北师大版八年级数学上册第2章实数(培优试题)
八年级数学上册第二章《实数》测试卷-北师大版(含答案)
八年级数学上册第二章《实数》测试卷-北师大版(含答案)一、选择题(每题3分,共30分)1.在π,227,-3,38,3.14,0这些数中,无理数的个数是( )A .1B .2C .3D .4 2.下列各式中,无意义的是( )A .- 3B .-3C .3-3 D .(-3)2 3.下列计算错误的是( )A .8=2 2B .2-1=12 C .16=±4 D .|3-2|=2-3 4.与a 3b 不是同类二次根式的是( )A .ab2 B .b a C .1abD .b a 35.下列计算错误的是( )A .62×3=6 6B .27÷3=3C .32-2=3 2D .(2-3)(2+3)=1 6.当1<x <4时,化简(1-x )2-(x -4)2结果是( )A .-3B .3C .2x -5D .57.已知y =(x -4)2-x +5,当x 分别取1,2,3,…,2 022时,所对应y 值的总和是( )A .2 034B .2 033C .2 032D .2 031 8.已知a +b =4,ab =2,则a -b 的值为( )A .2 2B .2 3C .±2 2D .±2 39.将4块尺寸完全相同的长方形薄木板(薄木板如图,厚度忽略不计)进行拼摆,恰好可以不重叠地摆放在如图的甲、乙两个框内.已知薄木板的宽为2,图甲中阴影部分面积为19,则图乙中AD 的长为( )A .219+2B .19+4C .219+4D .19+210.正方形ABCD 在数轴上的位置如图所示,点A ,D 对应的数分别为1和0,若正方形ABCD 绕着顶点按顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2,则翻转2 022次后,数轴上数2 022对应的点是( ) A .D B .C C .B D .A 二、填空题(每题3分,共15分) 11.化简:32=________________,23=____________.12.计算3-64125的结果等于________________.13.已知a ,b 满足-()4+a 2=2 022||b -3,a 2+b 2的平方根为________. 14.对于任意两个不相等的数a ,b ,定义一种新运算“⊕”如下:a ⊕b =a +ba -b ,如:3⊕2=3+23-2=5,那么12⊕4=________. 15.观察下列各式:①223=2+23;②338=3+38;③4415=4+415;….根据这些等式反映的规律,若x 2 022y =x +2 022y ,则x 2-y =________.三、解答题(16题10分,17题7分,第18~21题每题8分,第22~23题每题13分,共75分)16.实数与数轴上的点一一对应,无理数也可以在数轴上表示出来.(1)如图1,点A表示的数是________;(2)如图2,直线l垂直数轴于表示4的点,请用尺规作出表示1-13的点(不写作法,保留作图痕迹).17.计算:(1)18+|3-8|-(3)2;(2)2+32-3-(3+6)(3-6).18.解方程:(1)9(x+2)2-64=0;(2)12(x +3)3=108.19.求代数式a+a2-2a+1的值,其中a=-2 022.小亮的解法为:原式=a+(1-a)2=a+1-a=1.小芳的解法为:原式=a+(1-a)2=a+a-1=-4 045.(1)________的解法是错误的;(2)求代数式a+2a2-6a+9的值,其中a=-2 022.20.已知m-15的平方根是±2,33+4n=3,求m+n的算术平方根.21.已知:如图.化简:a2-(a+b)2+(b-c)2+(a+c)2.22.阅读下面的内容:我们规定:用[x]表示实数x的整数部分,用<x>表示实数x的小数部分,如[3.14]=3,<3.14>=0.14;[2]=1,而大家知道2是无理数,无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2-1来表示2的小数部分,即<2>=2-1.事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是2的小数部分,又例如:∵22<(7)2<32,即2<7<3,∴[7]=2,<7>=7-2.请解答以下问题:(1)[11]=________,<11>=________;(2)如果<5>=a,[41]=b,求a+b-5的平方根.23.(5+2)(5-2)=1,a·a=a(a≥0),(b+1)(b-1)=b-1(b≥0)……像这样,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如,5与5,2+1与2-1,23+3与23-3等都互为有理化因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1)化简:233;(2)计算:12-3+13-2;(3)比较 2 023- 2 022与 2 022- 2 021的大小,并说明理由.参考答案一、1. B 2. B 3. C 4. A 5. D 6. C 7. A 8. C 9. C 10. C 二、11. 42;63 12. -45 13. ±19 14. 2 15. 1 三、16. 解:(1) 5(2)如图,点P 即为所求.17. 解:(1)原式=32+3-22-3=2.(2)原式=(2+3)2(2-3)×(2+3)-(9-6)=4+43+3-3=4+43.18. 解:(1)因为9(x +2)2-64=0,所以9(x +2)2=64, 所以(x +2)2=649, 所以x +2=±83, 所以x =23或x =-143. (2)因为12(x +3)3=108, 所以(x +3)3=216, 所以x +3=6,所以x =3. 19. 解:(1)小芳(2)a +2a 2-6a +9=a +2(a -3)2, 因为a =-2 022,所以a -3<0,所以原式=a +2(3-a )=a +6-2a =6-a =6-(-2 022)=6+2 022= 2 028,即代数式的值是2 028.20.解:因为m-15的平方根是±2,所以m-15=(±2)2,所以m=19.因为33+4n=3,所以3+4n=27,所以n=6.所以m+n的算术平方根为m+n=19+6=5.21.解:根据数轴可得a<0,a+b<0,b-c<0,a+c<0,所以原式=|a|-|a+b|+|b-c|+|a+c|=-a+a+b+c-b-a-c=-a.22.解:(1)3;11-3(2)因为2<5<3,6<41<7,且<5>=a,[41]=b,所以a=5-2,b=6,所以a+b-5=5-2+6-5=4,所以a+b-5的平方根是±2.23.解:(1)233=2×333×3=239.(2)12-3+13-2=2+3(2-3)×(2+3)+3+2(3-2)×(3+2)=2+3+3+2=2+23+2.(3) 2 023- 2 022< 2 022- 2 021.理由如下:因为 2 023- 2 022=12 023+ 2 022,2 022- 2 021=12 022+ 2 021,2 023+ 2 022> 2 022+ 2 021,所以 2 023- 2 022< 2 022- 2 021.。
北师大版八年级数学上册 第二章 实数 达标检测卷(含答案)
32.下列 4 个数: 9,220 72第二章 实数 达标检测卷(时间 90 分钟,总分 120 分)题 号一 二 三 总 分得 分一、选择题(每题 3 分,共 30 分)1.9 的平方根是()1A .±3B .±C .3D .-37,π,( 3) ,其中无理数是( )22 A 、 9B 、C .πD .( 3)3.下列说法错误的是()A .1 的平方根是 1B .-1 的立方根是-1C 、 2是 2 的一个平方根D .-3 是(-3) 的一个平方根4.下列各式计算正确的是()A 、 2+ 3= 5B .4 3-3 3=1C .2 3×2 3=4 3D 、 27÷ 3=35.已知 a +2+|b -1|=0,那么(a +b) 017的值为( )A .-1B .1C .32 017D .-32 0176.若平行四边形的一边长为 2,面积为 4 5,则此边上的高介于( )A .3 与 4 之间B .4 与 5 之间C .5 与 6 之间D .6 与 7 之间7.实数 a ,b 在数轴上对应点的位置如图所示,且|a|>|b|,则化简 a 2-|a +b|的结果为()(第 7 题)A .2a +bB .-2a +bC .bD .2a -b8.已知 a ,b 为 Rt △ABC 的两直角边的长,且斜边长为 6,则 a 2+b 2-3 的值是( )A .3B .6C .33D .369.已知 a = 3+2,b = 3-2,则 a 2+b 2 的值为( )A .4 3B .14C 、 14D .14+4 310.若 6- 13的整数部分为 x ,小数部分为 y ,则(2x + 13)y 的值是( )A .5-3 13B .3C .3 13D .-32 3 8二、填空题(每题 3 分,共 24 分)11、 6的相反数是________;绝对值等于 2的数是________.12.若式子 x +1在实数范围内有意义,则 x 的取值范围是________.313.估算比较大小:(1)- 10________-3、2;(2) 130________5、14.计算: 8+(-1) 018-|-2|=________.15.已知 x ,y 都是实数,且 y = x -3+ 3-x +4,则 y x =________、316.若 2x +7=3,(4x +3y) =-8,则x +y =________.17 . 一个长方形的 长和宽分 别是 6 2 cm 与 2 cm ,则这 个长方形的面 积等于________,周长等于________.18.任何实数 a ,可用[a]表示不超过 a 的最大整数,如[4]=4,[ 3]=1、现对 72 进行第一次 第二次 第三次如下操作:72 ――→ [ 72]=8 ――→ [ 8]=2 ――→ [ 2]=1,这样对 72 只需进行 3次操作后变为 1,类似地,对 81 只需进行________次操作后变为 1;只需进行 3 次操作后变为 1 的所有正整数中,最大的是________.三、解答题(20 题 12 分,23,24 题每题 8 分,25,26 题每题 10 分,其余每题 6 分,共 66 分)19.求下列各式中 x 的值.(1)4x 2=25;(2)(x -0、7) =0、027、20.计算下列各题:3 3 3(1) 8+ 32- 2;(2) 216- -3- × 400;(3)(6-215)×3-61;(4)(548-627+12)÷3、a|||||221、已知a,b,c在数轴上对应点的位置如图所示,化简:|-a+b+(c-a)2+b-c、(第21题) 22.已知x=1-2,y=1+2,求x2+y2-xy-2x+2y的值.,23.一个正方体的表面积是 2 400cm 2、(1)求这个正方体的体积;(2)若该正方体的表面积变为原来的一半,则体积变为原来的多少?24.如图,在四边形 ABCD 中,AB =AD ,∠BAD =90° 若 AB =2 2,CD =4 3,BC=8,求四边形 ABCD 的面积.(第 24 题)2 2 225.“保护环境,节约资源”一直是现代社会所提倡的.墨墨参加了学校组织的“节约资源,废物利用 ”比赛,他想将一个废旧易拉罐的侧面制作成一个正方体 (有底有盖 )的储存盒,经过测量得知废旧易拉罐的高是 20 cm ,底面直径是 10 cm ,废旧易拉罐的侧面刚好用完,正方体储存盒的接头部分忽略不计.求墨墨所做的正方体储存盒的棱长.(π取 3)26.阅读材料:小王在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如 3+2 2=(1+ 2)2 、善于思考的小王进行了以下探索:设a +b 2 =(m +n 2) (其中 a ,b ,m ,n 均为整数),则有 a +b 2=m 2+2n 2+2mn2、所以 a =m 2+2n 2,b=2mn 、这样小王就找到了一种把类似 a +b 2的式子化为平方式的方法.请你仿照小王的方法探索并解决下列问题:(1)当 a ,b ,m ,n 均为正整数时,若 a +b 3=(m +n 3) ,用含 m ,n 的式子分别表示a ,b ,得 a =________,b =________;(2)利用所探索的结论,找一组正整数 a ,b ,m ,n 填空:________+________ 3=(________+________ 3) ;(3)若 a +4 3=(m +n 3) ,且 a ,m ,n 均为正整数,求 a 的值.所以 x 2=、所以 x =±、8 000 4 4 形,且∠BDC =90° 所以 S 四边形 ABCD =S △ABD △+S BCD = ×2 2×2 2+ ×4 3×4=4+8 3、2 23 3 参考答案一、1、A 2、C 3、A 4、D 5、A6.B 7、C 8、A 9、B 10、B二、11、- 6;± 212、x≥-113.(1)> (2)> 14、 2+115.64 16、-1 17、12 cm 2;14 2 cm18.3;255三、19、解:(1)因为 4x 2=25,25 54 2(2)因为(x -0、7) =0、027,所以 x -0、7=0、3、所以 x =1、20.