2020年浙江高考解析几何题
易错点09 解析几何(解析版)-备战2021年高考数学一轮复习易错题
(2)点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足.证明:存在定点Q,使得|DQ|为定值.
【答案】(1) ;(2)详见解析.
【解析】
【分析】
(1)由题意得到关于a,b,c的方程组,求解方程组即可确定椭圆方程.
(2)设出点M,N的坐标,在斜率存在时设方程为 ,联立直线方程与椭圆方程,根据已知条件,已得到m,k的关系,进而得直线MN恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点Q的位置.
样直角三角形斜边上的中点为M(1,0),
则半径为 =3,
即得所求圆的方程为(x-1)2+y2=9.
【错因】因为忽视结论的检验,没有注意到点C是直角三角形的顶点,即C点不能在直线AB上,因此造成错解.
【正解】设C(x,y),由于直角三角形斜边上的中点为M(1,0),如图所示,则半径为 =3,即得圆的方程为(x-1)2+y2=9.但是顶点C不能在直线AB上,因此y≠0,也就是要除去两个点,即(-2,0),(4,0),因此C点满足的方程为(x-1)2+y2=9(除去点(-2,0),(4,0)).
此时曲线 表示双曲线,
由 可得 ,故C正确;
对于D,若 ,则 可化为 ,
,此时曲线 表示平行于 轴的两条直线,故D正确;
故选:ACD.
【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养.
例2(2020年普通高等学校招生全国统一考试数学)斜率为 的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则 =________.
易错点09解析几何
—备战2021年高考数学一轮复习易错题
【典例分析】
例1(2020年普通高等学校招生全国统一考试数学)已知曲线 .()
高考数学解析几何选择题
高考数学解析几何选择题1. 已知点A(1,2),点B(3,4),求直线AB的方程。
2. 已知直线l过点(2,1)且斜率为3/2,求直线l的方程。
3. 已知点C(2,3),点D(4,6),求直线CD的方程。
4. 已知点E(5,7),点F(7,9),求直线EF的方程。
5. 已知点G(8,10),点H(10,12),求直线GH的方程。
6. 已知点I(1,2),点J(3,4),求直线IJ的方程。
7. 已知点K(4,6),点L(6,8),求直线KL的方程。
8. 已知点M(7,9),点N(9,11),求直线MN的方程。
9. 已知点O(1,2),点P(3,4),求直线OP的方程。
10. 已知点Q(4,6),点R(6,8),求直线QR的方程。
12. 已知点U(1,2),点V(3,4),求直线UV的方程。
13. 已知点W(4,6),点X(6,8),求直线WX的方程。
14. 已知点Y(7,9),点Z(9,11),求直线YZ的方程。
15. 已知点A(1,2),点B(3,4),求直线AB的方程。
16. 已知点C(2,3),点D(4,6),求直线CD的方程。
17. 已知点E(5,7),点F(7,9),求直线EF的方程。
18. 已知点G(8,10),点H(10,12),求直线GH的方程。
19. 已知点I(1,2),点J(3,4),求直线IJ的方程。
20. 已知点K(4,6),点L(6,8),求直线KL的方程。
21. 已知点M(7,9),点N(9,11),求直线MN的方程。
23. 已知点Q(4,6),点R(6,8),求直线QR的方程。
24. 已知点S(7,9),点T(9,11),求直线ST的方程。
25. 已知点U(1,2),点V(3,4),求直线UV的方程。
26. 已知点W(4,6),点X(6,8),求直线WX的方程。
27. 已知点Y(7,9),点Z(9,11),求直线YZ的方程。
28. 已知点A(1,2),点B(3,4),求直线AB的方程。
解析几何(解答题)--五年(2020-2024)高考数学真题分类汇编(解析版)
