小学奥数-几何计数-专题

合集下载

小学数学 奥数讲义计数专题:几何计数

小学数学 奥数讲义计数专题:几何计数

华杯赛计数专题:几何计数基础知识:1.几何计数,从类型上看,可分为数线段、数三角形、数正方形、数长方形、数平行四边形等几类.2.几何计数的基本方法和思想:分类枚举与对应.3.分类的标准:按大小,按包含的图形等.4.常见对应方法:线段对应到端点,三角形对应到端点或边,长方形对应到对边等.5.特殊方法:去点法与去线法,本质是分类.方法铺垫:1)加法原理,乘法原理;2)容斥原理;3)排列数,组合数;4)对应法.例题:例1.如图,数一数图中有多少条线段?【答案】28(条)【解答】分类:1个单位长的线段有7条;2个单位长的线段有6条;3个单位长的线段有5条;……7个单位长的线段有1条;故共有线段7+6+5+……+1=28(条).例2.数一数,图中共有多少个三角形?【答案】13(个)【解答】分类:含有1块的三角形有4个;含有2块的三角形有5个;含有3块的三角形有2个;含有4块的三角形有1个;含有6块的三角形有1个;故共有三角形4+5+2+1+1=13(个).例3.如图,数一数,图中有多少个三角形?【答案】48(个).【解答】分类:包含1个小三角形的三角形有1+3+5+7+9=25个;包含4个小三角形的三角形有1+2+3+4+3=13个;包含9个小三角形的三角形有1+2+3=6个包含16个小三角形的三角形有1+2=3个;包含25个小三角形的三角形有1个;故共有三角形25+13+6+3+1=48(个).例4.数一数,图中共有多少个三角形?【答案】35(个)【解答】分类:含有1块的三角形有10个;含有2块的三角形有10个;含有3块的三角形有10个;含有5块的三角形有5个;故共有三角形10+10+10+5=35(个).例5.图中有多少个正方形?【答案】30(个)【解答】包含1个正方形的正方形有4×4=16个;包含4个正方形的正方形有3×3=9个;包含9个正方形的正方形有2×2=4个;包含16个正方形的正方形有1个;故共有三角形16+9+4+1=30(个).例6.如图,数一数图中一共有多少条线段?多少个矩形?【答案】70(条); 60个【解答】线段:横线,共有4×条;竖线:5×,故共有线段40+30=70条;矩形:竖线中选出两条,共有条,横线中选出两条,共有,根据乘法原理,共有矩形10矩形原60个.例7.如图,这是一个长为9,宽为4的网格,每一个小格都是一个正方形.请问:(1)从中可以数出多少个长方形?(2)从中可以数出包含红点的长方形有多少个?【答案】450(个);144个【解答】(1)竖线中选出两条,共有条,横线中选出两条,共有,根据乘法原理,共有矩形45×10=450个.(2)竖线中选出两条,共有6竖线中选出条,横线中选出两条,共有2×3=6条,根据乘法原理,共有矩形24×6=144个.例8.如图,数一数,图中共有多少个长方形?【答案】135个【解答】横向看:共有矩形个,竖向看:共有矩形个,这样重复计算了个,所以共有矩形90+63-18=135个.例9.如图,木板上钉着12枚钉子,排成三行四列的长方阵.用橡皮筋一共可以套出多少个不同的三角形?【答案】200(个)【解答】共有三角形个.例10.下图由相同的正方形和相同的等腰直角三角形构成, 则正方形的个数为多少?(17届华杯赛笔试初赛小高组第6题)【答案】83(个)【解答】包含1小个正方形的正方形有2+4+6+8+8+6+4+2=40个;包含4小个正方形的正方形有1+3+5+7+5+3+1=25个;包含9小个正方形的正方形有2+4+4+2=12个;包含16小个正方形的正方形有1+3+1=5个;共有正方形40+25+12+5+1=83个.例11. 求图中一共有多少条线段?求图中一共有多少个矩形?【答案】70条线段,60个矩形【解答】每一条线段由同一行或同一列的两个顶点确定,因此共有条线段.每个矩形由长和宽上的各一条线段对应形成,如下图:因此共有个矩形.例12. 数一数,图中有多少个三角形?【答案】78个【解答】只包含1个基本图形的有36个(朝上的21个,朝下的15个);包含4个基本图形的有21个(朝上的15个,朝下的6个);包含9个基本图形的有11个(朝上的10个,朝下的1个);包含16个基本图形的有6个;包含25个基本图形的有3个;包含36个基本图形的有1个.所以共有36+21+11+6+3+1=78个.例13. 下图是一个长为9,宽为4的长方形网格,每一个小格都是一个正方形,那么:1)从中可以数出多少个矩形?2)从中可以数出多少个正方形?3)从中可以数出包含黑点的矩形有多少个?【答案】1)450个;2)80个;3)144个【解答】1)图中共有个矩形;2)包含1个基本图形的正方形共有4×9=36个;包含4个基本图形的正方形共有3×8=24个;包含9个基本图形的正方形共有2×7=14个;包含16个基本图形的正方形共有1×6=6个.则共有36+24+14+6=80个.3)黑点左下方的顶点共有18个,黑点右上方的顶点共有8个,所以包含黑点的矩形共有18×8=144个.例14. 图中一共包含多少个矩形?【答案】135个【解答】第(1)部分和第(3)部分合并起来是一个3×5的大矩形(如下图所示),其中一共包含矩形个;第(2)部分和第(3)部分合并起来是一个6×2的大矩形(如下图所示),其中一共包含矩形个;第(3)部分中的矩形被重复计算了,其中共有矩形个.所以图中一共包含矩形90+63-18=135个.例15. 图中的木板上钉着12枚钉子,排成三行四列的长方阵. 那么用橡皮筋一共可以套出多少个不同的三角形?【答案】200个【解答】从12枚钉子中选择3枚钉子的组合总数是.而图中共有3条直线上各有4个点(如下图实线所示),另外还有8条直线上各有3个点(如下图虚线所示).因此用橡皮筋一共可以套出个不同的三角形.例16. 求图中所有矩形的面积和以及周长的总和.【答案】周长总和:1364;面积总和:1800【解答】矩形的10种长的总长是3++4++2++6++7++6++8++9++12++15=72。

小学六年级奥数几何计数问题专项强化训练(中难度)

小学六年级奥数几何计数问题专项强化训练(中难度)

小学六年级奥数几何计数问题专项强化训练(中难度)例题1:在一个正方形的边长为5cm的区域内,用红、蓝两种颜色的正方形砖头铺满,每个颜色的砖头都可以使用任意多个,要求两种颜色的砖头必须完全分开铺,且不能有重叠部分,那么一共有多少种不同的铺法?解析:首先我们知道正方形边长为5cm,正方形砖头的边长可以为1cm、2cm、3cm、4cm或5cm。

由于两种颜色的砖头必须完全分开铺,且不能有重叠部分,所以我们可以分别计算每种颜色砖头的铺法数量,然后相乘得到总的铺法数量。

对于红色砖头的铺法数量,我们可以考虑从左上角开始铺设。

当砖头的边长为1cm时,只有一种铺法。

当砖头的边长为2cm时,有两种铺法,水平或垂直放置。

当砖头的边长为3cm时,有三种铺法,水平放置、垂直放置或者斜放。

同理,当砖头的边长为4cm时,有四种铺法,水平放置、垂直放置、斜放或者两个合并一起放置。

当砖头的边长为5cm时,只有一种铺法,即整个正方形都用红色砖头铺满。

因此,红色砖头的铺法数量为1 + 2 + 3 + 4 + 1 = 11种。

同理,蓝色砖头的铺法数量也为11种。

总的铺法数量为11 * 11 = 121种。

专项练习应用题:1. 在一个正方形的边长为6cm的区域内,用红、蓝、黄三种颜色的正方形砖头铺满,每个颜色的砖头都可以使用任意多个,要求三种颜色的砖头必须完全分开铺,且不能有重叠部分,那么一共有多少种不同的铺法?2. 在一个正方形的边长为8cm的区域内,用红、蓝两种颜色的正方形砖头铺满,每个颜色的砖头都可以使用任意多个,要求两种颜色的砖头必须完全分开铺,且不能有重叠部分,那么一共有多少种不同的铺法?3. 在一个正方形的边长为10cm的区域内,用红、蓝、绿三种颜色的正方形砖头铺满,每个颜色的砖头都可以使用任意多个,要求三种颜色的砖头必须完全分开铺,且不能有重叠部分,那么一共有多少种不同的铺法?4. 在一个正方形的边长为7cm的区域内,用红、蓝两种颜色的正方形砖头铺满,每个颜色的砖头都可以使用任意多个,要求两种颜色的砖头必须完全分开铺,但可以有重叠部分,那么一共有多少种不同的铺法?5. 在一个正方形的边长为9cm的区域内,用红、蓝、绿三种颜色的正方形砖头铺满,每个颜色的砖头都可以使用任意多个,要求三种颜色的砖头必须完全分开铺,但可以有重叠部分,那么一共有多少种不同的铺法?6. 有一条长度为10cm的线段,若将其分成三段长度相等的线段,那么一共有多少种不同的分法?7. 有一条长度为12cm的线段,若将其分成四段长度相等的线段,那么一共有多少种不同的分法?8. 有一条长度为15cm的线段,若将其分成五段长度相等的线段,那么一共有多少种不同的分法?9. 有一条长度为8cm的线段,若将其分成两段长度为整数的线段,且这两段线段的长度之差为1cm,那么一共有多少种不同的分法?10. 有一条长度为11cm的线段,若将其分成三段长度为整数的线段,且这三段线段的长度之差为1cm,那么一共有多少种不同的分法?11. 有一条长度为14cm的线段,若将其分成四段长度为整数的线段,且这四段线段的长度之差为1cm,那么一共有多少种不同的分法?12. 在一个正方形的边长为4cm的区域内,用红、蓝两种颜色的正方形砖头铺满,每个颜色的砖头都可以使用任意多个,要求两种颜色的砖头可以重叠铺,那么一共有多少种不同的铺法?13. 在一个正方形的边长为6cm的区域内,用红、蓝、黄三种颜色的正方形砖头铺满,每个颜色的砖头都可以使用任意多个,要求三种颜色的砖头可以重叠铺,那么一共有多少种不同的铺法?14. 在一个正方形的边长为9cm的区域内,用红、蓝、绿三种颜色的正方形砖头铺满,每个颜色的砖头都可以使用任意多个,要求三种颜色的砖头可以重叠铺,那么一共有多少种不同的铺法?15.在一个正方形的边长为5cm的区域内,用红、蓝、黄、绿四种颜色的正方形砖头铺满,每个颜色的砖头都可以使用任意多个,要求四种颜色的砖头可以重叠铺,那么一共有多少种不同的铺法?例题2:题目:在一个正方形格子图中,每个格子都填上了数字0或1,使得每行每列的数字和都为偶数。