解:(1)原式=2 2+4 2- 2=5 2、3(2)原式=6- -2 ×20=36、(3)原式= 18-2 45-3 2=3 2-6 5-3 2=-6 5、(4)原式=(20 3-18 3+2 3)÷ 3=4 3÷ 3=4、21.解:由数轴可知 b <a <0<c ,所以 a +b <0,c -a >0,b -c <0、所以原式=-a-[-(a +b)]+(c -a)+[-(b -c)]=-a +a +b +c -a -b +c =-a +2c 、22.解:因为 x =1- 2,y =1+ 2,所以 x -y =(1- 2)-(1+ 2)=-2 2,xy =(1- 2)(1+ 2)=-1、所以 x 2+y 2-xy -2x +2y =(x -y) -2(x -y)+xy =(-2 2)2-2×(-2 2)+(-1)=7+4 2、23.解:(1)设这个正方体的棱长为 a cm ,由题意得 6a 2=2 400、可得 a =20,则体积为 203=8 000(cm 3).(2)若该正方体的表面积变为原来的一半,则有 6a 2=1 200、所以 a =10 2、所以体积为(10 2) =2 000 2(cm 3).2 000 2 2 2 所以 = 、即体积变为原来的 、24.解:因为 AB =AD ,∠BAD =90°,AB =2 2,所以 BD = AB 2+AD 2=4、因为BD 2+CD 2=42+(4 3)2=64,BC 2=64,所以 BD 2+CD 2=BC 2、所以BCD 为直角三角1 1 、25.解:设正方体储存盒的棱长为x cm,由题意得6x2=20×π×10,解得x=10、所以墨墨所做的正方体储存盒的棱长为10cm、26.解:(1)m2+3n2;2mn(2)21;12;3;2(答案不唯一)(3)由题意,得a=m2+3n2,b=2mn,所以4=2mn,且m,n为正整数.所以m=2,n=1或m=1,n=2、所以a=22+3×12=7或a=12+3×22=13、。
北师大版八年级上册数学第二章 实数 含答案
北师大版八年级上册数学第二章实数含答案一、单选题(共15题,共计45分)1、下列式子正确的是()A. =﹣B. =7C. =±5D. =﹣32、169的算术平方根是()A. B.±13 C.-13 D.133、在下列各数、、、、(两个1间依次多个0)、、、、无理数的个数是( )A.2B.3C.4D.54、在实数,,3.1415926, 1.010010001…(相邻两个1之间逐次加一个0),,中,无理数有()A.1个B.2个C.3个D.4个5、1的平方根是()A. 1B.-1C.±1D.不存在6、在实数:0,,,0.74,π,中,有理数的个数是()A.1B.2C.3D.47、下列说法正确的是().A.27的立方根是3,记作B. 的算术平方根是5C.a的立方根是 D.正数a的算术平方根是8、16的平方根是()A.2B.±4C.±2D.49、下列说法正确的是()A. 的平方根是±3B.8的立方根是±2C.4的平方根是2D.﹣是2的平方根10、在实数,无理数有()A.1个B.2个C.3个D.4个11、下面四个实数中,是无理数的是()A.0B.﹣C.3.1415D.12、下列运算正确的是( )A. B. C. D.13、已知下列各数:3.14,0.1010010001,0.0123,兀,,,其中无理数的个数有()A.1个B.2个C.3个D.4个14、3的平方根是()A. B. C.9 D.15、的平方根是()A.3B.﹣3C.3和﹣3D.二、填空题(共10题,共计30分)16、在数轴上A、B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C表示的数为________ ;若在此数轴上与点A距离等于5的为点D,则点D表示的数为________ .17、计算的结果是________.18、阅读理解:引入新数i,新数i满足分配律、结合律、交换律,已知i2=﹣1,那么(1+i)•(1﹣i)的平方根是________.19、从,,,,6这5个数中随机抽取一个数,抽到无理数的概率是________.20、若式子有意义,则实数x的取值范围是________.21、已知a=6+ ,b=6﹣,则a2+b2=________.22、的平方根是________.23、把下列各数填在相应的横线上,﹣8,π,﹣|﹣2|,,,﹣0.9,5.4,,0,﹣3.6,1.2020020002…(每两个2之间多一个0);无理数________.24、4是________的算术平方根.25、若二次根式有意义,则x的取值范围是________ 。
北师大版八年级数学上册《第二章实数》测试卷-带答案
北师大版八年级数学上册《第二章实数》测试卷-带答案学校班级姓名考号一、选择题1.下列式子中,属于最简二次根式的是()A.B.C.D.2.若成立,则x的值可以是()A.-2 B.0 C.2 D.33.下列运算正确的是()A.B.C.D.4.如图所示的数轴被墨迹污染了,则下列选项中可能被覆盖住的数是()A.B.﹣C.﹣D.﹣5.已知,且,则的值为()A.1 B.-7 C.-1 D.1或-76.是某三角形三边的长,则等于()A.B.C.10 D.47.已知,则代数式的值是()A.0 B.C.D.8.如图,长方形ABCD的边AD=2,AB=1,点A在数轴上对应的数是﹣1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则点E表示的数是()A.+1 B.﹣1 C.D.1﹣二、填空题9.写出一个在1到4之间的无理数.10.计算:.11.请写出一个正整数m的值使得是整数;.12.已知:,则.13.如果的小数部分为a,的整数部分为b,则的值为.三、计算题14.计算:(1)(2)15.已知:16.已知和.(1)求的值.(2)若x的整数部分是a,y的小数部分是b,求的值.17.已知某正数的两个平方根分别是和,的立方根为-3.(1)求的值.(2)求的立方根.18.我们知道无理数都可以化为无限不循环小数,所以的小数部分不可能全部写出来,若的整数部分为a,小数部分为b,则,且b<1.(1)的整数部分是,小数部分是;(2)若的整数部分为m,小数部分为n,求的值.参考答案:1.【答案】D2.【答案】B3.【答案】C4.【答案】B5.【答案】A6.【答案】D7.【答案】C8.【答案】B9.【答案】10.【答案】611.【答案】812.【答案】13.【答案】114.【答案】(1)原式=﹣()××=﹣=﹣1﹣=﹣1(2)原式=3﹣1﹣3+=﹣115.【答案】解:∴ . ∴原式=16.【答案】(1)解:.(2)解:∵∴∴x的整数部分是,y的小数部分是∴.17.【答案】(1)解:∵某正数的两个平方根分别是和∴∴∵的立方根为-3∴∴∴(2)解:当时∴的立方根为4.18.【答案】(1)4;(2)解:∵∴∴m=5,-5 ∴。
北师大版八年级数学上册 第二章 实数 单元培优、拔高考试测试卷(无答案)
北师大版八年级数学上册 第二章 实数 单元培优、拔高测试卷一、选择题(每小题2分,共24分) 1.下列各组数中,互为相反数的是( )。
A.2和12B.2和12-C.-2和2-2.64的算术平方根和64-的立方根的和是( ) A.0 B.6 C.4 D.4-3.下列各语句中错误的个数为( ).①最小的实数和最大的实数都不存在;②任何实数的绝对值都是非负数;③任何实数的平方根都是互为相反数;④若两个非负数的和为零,则这两个数都为零. A.4 B.3 C.2 D.1 4.91的平方根是( ) A. 31B. 31-C. 31± D. 811±5.2)3(-的算术平方根是( )A.3±B.3-C.3D.3 6.下列说法正确是( )A.25的平方根是5B. 22-的算术平方根是2 C. 8.0的立方根是2.0 D. 65是3625的一个平方根 7.能与数轴上的点一一对应的是( )A 整数B 有理数C 无理数D 实数 8.213-=-a ,则a 的值是( )A.1B.2C.3D.4.9.设面积为3的正方形的边长为x ,那么关于x 的说法正确的是( ) A. x 是有理数 B.x =3± C. x 不存在 D. x 是1和2之间的实数10.32-的绝对值是 ( )23- D.32-11.若x ,y 为实数,且022=-++y x ,则2019)(yx的值为( )A.2B.2-C.1D.1-12.若b a x -=,b a y +=,则xy 的值为( ).A.a 2B. b 2C.b a +D.b a - 二、填空题(每小题3分,共30分)11.在4144.1-,2-,722,3π,32-,∙3.0, 121111*********.2中,无理数的个数是 .12.81的算术平方根是_________,=-327 . 13.负数a 与它的相反数的和是 ,差是 .14. 在数轴上表示的点离原点的距离是 .15.a 是9的算术平方根,而b 的算术平方根是4,则=+b a . 16.已知12+x 的平方根是5±,则45+x 的立方根是 .17.一个正数的平方根为m -2与63+m ,则=m ,这个正数是 . 18. 比较下列实数的大小12 ②215- 5.0; 19.小于15的正整数共有 个,它们的和等于 . 20.10的整数部分是a ,小数部分是b ,则=-b a . 三、解方程(每小题3分,共6分)21. 27)1(32=-x ; 22. 01258133=+x四、计算题(每小题3分,共18分) 23. 5145203-- 24. 2)32(62-+25. )322)(223(-+ 26. 7518278123+-+--27.20513375⨯-- 28.)35)(35()23()2(1612102--+-------五、解答题(29,30两小题各5分,31、32小题6分) 29.当25+=a ,25-=b 时,求ab 和22b ab a ++的值30.如图所示,在一块半径为cm 40的圆形铁板上,截取一个以圆心为中心的矩形,使其长为宽的2倍,求所截矩形的宽为多少?31. 如图,已知正方形ABCD 的面积是264cm ,依次连接正方形的四边中点E 、F 、G 、H 得到小正方形EFGH .求这个小正方形EFGH 的边长和对角线的长.32.已知正数a 和b ,有下列命题:(1)若a+b=2,则1≤ab ;(2)若a+b=3,则23≤ab ;(3)若a+b=6,则.3≤ab 根据以上三个命题所提供的规律猜想:若a+b=9,则≤ab ;若a+b=n ,则≤ab (n 为正整数).图2。
北师大版八年级数学上册第2章-实数(培优试题)
第二章实数专题无理数近似值的确定1. 设面积为3的正方形的边长为x,那么关于x的说法正确的是()A.x是有理数 B.x取0和1之间的实数C.x不存在 D.x取1和2之间的实数2.(1)如图1,小明想剪一块面积为25cm2的正方形纸板,你能帮他求出正方形纸板的边长吗?(2)若小明想将两块边长都为3cm的正方形纸板沿对角线剪开,拼成如图2所示的一个大正方形,你能帮他求出这个大正方形的面积吗?它的边长是整数吗?若不是整数,那么请你估计这个边长的值在哪两个整数之间.3.你能估测一下我们教室的长、宽、高各是多少米吗?你能估测或实际测量一下数学课本的长、宽和厚度吗?请你再估算一下我们的教室能放下多少本数学书?这些数学书可供多少所像我们这样的学校的初一年级学生使用呢?请你对每一个问题给出估测的数据,再把估算的过程结果一一写出来.答案:1.D 【解析】 ∵面积为3的正方形的边长为x ,∴x 2=3,而12=1,22=4,∴1<x 2<4,∴1<x <2,故选D.2.解:(1)边长为5cm. (2)设大正方形的边长为x ,∵大正方形的面积=32+32=18,而42=16,52=25,∴16<x 2<25,∴4<x <5,故正方形的边长不是整数,它的值在4和5之间.3.解:估算的过程:教室的长、宽、高可以用我们的身高估计出来;数学课本的长、宽和厚度可以用我们的手指估计出来,也可以用直尺测量出来;我们用长宽高相乘估计出教室的容积与课本的体积相除算出能放下多少本数学书,就是能供多少名学生使用,再用本班人数乘一年级班数估计本校一年级人数,然后相处就可以估计出这些数学书可供多少所像我们这样的学校的初一年级学生使用了.估测的数据、估算的结果略.专题一 非负数问题1. 若2(a +与1+b 互为相反数,则a b -的值为( )A B1C1-D.1-2.设a,b,c都是实数,且满足(2-a)2,ax2+bx+c=0,求式子x2+2x的算术平方根.3.若实数x,y,z= 14(x+y+z+9),求xyz的值.专题二探究题4.研究下列算式,你会发现有什么规律?=2=5;…请你找出规律,并用公式表示出来.5.先观察下列等式,再回答下列问题:答案:(a+与|b+1|互为相反数,1.D 【解析】∵2(a++|b+1|=0,∴2a=0且b+1=0,∴+-=1 D.∴a=2,b=﹣1,a b2.解:由题意,得2-a=0,a2+b+c=0,c+8=0.∴a=2,c=-8,b=4.∴2x2+4x-8=0.∴x2+2x=4.∴式子x2+2x的算术平方根为2.3.解:将题中等式移项并将等号两边同乘以4得+9=0,∴+4)=0,∴-2)2-2)2-2)2=0,-2=0-2=0,=2,∴x=4,y-1=4 ,z-2=4,∴x=4,y=5,z=6.∴xyz=120.专题立方根探究性问题专题比较无理数大小2. 