专题解析几何(解答题)考点五年考情(2020-2024)命题趋势考点01椭圆及其性质2024Ⅰ甲卷北京卷天津卷2023北京乙卷天津2022乙卷北京卷浙江卷2021北京卷Ⅱ卷2020ⅠⅡ卷新ⅠⅡ卷椭圆轨迹标准方程问题,有关多边形面积问题,定值定点问题,新结构中的新定义问题是高考的一个高频考点考点02双曲线及其性质2024Ⅱ卷2023Ⅱ新课标Ⅱ2022Ⅰ卷2021Ⅰ双曲线离心率问题,轨迹方程有关面积问题,定值定点问题以及斜率有关的证明问题以及新结构中的新定义问题是高考的高频考点考点03抛物线及其性质2023甲卷2022甲卷2021浙江甲卷乙卷2020浙江抛物线有关三角形面积问题,关于定直线问题,有关P 的证明类问题考点01:椭圆及其性质1(2024·全国·高考Ⅰ卷)已知A (0,3)和P 3,32 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3x -2y -6=0或x -2y =0.【详解】(1)由题意得b =39a 2+94b2=1,解得b 2=9a 2=12 ,所以e =1-b 2a2=1-912=12.(2)法一:k AP =3-320-3=-12,则直线AP 的方程为y =-12x +3,即x +2y -6=0,AP =0-3 2+3-322=352,由(1)知C :x 212+y 29=1,设点B到直线AP的距离为d,则d=2×9352=1255,则将直线AP沿着与AP垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B,设该平行线的方程为:x+2y+C=0,则C+65=1255,解得C=6或C=-18,当C=6时,联立x212+y29=1x+2y+6=0,解得x=0y=-3或x=-3y=-32,即B0,-3或-3,-3 2,当B0,-3时,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当B-3,-3 2时,此时k l=12,直线l的方程为y=12x,即x-2y=0,当C=-18时,联立x212+y29=1x+2y-18=0得2y2-27y+117=0,Δ=272-4×2×117=-207<0,此时该直线与椭圆无交点.综上直线l的方程为3x-2y-6=0或x-2y=0.法二:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B x0,y0,则x0+2y0-65=1255x2012+y209=1,解得x0=-3y0=-32或x0=0y0=-3,即B0,-3或-3,-3 2,以下同法一.法三:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B23cosθ,3sinθ,其中θ∈0,2π,则有23cosθ+6sinθ-65=1255,联立cos2θ+sin2θ=1,解得cosθ=-32sinθ=-12或cosθ=0sinθ=-1,即B0,-3或-3,-3 2,以下同法一;法四:当直线AB的斜率不存在时,此时B0,-3,S△PAB=12×6×3=9,符合题意,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当线AB的斜率存在时,设直线AB的方程为y=kx+3,联立椭圆方程有y =kx +3x 212+y 29=1,则4k 2+3 x 2+24kx =0,其中k ≠k AP ,即k ≠-12,解得x =0或x =-24k 4k 2+3,k ≠0,k ≠-12,令x =-24k 4k 2+3,则y =-12k 2+94k 2+3,则B -24k 4k 2+3,-12k 2+94k 2+3同法一得到直线AP 的方程为x +2y -6=0,点B 到直线AP 的距离d =1255,则-24k4k 2+3+2×-12k 2+94k 2+3-65=1255,解得k =32,此时B -3,-32 ,则得到此时k l =12,直线l 的方程为y =12x ,即x -2y =0,综上直线l 的方程为3x -2y -6=0或x -2y =0.法五:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当l 的斜率存在时,设PB :y -32=k (x -3),令P x 1,y 1 ,B x 2,y 2 ,y =k (x -3)+32x 212+y 29=1 ,消y 可得4k 2+3 x 2-24k 2-12k x +36k 2-36k -27=0,Δ=24k 2-12k 2-44k 2+3 36k 2-36k -27 >0,且k ≠k AP ,即k ≠-12,x 1+x 2=24k 2-12k 4k 2+3x 1x 2=36k 2-36k -274k 2+3,PB =k 2+1x 1+x 2 2-4x 1x 2=43k 2+13k 2+9k +2744k 2+3 ,A 到直线PB 距离d =3k +32k 2+1,S △PAB =12⋅43k 2+13k 2+9k +2744k 2+3⋅3k +32k 2+1=9,∴k =12或32,均满足题意,∴l :y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.