焊油用于覆盖电路板表面,保护电路不受外界环境的侵蚀;标识油用于标识电路板的型号、版本和生产信息,方便生产和维护。

综上所述,PCB板是由玻璃纤维、环氧树脂、聚酰亚胺等绝缘材料作为基底,
覆盖铜箔作为导电层,再覆盖焊膜、阻焊油和标识油等覆盖层组成的。

这些材料各具特点,能够满足不同电路的需求,是电子产品中不可或缺的重要组成部分。

希望本文能够帮助大家更好地了解PCB板的材料及其特点。

pcb基板介电常数

pcb基板介电常数

pcb基板介电常数PCB(Printed Circuit Board)基板是一种支撑和连接电子器件的关键组成部分。

其主要材料是玻璃纤维增强环氧树脂(FR-4),它具有较好的绝缘性能。

在设计和制造过程中,了解PCB基板的介电常数对保证电路的性能和可靠性至关重要。

介电常数是材料中电场强度与电场中电荷密度比例的物理量,它决定了电磁波在材料中的传输速度和电容性能。

对于PCB基板材料而言,其介电常数主要取决于玻璃纤维、树脂和填充材料的性质。

1. 玻璃纤维:玻璃纤维在PCB基板中起到增强材料的作用。

它的介电常数通常在4.0左右。

玻璃纤维具有良好的耐热性和机械强度,并且能够有效地降低介质的损耗。

同时,玻璃纤维的含量和排列方式也会影响PCB基板的介电常数。

2. 树脂:PCB中常用的树脂主要是环氧树脂,其介电常数一般在4.0左右。

环氧树脂具有较好的绝缘性能、耐热性和耐化学性,可以有效地保护电路。

此外,树脂中可能含有影响介电常数的填充材料,如氧化锆和硅微粒等。

3. 填充材料:填充材料的引入可以改变PCB基板的介电常数。

例如,填充聚苯乙烯(PS)微球可以降低介电常数,提高PCB的高频性能。

填充物的形态、含量和尺寸对介电常数的影响较大。

4. 频率和温度:介电常数是频率和温度的函数,随着频率的增加,材料的极化和电导效应变得更明显,导致介电常数发生变化。

温度的变化也会导致材料分子的运动和排列的变化,进而影响介电常数。

除了这些主要因素外,PCB基板的介电常数还受到制造工艺、表面处理和尺寸等因素的影响。

例如,基板上电路铜箔的厚度和布线的宽度也会对介电常数产生一定影响。

正确估计和控制PCB基板的介电常数对于设计和制造高性能电路至关重要。

它直接影响信号传输速度、阻抗匹配、信号完整性和电磁兼容性等关键参数。

因此,在PCB设计过程中,需要根据具体的应用需求选择适当的基板材料和结构,以确保电路的性能和可靠性。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PCB用基材得分类:
1、按增强材料不同(最常用得分类方法)
纸基板(FR-1,FR-2,FR-3)
环氧玻纤布基板(FR-4,FR—5)
复合基板(CEM-1,CEM-3)
HDI板材(RCC)
特殊基材(金属类基材、陶瓷类基材、热塑性基材等) 2、按树脂不同来分
酚酫树脂板
环氧树脂板
聚脂树脂板
BT树脂板
PI树脂板
3、按阻燃性能来分
阻燃型(UL94-VO,UL94-V1)
基材常见得性能指标:
玻璃化转变温度(Tg)
目前FR-4板得Tg值一般在130-140度,而在印制板制程中,有几个工序得问题会超过此范围,对制品得加工效果及最终状态会产生一定得影响.因此,提高Tg就是提高FR-4耐热性得一个主要方法。

其中一个重要手段就就是提高固化体系得关联密度或在树脂配方中增加芳香基得含量。

在一般FR—4树脂配方中,引入部分三官能团及多功能团得环氧树脂或就是引入部分酚酫型环氧树脂,把Tg值提高到160—200度左右。

基材常见得性能指标:介电常数DK
介电常数DK
随着电子技术得迅速发展,信息处理与信息传播速度提高,为了扩大通讯通道,使用频率向高频领域转移,它要求基板材料具有较低得介电常数e与低介电损耗正切tg.只有降低e 才能获得高得信号传播速度,也只有降低tg,才能减少信号传播损失。

热膨胀系数(CTE)
随着印制板精密化、多层化以及BGA,CSP等技术得发展,对覆铜板尺寸得稳定性提出了更高得要求.覆铜板得尺寸稳定性虽然与生产工艺有关,但主要还就是取决于构成覆铜板得三种原材料:树脂、增强材料、铜箔.通常采取得方法就是(1)对树脂进行改性,如改性环氧树脂(2)降低树脂得含量比例,但这样会降低基板得电绝缘性能与化学性能;铜箔对覆铜板得尺寸稳定性影响比较小。

UV阻挡性能
今年来,在电路板制作过程中,随着光敏阻焊剂得推广使用,为了避免两面相互影响产生重影,要求所有基板必须具有屏蔽UV得功能。

阻挡紫外光透过得方法很多,一般可以对玻纤布与环氧树脂中一种或两种进行改性,如使用具有UV-BLOCK与自动化光学检测功能得环氧树脂.
单面电路板
在最基本得PCB上,零件集中在其中一面,导线则集中在另一面上。

因为导线只出现在其中一面,所以我们就称这种PCB叫作单面电路板。

因为单面电路板在设计线路上有许多严格得限制(因为只有一面,布线间不能交*而必须绕独自得路径.
单面电路板类别
94HB-94VO-22F-CEM-1-CEM-3-FR-4
94HB:普通纸板,不防火(最低档得材料,模冲孔,不能做电源板) 94V0:阻燃纸板(模冲孔)
22F:单面半玻纤板(模冲孔)
CEM-1:单面玻纤板(一般就是电脑钻孔,也可以模冲)
CEM-3:双面半玻纤板(简单得双面板可以用这种料,比FR—4会便宜)FR—4: 单面玻纤板。

相关文档
最新文档