观察下列一组等式,然后解答后面的问题:(121++132++143++…+ 120132012+)•( 2013+1). (2)利用上面的规律,试比较1211-与1312-的大小.3. 先填写下表,通过观察后再回答问题.问: (1)被开方数a 的小数点位置移动和它的算术平方根a 的小数点位置移动有无规律? 若有规律,请写出它的移动规律;(2)已知:a =1800,- 3.24 =-1.8,你能求出a 的值吗?(3)试比较a 与a 的大小.答案:1.D 【解析】 ∵a 2=2000+21003997⨯,b 2=2000+21001999⨯,c 2=4004=2000+2×1002,1003×997=1 000 000-9=999 991,1001×999=1 000 000-1=999 999,10022=1 004 004. ∴c >b >a .故选D .2.解:(1)由上面的解题规律可直接写出111n n n n=+-++, 则(121++132++143++…+ 120132012+)•( 2013+1)=[(2-1)+ (3- 2)+(4-3)+…+(2013-2012)](2013+1)=( 2013-1) ( 2013+1)=2012.(2)∵11211-=1211+,11312-=1312+, 又1211+<1312+,∴11211-<11312-, ∴1211->1312-. 3.解:依次填:0.001,0.01,0.1,1,10,100,1000.(1)有规律,当被开方数的小数点每向左(或向右)移动2位,算术平方根的小数点向左(或向右)移动1位.(2)观察1.8和1800,小数点向右移动了3位,则a 的值小数点向右移动6位,即a=3240000;(3)当0<a <1时,a >a ;当a=1或0时,a =a ;当a >1时,a <a .专题 实数与数轴1.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画弧,交数轴于点A ,则点A 表示的数是( )A .2B .22C .12D .122.如图所示,直线L 表示地图上的一条直线型公路,其中A 、B 两点分别表示公路上第140公里处及第157公里处.若将直尺放在此地图上,使得刻度15,18的位置分别对准A ,B 两点,则此时刻度0的位置对准地图上公路的第( )公里处3. 一个等腰直角三角形三角板沿着数轴正方向向前滚动,起始位置如图,顶点C 和A 在数轴上的位置表示的实数为-1和1.那么当顶点C 下一次落在数轴上时,所在的位置表示的实数是___________.4. 如图,已知A 、B 、C 三点分别对应数轴上的数a 、b 、c .(1)化简:|a-b|+|c-b|+|c-a|;(2)若a=4x y ,b=-z 2,c=-4mn .且满足x 与y 互为相反数,z 是绝对值最小的负整数,m 、n 互为倒数,试求98a+99b+100c 的值;(3)在(2)的条件下,在数轴上找一点D ,满足D 点表示的整数d 到点A ,C 的距离之和为10,并求出所有这些整数的和.答案:1.B 【解析】 由勾股定理得:正方形的对角线为2,设点A 表示的数为x ,则2-x=2,解得x=2-2.故选B .2.B 【解析】 根据题意,数轴上刻度15,18的位置分别对准A ,B 两点,而AB 两点间距离157-140=17(公里),即数轴上的3个刻度对应实际17公里的距离.又有数轴上刻度0与15之间有15个刻度,故刻度0的位置对准地图上公路的位置距A 点有15×173=85(公里), 140-85=55,故刻度0的位置对准地图上公路的55公里处.故选B .3.3+22 【解析】 在直角△ABC 中,AC=CB=2,根据勾股定理可以得到AB=22,则当顶点C下一次落在数轴上时,所在的位置表示的实数是4+22-1=3+22.故答案为:3+22.4.解:(1)由数轴可知:a-b>0,c-b<0,c-a<0,所以原式=(a-b)-(c-b)-(c-a)=a-b-c+b-c+a=2a-2c.(2)由题意可知:x+y=0,z=-1,mn=1,所以a=0,b=-(-1)2=-1,c=-4,∴98a+99b+100c=-99-400=-499.(3)满足条件的D点表示的整数为-7、3,它们的和为-4.专题一与二次根式有关的规律探究题1.将1、2、3、6按如图所示的方式排列.若规定(m,n)表示第m排从左到右第n个数,则(4,2)与(21,2)表示的两数之积是()A.1B.2C.232. 观察下列各式及其验证过程:322322=+=======. (1)按照上述两个等式及其验证过程,猜想1544+的变形结果并进行验证; (2)针对上述各式反映的规律,写出用a (a 为任意自然数,且2a ≥)表示的等式,并给出验证;(3)针对三次根式及n 次根式(n 为任意自然数,且2n ≥),有无上述类似的变形,如果有,写出用a (a 为任意自然数,且2a ≥)表示的等式,并给出验证.3. 阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=221)(+,善于思考的小明进行了以下探索:设a+b 2=22)(n m +(其中a 、b 、m 、n 均为正整数),则有a+b 2=m 2+2n 2+2mn 2, ∴a=m 2+2n 2,b=2mn.这样小明就找到了一种把部分a+b 2的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若a +b 3=2)3(n m +,用含m 、n 的式子分别表示a 、b ,得:a = ,b = ;(2)利用所探索的结论,找一组正整数a 、b 、m 、n 填空: +=( +2;(3)若a +43=2)3(n m +,且a 、m 、n 均为正整数,求a 的值.专题二 利用二次根式的性质将代数式化简4. 化简二次根式22a a a 的结果是( ) A. 2a B. 2a C. 2a D. 2a5.如图,实数a .b 在数轴上的位置,化简:222)(b a b a -+-.答案:1.D 【解析】 从图示中知道,(4,2)所表示的数是6.∵前20排共有1+2+3+4+…+20=210个数,∴(21,2)表示的是第210+2=212个数.∵这些数字按照1、2、3、6的顺序循环出现,212÷4=53,∴(21,2)表示的数是6.∴(4,2)与(21,2)表示的两数之积是666⨯=.2.解:(14441515+=24644444415151515⨯+===. (22211a a a a a +=--(a 为任意自然数,且2a ≥). 3322221111a a a a a a a a a a a a -++===---- (3)333311-=-+a a a a a a (a 为任意自然数,且2a ≥).验证:a === =2a a =2a .故选 5.解:由图知,a <0,b >0,∴a ﹣b <0,222)(b a b -+-=|a |。
新版北师大版八年级数学上册第2章《实数》单元测试试卷及答案(共10套)
新版北师大版八年级|数学上册第2章?实数?单元测试试卷及答案 (共10套 )(总分值:150 时间:120 )一、选择题 (每题4分 ,共60分 )1、如果一个数的平方根与它的立方根相同 ,那么这个数是 ( )A 、±1B 、0C 、1D 、0和1 2、在316x 、32-、5.0-、xa 、325中 ,最|简二次根式的个数是 ( ) A 、1 B 、2 C 、3 D 、43、以下说法正确的选项是 ( )A 、0没有平方根B 、-1的平方根是-1C 、4的平方根是-2D 、()23-的算术平方根是34、164+的算术平方根是 ( )A 、6B 、-6C 、6D 、6±5、对于任意实数a ,以下等式成立的是 ( ) A 、a a =2 B 、a a =2 C 、a a -=2 D 、24a a =6、设7的小数局部为b ,那么)4(+b b 的值是 ( )A 、1B 、是一个无理数C 、3D 、无法确定 7、假设121+=x ,那么122++x x 的值是 ( )A 、2B 、22+C 、2D 、12-8、如果1≤a ≤2 ,那么2122-++-a a a 的值是 ( ) A 、a +6 B 、a --6 C 、a - D 、1 9、二次根式:①29x -;②))((b a b a -+;③122+-a a ;④x1;⑤75.0中最|简二次根式是 ( )A 、①②B 、③④⑤C 、②③D 、只有④ 10、式子1313--=--x xx x 成立的条件是 ( ) A 、x ≥3 B 、x ≤1 C 、1≤x ≤3 D 、1<x ≤311、以下等式不成立的是 ( )A 、()a a =2B 、a a =2C 、33a a -=-D 、a aa -=-112、假设x <2 ,化简()x x -+-322的正确结果是 ( )A 、-1B 、1C 、52-xD 、x 25- 13、式子3ax -- (a >0 )化简的结果是 ( )A 、ax x -B 、ax x --C 、ax xD 、ax x - 14、231+=a ,23-=b ,那么a 与b 的关系是 ( )A 、b a =B 、b a -=C 、ba 1= D 、1-=ab 15、以下运算正确的选项是 ( ) A 、()ππ-=-332B 、()12211-=--C 、()0230=- D 、()6208322352-=-1、()221-的平方根是 ;8149的算术平方根是 ;3216-的立方根是 ;2、当a 时 ,23-a 无意义;322xx +-有意义的条件是 .3、如果a 的平方根是±2 ,那么a = .4、最|简二次根式b a 34+与162++-b b a 是同类二次根式 ,那么a = ,b= .5、如果b a b b ab b a )(2322-=+- ,那么a 、b 应满足 .6、把根号外的因式移到根号内:a 3-= ;当b >0时 ,x xb = ;aa --11)1(= . 7、假设04.0-=m ,那么22m m -= . 8、假设m <0 ,化简:3322m m m m +++= .9、比拟大小:56;13-6- .10、请你观察思考以下计算过程: ∵121112= ∴11121= ∵123211112= ∴11112321=因此猜测:76543211234567898= . 11、xy =3 ,那么yxyx y x+的值_________. 12、3392-⋅+=-x x x 成立那么X 的范围为1、abb a ab b 3)23(235÷-⋅ 2、62332)(62332(+--+)3、化简:)0(96329222<---b xb a b x a a 4、673)32272(-⋅++5、23923922-++++xx xx (0<x<3)6、假设17的整数局部为x ,小数局部为y ,求y x 12+的值.7、,3232,3232+-=-+=y x 求值:22232y xy x +-9.如图 ,B 地在A 地的正东方向 ,两地相距282km ,A ,B 两地之间有一条东北走向的高速公路 ,A ,B 两地分别到这条高速公路的距离相等.上午8:00测得一辆在高速公路上行驶的汽车位于A 地的正南方向P 处.至|上午8:20 ,B 地发现该车在它的西北方向Q 处 ,该段高速公路限速为11Okm /h ,问该车有否超速行驶?参考答案选择题二、填空题 1、±21 ,37,36-;2、32<a ,x ≤2且x ≠-8;3、16;4、1 ,1;5、a ≤b 且b ≥0;6、a 9- ,xb 2,a --1;7、0.12;8、m .9、< ,> 10、111111111 11、± 12、x ≥3 三、解答题1、 -a 2b2、12 -12 32(a b - 45 6、20 + 7、385 8 、不能 9、超速新版北师大版八年级|数学上册第2章?实数?单元测试试卷及答案 (7 )一、选择题 1、以下判断⑴12 3 和1348 不是同类二次根式;⑵145 和125 不是同类二次根式;⑶8x 与8x 不是同类二次根式 ,其中错误的个数是 ( )A 、3B 、2C 、1D 、02、如果a 是任意实数 ,以下各式中一定有意义的是 ( ) A 、 a B 、1a2 C 、3-a D 、-a 2 3、以下各组中的两个根式是同类二次根式的是 ( ) A 、52x 和3x B 、12ab 和13abC 、x 2y 和xy 2D 、 a 和1a 24、以下二次根式中 ,是最|简二次根式的是 ( ) A 、8x B 、x 2-3 C 、x -y x D 、3a 2b5、在27 、112 、112 中与3 是同类二次根式的个数是 ( )A 、0B 、1C 、2D 、36、假设a<0 ,那么|a 2 -a|的值是 ( ) A 、0 B 、2a C 、2a 或-2a D 、-2a7、把(a -1)11-a根号外的因式移入根号内 ,其结果是 ( ) A 、1-a B 、-1-a C 、a -1 D 、-a -18、假设a +b4b 与3a +b 是同类二次根式 ,那么a 、b 的值为 ( )A 、a =2、b =2B 、a =2、b =0C 、a =1、b =1D 、a =0、b =2 或a =1、b =1 9、以下说法错误的选项是 ( )A 、(-2)2的算术平方根是2B 、 3 - 2 的倒数是 3 + 2C 、当2<x<3时 ,x 2-4x +4 (x -3)2 = x -2x -3 D 、方程x +1 +2 =0无解10、假设 a + b 与 a - b 互为倒数 ,那么 ( )A 、a =b -1B 、a =b +1C 、a +b =1D 、a +b =-1 11、假设0<a<1 ,那么a 2 +1a 2 -2 ÷(1 +1a )×11 +a 可化简为 ( )A 、1-a 1 +aB 、a -11 +a C 、1-a2 D 、a 2-1 12、在化简x -yx +y时 ,甲、乙两位同学的解答如下: 甲:x -y x +y = (x -y)(x -y )(x +y )(x -y ) =(x -y)(x -y )(x )2-(y )2=x -y 乙:x -y x +y =(x )2-(y )2x +y = (x -y )(x +y )x +y =x -yA 、两人解法都对B 、甲错乙对C 、甲对乙错D 、两人都错 ( ) 二、填空题1、要使1-2xx +3 +(-x)0有意义 ,那么x 的取值范围是 . 