法六:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当直线l 斜率存在时,设l :y =k (x -3)+32,设l 与y 轴的交点为Q ,令x =0,则Q 0,-3k +32,联立y =kx -3k +323x 2+4y 2=36,则有3+4k 2 x 2-8k 3k -32x +36k 2-36k -27=0,3+4k2x2-8k3k-3 2x+36k2-36k-27=0,其中Δ=8k23k-3 22-43+4k236k2-36k-27>0,且k≠-1 2,则3x B=36k2-36k-273+4k2,x B=12k2-12k-93+4k2,则S=12AQx P-x B=123k+3212k+183+4k2=9,解的k=12或k=32,经代入判别式验证均满足题意.则直线l为y=12x或y=32x-3,即3x-2y-6=0或x-2y=0.2(2024·全国·高考甲卷)已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,点M1,32在C上,且MF⊥x轴.(1)求C的方程;(2)过点P4,0的直线交C于A,B两点,N为线段FP的中点,直线NB交直线MF于点Q,证明:AQ⊥y 轴.【答案】(1)x24+y23=1(2)证明见解析【详解】(1)设F c,0,由题设有c=1且b2a=32,故a2-1a=32,故a=2,故b=3,故椭圆方程为x24+y23=1.(2)直线AB的斜率必定存在,设AB:y=k(x-4),A x1,y1,B x2,y2,由3x2+4y2=12y=k(x-4)可得3+4k2x2-32k2x+64k2-12=0,故Δ=1024k4-43+4k264k2-12>0,故-12<k<12,又x1+x2=32k23+4k2,x1x2=64k2-123+4k2,而N52,0,故直线BN:y=y2x2-52x-52,故y Q=-32y2x2-52=-3y22x2-5,所以y1-y Q=y1+3y22x2-5=y1×2x2-5+3y22x2-5=k x1-4×2x2-5+3k x2-42x2-5=k 2x1x2-5x1+x2+82x2-5=k2×64k2-123+4k2-5×32k23+4k2+82x2-5=k 128k2-24-160k2+24+32k23+4k22x2-5=0,故y1=y Q,即AQ⊥y轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意Δ的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.3(2024·北京·高考真题)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 ,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点0,t t >2 且斜率存在的直线与椭圆E 交于不同的两点A ,B ,过点A 和C 0,1 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.【答案】(1)x 24+y 22=1,e =22(2)t =2【详解】(1)由题意b =c =22=2,从而a =b 2+c 2=2,所以椭圆方程为x 24+y 22=1,离心率为e =22;(2)直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设AB :y =kx +t ,k ≠0,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立x 24+y 22=1y =kx +t,化简并整理得1+2k 2 x 2+4ktx +2t 2-4=0,由题意Δ=16k 2t 2-82k 2+1 t 2-2 =84k 2+2-t 2 >0,即k ,t 应满足4k 2+2-t 2>0,所以x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,若直线BD 斜率为0,由椭圆的对称性可设D -x 2,y 2 ,所以AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,在直线AD 方程中令x =0,得y C =x 1y 2+x 2y 1x 1+x 2=x 1kx 2+t +x 2kx 1+t x 1+x 2=2kx 1x 2+t x 1+x 2 x 1+x 2=4k t 2-2 -4kt +t =2t =1,所以t =2,此时k 应满足4k 2+2-t 2=4k 2-2>0k ≠0 ,即k 应满足k <-22或k >22,综上所述,t =2满足题意,此时k <-22或k >22.4(2024·天津·高考真题)已知椭圆x 2a 2+y 2b 2=1(a >b >0)椭圆的离心率e =12.左顶点为A ,下顶点为B ,C 是线段OB 的中点,其中S △ABC =332.(1)求椭圆方程.(2)过点0,-32 的动直线与椭圆有两个交点P ,Q .