四年级奥数—几何中的计数问题

四年级奥数—几何中的计数问题

几何中的计数问题
例1、数一数下列图形中各有多少条线段。

例2、数一数下图中共有多少个角。

例3、数一数下图中共有多少个角。

例4、下图中,各有多少个三角形。

例5、如下图中,数一数共有多少条线段,多少个三角形。

例6、如下图中,共有多少个角。

例7、如下图,数一数共有多少个长方形。

例8、数一数下图中长方形的个数。

例9、数一数下面各图中所有正方形的个数。

例10、数一数下图中有多少个正方形。

例11、数一数下图三角形的个数。

例12、数一数下图中三角形的个数。

例13、数一数下图中三角形的个数。

例14、数一数下图中三角形的个数。

练:1、数一数下面各图中有多少条线段。

2、数一数下面各图中有多少个角。

3、数一数下面各图中,各有多少条线段。

4、数一数下面各图中,各有多少条线段,各有多少个三角形。

5、下面图中有多少个正方形。

6、下图中有多少个长方形。

7、下图中有多少个三角形。

8、下图中有多少个长方形。

9、下图中各有多少个三角形。

小学奥数系列:第七讲 几何中的计数问题(一)

小学奥数系列:第七讲 几何中的计数问题(一)

第七讲几何中的计数问题(一)几何中的计数问题包括:数线段、数角、数长方形、数正方形、数三角形、数综合图形等.通过这一讲的学习,可以帮助我们养成按照一定顺序去观察、思考问题的良好习惯,逐步学会通过观察、思考探寻事物规律的能力.一、数线段我们把直线上两点间的部分称为线段,这两个点称为线段的端点.线段是组成三角形、正方形、长方形、多边形等最基本的元素.因此,观察图形中的线段,探寻线段与线段之间、线段与其他图形之间的联系,对于了解图形、分析图形是很重要的.例1 数一数下列图形中各有多少条线段.分析要想使数出的每一个图形中线段的总条数,不重复、不遗漏,就需要按照一定的顺序、按照一定的规律去观察、去数.这样才不至于杂乱无章、毫无头绪.我们可以按照两种顺序或两种规律去数.第一种:按照线段的端点顺序去数,如上图(1)中,线段最左边的端点是A,即以A 为左端点的线段有AB、AC两条以B为左端点的线段有BC一条,所以上图(1)中共有线段2+1=3条.同样按照从左至右的顺序观察图(2)中,以A为左端点的线段有AB、AC、AD 三条,以B为左端点的线段有BC、BD两条,以C为左端点的线段有CD一条.所以上页图(2)中共有线段为3+2+1=6条.第二种:按照基本线段多少的顺序去数.所谓基本线段是指一条大线段中若有n个分点,则这条大线段就被这n个分点分成n+1条小线段,这每条小线段称为基本线段.如上页图(2)中,线段AD上有两个分点B、C,这时分点B、C把AD分成AB、BC、CD三条基本线段,那么线段AD总共有多少条线段?首先有三条基本线段,其次是包含有二条基本线段的是:AC、BD二条,然后是包含有三条基本线段的是AD这样一条.所以线段AD上总共有线段3+2+1=6条,又如上页图(3)中线段AE上有三个分点B、C、D,这样分点B、C、D把线段AE分为AB、BC、CD、DE四条基本线段,那么线段AE上总共有多少条线段?按照基本线段多少的顺序是:首先有4条基本线段,其次是包含有二条基本线段的有3条,然后是包含有三条基本线段的有2条,最后是包含有4条基本线段的有一条,所以线段AE上总共有线段是4+3+2+1=10条.解:①2+1=3(条).② 3+2+1=6(条).③ 4+3+2+1=10(条).小结:上述三例说明:要想不重复、不遗漏地数出所有线段,必须按照一定顺序有规律的去数,这个规律就是:线段的总条数等于从1开始的连续几个自然数的和,这个连续自然数的和的最大的加数是线段分点数加1或者是线段所有点数(包括线段的两个端点)减1.也就是基本线段的条数.例如右图中线段AF上所有点数(包括两个端点A、F)共有6个,所以从1开始的连续自然数的和中最大的加数是6—1=5,或者线段AF上的分点有4个(B、C、D、E).所以从1开始的连续自然数的和中最大的加数是4+1=5.也就是线段AF上基本线段(AB、BC、CD、DE、EF)的条数是5.所以线段AF上总共有线段的条数是5+4+3+2+1=15(条).二、数角例2数出右图中总共有多少个角.分析在∠AOB内有三条角分线OC1、OC2、OC3,∠AOB被这三条角分线分成4个基本角,那么∠AOB内总共有多少个角呢?首先有这4个基本角,其次是包含有2个基本角组成的角有3个(即∠AOC2、∠C1OC3、∠C2OB),然后是包含有3个基本角组成的角有2个(即∠AOC3、∠C1OB),最后是包含有4个基本角组成的角有1个(即∠AOB),所以∠AOB内总共有角:4+3+2+1=10(个).解:4+3+2+1=10(个).小结:数角的方法可以采用例1数线段的方法来数,就是角的总数等于从1开始的几个连续自然数的和,这个和里面的最大的加数是角分线的条数加1,也就是基本角的个数.例3 数一数右图中总共有多少个角?解:因为∠AOB内角分线OC1、OC2…OC9共有9条,即9+1=10个基本角.所以总共有角:10+9+8+…+4+3+2+1=55(个).。

小学生奥数几何、计数、计算练习题

小学生奥数几何、计数、计算练习题

小学生奥数几何、计数、计算练习题1.小学生奥数几何练习题篇一一、填空1、两个完全相同的等腰直角三角形可以拼成一个()形或()形或()形。

2、两个完全相同的梯形可能拼成一个()形或()形或()形。

3、当梯形的上底与下底相等时,梯形就变成()形。

4、平行四边形的面积公式是()。

5、一个平行四边形和一个三角形的面积相等,而且它们的的底边也相等,三角形的高是10厘米,平行四边形的高是()。

二、判断题1、两个三角形可以拼成一个平行四边形。

()2、一个梯形可以分成两个大小、形状完全相同的三角形。

()3、等腰梯形的对角线相等。

()4、两个形状相同、大小相等的直角梯形一定能拼成一个平行四边形。

()5、平行四边形、菱形、等腰梯形都是轴对称图形。

()6、只有一组对边平行的图形叫做梯形。

()7、举一反三:有一组对边平行的四边形叫做梯形。

()8、两个大小相等的三角形一定能拼成一个平行四边形。

()9、两个等底等高的三角形一定能拼成一个平行四边形。

()2.小学生奥数几何练习题篇二例题:一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米,如果长不变,宽减少3米,那么它的`面积减少36平方米,这个长方形原来的面积是多少平方米?由:“宽不变,长增加6米,那么它的面积增加54平方米”可知它的宽是54÷6=9(米);又由“长不变,宽减少3米,那么它的面积减少了36平方米”,可知它的长为:36÷3=12(米),所以,这个长方形的面积是12×9=108(平方米)。

(36÷3)×(54÷9)=108(平方米)练习:(1)一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米,如果长不变,宽增加4米,那么它的面积增加60平方米,这个长方形原来的面积是多少平方米?(2)一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米,如果长不变,宽增加3米,那么它的面积增加48平方米,这个长方形的面积原来是多少平方米?(3)一个长方形,如果它的长减少3米,或它的宽减少2米,那么它的面积都减少36平方米,求这个长方形原来的面积。

小学奥数几何题100道及答案(完整版)

小学奥数几何题100道及答案(完整版)