2、假设a 2 =( a )2 ,那么a 的取值范围是 . 3、假设x 3 +3x 2 =-x x +3 ,那么x 的取值范围是 . 4、观察以下各式:1 +13 =213 ,2 +14 =314 ,3 +15 =415 ,……请你将猜测到的规律用含自然数n(n≥1)的代数式表示出来是 . 5、假设a>0 ,化简-4ab = . 6、假设o<x<1 ,化简(x -1x )2 +4 -(x +1x )2-4 = .7、化简:||-x 2 -1|-2| = .8、在实数范围内分解因式:x 4 +x 2-6 = .9、x>0 ,y>0且x -2xy -15y =0,那么2x +xy +3yx +xy -y= .10、假设5 +7 的小数局部是a ,5-7 的小数局部是b ,那么ab +5b = . 11、设 3 =a ,30 =b ,那么0.9 = . 12、a<0 ,化简4-(a +1a )2 -4 +(a -1a )2 = .1、13 (212 -75 ) 2、24 - 1.5 +223 -3 + 23 - 23、(-2 2 )2-( 2 +1)2 +( 2 -1)-1 4、7a 8a -2a 218a +7a 2a5、2nm n -3mnm 3n 3 +5mm 3n (m<0、n<0) 6、1a + b7、x 2-4x +4 +x 2-6x +9 (2≤x≤3) 8、x +xyxy +y +xy -y x -xy四、化简求值 1、x =2 +12 -1,y = 3 -13 +1,求x 2-y 2的值 . 2、x =2 + 3 ,y =2- 3 ,求x +yx -y-x -yx +y的值 .3、当a = 12 +3 时 ,求1-2a +a 2a -1 -a 2-2a +1a 2-a的值 .五、x +1x =4,求x -1x 的值 .参考答案一、选择题 1、B 2、C 3、B 4、B 5、C 6、D 7、B 8、D 9、C 10、B 11、A 12、B1、x ≤≠-3 ,x ≠02、a ≥03、-3≤x ≤04、 (n +1) 1n +25、-2b -ab6、2x7、18、(x + 3 )(x + 2 )(x - 2 ) 9、2927 10、2 11、3a b 12、-4三、计算与化简 1、 -1 2、 66 -5 3、6- 2 4、412 a 2a 5、-10mn6、 (1)当a ≠ b 时 ,原式 =12a 或 b2b (2)当a = b 时 ,原式 =a - b a 2-b7、18、(x +y)xy xy 四、化简求值1、-11 +12 2 +16 62、2 3 33、3 五、±2 3新版北师大版八年级|数学上册第2章?实数?单元测试试卷及答案 (8 )(时间:45分钟 分数:100分 )一、选择题 (每题2分 ,共20分 )1.以下式子一定是二次根式的是 ( )A .2--xB .xC .22+xD .22-x2.假设b b -=-3)3(2,那么 ( )A .b>3B .b<3C .b ≥3D .b ≤3 3.假设13-m 有意义 ,那么m 能取的最|小整数值是 ( )A .m =0B .m =1C .m =2D .m =34.假设x<0 ,那么xx x 2-的结果是 ( )A .0B . -2C .0或 -2D .2 5.以下二次根式中属于最|简二次根式的是 ( ) A .14 B .48 C .baD .44+a 6.如果)6(6-=-•x x x x ,那么 ( )A .x ≥0B .x ≥6C .0≤x ≤6D .x 为一切实数 7.小明的作业本上有以下四题: ①24416a a =; ②a a a 25105=⨯; ③a aa a a=•=112;④a a a =-23 .做错的题是 ( )A .①B .②C .③D .④ 8.化简6151+的结果为 ( ) A .3011B .33030C .30330D .11309.假设最|简二次根式a a 241-+与的被开方数相同 ,那么a 的值为 ( ) A .43-=a B .34=a C .a =1 D .a = -1 10.化简)22(28+-得 ( )A . -2B .22-C .2D . 224- 二、填空题 (每题2分 ,共20分 )11.①=-2)3.0( ;②=-2)52( .12.二次根式31-x 有意义的条件是 .13.假设m<0 ,那么332||m m m ++ = .14.1112-=-•+x x x 成立的条件是 .16.=•y xy 82 ,=•2712 . 17.计算3393aa a a-+ = . 18.23231+-与的关系是 .19.假设35-=x ,那么562++x x 的值为 .20.化简⎪⎪⎭⎫⎝⎛--+1083114515的结果是 . 三、解答题 (第21~22小题各12分 ,第23小题24分 ,共48分 )21.求使以下各式有意义的字母的取值范围: (1 )43-x (2 )a 831- (3 )42+m (4 )x1-22.化简:(1 ))169()144(-⨯- (2 )22531- (3 )5102421⨯-(4 )n m 21823.计算: (1 )21437⎪⎪⎭⎫ ⎝⎛- (2 )225241⎪⎪⎭⎫⎝⎛--(3 ))459(43332-⨯ (4 )⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-126312817(5 )2484554+-+ (6 )2332326--24.假设代数式||112x x -+有意义 ,那么x 的取值范围是什么 ?25.假设x ,y 是实数 ,且2111+-+-<x x y ,求1|1|--y y 的值 .参考答案一、选择题1.C 2.D 3.B 4.D 5.A 6.B 7.D 8.C 9.C 10.A 二、填空题11.①0.3 ②25- 12.x ≥0且x ≠9 13. -m 14.x ≥1 15.< 16.x y 4 18 17.a 3 18.相等 19.1 20.33165315++ 三、解答题 21. (1 )34≥x (2 )241<a (3 )全体实数 (4 )0<x22.解: (1 )原式 =1561312169144169144=⨯=⨯=⨯;(2 )原式 =51531-=⨯-; (3 )原式 =51653221532212-=⨯-=⨯-; (4 )原式 =n m n m 232322=⨯⨯ . 23.解: (1 )原式 =49×21143=; (2 )原式 =25125241=-; (3 )原式 =345527315)527(41532-=⨯-=-⨯; (4 )原式 =2274271447912628492=⨯=⨯=⨯;(5 )原式 =225824225354+=+-+;(6 )原式 =265626366-=-- . 24.解:由题意可知: 解得 ,121≠-≥x x 且 .25.解:∵x -1≥0, 1 -x ≥0,∴x =1 ,∴y<21.∴1|1|--y y =111-=--y y.新版北师大版八年级|数学上册第2章?实数?单元测试试卷及答案 (9 )(时间:45分钟 分数:100分 )一、选择题 (每题2分 ,共20分 )1.以下说法正确的选项是 ( )A .假设a a -=2 ,那么a<0B .0,2>=a a a 则若C .4284b a b a =D . 5的平方根是5 2.二次根式13)3(2++m m 的值是 ( )A .23B .32C .22D .0 3.化简)0(||2<<--y x x y x 的结果是 ( )2x +1≥0 ,1 -|x|≠A .x y 2-B .yC .y x -2D .y -4.假设ba是二次根式 ,那么a ,b 应满足的条件是 ( ) A .a ,b 均为非负数 B .a ,b 同号 C .a ≥0 ,b>0 D .0≥ba 5.a<b ,化简二次根式b a 3-的正确结果是 ( )A .ab a --B .ab a -C .ab aD .ab a - 6.把mm 1-根号外的因式移到根号内 ,得 ( ) A .m B .m - C .m -- D .m - 7.以下各式中 ,一定能成立的是 ( ) .A .22)5.2()5.2(=- B .22)(a a =C .122+-x x =x -1D .3392+⋅-=-x x x8.假设x +y =0 ,那么以下各式不成立的是 ( )A .022=-y xB .033=+y xC .022=-y x D .0=+y x9.当3-=x 时 ,二次根7522++x x m 式的值为5 ,那么m 等于 ( ) A .2 B .22C .55D .510.1018222=++x xx x,那么x 等于 ( ) A .4 B .±2 C .2 D .±4二、填空题 (每题2分 ,共20分 )11.假设5-x 不是二次根式 ,那么x 的取值范围是 .12. (2005·江西 )a<2 ,=-2)2(a .13.当x = 时 ,二次根式1+x 取最|小值 ,其最|小值为 . 14.计算:=⨯÷182712 ;=÷-)32274483( . 15.假设一个正方体的长为cm 62 ,宽为cm 3 ,高为cm 2 ,那么它的体积为3cm .16.假设433+-+-=x x y ,那么=+y x .17.假设3的整数局部是a ,小数局部是b ,那么=-b a 3 . 18.假设3)3(-•=-m m m m ,那么m 的取值范围是 .19.假设=-⎪⎪⎭⎫ ⎝⎛-=-=y x y x 则,432311,132.三、解答题 (21~25每题4分 ,第26小题6分 ,第27小题8分 ,共44分 ) 21.21418122-+- 22.3)154276485(÷+-23.x xx x 3)1246(÷- 24.21)2()12(18---+++ 25.0)13(27132--+- 26.:132-=x ,求12+-x x 的值 .27.:的值。
实数(单元测试培优卷)-2023-2024学年八年级数学上册基础知识专项突破讲与练(北师大版)
第2章实数(单元测试·培优卷)一、单选题(本大题共10小题,每小题3分,共30分)1.下列实数中,()是无理数.A .3.14B C D .2272.下列式子中是二次根式的是()A BCD 3.下列运算正确的是()A =B .4=CD 2=4)A .2和3B .4和5C .5和6D .6和75.如果一个比m 小2的数的平方等于2(4)-,那么m 等于()A .4-B .4±C .2-D .2-或66.下列二次根式在实数范围内有意义,则x 的取值范围是1x ≥的选项是()AB C .2x -D 7.若2m =,则m n-=()A .425B .254C .254-D .425-8.化简|2)A .5B 1C .2D .29.若0,0mn m n >+<=()A .mB .-mC .nD .-n10.下列说法中,正确的是()AB .若)21x ->则x >C3x +与3不一定相等D .若0a b +<=二、填空题(本大题共8小题,每小题4分,共32分)11.36的平方根是,的立方根是.12.比较大小:1.13=.14.若两个代数式M 与N 满足1M N ⋅=-,则称这两个代数式为“互为友好因式”“互为友好因式”是.15.如图,在数轴上,1OB =,过O 作直线l OB ⊥于点O ,在直线l 上截取2OA =,且A 在OC 上方.连接AB ,以点B 为圆心,AB 为半径作弧交直线OB 于点C ,则C 点的横坐标为.16.如图,某品牌的计算器上三个按键是并列的按键,是算术平方根按键;是倒数按键;是平方按键.计算器显示屏上现在显示100这个数字,小敏第一下按,第二下按,第三下按,之后以的顺序轮流按,当他共按2023下后,该计算器荧幕显示的数是.17.观察上表中的数据信息:则下列结论: 1.51=;1=;③只有3个正整数a 满足15.215.3<<; 1.510<.其中正确的是.(填写序号)a 1515.115.215.315.4…a 2225228.01231.04234.09237.16…18.仔细观察图,认真分析各式,然后请利用用上述变化规律求出2322221n S S S S +++⋯+的值为.222212OA =+=,12S=222313OA =+=,22S =222414OA =+=,3S =三、解答题(本大题共6小题,共58分)19.(8分)(1)已知27-的立方根是12m -,2是3n -的一个平方根,求m n +的值.(2)若a 、b 、c 是三角形ABC 的三条边长,且222c a b =+,其中25c =,15b =,求a 的值.20.