在y 轴上是否存在点T 使得TP ⋅TQ ≤0.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)x 212+y 29=1(2)存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.【详解】(1)因为椭圆的离心率为e =12,故a =2c ,b =3c ,其中c 为半焦距,所以A -2c ,0 ,B 0,-3c ,C 0,-3c 2 ,故S △ABC =12×2c ×32c =332,故c =3,所以a =23,b =3,故椭圆方程为:x 212+y 29=1.(2)若过点0,-32 的动直线的斜率存在,则可设该直线方程为:y =kx -32,设P x 1,y 1 ,Q x 2,y 2 ,T 0,t ,由3x 2+4y 2=36y =kx -32可得3+4k 2 x 2-12kx -27=0,故Δ=144k 2+1083+4k 2 =324+576k 2>0且x 1+x 2=12k 3+4k 2,x 1x 2=-273+4k2,而TP =x 1,y 1-t ,TQ=x 2,y 2-t ,故TP ⋅TQ =x 1x 2+y 1-t y 2-t =x 1x 2+kx 1-32-t kx 2-32-t =1+k 2 x 1x 2-k 32+t x 1+x 2 +32+t 2=1+k 2 ×-273+4k 2-k 32+t ×12k 3+4k 2+32+t 2=-27k 2-27-18k 2-12k 2t +332+t 2+3+2t 2k 23+4k 2=3+2t2-12t -45 k 2+332+t 2-273+4k 2,因为TP ⋅TQ ≤0恒成立,故3+2t 2-12t -45≤0332+t 2-27≤0,解得-3≤t ≤32.若过点0,-32的动直线的斜率不存在,则P 0,3 ,Q 0,-3 或P 0,-3 ,Q 0,3 ,此时需-3≤t ≤3,两者结合可得-3≤t ≤32.综上,存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.5(2023年全国乙卷理科)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率是53,点A -2,0 在C 上.(1)求C方程;(2)过点-2,3 的直线交C 于P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【答案】(1)y 29+x 24=1(2)证明见详解解析:(1)由题意可得b =2a 2=b 2+c 2e =c a =53,解得a =3b =2c =5,所以椭圆方程为y 29+x 24=1.(2)由题意可知:直线PQ 的斜率存在,设PQ :y =k x +2 +3,P x 1,y 1 ,Q x 2,y 2 ,联立方程y =k x +2 +3y 29+x 24=1,消去y 得:4k 2+9 x 2+8k 2k +3x +16k 2+3k =0,则Δ=64k 22k +3 2-644k 2+9 k 2+3k =-1728k >0,解得k <0,可得x 1+x 2=-8k 2k +34k 2+9,x 1x 2=16k 2+3k 4k 2+9,因为A -2,0 ,则直线AP :y =y 1x 1+2x +2 ,令x =0,解得y =2y 1x 1+2,即M 0,2y 1x 1+2,同理可得N 0,2y 2x 2+2,则2y 1x 1+2+2y2x 2+22=k x 1+2 +3 x 1+2+k x 2+2 +3 x 2+2=kx 1+2k +3 x 2+2 +kx 2+2k +3 x 1+2x 1+2 x 2+2=2kx 1x 2+4k +3 x 1+x 2 +42k +3x 1x 2+2x 1+x 2 +4=32k k 2+3k 4k 2+9-8k 4k +3 2k +34k 2+9+42k +3 16k 2+3k 4k 2+9-16k 2k +34k 2+9+4=10836=3,所以线段MN 的中点是定点0,3 .6(2020年高考课标Ⅱ)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)C 1:x 236+y 227=1,C 2:y 2=12x .