小学奥数几何题100道及答案(完整版)题目1:一个正方形的边长是5 厘米,它的面积是多少平方厘米?解题方法:正方形面积= 边长×边长,即5×5 = 25(平方厘米)答案:25 平方厘米题目2:一个长方形的长是8 分米,宽是6 分米,它的周长是多少分米?解题方法:长方形周长= (长+ 宽)×2,即(8 + 6)×2 = 28(分米)答案:28 分米题目3:一个三角形的底是10 厘米,高是6 厘米,它的面积是多少平方厘米?解题方法:三角形面积= 底×高÷2,即10×6÷2 = 30(平方厘米)答案:30 平方厘米题目4:一个平行四边形的底是12 米,高是8 米,它的面积是多少平方米?解题方法:平行四边形面积= 底×高,即12×8 = 96(平方米)答案:96 平方米题目5:一个梯形的上底是 4 厘米,下底是6 厘米,高是5 厘米,它的面积是多少平方厘米?解题方法:梯形面积= (上底+ 下底)×高÷2,即(4 + 6)×5÷2 = 25(平方厘米)答案:25 平方厘米题目6:一个圆的半径是3 厘米,它的面积是多少平方厘米?解题方法:圆的面积= π×半径²,即3.14×3²= 28.26(平方厘米)答案:28.26 平方厘米题目7:一个半圆的半径是 4 分米,它的周长是多少分米?解题方法:半圆的周长= 圆周长的一半+ 直径,即3.14×4×2÷2 + 4×2 = 20.56(分米)答案:20.56 分米题目8:一个长方体的长、宽、高分别是5 厘米、4 厘米、3 厘米,它的表面积是多少平方厘米?解题方法:长方体表面积= (长×宽+ 长×高+ 宽×高)×2,即(5×4 + 5×3 + 4×3)×2 = 94(平方厘米)答案:94 平方厘米题目9:一个正方体的棱长是6 分米,它的体积是多少立方分米?解题方法:正方体体积= 棱长³,即6³= 216(立方分米)答案:216 立方分米题目10:一个圆柱的底面半径是2 厘米,高是5 厘米,它的侧面积是多少平方厘米?解题方法:圆柱侧面积= 底面周长×高,底面周长= 2×3.14×2,即2×3.14×2×5 = 62.8(平方厘米)答案:62.8 平方厘米题目11:一个圆锥的底面半径是3 厘米,高是4 厘米,它的体积是多少立方厘米?解题方法:圆锥体积= 1/3×底面积×高,底面积= 3.14×3²,即1/3×3.14×3²×4 = 37.68(立方厘米)答案:37.68 立方厘米题目12:两个边长为4 厘米的正方形拼成一个长方形,长方形的长和宽分别是多少?面积是多少?解题方法:长方形的长为8 厘米,宽为4 厘米,面积= 8×4 = 32(平方厘米)答案:长8 厘米,宽4 厘米,面积32 平方厘米题目13:一个三角形的面积是18 平方厘米,底是6 厘米,高是多少厘米?解题方法:高= 面积×2÷底,即18×2÷6 = 6(厘米)答案:6 厘米题目14:一个平行四边形的面积是24 平方米,底是 4 米,高是多少米?解题方法:高= 面积÷底,即24÷4 = 6(米)答案:6 米题目15:一个梯形的面积是30 平方分米,上底是5 分米,下底是7 分米,高是多少分米?解题方法:高= 面积×2÷(上底+ 下底),即30×2÷(5 + 7)= 5(分米)答案:5 分米题目16:一个圆环,外圆半径是5 厘米,内圆半径是 3 厘米,圆环的面积是多少平方厘米?解题方法:圆环面积= 外圆面积-内圆面积,即 3.14×(5²- 3²)= 50.24(平方厘米)答案:50.24 平方厘米题目17:一个长方体的棱长总和是48 厘米,长、宽、高的比是3:2:1,长方体的体积是多少立方厘米?解题方法:一条长、宽、高的和为48÷4 = 12 厘米,长为6 厘米,宽为4 厘米,高为2 厘米,体积= 6×4×2 = 48(立方厘米)答案:48 立方厘米题目18:一个正方体的表面积是54 平方分米,它的一个面的面积是多少平方分米?解题方法:一个面的面积= 表面积÷6,即54÷6 = 9(平方分米)答案:9 平方分米题目19:一个圆柱的底面直径是4 分米,高是3 分米,它的表面积是多少平方分米?解题方法:底面积= 3.14×(4÷2)²= 12.56 平方分米,侧面积= 3.14×4×3 = 37.68 平方分米,表面积= 2×12.56 + 37.68 = 62.8(平方分米)答案:62.8 平方分米题目20:一个圆锥的底面周长是18.84 分米,高是5 分米,它的体积是多少立方分米?解题方法:底面半径= 18.84÷3.14÷2 = 3 分米,体积= 1/3×3.14×3²×5 = 47.1(立方分米)答案:47.1 立方分米题目21:一个长方体的水箱,长 5 分米,宽4 分米,高 3 分米,里面装满水,把水倒入一个棱长为5 分米的正方体水箱,水深多少分米?解题方法:水的体积= 5×4×3 = 60 立方分米,正方体水箱底面积= 5×5 = 25 平方分米,水深= 60÷25 = 2.4 分米答案:2.4 分米题目22:一块长方形的铁皮,长8 分米,宽6 分米,从四个角各切掉一个边长为1 分米的正方形,然后做成一个无盖的盒子,这个盒子的容积是多少立方分米?解题方法:盒子长6 分米,宽4 分米,高1 分米,容积= 6×4×1 = 24(立方分米)答案:24 立方分米题目23:一个圆柱的体积是60 立方厘米,底面积是12 平方厘米,高是多少厘米?解题方法:高= 体积÷底面积,即60÷12 = 5(厘米)答案:5 厘米题目24:一个圆锥和一个圆柱等底等高,圆柱的体积是27 立方分米,圆锥的体积是多少立方分米?解题方法:等底等高的圆锥体积是圆柱体积的1/3,即27×1/3 = 9(立方分米)答案:9 立方分米题目25:把一个棱长为 6 厘米的正方体铁块熔铸成一个底面积为36 平方厘米的圆柱体,这个圆柱体的高是多少厘米?解题方法:正方体体积= 6³= 216 立方厘米,圆柱体的高= 体积÷底面积,即216÷36 = 6(厘米)答案:6 厘米题目26:一个直角三角形的两条直角边分别是3 厘米和4 厘米,斜边是5 厘米,这个三角形的面积是多少平方厘米?解题方法:直角三角形面积= 两条直角边乘积的一半,即3×4÷2 = 6(平方厘米)答案:6 平方厘米题目27:一个等腰三角形的周长是20 厘米,其中一条腰长8 厘米,底边长多少厘米?解题方法:等腰三角形两腰相等,所以底边长= 周长-腰长×2,即20 - 8×2 = 4(厘米)答案:4 厘米题目28:一个扇形的圆心角是90°,半径是6 厘米,这个扇形的面积是多少平方厘米?解题方法:扇形面积= 圆心角÷360°×圆的面积,即90÷360×3.14×6²= 28.26(平方厘米)答案:28.26 平方厘米题目29:一个长方体的底面是边长为5 厘米的正方形,高是8 厘米,这个长方体的体积是多少立方厘米?解题方法:长方体体积= 底面积×高,底面积= 5×5 = 25 平方厘米,体积= 25×8 = 200(立方厘米)答案:200 立方厘米题目30:一个圆柱的底面周长是18.84 厘米,高是10 厘米,它的体积是多少立方厘米?解题方法:底面半径= 18.84÷3.14÷2 = 3 厘米,体积= 3.14×3²×10 = 282.6(立方厘米)答案:282.6 立方厘米题目31:一个圆锥的底面直径是8 厘米,高是6 厘米,它的体积是多少立方厘米?解题方法:底面半径= 8÷2 = 4 厘米,体积= 1/3×3.14×4²×6 = 100.48(立方厘米)答案:100.48 立方厘米题目32:把一个棱长为8 厘米的正方体木块削成一个最大的圆柱,这个圆柱的体积是多少立方厘米?解题方法:圆柱的底面直径和高都是8 厘米,体积= 3.14×(8÷2)²×8 = 401.92(立方厘米)答案:401.92 立方厘米题目33:一个长方体玻璃缸,从里面量长4 分米,宽 3 分米,高5 分米,缸内水深2.5 分米。

小学数学 奥数讲义计数专题几何计数

小学数学 奥数讲义计数专题几何计数

小学数学奥数讲义计数专题几何计数小学数学奥数讲义计数专题几何计数在小学数学的教学中,奥数讲义是一本非常重要的学习资料。

其中计数专题是数学学习的基础,也是几何计数的重要内容之一。

本文将对小学数学奥数讲义中的几何计数进行详细介绍。

一、几何计数的概念几何计数是指通过观察几何形状,根据一定的规律和方法进行计数的过程。

它主要包括图形的边数、顶点数和对称性等方面的计数。

二、图形的边数的计数计算图形的边数是几何计数的重要内容之一。

对于任何一条直线,它没有边,因为它是无限长的。

对于一个封闭的图形,它的边数等于它的边界线的线段数。

例如,一个三角形有三条边,一个正方形有四条边。

三、图形的顶点数的计数计算图形的顶点数也是几何计数的重要内容之一。

顶点是指图形的两条边交汇的点。

对于一个封闭图形,它的顶点数等于它的边界线上的交点数加上中心点(如果存在的话)。

例如,一个三角形有三个顶点,一个正方形有四个顶点。

四、图形的对称性的计数计算图形的对称性也是几何计数中的重要内容。

对称性是指图形的某一部分与另一部分关于某个轴线对称,这个轴线称为对称轴。

对称轴的数量可以通过观察图形的特点来确定。

例如,一个正方形有四条对称轴,分别是两条对角线和两条垂直于边的中垂线。

五、实例演示为了更好地理解几何计数的概念和方法,我们举一个实例来演示。

假设有一个五角星形的图形,我们来计算它的边数、顶点数和对称性。

首先,观察图形,我们可以看到它有五条边,所以边数为5。

接下来,我们继续观察图形,可以看到它有五个顶点,所以顶点数为5。

最后,我们观察图形的对称性。

五角星形图形有五条对称轴,分别是五条连结顶点的线段。

六、总结通过以上的介绍和实例演示,我们了解了几何计数在小学数学奥数讲义中的重要性。

几何计数包括图形的边数、顶点数和对称性等内容,通过观察和计数,我们可以更深入地理解图形的特点和性质。

在小学数学教学中,几何计数是培养学生观察、分析和计算能力的一种重要方法。

小学奥林匹克数学 竞赛数学 五年级 第6讲-几何计数

小学奥林匹克数学  竞赛数学 五年级 第6讲-几何计数

第6讲几何计数【例1】导引拓展篇第1题如图,数一数,图中有多少个三角形?包含1个小三角形的有25个包含4个小三角形的有13个包含9个小三角形的有6个包含16个小三角形的有3个包含25个小三角形的有1个++++=所以共有个251363148按照顺序数出图形个数【例2】导引拓展篇第2题数一数,两个图形中分别有多少个三角形?包含1块的三角形有5个;包含2块的三角形有4个;包含3块的三角形有1个;包含4块的三角形有1个;没有5块和6块的三角形;包含7块的大三角形1个;因此所有三角形一共有++++=5411112【例2】导引拓展篇第2题数一数,两个图形中分别有多少个三角形? 共有12个三角形 增加10个三角形 增加10个三角形因此原图中共有个三角形. B C BA DEF12101032++=【例3】导引拓展篇第3题数一数下面的三个图形中分别有多少个三角形.整个五边形被分成了11块由1块构成的三角形有10个;由2块构成的三角形是10个;由3块构成的三角形共10个;由5块构成的三角形有5个.共有10+10+10+5=35个三角形。

【例3】导引拓展篇第3题数一数下面的三个图形中分别有多少个三角形.加上虚线就加上6个三角形变成35个三角形原图共有35-6=29个三角形【例3】导引拓展篇第3题AB C增加了一条线段AC以AB为边增加三角形有4个,以BC为边增加三角形有2个,以AC为边增加三角形有6个,共增加12个共有35+12=47个三角形数一数下面的三个图形中分别有多少个三角形.【例4】导引拓展篇第4题数一数,图中有多少个三角形?两个部分中各有35个三角形第一种有10个第二种有5个原图中共有35×2+10+5=85个三角形【例5】导引拓展篇第5题数一数图中共有多少个长方形?(正方形是特殊长方形)由1块组成的长方形共有7个由2块组成的长方形共有4个由3块组成的长方形共有2个由4块组成的长方形有1个由5块组成的长方形有1个由6块组成的长方形有1个由7块组成的长方形有1个图中共有长方形7+4+2+1+1+1+1=17个【例6】导引拓展篇第5题如图所示的一个大菱形,那么图中共能数出多少个菱形?设最小的菱形边长为1边长为1的菱形共有4×4=16个边长为2的菱形共有3×3=9个边长为3的菱形共有2×2=4个边长为4的菱形有1×1=1个菱形共有16+9+4+1=30个2212+(⋅⋅⋅⋅⋅⋅)1-nn++【例7】导引拓展篇第7题这是一个长为9,宽为4的长方形网格,每一个小格都是一个正方形.请问:(1)从中可以数出多少个长方形?(2)包含黑点的长方形有多少个?(1)从5条横线中取2条横线共有种方法从10条竖线中取2条竖线共有中方法图中共有长方形 22510450C C ⨯=(2)黑点上面有2条横线,下面有3条横线所以有2×3=6种取法左边有6条竖线,右边有4条竖线 所以又4×6=24种取法 共有6×24=144个含黑点的长方形 21n 21m C C ++⨯m ×n 个网格中有 个长方形【例8】导引拓展篇第8题数一数,图中共有多少个长方形?左边阴影一共有长方形个 右方阴影一共有长方形个 被重复计算有个 图中一共包含长方形90+63-18=135个224690C C ⨯=227363C C ⨯=224318C C ⨯=【例9】导引拓展篇第9题图中共有多少个平行四边形?尖朝右、尖朝左和尖朝上三种最小的平行四边形有6个两个小平行四边形拼成的有6个三个小平行四边形拼成的有2个四个小平行四边形拼成的有1个共15个有15×3=45个平行四边形【例10】导引拓展篇第10题18个大小相同的小正三角形拼成了一个平行四边形.数一数,图中共有多少个梯形?左上右下的斜线、左下右上的斜线和竖线三种左上右下:6×3+4=22个梯形左下右上: 6×3+4=22个梯形竖线梯形:5×2+2=12个所以共有22+22+12=56个梯形【例11】导引拓展篇第11题木板上钉着12枚钉子,排成三行四列的长方阵.用橡皮筋一共可以套出多少个不同的三角形?三角形由不在同一直线的三点组的 从12个点中任意选择3个点有 共线三点组共有12+8=20个 所以共有220-20=200个三角形220C 312【例12】导引拓展篇第12题方格纸上放了20枚棋子,以棋子为顶点,可以连出多少正方形?最小方格有9个小正方形小正方形个数有4个小正方形个数有2个小正方形个数有4个小正方形个数有2个一共有9+4+2+4+2=21个【例13】导引拓展篇第13题图中,共有多少个不同的曲边形?中间是1个五角星,边上是5个小块1个小块:5+5=10个曲边型2个小块: 3个小块: 4个小块: 5个小块:1个共有10+10+10+5+1=36个曲边型10C 25=10C 35=5C 45=【例14】导引拓展篇第14题一个2×3的网格中,每个小正方形的面积都是1.那么以格点为顶点,可以连成多少个面积为1的三角形?底是2高是1、底是1高是2底是2高是1: 底是1高是2: 底是1高是2又是底是2高是1:直角三角形重复 重复直角三角形为1×2直角三角形1×2的长方形中由4个这样的直角三角形 重复共有4×7=28种面积为1的三角形共有:50+48-28=70种4×2 +4×2×2 +4×2 +9×2 =50种 3×4×2 +2×3×4 =48种本讲知识点汇总一、按照顺序数出图形个数二、m ×n 的方格中长方形的个数为 三、正方形以及菱形的个数为 四、可以通过对称或者图形相似简化计数过程21n 21m C C ++⨯22211-n n ++)+(⋅⋅⋅⋅⋅⋅下节课见!。