(8分)计算:(1)(2)())(21111-++-.21.(10分)完成下列各小题:(1)已如1,1x y ==-,求22232x xy y ++的值;(2)已知210x -+=,求式子1x x-的值;22.(10分)(1)已知x 1x +=121()x x-的值;(2)已知x ﹣2(x ﹣1)2﹣2(x ﹣1)+1的值.23.(10分)在数学课本36页的阅读材料中,运用反证法说明是一个无理数”,请模仿这种方法,说明阅读材料:“无理数”的由来是一个有理数,a b =,其中a 、b 是整数且a 、b 互素且0b ≠,这时,就有:22a b ⎛⎫= ⎪⎝⎭,于是222a b =,则a 是2的倍数.再设2a m =,其中m 是整数,就有:222)2(m b =,也就是:222b m =,所以b也是2的倍数,可见a、b不是互素数,与前面所假设的a与b不可能是一个有理数.ab+=(a、b是整数且a、b互素且0b≠),ab=-两边同时平方得:_____________,所以:21ab⎛⎫=-⎪⎝⎭,可得:a bb a=-,=______________,因为:______________,是一个无理数.24.(12分)【阅读材料】小华根据学习“二次根式“及”乘法公式“积累的经验,通过“由特殊到一般”的方法,探究”当00a b>>、与a b+的大小关系”.下面是小单的深究过程:①具体运算,发现规律:当00a b>>、时,特例1:若2a b+=,则2≤;特例2:若3a b+=,则3≤;特例3:若6a b+=,则0≤.②观察、归纳,得出猜想:当00a b>>、时,a b+.③证明猜想:当00a b>>、时,∵20a b =-+≥,∴2a b ab a b +≥≥++,∴a b ≤+.当且仅当a b =时,a b =+.请你利用小华发现的规律解决以下问题:(1)当0x >时,1x x+的最小值为(2)当0x <时,2x x--的最小值为;(3)当0x <时,求226x x x++的最大值.参考答案1.B【分析】无理数就是无限不循环小数,理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称,即有限小数和无限循环小数是有理数,而无限不循环小数是无理数,由此即可判断选项.【详解】解:A.3.14是有理数,故A 不符合题意;是无理数,故B 符合题意;2=是有理数,故C 不符合题意;D.227是有理数,故D 不符合题意;故选:B .【点拨】本题主要考查无理数的定义,其中初中范围内学习的无理数有:π,2π等;开不尽方的数;以及像0.101001000100001…等有这样规律的数.2.C【分析】利用二次根式的定义进行解答即可.【详解】A 中,当0a <时,不是二次根式,故此选项不符合题意;B1x <-时,不是二次根式,故此选项不符合题意;C ,()210x +≥恒成立,因此该式是二次根式,故此选项符合题意;D20-<,不是二次根式,故此选项不符合题意;故选:C .0a ≥)的式子叫做二次根式.3.C【分析】根据二次根式的加减法法则,乘除法法则计算并依次判断.【详解】解:A 选项:A 选项不符合题意;B 选项:=B 选项不符合题意;C 选项:原式C 选项符合题意;D 选项:原式=,故D 选项不符合题意.故选:C .【点拨】此题考查二次根式的运算,掌握二次根式的加减法法则,乘除法法则是解题的关键.4.A【分析】根据469<<<23<<,即可得.【详解】解:∵469<<,<<23<<∴最接近的两个整数是2和3,故选:A .【点拨】本题考查了运用算术平方根知识对无理数进行估算的能力,关键是能准确理解并运用该知识.5.D【分析】根据题意得出22(2)(4)m -=-,解方程即可.【详解】解:根据题意得:22(2)(4)m -=-,即2(2)16m -=,∴24m -=±,∴2m =-或6,故选:D .【点拨】本题考查了平方根,根据题意列出方程结合平方根的意义求解是关键.6.B【分析】根据二次根式有意义的条件,A 选项保证被开放式大于等于0,且分母不为0;B 选项保证被开放式大于等于0;C 选项保证被开放式大于等于0,且坟墓不为0;D 选项保证被开放式大于等于0,且分母不为0,求出x 的取值范围即可.【详解】解:A.x 的取值范围是1x >,故此项不符合题意;B.x 的取值范围是1x ≥,故此项符合题意;C.x 的取值范围是1x ≥,且2x ≠,故此项不符合题意;D.x 的取值范围是1x >,故此项不符合题意;故选B .【点拨】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解题的关键.7.A【分析】先根据二次根式的意义求出n ,再求出m ,最后根据负整数指数幂的运算法则得到最终解答.【详解】解:由题意可得:2n-5=5-2n=0,∴52n=,m=0+0+2=2,∴n-m=22524 2525-⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,故选A.【点拨】本题考查二次根式和负整数指数幂的综合应用,熟练掌握二次根式有意义的条件及负整数指数幂的计算方法是解题关键.8.A【分析】先化简各数,再求和即可.【详解】解:|2235-=-故选:A.【点拨】本题考查了立方根和绝对值,掌握相关运算法则是解题的关键.9.B【分析】先由已知条件得到m、n的符号,再根据二次根式的乘除法则化简计算即可.【详解】解:由已知条件可得:m<0,n<0,∴原式=|m|=-m,故选:B.【点拨】本题考查二次根式的应用,熟练掌握二次根式的乘除法是解题关键.10.C【分析】根据二次根式的性质及运算法则计算判断即可.【详解】1-,不是互为倒数,选项错误;B.若)21x>20<,则xC.3x +与3不一定相等,选项正确;D.0a b ≥,结合0a b +<可得0a ≤,0b <=故选:C【点拨】本题考查了二次根式的混合运算,熟记相关概念是解题是解题的关键.11.6±2-【分析】根据平方根的定义,立方根的定义,开平方运算解答即可.【详解】解:①∵()2636±=,∴36的平方根是6±,故答案为6±;②∵8=-,∴()328-=-,∴8-的立方根为2-,∴2-,故答案为2-.【点拨】本题考查了平方根的定义,开平方运算,立方根的定义,掌握平方根的定义是解题的关键.12.<【分析】可得()11=10<,即可求解.【详解】解:()11=1<10∴<,()10∴<()1∴<,故答案:<.【点拨】本题主要考查了用作差法比较实数的大小,掌握比较的方法是解题的关键.13.0【分析】根据二次根式有意义的条件可得2210,10a a -=-=,进而即可求解.都是二次根式,∴2210,10a a -≥-≥∴2210,10a a -=-=,=0,故答案为:0.【点拨】本题考查了二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.14.2/2【分析】根据“互为友好因式”的概念解答即可.“互为友好因式”为:()112-´-´===-,【点拨】本题考查了定义新运算,二次根式的分母有理化,解题的关键是掌握二次根式的分母有理化的方法.15.11+【分析】根据勾股定理求得AB ,根据题意可得BC AB ==【详解】解:∵l OB ⊥,1OB =,2OA =,在Rt AOB △中,AB ===∴BC AB ==∴1OC OB BC =+=O 为原点,OC 为正方向,则C 点的横坐标为1故答案为:1.【点拨】本题考查了勾股定理与无理数,实数与数轴,熟练掌握勾股定理是解题的关键.16.10【分析】根据题中的按键顺序确定出显示的数的规律,即可得出结论.10=,10.110=,20.10.01=,0.1=,1100.1=,210100=,……,∵202363371=⨯+,∴当他共按2023下后,该计算器荧幕显示的数是10,故答案为:10.【点拨】本题考查了求一个数的算术平方根,倒数,有理数的乘方,找到规律是解题的关键.17.①②③【分析】由表格中的信息:①利用被开方数的小数点与其算术平方根的小数点之间的变化规律解答即可;②利用被开方数的小数点与其算术平方根的小数点之间的变化规律,分别确定被减数和减数的值,再相减即可;③先确定a④【详解】解:①∵15.1222801=,1.51=,故①正确;②∵215.3234.09=,215.2231.04=,1531521=-=,故②正确;③∵15.215.3<,∴231.04234.09a <<,其中整数有:232,233,234共3个,故③正确;④由①1.51=,1.510=,故④错误.综上,正确的是:①②③,故答案为:①②③.【点拨】本题考查无理数的估计,解答时需要从表格中获取信息,运用到无理数大小比较,有理数的运算,整数的概念等,熟练掌握被开方数的小数点与其算术平方根的小数点之间的变化规律是解题的关键.18.()18n n +【分析】由题意得到122124S ⎛== ⎝⎭,222224S ⎛== ⎝⎭,223324S ⎛== ⎝⎭,……,2224n n S ⎛== ⎝⎭,求和即可得到2322221n S S S S +++⋯+的值.【详解】解:由题意知,222212OA =+=,1S =122124S == ⎪⎝⎭,222313OA =+=,22S =,222224S ⎛== ⎝⎭,222414OA =+=,32S =,22334S ==⎝⎭,……222111n OA n +=+=+,2n S =,2224n n S ⎛== ⎝⎭,∴()()23222211112314444428n S S S n S n n n n ++=++++=⨯=+++⋯+⋯,故答案为:()18n n +【点拨】此题考查了勾股定理的规律题,还考查了二次根式的运算,熟练掌握勾股定理和二次根式的运算法则是解题的关键.19.(1)16;(2)20【分析】(1)根据立方根、平方根的意义可得到123m -=-,34n -=,进而得到m 、n 的值,再将m 、n 的值代入m n +即可求得答案;(2)将b 、c 的值代入222c a b =+中即可得到a 的值.【详解】解:(1)27- 的立方根是12m -,2是3n -的一个平方根,123m ∴-=-,34n -=,9m ∴=,7n =,9716m n ∴+=+=.(2)222c a b =+ ,且25c =,15b =,2222515a ∴=+,2400a ∴=,20a ∴=±,a 是三角形ABC 的边长,0a ∴>,20a ∴=.【点拨】本题考查了平方根、立方根,熟练掌握平方根、立方根的意义是解题的关键.20.(1)-(2)21-【分析】(1)根据二次根式的混合运算进行计算即可求解;(2)根据完全平方公式以及平方差公式,零指数幂进行计算即可求解.【详解】(1()2-==-(2)解:())(21111++-=181211-+-+=21-【点拨】本题考查了二次根式的混合运算,零指数幂,熟练掌握二次根式的运算法则是解题的关键.21.(1)15;(2)±4【分析】(1)利用完全平方公式把原式变形,代入计算得到答案.(2)根据已知等式可得1x x+=【详解】解:(1)∵1,1x y ==-,∴x y +=)111xy ==,∴原式=2(x +y )2-xy =15.(2)∵210x -+=,∴1x x+=∴(222114416x x x x ⎛⎫⎛⎫-=+-=-= ⎪ ⎪⎝⎭⎝⎭,∴1x x-=±4.【点拨】本题考查的是二次根式的化简求值,一元二次方程的解,掌握二次根式的混合运算法则、完全平方公式是解题的关键.22.(1)(2)(x ﹣2)2,2.【分析】(1)利用完全平方公式222)2(a ab b a b ±+=±推出2211()()4x x x x-=+-,然后整体代入即可;(2)先对原代数式利用完全平方公式2222()a ab b a b -+=-进行化简,然后整体代入求值即可.【详解】(1)∵22211(2x x x x -=+-,22211()2x x x x +=++∴2211()()4x x x x-=+-∵x 1x+=1∴原式=2(14(13)4-=++-=(2)(x ﹣1)2﹣2(x ﹣1)+1=(x ﹣2)2,把x ﹣2=)2=2.【点拨】本题主要考查代数式求值,掌握完全平方公式和整体代入法是解题的关键.23.232ab ⎛⎫=- ⎪⎝⎭;12a b b a ⎛⎫- ⎪⎝⎭;,a b b a 为有理数,a b b a -盾【分析】仿照题干方法进行证明即可.+是一个有理数.a b +=(a 、b 是整数且a 、b 互素且0b ≠),a b=-两边同时平方得:232a b ⎛⎫=- ⎪⎝⎭,所以:21a b ⎛⎫=- ⎪⎝⎭,可得:a b b a =-,=12a b b a ⎛⎫- ⎪⎝⎭,因为:,a b b a 为有理数,a b b a-为无理数,与前面所设矛盾,是一个无理数.【点拨】本题考查了无理数的证明,能够理解并运用题干的反证法是解题的关键.24.(1)2(2)(3)2-+【分析】(1)直接由题中规律即可完成;(2)当0x <时,200x x->->,,则可由题中规律完成;(3)原式226x x x++变形为62x x ++,由0x <,计算出6()x x ⎛⎫-+- ⎪⎝⎭的最小值,即可求得6x x +的最大值,则最后可求得原式的最大值.【详解】(1)解:当0x >时,1x x,均为正数,由题中规律得:12x x +≥=,当且仅当1x x=,即1x =时,12x x +=,∴当x >0时,1x x +的最小值为2;故答案为:2;(2)解:当0x <时,200x x->->,,由题中规律得:22()x x x x ⎛⎫--=-+-≥= ⎪⎝⎭当且仅当2x x-=-,即x =2x x --=,∴当x <0时,2x x--的最小值为故答案为:(3)解:∵2226266622x x x x x x x x x x x x ++⎛⎫=++=++=++ ⎪⎝⎭,∴当0x <时,600x x ->->,,∴6()x x ⎛⎫-+-≥= ⎪⎝⎭,当且仅当6x x -=-,即x =6x x--=,∵6()x x ⎛⎫-+-≥ ⎪⎝⎭,∴6x x +≤-∴622x x++≤-,∴2262x x x++≤-,当且仅当x =226x x x++的最大值为2-+,∴当0x <时,226x x x++的最大值为2-.【点拨】本题考查了求代数式的最大值或最小值问题,读懂题目中的规律是解题的关键,另外特别注意规律中两个字母均为正数,在使用时要注意.。