解析:(1)∵F c ,0 ,AB ⊥x 轴且与椭圆C 1相交于A 、B 两点,则直线AB 的方程为x =c ,联立x =c x 2a 2+y 2b 2=1a 2=b 2+c 2,解得x =c y =±b 2a,则AB =2b 2a ,抛物线C 2的方程为y 2=4cx ,联立x =cy 2=4cx ,解得x =cy =±2c,∴CD =4c ,∵CD =43AB ,即4c =8b 23a ,2b 2=3ac ,即2c 2+3ac -2a 2=0,即2e 2+3e -2=0,∵0<e <1,解得e =12,因此,椭圆C 1的离心率为12;(2)由(1)知a =2c ,b =3c ,椭圆C 1的方程为x 24c 2+y 23c 2=1,联立y 2=4cxx24c2+y 23c 2=1,消去y 并整理得3x 2+16cx -12c 2=0,解得x =23c 或x =-6c (舍去),由抛物线的定义可得MF =23c +c =5c3=5,解得c =3.因此,曲线C 1的标准方程为x 236+y 227=1,曲线C 2的标准方程为y 2=12x .7(2021年新高考全国Ⅱ卷)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (2,0),且离心率为63.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |=3.【答案】解析:(1)由题意,椭圆半焦距c =2且e =c a =63,所以a =3,又b 2=a 2-c 2=1,所以椭圆方程为x 23+y 2=1;(2)由(1)得,曲线为x 2+y 2=1(x >0),当直线MN 的斜率不存在时,直线MN :x =1,不合题意;当直线MN 的斜率存在时,设M x 1,y 1 ,N x 2,y 2 ,必要性:若M ,N ,F 三点共线,可设直线MN :y =k x -2 即kx -y -2k =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得2kk 2+1=1,解得k =±1,联立y =±x -2x23+y 2=1 可得4x 2-62x +3=0,所以x 1+x 2=322,x 1⋅x 2=34,所以MN =1+1⋅x 1+x 22-4x 1⋅x 2=3,所以必要性成立;充分性:设直线MN :y =kx +b ,kb <0 即kx -y +b =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得bk 2+1=1,所以b 2=k 2+1,联立y =kx +bx 23+y 2=1可得1+3k 2 x 2+6kbx +3b 2-3=0,所以x 1+x 2=-6kb 1+3k 2,x 1⋅x 2=3b 2-31+3k 2,所以MN =1+k 2⋅x 1+x 22-4x 1⋅x 2=1+k2-6kb 1+3k22-4⋅3b 2-31+3k 2=1+k 2⋅24k 21+3k 2=3,化简得3k 2-1 2=0,所以k =±1,所以k =1b =-2或k =-1b =2 ,所以直线MN :y =x -2或y =-x +2,所以直线MN 过点F (2,0),M ,N ,F 三点共线,充分性成立;所以M ,N ,F 三点共线的充要条件是|MN |=3.8(2020年高考课标Ⅰ卷)已知A 、B 分别为椭圆E :x 2a2+y 2=1(a >1)左、右顶点,G 为E 的上顶点,AG ⋅GB =8,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E方程;(2)证明:直线CD 过定点.【答案】(1)x 29+y 2=1;(2)证明详见解析.【解析】(1)依据题意作出如下图象:由椭圆方程E :x 2a2+y 2=1(a >1)可得:A -a ,0 , B a ,0 ,G 0,1∴AG =a ,1 ,GB =a ,-1 ∴AG ⋅GB =a 2-1=8,∴a 2=9∴椭圆方程为:x 29+y 2=1(2)证明:设P 6,y 0 ,则直线AP 的方程为:y =y 0-06--3x +3 ,即:y =y 09x +3 联立直线AP 的方程与椭圆方程可得:x 29+y 2=1y =y 09x +3 ,整理得:y 02+9 x 2+6y 02x +9y 02-81=0,解得:x =-3或x =-3y 02+27y 02+9将x =-3y 02+27y 02+9代入直线y =y 09x +3 可得:y =6y 0y 02+9所以点C 的坐标为-3y 02+27y 02+9,6y 0y 02+9 .同理可得:点D 的坐标为3y 02-3y 02+1,-2y 0y 02+1∴直线CD 的方程为:y --2y 0y 02+1=6y 0y 02+9--2y 0y 02+1-3y 02+27y 02+9-3y 02-3y 02+1x -3y 02-3y 02+1,整理可得:y +2y 0y 02+1=8y 0y 02+3 69-y 04x -3y 02-3y 02+1 =8y 063-y 02 x -3y 02-3y 02+1整理得:y =4y 033-y 02 x +2y 0y 02-3=4y 033-y 02x -32故直线CD 过定点32,09(2020年新高考全国Ⅰ卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【答案】(1)x 26+y 23=1;(2)详见解析.