小学生奥数几何题、计算题、计数练习题

小学生奥数几何题、计算题、计数练习题

小学生奥数几何题、计算题、计数练习题1.小学生奥数几何题练习题1、一个长方体的长、宽、高分别是11厘米、6厘米、4厘米,如果高增加3厘米,表面积增加多少平方厘米?2、一个正方体木块,表面积是30平方分米,如果把它据成大小一样的8个小正方体木块,每个小木块的表面积是多少?3、一块长方体石料,长4分米,横截面是一个边长为0.5分米的正方形,这块石料的表面积是多少?如果每立方分米石料重2.7千克,这块石料有多重?4、长方体的右侧面面积是12平方厘米,前面面积是8平方厘米,上面面积是6平方厘米,这个长方体的体积是多少立方厘米?5、把一个体积为460立方厘米的石块放入一个长方体容器中,完全进入水中后,水面由148厘米上升到150厘米,这个容器的底面积是多少?2.小学生奥数计算题练习题计算题:1、用竖式计算.18.25×34=2、用竖式计算.9.35×4.2=3、用竖式计算.15.07×9.8=4、用竖式计算.7.02×0.56=(得数保留两位小数)5、81.25×0.6×9.3=6、15×3.6+4.83=7、98.42×2.5-83.7=8、700×0.34×2=9、172.4×6.2+2724×0.38=10、4.75-9.64+8.25-1.36=11、3.17-2.74+4.7+5.29-0.26+6.3=12、(5.25+0.125+5.75)×8=13、34.5×8.23-34.5+2.77×34.5=14、6.25×0.16+264×0.0625+5.2×6.25+0.625×20=15、0.035×935+0.035+3×0.035+0.07×61×0.5=3.小学生奥数计算题练习题1、16+815+328-235-7442、456797+455457796+1153、(13+25+37+49)(113+135+157+179)4、2005200612004+122003200320055、(1996+19199696+191919969696)19191919969696966、(1+0.12+0.23)(0.12+0.23+0.34)-(1+0.12+0.23+0.34)(0.12+0.23)7、1+312+516+7112+9120+11130+13142+15156+17172+191908、325+358+3811++31972009、112+224+347+4711+51116+6162210、12+56+1112+1920+2930+4142+97019702+9899990011、123+246+369++100200300234+468+6912++20030040012、127+1712+11217+11722++19297+1971024.小学生奥数计数练习题1、把一包糖果分给小朋友们,如果每人分10粒,正好分完;如果每人分16粒,则3人分不到,这包糖有_________粒。

小学奥数-几何计数-专题

小学奥数-几何计数-专题

知识框架图7 计数综合 7-8 几何计数1.掌握计数常用方法;2。

熟记一些计数公式及其推导方法; 3.根据不同题目灵活运用计数方法进行计数.本讲主要介绍了计数的常用方法枚举法、标数法、树形图法、插板法、对应法等,并渗透分类计数和用容斥原理的计数思想.一、几何计数在几何图形中,有许多有趣的计数问题,如计算线段的条数,满足某种条件的三角形的个数,若干个图分平面所成的区域数等等.这类问题看起来似乎没有什么规律可循,但是通过认真分析,还是可以找到一些处理方法的.常用的方法有枚举法、加法原理和乘法原理法以及递推法等.n 条直线最多将平面分成21223(2)2n n n ++++=++……个部分;n 个圆最多分平面的部分数为n (n-1)+2;n 个三角形将平面最多分成3n (n-1)+2部分;n 个四边形将平面最多分成4n (n —1)+2部分……在其它计数问题中,也经常用到枚举法、加法原理和乘法原理法以及递推法等.解题时需要仔细审题、综合所学知识点逐步求解.排列问题不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关;组合问题与各事物所在的先后顺序无关,只与这两个组合中的元素有关.教学目标知识要点几何计数二、几何计数分类数线段:如果一条线段上有n+1个点(包括两个端点)(或含有n个“基本线段”),那么这n+1个点把这条线段一共分成的线段总数为n+(n-1)+…+2+1条数角:数角与数线段相似,线段图形中的点类似于角图形中的边.数三角形:可用数线段的方法数如右图所示的三角形(对应法),因为DE上有15条线段,每条线段的两端点与点A相连,可构成一个三角形,共有15个三角形,同样一边在BC上的三角形也有15个,所以图中共有30个三角形.数长方形、平行四边形和正方形:一般的,对于任意长方形(平行四边形),若其横边上共有n条线段,纵边上共有m条线段,则图中共有长方形(平行四边形)mn个.例题精讲【例 1】下图的两个图形(实线)是分别用10根和16根单位长的小棍围成的.如果按此规律(每一层比上面一层多摆出两个小正方形)围成的图形共用了60多根小棍,那么围成的图形有几层,共用了多少根小棍?(4级)【例 2】用3根等长的火柴可以摆成一个等边三角形.如图用这样的等边三角形拼合成一个更大的等边三角形。

小学奥数(5)几何计数

小学奥数(5)几何计数

周期问题
周期现象:事物在运动变化过程中,某些特征有规律循环出现; 周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关 键是确定循环周期. 分类: 1.图形中的周期问题; 2.数列中的周期问题; 3.年月日中的周期问题.
• 小倩有一串彩色珠子,按红、黄、蓝、绿、白五种颜色排列. ⑴第73颗是
两枚导弹相距41620千米,处于同一路线上彼此 相向而行。其中一枚以每小时38000千米的速度 飞行,另一枚以每小时22000千米的速度飞行。 请问:它们在碰撞前的1分钟时相距 多少 千米?
如图,数数图中三角形的个数。
• 解析:按照三角形不同的底边或公共顶点来分类相加计数。
1 BA边共有3条基本线段,可以组成6个以C点为公共顶点的三角形; 2 BD边共有3条基本线段,可以组成6个以C点为公共顶点的三角形; 3 分别以BA、BG、BF为底边,对应以D、E、F为顶点,可组成3个三角 形; 6×2+3其中同时包括两个 个.
的长方形有______
从上面第一排开始,包括两个☆的长方形有 (2+2+2)×2=12个; 第二排开始,包括两个☆的长方形有 (2+2+2)×2=12个; 同时包括两个☆的长方形有12+12=24个.
加法原理和乘法原理的综合运用
加法原理:完成一件工作共有N类方法。在第一类方法中有M1种不同
的方法,在第二类方法中有M2种不同的方法,„„,在第N类方法中有MN种 不同的方法,那么完成这件工作共有N=M1+M2+M3+„+MN种不同方法。
乘法原理:完成一件工作共需N个步骤:完成
第一个步骤有M1种方法,完成第二个步骤有M2 种方法,,完成第N个步骤有MN种方法。那么, 完成这件工作共有M1×M2ׄ×MN种方法。

小学奥数知识体系之几何计数-四五年级组

小学奥数知识体系之几何计数-四五年级组

几何计数几何计数分类数线段:如果一条线段上有n+1个点(包括两个端点)(或含有n个“基本线段”),那么这n+1个点把这条线段一共分成的线段总数为n+(n-1)+…+2+1条数角:数角与数线段相似,线段图形中的点类似于角图形中的边.数三角形:可用数线段的方法数如右图所示的三角形(对应法),因为DE上有15条线段,每条线段的两端点与点A相连,可构成一个三角形,共有15个三角形,同样一边在BC上的三角形也有15个,所以图中共有30个三角形.数长方形、平行四边形和正方形:一般的,对于任意长方形(平行四边形),若其横边上共有n条线段,纵边上共有m条线段,则图中共有长方形(平行四边形)mn个.【例1】数出右图中有多少条线段练习1:数出右图中有多少个锐角练习2:数一数下面图中各有多少个三角形。

练习3:从上海至青岛的某次直快列车,中途要停靠6个大站,这次列车有几种不同票价?【例题2】数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)练习1:下图中共有____个正方形.练习2:图中有______个正方形.【例3】下面的55⨯和64⨯图中共有____个正方形.练习1:在图中(单位:厘米): ①一共有几个长方形?②所有这些长方形面积的和是多少?练习2:如图,其中的每条线段都是水平的或竖直的,边界上各条线段的长度依次为5厘米、7厘米、9厘米、2厘米和4 厘米、6厘米、5厘米、1厘米.求图中长方形的个数,以及所有长方形面积的和.【例4】如图,其中同时包括两个☆的长方形有 个.练习1:在下图中,不包含☆的长方形有________个.(6级)练习2:图中含有“※”的长方形总共有________个.(6级)练习3:由20个边长为1的小正方形拼成一个45 长方形中有一格有“☆”图中含有“☆”的所有长方形(含正方形)共有 个,它们的面积总和是 . (第六届走美决赛试题)作业题:1:如图是由18个大小相同的小正三角形拼成的四边形.其中某些相邻的小正三角形可以拼成较大的正三角形若干个.那么,图中包含“*”号的大、小正三角形一共有______个.※※*2:如图AB,CD,EF,MN互相平行,则图中梯形个数与三角形个数的差是多少?3:图中共有多少个三角形?4:下图中的正方形被分成9个相同的小正方形,它们一共有16个顶点(共同的顶点算一个),以其中不在一条直线上的3个点为顶点,可以构成三角形.在这些三角形中,与阴影三角形有同样大小面积的有多少个?。

小学奥数- 几何计数(一)