北师大版八年级上册数学第二章 实数含答案
北师大版八年级上册数学第二章实数含答案一、单选题(共15题,共计45分)1、4的平方根是()A.2B.-2C.±2D.42、下列等式正确是()A.±B.C.D.3、下列运算正确的是()A.(﹣1)2020=﹣1B.﹣2 2=4C. =±4D. =﹣34、9的算术平方根是A.9B.C.3D.5、下列计算正确的是()A. =5B. =C. =1D.- =-6、下列说法中,不正确的是( )A.10的立方根是B.-2是4的一个平方根C. 的平方根是D.0.01的算术平方根是0.17、化简的结果是()A.-2B.2C.-4D.48、的算术平方根是()A.﹣2B.±2C.D.29、下列四个实数中是无理数的是( )A.2.5B.C.πD.1.41410、下列等式成立的是( )A. B. C. D.11、4的平方根是()A. 16B.±2C.2D.-212、如图,数轴上点A表示的数可能是下列各数中的()A. B. C. D.13、下列运算正确的是()A. =±3B. =2C.﹣=﹣3D.﹣3 2=914、下列各数:1.414,,﹣,0,其中是无理数的为()A.1.414B.C.﹣D.015、下列说法:是无理数;是的立方根;在两个连续整数和之间,那么;若实数的平方根是和,则其中正确的说法有()个A.1B.2C.3D.4二、填空题(共10题,共计30分)16、若a= ,则(a﹣1)2=________.17、函数中自变量x的取值范围是________.18、计算:÷=________19、若与是同类项,则的立方根是________.20、计算:(﹣)﹣2+(﹣1)0﹣═________.21、如果二次根式有意义,那么x的取值范围是________.22、若,则x= ________23、计算:﹣=________.24、将下列各数填在相应的表示集合的大括号内:﹣2,π,﹣,﹣|﹣3|,,﹣0.3,1.7,,0,1.1010010001…(每两个1之间依次多一个0)整数{________…}负分数{________…}无理数{________…}.25、已知x,y为实数,且y=,则的平方根等于________.三、解答题(共5题,共计25分)26、先化简,再求值:,其中.27、已知2a+1的平方根是±3,3a+2b﹣4的立方根是2,求的值.28、如图,矩形内两相邻正方形的面积分别为2和6,请计算大矩形内阴影部分的面积.29、已知2a-1的平方根是±3,3a+b-9的立方根是2,c是的整数部分,求a+b+c的平方根.30、在数轴上标出下列各数:0.5,-4,-2.5,2,-0.5.并把它们用“>”连接起来.参考答案一、单选题(共15题,共计45分)1、C2、C3、D4、C5、C6、C7、B8、C9、C10、D11、B12、A13、C14、B15、A二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
北师大版八上第二章实数培优专题(含答案)
第二章《实数》培优专题一、解答题1.已知:9y =-,求xy 的立方根.2.已知实数a ,b ,c ||c a -.3.小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:(21=+,善于思考的小明进行了以下探索:设a +(2m =+(其中a 、b 、m 、n 均为整数),则有:a +222m n =++,∴a =m 2+2n 2,b =2mn ,这样小明就找到了一种把类似a +的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若a +(2m =+,用含m 、n 的式子分别表示a 、b 得:a= ,b = ;(2)利用所探索的结论,用完全平方式表示出:= .(3)4.化简求值:(1)已知a 是√13的整数部分,(2)已知:实数a ,b a b - .5.求√3+√5√3−√5的值.解:设x =√3+√5√3−√5,两边平方得:x 2=(√3+√5)2+(√3−√5)2+2√(3+√5)(3−√5),即x 2=3+√5+3−√5+4,x 2=10 ∴x =±√10.∵√3+√5√3−√5>0,∴√3+√5+√3−√5=√10. 请利用上述方法,求√4+√7+√4−√7的值.6.(1)已知x y ==①求x +y 的值;②求2x 2+2y 2﹣xy 的值(2)若x 、y 都是实数,且y =8+,求x +3y 的平方根7.已知A =√n −m +3m−n是n -m +3的算术平方根,B =√m +2n m−2n+3是m +2n 的立方根,求B-A 的平方根8.观察下面的变形规律:1=- = = =,… 解答下面的问题:(1)若n = ;(2)计算:)×1+)9.像(√5+2)(√5﹣2)=1、√a •√a =a (a ≥0)、(√b +1)(√b ﹣1)=b ﹣1(b ≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如,√5与√5,√2 +1与√2﹣1,2√3+3√5与2√3﹣3√5等都是互为有理化因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1)化简:3√3;(2)计算:2−√3√3−√2;(3)比较√2018−√2017与√2017−√2016的大小,并说明理由.10.已知,a b (10b --=,求20152016a b -的值.11.阅读理解∵在√4<√5<√9,即2<√5<3,∴1<√5−1<2.∴√5−1的整数部分为1,小数 部分为√5−2. 解决问题已知a 是√17−3的整数部分,b 是√17−3的小数部分,求(−a)3+(b +4)2的平方根.12.已知点A(5,a)与点B(5,-3)关于x 轴对称,b 为11)+a b 的值。
北师大版八年级上册数学第二章 实数含答案(必刷题)
北师大版八年级上册数学第二章实数含答案一、单选题(共15题,共计45分)1、实数界于哪两个相邻的整数之间( )A.3和4B.5和6C.7和8D.9和102、的算术平方根的平方根是()A. B. C. D.3、下列计算正确的是()A. =-9B. =±5C. =-1D.(-) 2=44、下列说法中正确的是()A. 的平方根是±6B. 的平方根是±2C.|﹣8|的立方根是﹣2D. 的算术平方根是45、估算在()A.5与6之间B.6与7之间C.7与8之间D.8与9之间6、下列各数:、3.1415926、﹣、0、π0、0.1010010001…(相邻两个1之间0的个数逐次加1)、3 、﹣中无理数有()个.A.1B.2C.3D.47、下列叙述中,不正确的是( )A.绝对值最小的实数是零B.算术平方根最小的实数是零C.平方最小的实数是零D.立方根最小的实数是零8、的平方根是()A. B.- C. D.9、设x=,则x的值满足()A.1<x<2B.2<x<3C.3<x<4D.4<x<510、下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4,用式子表示是=±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的有( )A.0个B.1个C.2个D.3个11、下列运算正确的是()A. =2B.|﹣3|=﹣3C. =±2D. =312、下列说法正确的是()A.负数没有立方根B.不带根号的数一定是有理数C.无理数都是无限小数 D.数轴上的每一个点都有一个有理数于它对应13、下列说法中,正确的是( )① ② 一定是正数③无理数一定是无限小数④16.8万精确到十分位⑤(﹣4)2的算术平方根是4.A.①②③B.④⑤C.②④D.③⑤14、下列命题是真命题的是()A.如果一个数的相反数等于这个数本身,那么这个数一定是0B.如果一个数的倒数等于这个数本身,那么这个数一定是1 C.如果一个数的平方等于这个数本身,那么这个数一定是0 D.如果一个数的算术平方根等于这个数本身,那么这个数一定是015、(-5)2的平方根是()A.-5B.5C.±5 D.25二、填空题(共10题,共计30分)16、若一个正数x的平方根是2a+1和4a-13,则a=________,x=________.17、有下列命题:①无理数是无限不循环小数;②平方根与立方根相等的数有1和0;③若a⊥b,b⊥c,则a⊥c;④邻补角是互补的角;⑤无理数包括正无理数、零、负无理数.其中正确的有________个.18、计算: =________.19、已知,,则的值为________.20、计算:(π﹣2015)0﹣(﹣1)2015﹣|﹣3|=________.21、如果a与b互为倒数,c与d互为相反数,那么的值是________.22、新定义运算“*”,规定x*y=x2+y,若﹣1*2=k,则k能否使得一元二次方程x2﹣2kx+9=0有两个相等的实数解________(填“能”或‘否’).23、若5+ 的整数部分是a,则a=________.24、平方等于的数是________,-64的立方根是________25、计算-8的立方根与9的平方根的积是________.三、解答题(共5题,共计25分)26、计算:27、在数轴上表示a、b、c三数点的位置如下图所示,化简:|c|- -|a-b|.28、把下列各数分别填在相应的括号内:,,,,,,,,,,,,,0.1010010001整数;分数;正数;负数;有理数;无理数;29、已知2a﹣1的平方根是±3,3a+b+9的立方根是3,求2(a+b)的平方根.30、已知3既是(x-1)的算术平方根,又是(x-2y+1)的立方根,求x2-y2的平方根.参考答案一、单选题(共15题,共计45分)1、B2、D3、C4、B5、D6、D7、D8、C9、C10、D11、A12、C13、D14、A15、C二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
第二章实数单元培优卷 北师大版数学八年级上册
2021-2022学年度八年级上第二章实数单元培优卷一.选择题1.25的平方根是( )A .±5B .5C .-5D .25 20;0.2-;π3722,1.1010010001···,无理数的个数是( ). A . 2 B . 3 C . 4 D . 53.下列各组数中,互为相反数的一组是( )A .﹣2与B .﹣2与C .﹣2与﹣D .|﹣2|与24.的平方根是( ) A . B . C . D . 5.下列计算正确的是( )A= B .27-123=9-4=1 C.(21+=D=62的值( )A .在1到2之间B .在2到3之间C .在3到4之间D .在4到5之间 7.下列说法正确的是( )A .有理数只是有限小数B .无理数是无限小数C .无限小数是无理数D .3π是无理数 8.如图,矩形OABC 的边OA 长为2 ,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是A .2.5B .2 2C . 3D . 5二.填空题 913131-31±811±9.比较下列各组数的大小:(112142)5_____73)24 (4)2412___1.5. 10.2______; 3_______;-的相反数是11.代数式在实数范围内有意义,则x 的取值范围是. 12.已知一个正数的平方根是32x -和56x +,则这个数是 .13.9的算术平方根是 ;(-3)2 的算术平方根是 ;3的平方根是 ; 0的平方根是 ;-2的平方根是 .14.若03)2(12=-+-+-z y x ,则z y x ++=15.如图,在网格图中的小正方形边长为1,则图中的△ABC 的面积等于 .16.已知032=++-b a ,则______)(2=-b a .三.解答题17.计算:(1) 8350324-+; (2) 9·2731+; (3)(﹣)2 (4) 18.求下列各式中的x .(1)25x 2=36(2)3x 2-15=0 (3)3338x -=19.如图,实数a .b 在数轴上的位置,化简222()a b a b -328220.八年级(3)班两位同学在打羽毛球, 一不小心球落在离地面高为6米的树上.其中一位同学赶快搬来一架长为7米的梯子, 架在树干上, 梯子底端离树干2米远, 另一位同学爬上梯子去拿羽毛球.问这位同学能拿到球吗?21.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不能全部地写出来,于是小平用﹣1来表示的小数部分,你同意小平的表示方法吗?事实上小平的表示方法是有道理的,因为的整数部分是1,用这个数减去其整数部分,差就是小数部分.请解答:已知:5+的小数部分是a,5﹣的整数部分是b,求a+b的值.。
北师大版八年级上册数学第二章 实数 含答案
北师大版八年级上册数学第二章实数含答案一、单选题(共15题,共计45分)1、若正数x的平方等于7,则下列对x的估算正确的是()A.1<x<2B.2<x<3C.3<x<4D.4<x<52、下列说法不正确的是( )A.27的立方根是±3B. 的立方根是C.-2的立方是-8 D.-8的立方根是-23、下列叙述中,不正确的个数有()①所有的正数都是整数②|a|一定是正数③无限小数一定是无理数④(﹣2)3没有平方根⑤的平方根是±4 ⑥.A.3个B.4个C.5个D.6个4、-1的立方根为()A.1B.-1C.1或-1D.没有5、已知2a+1和5是正数b的两个平方根,则a+b的值是()A.25B.30C.20D.226、下列算式:①;②;③;④;⑤.运算结果正确的概率是()A. B. C. D.7、﹣8的立方根是()A.2B.-2C.±2D.8、下面的计算正确的是()A. 6a﹣5a=1B. =±6C. (a2)3=a5D. 2(a+b)=2a+2b9、下列各数是无理数的是()A.2B.C.-4D.010、判断下列说法错误的是()A.4是64的立方根B.﹣2是﹣8的立方根C.1的平方根是1 D.0的平方根是011、若x2=1,则x的值为()A.1B.﹣1C.±1D.012、有下列说法:①有理数和数轴上的点一一对应,②不带根号的数一定是有理数,③负数没有立方根,④是17的平方根,其中正确的有 ( )A.0个B.1个C.2个D.3个13、数:﹣,0.123456…,0. ,0,,π,,5.121212中,无理数的个数是()A.1B.2C.3D.414、下列实数中,无理数为()A.-1B.0C.D.15、在﹣1、、﹣、π这3个数中,无理数有()A.0个B.1个C.2个D.3个二、填空题(共10题,共计30分)16、若式子在实数范围内有意义,则x的取值范围是________.17、己知a、b为两个连续整数,且a<<b,则ab=________.18、比较大小:4________ .(填“>”、“<”、“=”)19、若y=+-6,则xy=________.20、计算:×=________.21、把化成最简二次根式的结果是________.22、计算器按键顺序是:,其结果为________ .23、代数式在实数范围内有意义,则的取值范围是________.24、计算:+ =________.25、当a________0时,|a-|=-2a.三、解答题(共5题,共计25分)26、计算:20110+()﹣1+4sin45°﹣|﹣|27、当﹣4<x<1时,化简﹣2 .28、已知M= 是m+3的算术平方根,N= 是n﹣2的立方根,试求M﹣N的值.29、求下列式中的x的值:3(2x+1)2=27.30、已知:a+=1+,求的值.参考答案一、单选题(共15题,共计45分)1、B2、A3、C4、B5、D6、A7、B8、D10、C11、C12、B13、B14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、30、。
北师大版八年级数学上第二章 实数检测题及答案解析
第二章实数检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.(天津中考)估计√11的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间2.(安徽中考)与1+√5最接近的整数是()A.4B.3C.2D.13.(南京中考)估计√5−12介于()|A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间4.(湖北宜昌中考)下列式子没有意义的是()A.√−3B.√0C.√2D.√(−1)25.)A. B. C. D.6. 若a,b为实数,且满足|a-2|+,则b-a的值为()A.2 B.0 C.-2 D.以上都不对7.若a,b均为正整数,且a b a+b的最小值是()A.3B.4C.5D.68.11,212c⎛⎫-⎪⎝⎭=0,则abc的值为()w W w .A.0 B.-1 C.-12D.129.(福州中考)若(m-1)20,则m+n的值是()A.-1B.0C.1D.210. 有一个数值转换器,原理如图所示:当输入的x=64时,输出的y等于()是有理数A.2 B.8 C.D.二、填空题(每小题3分,共24分)11.(南京中考)4的平方根是_________;4的算术平方根是__________.12.(河北中考)若|a|=2 0150,则a=___________.13. 1.910 6.042≈,±≈.14.绝对值小于π的整数有 .15.已知|a -5|+3b +=0,那么a -b = .16.已知a ,b 为两个连续的整数,且a >28>b ,则a +b = . 17.(福州中考)计算:(2+1)(2-1)=________.18.(贵州遵义中考)√27 + √3= . 三、解答题(共46分)19.(6分)已知|2 012−a |+√a −2 013=a ,求a −2 0122的值.20.(6分)若5+7的小数部分是a ,5-7的小数部分是b ,求ab +5b 的值. 21.(6分)先阅读下面的解题过程,然后再解答: 形如n m 2±的化简,只要我们找到两个数a ,b ,使m b a =+,n ab =,即m b a =+22)()(,n b a =⋅,那么便有:b a b a n m ±=±=±2)(2)(b a >.例如:化简:347+. 解:首先把347+化为1227+,这里7=m ,12=n ,因为4+3=7,4×3=12,即7)3()4(22=+,1234=⨯, 所以347+1227+32)34(2+=+.根据上述方法化简:42213-.22.(6分)比较大小,并说明理由: (1)与6; (2)与.- 第-一-网23.(6分)大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不能全部写出来,于是小平用-1来表示的小数部分,你同意小平的表示方法吗? 事实上小平的表示方法是有道理的,因为的整数部分是1,用这个数减去其整数部分,差就是小数部分. 请解答:已知:5+的小数部分是,5-的整数部分是b ,求+b 的值.24.(8分)计算:(1)862⨯-82734⨯+;(2))62)(31(-+-2)132(-. 25.(8分)阅读下面计算过程:12)12)(12()12(1121-=-+-⨯=+;();23)23)(23(231231-=-+-⨯=+()25)25)(25(251251-=-+-⨯=+.试求:(1)671+的值;(2)nn ++11(n 为正整数)的值;(3)11111122334989999100+++⋅⋅⋅+++++++的值.第二章 实数检测题参考答案一、选择题1.C 解析:11介于9和16之间,即9<11<16,则利用不等式的性质可以求得介于3和4之间.即∵ 9<11<16,∴ <<,∴ 3<<4,∴的值在3和4之间.故选C .2.B 解析:∵ 4.84<5<5.29,∴4.84<5<5.29,即2.2<5<2.3,∴ 1+2.2<1+5<1+2.3, 即3.2<1+5<3.3,∴ 与1+5最接近的整数是3. 3.C 解析:22 2.25 2.3, 2.25 2.3, 1.251 1.3,<<∴<<∴<-<510.60.652-∴<<,故选C . 4.A 解析:根据二次根式有意义的条件,当被开方数a ≥0时,二次根式有意义;当a <0时,在实数范围内没有意义.由于-3<0,所以没有意义.5.B 解析:212432323=⨯=⨯=.6.C 解析:∵ |a -2|+2b -=0,∴ a =2,b =0,∴ b -a =0-2=-2.故选C .7.C 解析:∵ a ,b 均为正整数,且a >7,b >32,∴ a 的最小值是3,b 的最小值是2, 则a +b 的最小值是5.故选C . 8.C 解析:∵ 3a =-1,b =1,212c ⎛⎫- ⎪⎝⎭=0,∴ a =-1,b =1,c =12,∴ abc =-12.故选C . 9.A 解析:根据偶次方、算术平方根的非负性,由(m -1)2+2n +=0,得m -1=0,n +2=0,解得m =1,n =-2,∴ m +n =1+(-2)=-1.10.D 解析:由图得64的算术平方根是8,8的算术平方根是22.故选D .二、填空题11.2± 2 解析:∵ ()2224,24,=-=∴ 4的平方根是2±,4的算术平方根是2.12.1± 解析:因为02 0151=,所以1=a ,所以.1±=a13.604.2 ±0.019 1 解析:436500036.510=⨯≈604.2;±0.000365=±43.6510-⨯ ≈±0.019 1. 14.±3,±2,±1,0 解析:π≈3.14,大于-π的负整数有:-3,-2,-1,小于π的正整数有:3,2,1,0的绝对值也小于π.15.8 解析:由|a -5|+3b +=0,得a =5,b =-3,所以a -b =5-(-3) =8. 16.11 解析:∵ a >28>b , a ,b 为两个连续的整数, 又25<28<36,∴ a =6,b =5,∴ a +b =11. 17.1 解析:根据平方差公式进行计算,(2+1)(2-1)=()22-12=2-1=1.18. 43 解析:2733334 3.+=+=三、解答题19.解:因为,,即, 所以.故,从而,所以,X|k | B| 1 . c |O |所以.20.解:∵ 2<7<3,∴ 7<5+7<8,∴ a =7-2. 又可得2<5-7<3,∴ b =3-7.将a =7-2,b =3-7代入ab +5b 中,得ab +5b =(7-2)(3-7)+5(3-7)=37-7-6+27+15-57=2. 21.解:根据题意,可知,因为,所以.22. 分析:(1)可把6转化成带根号的形式,再比较它们的被开方数,即可比较大小;(2)可采用近似求值的方法来比较大小. 解:(1)∵ 6=36,35<36,∴ 35<6. (2)∵ -5+1≈-2.236+1=-1.236,-22≈-0.707,1.236>0.707, ∴ -5+1<-22.23. 解:∵ 4<5<9,∴ 2<<3,∴ 7<5+<8,∴ =-2.又∵ -2>->-3,∴ 5-2>5->5-3,∴ 2<5-<3,∴ b =2,∴ +b =-2+2=.24. 解:(1)原式=623332223-+⨯ (2)原式=()266321343-+--- =6236623-+ =432213--. =1362323-.11(76)25.17 6.76(76)(76)⨯-==-++-解:()(2)11(1)11(1)(1)n n n n n n n n n n ⨯+-==+-+++++-.(3)11111122334989999100+++⋅⋅⋅+++++++=-11+10=9.。
北师大版八年级数学上册《第二章.实数》 培优单元测试题附答案
北师大版八年级数学上册《第二章.实数》培优单元测试题附答案一、选择题1、下列各数是无理数的是()A. B. C.0.38 D.0.010********2、若x+y=0,则下列各式不成立的是()A.B.C.D.3、已知+|b﹣1|=0,那么(a+b)2016的值为()A.﹣1 B.1 C.32015 D.﹣320154、如果y=+2,那么(﹣x)y的值为()A.1 B.﹣1 C.±1 D.05、估计+1的值在()A.2和3之间 B.3和4之间 C.4和5之间D.5和6之间6、有理数、、的大小顺序是()A. B. C. D.7、对描述错误的一项是()A. 面积为2的正方形的边长B. 它是一个无限不循环小数C. 它是2的一个平方根D. 它的小数部分大于2-8、下列关于数的说法正确的是()A. 有理数都是有限小数B. 无限小数都是无理数C. 无理数都是无限小数D. 有限小数是无理数9、如图,实数-3,x,3,y在数轴上的对应点分别为M,N,P,Q,这四个数中绝对值最小的数对应的点是( )A.点M B.点N C.点P D.点Q10、如图,在数轴上表示数﹣的点可能是()A.点E B.点F C.点P D.点Q11、若x=﹣4,则x的取值范围是()A.2<x<3 B.3<x<4 C.4<x<5 D.5<x<612、如下图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC中,边长为无理数的边数为()A.0 B.1 C.2 D.3二、填空题13、的绝对值14、若,则中,最小的数是。