小学奥数- 几何计数(一)

7-8-1几何计数(一)教学目标1.掌握计数常用方法;2.熟记一些计数公式及其推导方法;3.根据不同题目灵活运用计数方法进行计数.本讲主要介绍了计数的常用方法枚举法、标数法、树形图法、插板法、对应法等,并渗透分类计数和用容斥原理的计数思想.知识要点一、几何计数在几何图形中,有许多有趣的计数问题,如计算线段的条数,满足某种条件的三角形的个数,若干个图分平面所成的区域数等等.这类问题看起来似乎没有什么规律可循,但是通过认真分析,还是可以找到一些处理方法的.常用的方法有枚举法、加法原理和乘法原理法以及递推法等.n 条直线最多将平面分成212232)2n n n ++++=++……个部分;n 个圆最多分平面的部分数为n (n -1)+2;n 个三角形将平面最多分成3n (n -1)+2部分;n 个四边形将平面最多分成4n (n -1)+2部分……在其它计数问题中,也经常用到枚举法、加法原理和乘法原理法以及递推法等.解题时需要仔细审题、综合所学知识点逐步求解.排列问题不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关;组合问题与各事物所在的先后顺序无关,只与这两个组合中的元素有关.二、几何计数分类数线段:如果一条线段上有n +1个点(包括两个端点)(或含有n 个“基本线段”),那么这n +1个点把这条线段一共分成的线段总数为n +(n -1)+…+2+1条数角:数角与数线段相似,线段图形中的点类似于角图形中的边.数三角形:可用数线段的方法数如右图所示的三角形(对应法),因为DE 上有15条线段,每条线段的两端点与点A 相连,可构成一个三角形,共有15个三角形,同样一边在BC 上的三角形也有15个,所以图中共有30个三角形.数长方形、平行四边形和正方形:一般的,对于任意长方形(平行四边形),若其横边上共有n 条线段,纵边上共有m 条线段,则图中共有长方形(平行四边形)mn 个.例题精讲模块一、简单的几何计数【例1】七个同样的圆如右图放置,它有_______条对称轴.【例2】下面的表情图片中:,没有对称轴的个数为()(A )3(B )4(C )5(D )6【巩固】中心对称图形是:绕某一点旋转180°后能和原来的图形重合的图形,轴对称图形是:沿着一条直线对折后两部分完全重合的图形,图的4个图形中,既是中心对称图形又是的轴对称图形的有个。

小学奥数几何中的计数问题

小学奥数几何中的计数问题

小学奥数几何中的计数问题数长方形例1如下图,数一数下列各图中长方形的个数?分析:图(Ⅰ)中长方形的个数与AB边上所分成的线段的条数有关,每一条线段对应一个长方形,所以长方形的个数等于AB边上线段的条数,即长方形个数为:4+3+2+1=10(个).图(Ⅱ)中AB边上共有线段4+3+2+1=10条. BC边上共有线段:2+1=3(条),把AB上的每一条线段作为长,BC边上每一条线段作为宽,每一个长配一个宽,就组成一个长方形,所以图(Ⅱ)中共有长方形为:(4+3+2+1)×(2+1)=10×3=30(个).图(Ⅲ)中,依据计算图(Ⅱ)中长方形个数的方法:可得长方形个数为:(4+3+2+1)×(3+2+1)=60(个).解:图(Ⅰ)中长方形个数为4+3+2+1=10(个).图(Ⅱ)中长方形个数为:(4+3+2+1)×(2+1)=10×3=30(个).图(Ⅲ)中长方形个数为:(4+3+2+1)×(3+2+1)=10×6=60(个).小结:一般情况下,如果有类似图Ⅲ的任一个长方形一边上有n-1个分点(不包括这条边的两个端点),另一边上有m-1个分点(不包括这条边上的两个端点),通过这些点分别作对边的平行线且与另一边相交,这两组平行线将长方形分为许多长方形,这时长方形的总数为:(1+2+3+…+m)×(1+2+3+…+n).例2 如右图数一数图中长方形的个数.解:AB边上分成的线段有:5+4+3+2+1=15.BC边上分成的线段有:3+2+1=6.所以共有长方形:(5+4+3+2+1)×(3+2+1)=15×6=90(个).数正方形例3数一数下页各个图中所有正方形的个数.(每个小方格为边长为1的正方形)分析:图Ⅰ中,边长为1个长度单位的正方形有:2×2=4(个),边长为2个长度单位的正方形有:1×1=1(个).所以,正方形总数为1×1+2×2=1+4=5(个).图Ⅱ中,边长为1个长度单位的正方形有3×3=9(个);边长为2个长度单位的正方形有:2×2=4(个);边长为3个长度单位的正方形有1×1=1(个).所以,正方形的总数为:1×1+2×2+3×3=14(个).图Ⅲ中,边长为1个长度单位的正方形有:4×4=16(个);边长为2个长度单位的正方形有:3×3=9(个);边长为3个长度单位的正方形有:2×2=4(个);边长为4个长度单位的正方形有:1×1=1(个);所以,正方形的总数为:1×1+2×2+3×3+4×4=30(个).图Ⅳ中,边长为1个长度单位的正方形有:5×5=25(个);边长为2个长度单位的正方形有:4×4=16(个);边长为3个长度单位的正方形有:3×3=9(个);边长为4个长度单位的正方形有:2×2=4(个);边长为5个长度单位的正方形有:1×1=1(个).所有正方形个数为:1×1+2×2+3×3+4×4+5×5=55(个).小结:一般地,如果类似图Ⅳ中,一个大正方形的边长是n个长度单位,那么其中边长为1个长度单位的正方形个数有:n×n=n2(个),边长为2个长度单位的正方形个数有:(n-1)×(n-1)=(n-1)2(个)…;边长为(n-1)个长度单位的正方形个数有:2×2=22(个),边长为n个长度单位的正方形个数有:1×1=1(个).所以,这个大正方形内所有正方形总数为:12+22+32+…+n2(个).例4如右图,数一数图中有多少个正方形(其中每个小方格都是边长为1个长度单位的正方形).分析:为叙述方便,我们规定最小正方形的边长为1个长度单位,又称为基本线段,图中共有五类正方形.①以一条基本线段为边的正方形个数共有:6×5=30(个).②以二条基本线段为边的正方形个数共有:5×4=20(个).③以三条基本线段为边的正方形个数共有:4×3=12(个).④以四条基本线段为边的正方形个数共有:3×2=6(个).⑤以五条基本线段为边的正方形个数共有:2×1=2(个).所以,正方形总数为:6×5+5×4+4×3+3×2+2×1=30+20+12+6+2=70(个).小结:一般情况下,若一长方形的长被分成m等份,宽被分成n等份,(长和宽上的每一份是相等的)那么正方形的总数为(n<m):mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)·1显然例4是结论的特殊情况.例5 如下图,平面上有16个点,每个点上都钉上钉子,形成4×4的正方形钉阵,现有许多皮筋,问能套出多少个正方形.例6 如右图,数一数图中三角形的个数.分析这样的图形只能分类数,可以采用类似数正方形的方法,从边长为一条基本线段的最小三角形开始.Ⅰ.以一条基本线段为边的三角形:①尖朝上的三角形共有四层,它们的总数为:W①上=1+2+3+4=10(个).②尖朝下的三角形共有三层,它们的总数为:W①下=1+2+3=6(个).Ⅱ.以两条基本线段为边的三角形:①尖朝上的三角形共有三层,它们的总数为:W②上=1+2+3=6(个).②尖朝下的三角形只有一个,记为W②下=1(个).Ⅲ.以三条基本线段为边的三角形:①尖朝上的三角形共有二层,它们的总数为:W③上=1+2=3(个).②尖朝下的三角形零个,记为W③下=0(个).Ⅳ.以四条基本线段为边的三角形,只有一个,记为:W④上=1(个).所以三角形的总数是10+6+6+1+3+1=27(个).我们还可以按另一种分类情况计算三角形的个数,即按尖朝上与尖朝下的三角形的两种分类情况计算三角形个数.Ⅰ.尖朝上的三角形共有四种:W①下=1+2+3+4=10W②上=1+2+3=6W③上=1+2=3W④上=1所以尖朝上的三角形共有:10+6+3+1=20(个).Ⅱ.尖朝下的三角形共有二种:W①下=1+2+3=6W②下=1W③下=0W④下=0则尖朝下的三角形共有:6+1+0+0=7(个)所以,尖朝上与尖朝下的三角形一共有:20+7=27(个).小结:尖朝上的三角形共有四种.每一种尖朝上的三角形个数都是由1开始的连续自然数的和,其中连续自然数最多的和中最大的加数就是三角形每边被分成的基本线段的条数,依次各个连续自然数的和都比上一次少一个最大的加数,直到1为止.尖朝下的三角形的个数也是从1开始的连续自然数的和,它的第一个和恰是尖朝上的第二个和,依次各个和都比上一个和少最大的两个加数,以此类推直到零为止.(1)W①上=8+7+6+5+4=30(3)W③上=6+5+4=15(4)W④上=5+4=9(5)W⑤上=4∴尖朝上的三角形共有:30+22+15+9+4=80(个).Ⅱ.尖朝下的三角形有四种:(1)W①下=3+4+5+6+7=25(2)W②下=2+3+4+5=14(3)W③下=1+2+3=6(4)W④下=1尖朝下的三角形共有25+14+6+1=46(个).所以尖朝上与尖朝下的三角形总共有80+46=126(个).。

小学六年级奥数几何计数问题专项强化训练(高难度)

小学六年级奥数几何计数问题专项强化训练(高难度)

小学六年级奥数几何计数问题专项强化训练(高难度)例题1:某小学六年级有10名男生和8名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。

问共有几种不同的排列方式?解析:首先确定男生和女生的位置,男生和女生的位置可以互换,所以先计算男生和女生的排列方式。

男生和女生分别有10!和8!种排列方式。

但是男生和女生之间是需要相邻的(间隔排列),所以男生和女生的位置可以看作是一个整体,即总共有(10!)(8!)种排列方式。

因此,共有(10!)(8!)种不同的排列方式。

专项练习应用题:1. 某小学六年级有12名男生和10名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。

问共有几种不同的排列方式?2. 某小学六年级有8名男生和6名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。

问共有几种不同的排列方式?3. 某小学六年级有15名男生和12名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。

问共有几种不同的排列方式?4. 某小学六年级有6名男生和8名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。

问共有几种不同的排列方式?5. 某小学六年级有10名男生和9名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。

问共有几种不同的排列方式?6. 某小学六年级有7名男生和7名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。

问共有几种不同的排列方式?7. 某小学六年级有14名男生和15名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。

问共有几种不同的排列方式?8. 某小学六年级有9名男生和10名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。

小学奥数系列训练题几何计数_通用版

小学奥数系列训练题几何计数_通用版

2019年小学奥数计数专题——几何计数1.用3根等长的火柴可以摆成一个等边三角形.如图,用这样的等边三角形拼合成一个更大的等边三角形.如果这个大等边三角形昀每边由20根火柴组成,那么一共要用多少根火柴?2.如图,用长短相同的火柴棍摆成3×2019的方格网,其中每个小方格的边都由一根火柴棍组成,那么一共需用多少根火柴棍?3.图是一个跳棋棋盘,请你计算出棋盘上共有多少个棋孔?4.如图,在桌面上,用6个边长为l的正三角形可以拼成一个边长为1的正六边形.如果在桌面上要拼出一个边长为6的正六边形,那么,需要边长为1的正三角形多少个?5.如图,其中的每条线段都是水平的或竖直的,边界上各条线段的长度依次为5厘米、7厘米、9厘米、2厘米和4厘米、6厘米、5厘米、1厘米.求图中长方形的个数,以及所有长方形面积的和.6.如图,18个边长相等的正方形组成了一个3×6的方格表,其中包含“*”的长方形及正方形共有多少个?7.图是由若干个相同的小正方形组成的.那么,其中共有各种大小的正方形多少个? 8.图中共有多少个三角形?9.图是由18个大小相同的小正三角形拼成的四边形,其中某些相邻的小正三角形可以拼成较大的正三角形.那么,图中包含“*”的各种大小的正三角形一共有多少个? 10.如图,AB,CD,EF,MN互相平行,则图中梯形个数与三角形个数的差是多少? 11.在图中,共有多少个不同的三角形?12.如图,一块木板上有13枚钉子.用橡皮筋套住其中的几枚钉子,可以构成三角形、正方形、梯形等等,如图.那么,一共可以构成多少个不同的正方形?13.如图,用9枚钉子钉成水平和竖直间隔都为1厘米的正方阵.用一根橡皮筋将3枚不共线的钉子连结起来就形成一个三角形.在这样得到的三角形中,面积等于1平方厘米的三角形共有多少个?14.如图,木板上钉着12枚钉子,排成三行四列的长方阵.那么用橡皮筋共可套出多少个不同的三角形?15.如图,正方形ACEG的边界上有A,B,C,D,E,F,G这7个点,其中B,D,F分别在边AC,CE,EG上.以这7个点中的4个点为顶点组成的不同四边形的个数等于多少?16.数一数下列图形中各有多少条线段.17.数出下图中总共有多少个角.18.数一数下图中总共有多少个角?19.如下图中,各个图形内各有多少个三角形?20.如下图中,数一数共有多少条线段?共有多少个三角形?21.如右图中,共有多少个角?22.在图中(单位:厘米):①一共有几个长方形?②所有这些长方形面积的和是多少?23.由20个边长为1的小正方形拼成一个45长方形中有一格有“☆”图中含有“☆”的所有长方形(含正方形)共有个,它们的面积总和是。

小学奥数--几何计数25道

小学奥数--几何计数25道

【题型】应用题【题目】用3根等长的火柴可以摆成一个等边三角形.如图19-1,用这样的等边三角形拼合成一个更大的等边三角形.如果这个大等边三角形昀每边由20根火柴组成,那么一共要用多少根火柴?【答案】630【解析】把大的等边三角形分为20“层”分别计算火柴的根数:最上一“层”只用了3根火柴;从上向下数第二层用了3×2=6根火柴;从上向下数第三层用了3×3=9根火柴;……从上向下数第20层用了3×20=60根火柴.所以,总共要用火柴3×(1+2+3+…+20)=630根.【难度】难度3【知识点】几何计数【题目】如图19-2,用长短相同的火柴棍摆成3×1996的方格网,其中每个小方格的边都由一根火柴棍组成,那么一共需用多少根火柴棍?【答案】13975【解析】横放需1996×4根,竖放需1997×3根,共需1996×4+1997×3=13975根.【难度】难度2【知识点】几何计数【题目】图19-3是一个跳棋棋盘,请你计算出棋盘上共有多少个棋孔?【答案】【解析】把棋盘分割成一个平行四边形和四个小三角形,如下图.平行四边形中棋孔数为9×9=81,每个小三角形中有10个棋孔,所以棋孔共有81+10×4=121个.或直接数出有121个.【难度】难度3【知识点】几何计数【题目】如图19-4,在桌面上,用6个边长为l的正三角形可以拼成一个边长为1的正六边形.如果在桌面上要拼出一个边长为6的正六边形,那么,需要边长为1的正三角形多少个?【答案】【解析】如图AB=6,组成△AOB需要边长为1的正三角形共:1+3+5+7+9+11=36个,而拼成边长为6的正六边形需要6个△AOB,因此总共需要边长为1的正三角形36×6=216个.【难度】难度4【知识点】几何计数【题目】如图19-5,其中的每条线段都是水平的或竖直的,边界上各条线段的长度依次为5厘米、7厘米、9厘米、2厘米和4厘米、6厘米、5厘米、1厘米.求图中长方形的个数,以及所有长方形面积的和.【答案】100,10664【解析】确定好长方形的长和宽,长方形就唯一确定,而图中只需确定好横向线段,竖向线段,即可.于是横向线段有(1+2+3+4)=10种选法,竖向线段也有(1+2+3+4)=10种选法,则共有10×10=100个长方形.这些长方形的面积和为:(5+7+9+2+12+16+11+21+18+23)×(4+6+5+1+10+11+6+15+12+16)=124×86=10664(平方厘米).【难度】难度4【知识点】几何计数【题目】如图19-6,18个边长相等的正方形组成了一个3×6的方格表,其中包含“*”的长方形及正方形共有多少个?【答案】36【解析】我们把所求的长、正方形按占有的行数分为三类,每类的长、正方形的个数相等.其中只占有下面一行的有如下12种情况:于是共有12×3=36个正、长方形包含“*”.【难度】难度4【知识点】几何计数【题目】图19-7是由若干个相同的小正方形组成的.那么,其中共有各种大小的正方形多少个?【答案】130【解析】每个4×4正方形中有:边长为1的正方形4×4个;边长为2的正方形3×3个;边长为3的正方形2×2个,边长为4的正方形1×1个.总共有4×4+3×3+2×2+1×1=30个正方形.现在5个4×4的正方形,它们重叠部分是4个2×2的正方形.因此,图中正方形的个数是30×5-5×4=130.【难度】难度4【知识点】几何计数【题目】图19-8中共有多少个三角形?【答案】22【解析】边长为1的正三角形,有16个.边长为2的正三角形,尖向上的有3个,尖向下的也有3个.因此共有16+3+3=22个.【难度】难度2【知识点】几何计数【题目】图19-9是由18个大小相同的小正三角形拼成的四边形,其中某些相邻的小正三角形可以拼成较大的正三角形.那么,图中包含“*”的各种大小的正三角形一共有多少个?【答案】6【解析】设小正三角形的边长为1,分三类计算计数包含*的三角形中,边长为1的正三角形有1个;边长为2的正三角形有4个,边长为3的正三角形有1个;因此,图中包含“*”的所有大、小正三角形一共有1+4+1=6个.【难度】难度2【知识点】几何计数【题目】如图19-10,AB,CD,EF,MN互相平行,则图中梯形个数与三角形个数的差是多少?【答案】20【解析】图中共有三角形(1+2+3+4)×4=40个,梯形(1+2+3+4)×(1+2+4)=60个,梯形比三角形多60-40=20个.【难度】难度3【知识点】几何计数【题目】在图19-1l中,共有多少个不同的三角形?【答案】85【解析】下图中共有35个三角形,两个叠加成题中图形时,又多出5+5×2=15个三角形,共计35×2+15=85个三角形.【难度】难度5【知识点】几何计数【题目】如图19-12,一块木板上有13枚钉子.用橡皮筋套住其中的几枚钉子,可以构成三角形、正方形、梯形等等,如图19-13.那么,一共可以构成多少个不同的正方形?【答案】11【解析】按正方形的面积分类,设最小的正方形面积为1,面积为1的正方形有5个,如图a所示;面积为2的正方形有4个,如图b所示;面积为4的正方形有1个,如图c所示;还有1个面积比4大的正方形,如图d所示;于是,一共可以构成5+4+1+1=11个不同的正方形.【难度】难度3【知识点】几何计数【题目】如图19-14,用9枚钉子钉成水平和竖直间隔都为1厘米的正方阵.用一根橡皮筋将3枚不共线的钉子连结起来就形成一个三角形.在这样得到的三角形中,面积等于1平方厘米的三角形共有多少个?【答案】32【解析】我们分三种情况来找面积为1平方厘米的三角形,这些三角形的底与高分别为1厘米或2厘米,利用正方形的对称性:(1)等腰直角三角形,如下图a所示有△AOC,△COE,△EOG,△GOA,△BOH,△DFB,△FHD,△HBF,共计8个,其中以AC,CF,FG,GA为底的各一个,以BF,DH为底的各两个.(2)直角三角形,如图b所示有△ACH,△CHD,△ACD,△DHA,△BEF,△BCE,△CEF,△CFB,△DEG,△DGH,△EGH,△EHD,△GAB,△GBF,△FAB,△FGA,共计16个,其中以AD、CH、BE、CF、DG、EH、FA、GB为斜边的各两个.(3)钝角三角形,如图c所示有△ABE,△AHE,△ADE,△AFE,△CBG,△CFG,△CDG,△CHG共计8个,其中以AE、CG为边的各四个.于是,综上所述,共有面积为1平方厘米的三角形32个.【难度】难度4【知识点】几何计数【题目】如图19-15,木板上钉着12枚钉子,排成三行四列的长方阵.那么用橡皮筋共可套出多少个不同的三角形?【答案】200【解析】我们先任意选取三个点,那么第1个点有12个位置可以选择,第2个点有11个位置可以选择,第3个点有10个位置可以选择,但是每6种选法对应的都是同一个图形,如下图,ABC,ACB,BAC,BCA,CAB,CBA均是同一个图形.所以有12×11×10÷6=220种选法,但是如果这3点在同一条直线上就无法构成三角形,其中每行有4种情况,共3×4;每列有1种情况,共1×4;2个边长为2的正方形的4条对角线,共4种情况.所以,可以套出220-3×4-1×4-4=200个不同的三角形.【难度】难度2【知识点】几何计数【题目】如图19-16,正方形ACEG的边界上有A,B,C,D,E,F,G这7个点,其中B,D,F分别在边AC,CE,EG上.以这7个点中的4个点为顶点组成的不同四边形的个数等于多少?【答案】12【解析】如果暂时不考虑点之间的排列位置关系,从7个点中任取4个点,则第一个点有7个位置可选,第二个点有6个位置可选,第三个点有5个位置可选,第四个点有4个位置可选,而不考虑先后,那么有4×3×2×1=24种选法的实质是一样的,所有可能的组合数目应该是(7×6×5×4)÷24=35.我们只要从中减去不能构成四边形的情形.对图19-16而言,任取4个点而又不构成四边形的情形只能发生在所取的4个点中有3个来自正方形ACEG的一条边,而另一个则任意选取的时候,例如选定A、B、C3点,第4个点无论如何选取都不能构成四边形.正方形的4条边中有3条都存在这样的情况.而每次这种情况发生时,第4个顶点的选取有4种可能.所取的顶点只有4个,因此不可能出现同时选择了2条有3点共线的边的情况.那么需要排除的情况有4×3=12种.所以,满足题意的四边形个数有35-12=23个.【难度】难度4【知识点】几何计数【题目】数一数下列图形中各有多少条线段.【答案】15【解析】要想使数出的每一个图形中线段的总条数,不重复、不遗漏,就需要按照一定的顺序、按照一定的规律去观察、去数.这样才不至于杂乱无章、毫无头绪.我们可以按照两种顺序或两种规律去数.第一种:按照线段的端点顺序去数,如上图(1)中,线段最左边的端点是A,即以A为左端点的线段有AB、AC两条以B为左端点的线段有BC一条,所以上图(1)中共有线段2+1=3条.同样按照从左至右的顺序观察图(2)中,以A 为左端点的线段有AB、AC、AD三条,以B为左端点的线段有BC、BD两条,以C为左端点的线段有CD一条.所以上页图(2)中共有线段为3+2+1=6条. 第二种:按照基本线段多少的顺序去数.所谓基本线段是指一条大线段中若有n 个分点,则这条大线段就被这n个分点分成n+1条小线段,这每条小线段称为基本线段.如上页图(2)中,线段AD上有两个分点B、C,这时分点B、C把AD 分成AB、BC、CD三条基本线段,那么线段AD总共有多少条线段?首先有三条基本线段,其次是包含有二条基本线段的是:AC、BD二条,然后是包含有三条基本线段的是AD这样一条.所以线段AD上总共有线段3+2+1=6条,又如上页图(3)中线段AE上有三个分点B、C、D,这样分点B、C、D把线段AE分为AB、BC、CD、DE四条基本线段,那么线段AE上总共有多少条线段?按照基本线段多少的顺序是:首先有4条基本线段,其次是包含有二条基本线段的有3条,然后是包含有三条基本线段的有2条,最后是包含有4条基本线段的有一条,所以线段AE上总共有线段是4+3+2+1=10条.解:①2+1=3(条).② 3+2+1=6(条).③ 4+3+2+1=10(条).小结:上述三例说明:要想不重复、不遗漏地数出所有线段,必须按照一定顺序有规律的去数,这个规律就是:线段的总条数等于从1开始的连续几个自然数的和,这个连续自然数的和的最大的加数是线段分点数加1或者是线段所有点数(包括线段的两个端点)减1.也就是基本线段的条数.例如右图中线段AF 上所有点数(包括两个端点A、F)共有6个,所以从1开始的连续自然数的和中最大的加数是6—1=5,或者线段AF上的分点有4个(B、C、D、E).所以从1开始的连续自然数的和中最大的加数是4+1=5.也就是线段AF上基本线段(AB、BC、CD、DE、EF)的条数是5.所以线段AF上总共有线段的条数是5+4+3+2+1=15(条).【难度】难度3【知识点】几何计数【题目】数出下图中总共有多少个角.【答案】10【解析】在∠AOB内有三条角分线OC1、OC2、OC3,∠AOB被这三条角分线分成4个基本角,那么∠AOB内总共有多少个角呢?首先有这4个基本角,其次是包含有2个基本角组成的角有3个(即∠AOC2、∠C1OC3、∠C2OB),然后是包含有3个基本角组成的角有2个(即∠AOC3、∠C1OB),最后是包含有4个基本角组成的角有1个(即∠AOB),所以∠AOB内总共有角:4+3+2+1=10(个).解:4+3+2+1=10(个).小结:数角的方法可以采用例1数线段的方法来数,就是角的总数等于从1开始的几个连续自然数的和,这个和里面的最大的加数是角分线的条数加1,也就是基本角的个数.【难度】难度3【知识点】几何计数【题目】数一数下图中总共有多少个角?【答案】55【解析】因为∠AOB内角分线OC1、OC2…OC9共有9条,即9+1=10个基本角. 所以总共有角:10+9+8+…+4+3+2+1=55(个).【难度】难度3【知识点】几何计数【题目】如下图中,各个图形内各有多少个三角形?【答案】(1)6(2)10【解析】可以采用类似例1数线段的两种方法来数,如图(2):第一种方法:先数以AB为一条边的三角形共有:△ABD、△ABE、△ABF、△ABC四个三角形.再数以AD为一条边的三角形共有:△ADE、△ADF、△ADC三个三角形.以AE为一条边的三角形共有:△AEF、△AEC二个三角形.最后以AF为一条边的三角形共有△AFC一个三角形.所以三角形的个数总共有4+3+2+1=10.第二种方法:先数图中小三角形共有:△ABD、△ADE、△AEF、△AFC四个三角形.再数由两个小三角形组合在一起的三角形共有:△ABE、△ADF、△AEC三个三角形,以三个小三角形组合在一起的三角形共有:△ABF、△ADC二个三角形,最后数以四个小三角形组合在一起的只有△ABC一个.所以图中三角形的个数总共有:4+3+2+1=10(个).解:①3+2+1=6(个)② 4+3+2+1=10(个).答:图(1)及图(2)中各有三角形分别是6个和10个.小结:计算三角形的总数也等于从1开始的几个连续自然数的和,其中最大的加数就是三角形一边上的分点数加1,也就是三角形这边上分成的基本线段的条数.【难度】难度3【知识点】几何计数【题目】如下图中,数一数共有多少条线段?共有多少个三角形?【答案】60,30【解析】分析在数的过程中应充分利用上几例总结的规律,明确数什么?怎么数?这样两个问题.数:就是要数出图中基本线段(基本三角形)的条数,算:就是以基本线段(基本三角形)条数为最大加数的从1开始的连续几个自然数的和.①要数多少条线段:先看线段AB、AD、AE、AF、AC、上各有2个分点,各分成3条基本线段,再看BC、MN、GH这3条线段上各有3个分点,各分成4条基本线段.所以图中总共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条).②要数有多少个三角形,先看在△AGH中,在GH上有3个分点,分成基本小三角形有4个.所以在△AGH中共有三角形4+3+2+1=10(个).在△AMN与△ABC 中,三角形有同样的个数,所以在△ABC中三角形个数总共:(4+3+2+1)×3=10×3=30(个).解:①在△ABC中共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条)②在△ABC中共有三角形是:(4+3+2+1)×3=10×3=30(个).【难度】难度3【知识点】几何计数【题目】如右图中,共有多少个角?【答案】13【解析】分析本题虽然与上几例有区别,但仍可以采用上几例所总结的规律去解决. ∠1、∠2、∠3、∠4我们可视为4个基本角,由2个基本角组成的有:∠1与∠2、∠2与∠3、∠3与∠4、∠4与∠1,共4个角.由3个基本角组成的角有:∠1、∠2与∠3;∠2、∠3与∠4;∠3、∠4与∠1;∠4、∠1与∠2,共4个角,由4个基本角组成的角只有一个.所以图中总共有角是:4×3+1=13(个).解:所以图中共有角是:4×3+1=13(个).小结:由本题可以推出一般情况:若周角中含有n 个基本角,那么它上面角的总数是 n (n-1)+1.【难度】难度4【知识点】几何计数【题目】在图中(单位:厘米):①一共有几个长方形?②所有这些长方形面积的和是多少?374218125【答案】100,12384【解析】①一共有(4321)(4321)100+++⨯+++=(个)长方形;②所求的和是[][]51281(512)(128)(81)(5128)(1281)(51281)2473(24)(47)(73)(247)(473)(2473)+++++++++++++++++++⨯+++++++++++++++++++ 1448612384=⨯=(平方厘米)。