15、计算: +(π﹣2)0+(﹣1)2017= .16、规定:用符号[x]表示一个不大于实数x的最大整数,例如:[3.69]=3,[+1]=2,[-2.56]=-3,[-]=-2.按这个规定,[--1]= .三、解答题17、计算(1)、计算:﹣(﹣1)2018﹣|2﹣|++(2)(+3)(﹣3)﹣(3)18、已知的平方根是,的立方根是2,是的整数部分,求的值.19、若与(b216)2互为相反数,求的立方根.20、有一个n位自然数能被整除,依次轮换个位数字得到的新数能被整除,再依次轮换个位数字得到的新数能被整除,按此规律轮换后,能被整除,…,能被整除,则称这个n位数是的一个“轮换数”.例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2个一个“轮换数”.(1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”.(2)若三位自然数是3的一个“轮换数”,其中,求这个三位自然数.21、我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.运用上述知识,解决下列问题:(1)如果,其中a、b为有理数,那么a= ,b= ;(2)如果,其中a、b为有理数,求a+2b的值.22、先阅读材料,然后回答问题:(1)小张同学在研究二次根式的化简时,遇到了一个问题:化简经过思考,小张解决这个问题的过程如下:=…①=…②=…③=﹣…④上述化简过程中,第步出现了错误,化简正确的结果为.(2)请根据你从上述材料中得到的启发,化简23、探究规律在数轴上,把表示数1的点称为基准点,记作点O.对于两个不同点M和N,若点M和点N到点O的距离相等,则称点M与点N互为基准变换点.例如:图1中MO=NO=2,则点M和点N互为基准变换点.发现:(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b= ;若a=4,则b= ;②用含a的式子表示b,则b= ;应用:(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换,则点A表示的数是多少?探究:(3)点P是数轴上任意一点,对应的数为m,对P点做如下操作:P点沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到点P3,点P4为P3的基准变换点,“…依次顺序不断的重复,得到P6…,求出数轴上点P2018表示的数是多少?(用含m的代数式表示)五、综合题24、如图,数轴上A、B两点对应的数分别为﹣5、15.(1)点P是数轴上任意一点,且PA=PB,则点P对应的数是;(2)点M、N分别是数轴上的两个动点,点M从点A出发以每秒3个单位长度的速度运动,同时,点N从原点O出发以每秒2个单位长度的速度运动.①若M、N两点都向数轴正方向运动,经过几秒,点M、点N分别到原点O的距离相等?②当M、N两点运动到AM=2BN时,请直接写出点M在数轴上对应的数.参考答案一、选择题1、B.2、D3、B;4、A.5、C【分析】先估算出的范围,即可得出答案.【解答】解:∵3<<4,∴4<+1<5,即+1在4和5之间,故选:C.【点评】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.6、D7、D8、C 解析:无理数是指无限不循环小数,也就是说无理数都是无限小数.9、B10、B.11、A解:∵36<37<49,∴6<<7,∴2<﹣4<3,故x的取值范围是2<x<3.故选:A.12、C二、填空题13、14、15、﹣2 .【考点】2C:实数的运算;6E:零指数幂.【分析】直接利用零指数幂的性质以及立方根的定义分别化简进而求出答案.【解答】原式=﹣2+1﹣1=﹣2.16、-5.17、计算题(1)、解:原式=﹣1﹣(2﹣)+9﹣3=﹣1﹣2++9﹣3=3+.(2)、原式=()2﹣32﹣(﹣3)=14﹣9+3=8;(3)、三、简答题18、a=5 b=2 c=7 =1619、1.20、(1)设此两位数为=10a+2a=12a=6×2a为6的倍数,轮换后=20a+a=21a=7×3a为7的倍数所以为一个6个轮换数(2)此三位数为=200+10b+c=198+9b+(2+b+c)为3的倍数则2+b+c为3的倍数轮换后=100b+10c+2=100b+8b+(2c+2)为4的倍数则c+1为2的倍数即c为奇数=100c+20+b为5的倍数则b为0或者5当b=0时,2+c为3的倍数且c为奇数则c=1,或7 即三位数为201 或207当b=5时,2+c为3的倍数且c为奇数则c=5 即三位数为25521、22、解:(1)第④,﹣,故答案为:④,;(2)====|﹣|=﹣.23、【解答】解:(1)①∵点A表示数a,点B表示数b,点A与点B互为基准变换点,∵a+b=2,当a=0时,b=2;当a=4时,b=﹣2.故答案为:2;﹣2.②∵a+b=2,∴b=2﹣a.故答案为:2﹣a;(2)设点A表示的数为x,根据题意得: x﹣3+x=2,解得:x=2.故点A表示的数是2;(3)设点P表示的数为m,由题意可知:P1表示的数为m+k,P2表示的数为2﹣(m+k),P3表示的数为2﹣m,P4表示的数为m,P5表示的数为m+k,…由此可分析,4个一循环,∵2018÷4=504…2,∴点P2018表示的数与点P2表示的数相同,即点P2018表示的数为2﹣(m+k).24、【解答】解:(1)设P点表示的数为x,由题意得,x+5=15﹣x,解得,x=5,故答案为:5;(2)①由数轴知,当M,N重合时,3t﹣5=2t,解得,t=5(秒);当M,N在O点异侧时,5﹣3t=2t,解得t=1(秒);综上所述,经过5秒或1秒,点M、点N分别到原点O的距离相等;②由题可得,ON=2t,AM=3t,当点N在线段OB上时,BN=OB﹣ON=15﹣2t,由AM=2BN,可得3t=2×(15﹣2t),解得t=,若点M向右移动,则点M表示的数为﹣5+3×当点N在线段OB的延长线上时,BN=ON﹣OB=2t﹣15,=,若点M向左移动,则点M表示的数为﹣5﹣3×=﹣;由AM=2BN,可得3t=2×(2t﹣15),解得t=30,若点M向右移动,则点M表示的数为﹣5+3×30=85,若点M向左移动,则点M表示的数为﹣5﹣3×30=﹣95;综上所述,M在数轴上对应的数为﹣95,85,﹣,.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章实数
2.1认识无理数
专题无理数近似值的确定
1. 设面积为3的正方形的边长为x,那么关于x的说法正确的是()
A.x是有理数 B.x取0和1之间的实数
C.x不存在 D.x取1和2之间的实数
2.(1)如图1,小明想剪一块面积为25cm2的正方形纸板,你能帮他求出正方形纸板的边长吗?
(2)若小明想将两块边长都为3cm的正方形纸板沿对角线剪开,拼成如图2所示的一个大正方形,你能帮他求出这个大正方形的面积吗?它的边长是整数吗?若不是整数,那么请你估计这个边长的值在哪两个整数之间.
3.你能估测一下我们教室的长、宽、高各是多少米吗?你能估测或实际测量一下数学课本的长、宽和厚度吗?请你再估算一下我们的教室能放下多少本数学书?这些数学书可供多少所像我们这样的学校的初一年级学生使用呢?请你对每一个问题给出估测的数据,再把估算的过程结果一一写出来.
答案:
1.D 【解析】∵面积为3的正方形的边长为x,∴x2=3,而12=1,22=4,∴1<x2<4,∴1<x<2,故选D.
2.解:(1)边长为5cm.
(2)设大正方形的边长为x,∵大正方形的面积=32+32=18,而42=16,52=25,
∴16<x2<25,∴4<x<5,故正方形的边长不是整数,它的值在4和5之间.
3.解:估算的过程:教室的长、宽、高可以用我们的身高估计出来;数学课本的长、宽和厚度可以用我们的手指估计出来,也可以用直尺测量出来;我们用长宽高相乘估计出教室的容积与课本的体积相除算出能放下多少本数学书,就是能供多少名学生使用,再用本班人数乘一年级班数估计本校一年级人数,然后相处就可以估计出这些数学书可供多少所像我们这样的学校的初一年级学生使用了.估测的数据、估算的结果略.
2.2平方根
专题一 非负数问题
1. 若2(a +与1+b 互为相反数,则a b -的值为( )
A B 1+ C 1
D .1-
2. 设a ,b ,c 都是实数,且满足(2-a )2+|c+8|=0,ax 2+bx+c=0,求式子x 2+2x
的算术平方根.
3. 若实数x ,y ,z = 14
(x+y+z+9),求xyz 的值.
专题二 探究题
4. 研究下列算式,你会发现有什么规律?
=2=5;… 请你找出规律,并用公式表示出来.
5.先观察下列等式,再回答下列问题:
答案:
(a与|b+1|互为相反数,
1.D 【解析】∵2
(a++|b+1|=0,
∴2
a=0且b+1=0,
∴+
-=1,故选D.
∴a=2,b=﹣1,a b
2.解:由题意,得2-a=0,a2+b+c=0,c+8=0.
∴a=2,c=-8,b=4.
∴2x2+4x-8=0.
∴x2+2x=4.
∴式子x2+2x的算术平方根为2.
3.解:将题中等式移项并将等号两边同乘以4得+9=0,
∴+4)=0,
∴22-2)2=0,
-2=0,
=2 =2,
∴x=4,y-1=4 ,z-2=4,∴x=4,y=5,z=6.
∴xyz=120.
2.3立方根
专题立方根探究性问题
答案:
2.4估算专题比较无理数大小
1. 设a=1003+997,b=1001+999,c=21001,则a ,b ,c 之间的大小关系是
( )
A .a >b >c
B .a >c >b
C .b >a >c
D .c >b >a
2. 观察下列一组等式,然后解答后面的问题:
(2+1)(2-1)=1,(3+2 )(3- 2)=1,(4+3)(4-3)=1,
(5+4)(5-4)=1…
(1)观察上面的规律,计算下列式子的值.
(121
++132++143++…+ 120132012+)•( 2013+1). (2)利用上面的规律,试比较1211-与1312-的大小.
3. 先填写下表,通过观察后再回答问题.
问:
(1)被开方数a 的小数点位置移动和它的算术平方根a 的小数点位置移动有无规律? 若有规律,请写出它的移动规律;
(2)已知:a =1800,- 3.24 =-1.8,你能求出a 的值吗?
(3)试比较a 与a 的大小.
答案:
2.6实数专题实数与数轴
1.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画弧,交数轴于点A ,则点A 表示的数是( )
A .2
B .22
C .12
D .12
2.如图所示,直线L 表示地图上的一条直线型公路,其中A 、B 两点分别表示公路上第140公里处及第157公里处.若将直尺放在此地图上,使得刻度15,18的位置分别对准A ,B 两点,则此时刻度0的位置对准地图上公路的第( )公里处
A .17
B .55
C .72
D .85
3. 一个等腰直角三角形三角板沿着数轴正方向向前滚动,起始位置如图,顶点C 和A 在数轴上的位置表示的实数为-1和1.那么当顶点C 下一次落在数轴上时,所在的位置表示的实数是___________.
4. 如图,已知A 、B 、C 三点分别对应数轴上的数a 、b 、c .
(1)化简:|a-b|+|c-b|+|c-a|;
(2)若a=4
x y ,b=-z 2,c=-4mn .且满足x 与y 互为相反数,z 是绝对值最小的负整数,m 、n 互为倒数,试求98a+99b+100c 的值;
(3)在(2)的条件下,在数轴上找一点D ,满足D 点表示的整数d 到点A ,C 的距离之和为10,并求出所有这些整数的和.
答案:
2.7二次根式专题一与二次根式有关的规律探究题
1.将1、2、3、6按如图所示的方式排列.
若规定(m ,n )表示第m 排从左到右第n 个数,则(4,2)与(21,2)表示的两数之积是( )
A.1
B.2
C. 23
D.6 2. 观察下列各式及其验证过程:
322322=+228222223333⨯+===. 333388+=2327333338888
⨯+=== (1)按照上述两个等式及其验证过程,猜想15
44+的变形结果并进行验证; (2)针对上述各式反映的规律,写出用a (a 为任意自然数,且2a ≥)表示的等式,并给出验证;
(3)针对三次根式及n 次根式(n 为任意自然数,且2n ≥),有无上述类似的变形,如果有,写出用a (a 为任意自然数,且2a ≥)表示的等式,并给出验证.
3. 阅读材料:
小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如
3+22=221)(+,善于思考的小明进行了以下探索:
设a+b 2=22)(n m +(其中a 、b 、m 、n 均为正整数),则有a+b 2=m 2+2n 2
+2mn 2, ∴a=m 2+2n 2
,b=2mn.这样小明就找到了一种把部分a+b 2的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题:
(1)当a 、b 、m 、n 均为正整数时,若a +b 3=2)3(n m +,用含m 、n 的式子分别表示a 、
b ,得:a = ,b = ;
(2)利用所探索的结论,找一组正整数a 、b 、m 、n 填空: + 3 =( + 3)2;
(3)若a +43=2)3(n m +,且a 、m 、n 均为正整数,求a 的值.
专题二 利用二次根式的性质将代数式化简
4. 化简二次根式22a a a
的结果是( ) A. 2a B. 2a C. 2a D. 2a
5.如图,实数a .b 在数轴上的位置,
化简:2
22)(b a b a -+-.
答案:
2.解:(1====.
(2=(a 为任意自然数,且2a ≥).
=== (3)333311-=-+
a a a a a a (a 为任意自然数,且2a ≥).
验证:a ===. =2a a
=2a .故选 5.解:由图知,a <0,b >0,∴a ﹣b <0,。