小学奥数:几何计数一.专项练习及答案解析

小学奥数:几何计数一.专项练习及答案解析

7-8-1几何计数(一)教课目的掌握数常用方法;熟一些数公式及其推方法;依据不一样目灵巧运用数方法行数.本主要介了数的常用方法枚法、数法、形法、插板法、法等,并渗透分数和用容斥原理的数思想.知识重点一、几何计数在几何形中,有多风趣的数,如算段的条数,足某种条件的三角形的个数,若干个分平面所成的地区数等等.看起来仿佛没有什么律可循,可是通真分析,是能够找到一些理方法的.常用的方法有枚法、加法原理和乘法原理法以及推法等.n条直最多将平面分红223⋯⋯n(n2n2)个部分;n个2最多分平面的部分数n(n-1)+2;n个三角形将平面最多分红3n(n-1)+2部分;n个四形将平面最多分红4n(n-1)+2部分⋯⋯在其余数中,也常用到枚法、加法原理和乘法原理法以及推法等.解需要仔、合所学知点逐渐求解.摆列不与参加摆列的事物相关,并且与各事物所在的先后序相关;合与各事物所在的先后序没关,只与两个合中的元素相关.二、几何计数分类数段:假如一条段上有n+1个点(包含两个端点)(或含有n个“基本段”),那么n+1个点把条段一共分红的段数n+(n-1)+⋯+2+1条数角:数角与数段相像,段形中的点似于角形中的.数三角形:可用数段的方法数如右所示的三角形(法),因DE上有15条段,每条段的两头点与点A相,可构成一个三角形,共有15个三角形,同一在BC上的三角形也有15个,所以中共有30个三角形.数方形、平行四形和正方形:一般的,于随意方形(平行四形),若其横上共有n 条段,上共有条段,中共有方形(平行四形)个.m mn例题精讲模块一、简单的几何计数【例1】七个同的如右搁置,它有_______条称.7-8-1.几何计数(一).题库题库版page1of10【考点】简单的几何计数【难度】1星【题型】填空【重点词】迎春杯,六年级,初赛,试题【分析】如图:6条.【答案】6条【例2】下边的表情图片中:,没有对称轴的个数为()(A)3(B)4(C)5(D)6【考点】简单的几何计数【难度】2星【题型】选择【重点词】华杯赛,初赛,第1题【分析】经过观察可知,第1,2,5这三张图片是有对称轴的,其余的5张图片都没有对称轴,所以没有对称轴的个数为5,正确答案是C。

小学数学 奥数讲义计数专题:几何计数

小学数学 奥数讲义计数专题:几何计数

华杯赛计数专题:几何计数基础知识:1.几何计数,从类型上看,可分为数线段、数三角形、数正方形、数长方形、数平行四边形等几类.2.几何计数的基本方法和思想:分类枚举与对应.3.分类的标准:按大小,按包含的图形等.4.常见对应方法:线段对应到端点,三角形对应到端点或边,长方形对应到对边等.5.特殊方法:去点法与去线法,本质是分类.方法铺垫:1)加法原理,乘法原理;2)容斥原理;3)排列数,组合数;4)对应法.例题:例1.如图,数一数图中有多少条线段?【答案】28(条)【解答】分类:1个单位长的线段有7条;2个单位长的线段有6条;3个单位长的线段有5条;……7个单位长的线段有1条;故共有线段7+6+5+……+1=28(条).例2.数一数,图中共有多少个三角形?【答案】13(个)【解答】分类:含有1块的三角形有4个;含有2块的三角形有5个;含有3块的三角形有2个;含有4块的三角形有1个;含有6块的三角形有1个;故共有三角形4+5+2+1+1=13(个).例3.如图,数一数,图中有多少个三角形?【答案】48(个).【解答】分类:包含1个小三角形的三角形有1+3+5+7+9=25个;包含4个小三角形的三角形有1+2+3+4+3=13个;包含9个小三角形的三角形有1+2+3=6个包含16个小三角形的三角形有1+2=3个;包含25个小三角形的三角形有1个;故共有三角形25+13+6+3+1=48(个).例4.数一数,图中共有多少个三角形?【答案】35(个)【解答】分类:含有1块的三角形有10个;含有2块的三角形有10个;含有3块的三角形有10个;含有5块的三角形有5个;故共有三角形10+10+10+5=35(个).例5.图中有多少个正方形?【答案】30(个)【解答】包含1个正方形的正方形有4×4=16个;包含4个正方形的正方形有3×3=9个;包含9个正方形的正方形有2×2=4个;包含16个正方形的正方形有1个;故共有三角形16+9+4+1=30(个).例6.如图,数一数图中一共有多少条线段?多少个矩形?【答案】70(条); 60个【解答】线段:横线,共有4×条;竖线:5×,故共有线段40+30=70条;矩形:竖线中选出两条,共有条,横线中选出两条,共有,根据乘法原理,共有矩形10矩形原60个.例7.如图,这是一个长为9,宽为4的网格,每一个小格都是一个正方形.请问:(1)从中可以数出多少个长方形?(2)从中可以数出包含红点的长方形有多少个?【答案】450(个);144个【解答】(1)竖线中选出两条,共有条,横线中选出两条,共有,根据乘法原理,共有矩形45×10=450个.(2)竖线中选出两条,共有6竖线中选出条,横线中选出两条,共有2×3=6条,根据乘法原理,共有矩形24×6=144个.例8.如图,数一数,图中共有多少个长方形?【答案】135个【解答】横向看:共有矩形个,竖向看:共有矩形个,这样重复计算了个,所以共有矩形90+63-18=135个.例9.如图,木板上钉着12枚钉子,排成三行四列的长方阵.用橡皮筋一共可以套出多少个不同的三角形?【答案】200(个)【解答】共有三角形个.例10.下图由相同的正方形和相同的等腰直角三角形构成, 则正方形的个数为多少?(17届华杯赛笔试初赛小高组第6题)【答案】83(个)【解答】包含1小个正方形的正方形有2+4+6+8+8+6+4+2=40个;包含4小个正方形的正方形有1+3+5+7+5+3+1=25个;包含9小个正方形的正方形有2+4+4+2=12个;包含16小个正方形的正方形有1+3+1=5个;共有正方形40+25+12+5+1=83个.例11. 求图中一共有多少条线段?求图中一共有多少个矩形?【答案】70条线段,60个矩形【解答】每一条线段由同一行或同一列的两个顶点确定,因此共有条线段.每个矩形由长和宽上的各一条线段对应形成,如下图:因此共有个矩形.例12. 数一数,图中有多少个三角形?【答案】78个【解答】只包含1个基本图形的有36个(朝上的21个,朝下的15个);包含4个基本图形的有21个(朝上的15个,朝下的6个);包含9个基本图形的有11个(朝上的10个,朝下的1个);包含16个基本图形的有6个;包含25个基本图形的有3个;包含36个基本图形的有1个.所以共有36+21+11+6+3+1=78个.例13. 下图是一个长为9,宽为4的长方形网格,每一个小格都是一个正方形,那么:1)从中可以数出多少个矩形?2)从中可以数出多少个正方形?3)从中可以数出包含黑点的矩形有多少个?【答案】1)450个;2)80个;3)144个【解答】1)图中共有个矩形;2)包含1个基本图形的正方形共有4×9=36个;包含4个基本图形的正方形共有3×8=24个;包含9个基本图形的正方形共有2×7=14个;包含16个基本图形的正方形共有1×6=6个.则共有36+24+14+6=80个.3)黑点左下方的顶点共有18个,黑点右上方的顶点共有8个,所以包含黑点的矩形共有18×8=144个.例14. 图中一共包含多少个矩形?【答案】135个【解答】第(1)部分和第(3)部分合并起来是一个3×5的大矩形(如下图所示),其中一共包含矩形个;第(2)部分和第(3)部分合并起来是一个6×2的大矩形(如下图所示),其中一共包含矩形个;第(3)部分中的矩形被重复计算了,其中共有矩形个.所以图中一共包含矩形90+63-18=135个.例15. 图中的木板上钉着12枚钉子,排成三行四列的长方阵. 那么用橡皮筋一共可以套出多少个不同的三角形?【答案】200个【解答】从12枚钉子中选择3枚钉子的组合总数是.而图中共有3条直线上各有4个点(如下图实线所示),另外还有8条直线上各有3个点(如下图虚线所示).因此用橡皮筋一共可以套出个不同的三角形.例16. 求图中所有矩形的面积和以及周长的总和.【答案】周长总和:1364;面积总和:1800【解答】矩形的10种长的总长是3++4++2++6++7++6++8++9++12++15=72。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何计数
知识框架图几何计
数8计数综合7-7
教学目标
.掌握计数常用方法;1熟记一些计数公式及其推导方法;2. .根据不同题目灵活运用计数方法进行计数.3本讲主要介绍了计数的常用方法枚举法、标数法、树形图法、插板法、对应法等,并
渗透分类计数和用容斥原理的计数思想.
知识要点
一、几何计数在几何图形中,有许多有趣的计数问题,如计算线段的条数,满足某种条件的三角形的个数,若干个图分平面所成的区域数等等.这类问题看起来似乎没有什么规律可循,但是通过认真分析,还是可以找到一些条直线最多将平面分成处理方法的.常用的方法有枚举法、加法原理和乘法原理法以及递推法等.n12个部分;n个圆最多分平面的部分数为n(n-1)+2;n个三角形将平面最多分2)(nn?n??????223……2成3n(n-1)+2部分;n个四边形将平面最多分成4n(n-1)+2部分……
在其它计数问题中,也经常用到枚举法、加法原理和乘法原理法以及递推法等.解题时需要仔细审题、综合所学知识点逐步求解.
排列问题不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关;组合问题与各事物所在的先后顺序无关,只与这两个组合中的元素有关.
二、几何计数分类
数线段:如果一条线段上有n+1个点(包括两个端点)(或含有n个“基本线段”),那么这n+1个点把这条线段一共分成的线段总数为n+(n-1)+…+2+1条
数角:数角与数线段相似,线段图形中的点类似于角图形中的边.
数三角形:可用数线段的方法数如右图所示的三角形(对应法),因为DE上有15条线段,每条线段的两端点与点A相连,可构成一个三角形,共有15个三角形,同样一边在BC上的三角形
也有15个,所以图中共有30个三角形.
数长方形、平行四边形和正方形:一般的,对于任意长方形(平行四边形),若其横边上共有n 条线段,纵边上共有m条线段,则图中共有长方形(平行四边形)mn个.
例题精讲
【例 1】下图的两个图形(实线)是分别用10根和16根单位长的小棍围成的.如果按此规律(每一层比上面一层多摆出两个小正方形)围成的图形共用了60多根小棍,那么围成的图形有几层,
共用了多少根小棍?(4级)
【例 2】用3根等长的火柴可以摆成一个等边三角形.如图用这样的等边三角形拼合成一个更大的等边三角形.如果这个大等边三角形的每边由20根火柴组成,那么一共要用多少根火柴?(4
级)
【巩固】用三根火柴可拼成一个小“△”,若用108根火柴拼成如图所示形状的大三角形,请你数一数共有多
级)少个三角形?(4
其中每个小方格的边都由一根火柴棍组成,的方格网,×1996如图所示,用长短相同的火柴棍摆成3【例 3】4级)那么一共需用多少根火柴棍?

4级) 4】图中共有多少个长方形?(【例
【例 5】下面的和图中共有____个正方形.(4级)46?5?5
【例 6】在图中(单位:厘米):
①一共有几个长方形?
②所有这些长方形面积的和是多少?(6级)
512812473
【巩固】如图,其中的每条线段都是水平的或竖直的,边界上各条线段的长度依次为5厘米、7厘米、9厘米、2厘米和4厘米、6厘米、5厘米、1厘米.求图中长方形的个数,以及所有长方
形面积的和.(6级)
级)(4下图中共有____个正方形.【例 7】
4级)图中有______个正方形.(【巩固】
6级)个.(】如图,其中同时包括两个☆的长方形有【例 8
级)个.(6在下图中,不包含☆的长方形有【巩固】 ________
级)(6个. 9】图中含有“※”的长方形总共有________【例※※
【巩固】由20个边长为1的小正方形拼成一个长方形中有一格有“☆”图中含有“☆”的所有长方形(含正5 4方形)共有个,它们的面积总和是.(第六届走美决赛试题)
(6级)

个大小相同的小正三角形拼成的四边形.其中某些相邻的小正三角形可以拼成较大的如图是由18【例 10】
(4级)正三角形若干个.那么,图中包含“*”号的大、小正三角形一共有______个.* 6级)MN互相平行,则图中梯形个数与三角形个数的差是多少?(EF】 11 如图AB,CD,,【例
级)图中共有多少个三角形?(6【例 12】
,以其16个顶点(共同的顶点算一个)个相同的小正方形,它们一共有】下图中的正方形被分成9【例 13个点为顶点,可以构成三角形.在这些三角形中,与阴影三角形有同样大中不在
一条直线上的3级)6小面积的有多少个?(
如图,连接一个正六边形的各顶点.问图中共有第十二届全国“华罗庚金杯”少年数学邀请赛)】【例 14 (级)8?(包括等边三角形多少个等腰三角形()
8级)个正方形.()【例 15】(第十一届“华罗庚金杯赛”图中有
级)(10个三角形.【巩固】这幅图中有
倍,先对折成正方形,再对折成长方形,再对折成正方形,……,张长方形纸片,长是宽的216】一【例级)7次,将纸打开展平,数一数用折痕分割成的正方形共有多少个?(8共对折
【巩固】将正方形纸片由下往上对折,再由左向右对折,称为完成一次操作.按上述规则完成五次操作后,级)剪去所得的小正方形的左下角.问:当展开这张正方形纸后,一共有多少个小洞孔?(8
【例 17】在一个圆周上有8个点,正好把圆周八等分,以这些点为顶点作三角形,可以作出个等腰三角形.(8级)
【例 18】圆周上十个点,任意两点之间连接一条弦,这些弦在圆内有多少个交点?(8级)
【例 19】圆周上有个点,两点所连的线段叫“弦”,每两点连一条弦,各弦无公共端点,共可连四条弦,8各弦互不相交的连法共有________种.(8级)
【例 20】一个圆上有12个点A,A,A,…,A,A.以它们为顶点连三角形,使每个点恰好是一个三角1231112形的顶点,且各个三角形的边都不相交.问共有多少种不同的连法?(10级)。

相关文档
最新文档