解析:(1)由题意可得:c a =324a 2+1b 2=1a 2=b 2+c 2,解得:a 2=6,b 2=c 2=3,故椭圆方程为:x 26+y 23=1.(2)设点M x 1,y 1 ,N x 2,y 2 .因为AM ⊥AN ,∴AM·AN=0,即x 1-2 x 2-2 +y 1-1 y 2-1 =0,①当直线MN 的斜率存在时,设方程为y =kx +m ,如图1.代入椭圆方程消去y 并整理得:1+2k 2 x 2+4kmx +2m 2-6=0x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2②,根据y 1=kx 1+m ,y 2=kx 2+m ,代入①整理可得:k 2+1 x 1x 2+km -k -2 x 1+x 2 +m -1 2+4=0将②代入,k 2+1 2m 2-61+2k 2+km -k -2 -4km1+2k2+m -1 2+4=0,整理化简得2k +3m +1 2k +m -1 =0,∵A (2,1)不在直线MN 上,∴2k +m -1≠0,∴2k +3m +1=0,k ≠1,于是MN 的方程为y =k x -23 -13,所以直线过定点直线过定点E 23,-13.当直线MN 的斜率不存在时,可得N x 1,-y 1 ,如图2.代入x 1-2 x 2-2 +y 1-1 y 2-1 =0得x 1-2 2+1-y 22=0,结合x 216+y 213=1,解得x 1=2舍 ,x 1=23,此时直线MN 过点E 23,-13,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,所以AE 中点Q 满足QD 为定值(AE 长度的一半122-232+1+132=423).由于A 2,1 ,E 23,-13 ,故由中点坐标公式可得Q 43,13.故存在点Q 43,13,使得|DQ |为定值.10(2022年高考全国乙卷)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A 0,-2 ,B 32,-1两点.(1)求E 的方程;(2)设过点P 1,-2 的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT =TH.证明:直线HN 过定点.【答案】(1)y 24+x 23=1(2)(0,-2)解析:设椭圆E 的方程为mx 2+ny 2=1,过A 0,-2 ,B 32,-1,则4n =194m +n =1 ,解得m =13,n =14,所以椭圆E 的方程为:y 24+x 23=1.【小问2详解】A (0,-2),B 32,-1,所以AB :y +2=23x ,①若过点P (1,-2)的直线斜率不存在,直线x =1.代入x 23+y 24=1,可得M 1,-263 ,N 1,263 ,代入AB 方程y =23x -2,可得T -6+3,-263 ,由MT =TH 得到H -26+5,-263 .求得HN 方程:y =2+263x -2,过点(0,-2).②若过点P (1,-2)的直线斜率存在,设kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立kx -y -(k +2)=0x 23+y 24=1,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0,可得x 1+x 2=6k (2+k )3k 2+4x 1x 2=3k (4+k )3k 2+4,y 1+y 2=-8(2+k )3k 2+4y 2y 2=4(4+4k -2k 2)3k 2+4,且x 1y 2+x 2y 1=-24k 3k 2+4(*)联立y =y 1y =23x -2,可得T 3y12+3,y 1 ,H (3y 1+6-x 1,y 1).可求得此时HN :y -y 2=y 1-y 23y 1+6-x 1-x 2(x -x 2),将(0,-2),代入整理得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0,将(*)代入,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立,综上,可得直线HN 过定点(0,-2).11(2020年新高考全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)x 216+y 212=1;(2)18.解析:(1)由题意可知直线AM 的方程为:y -3=12(x -2),即x -2y =-4.当y =0时,解得x =-4,所以a =4,椭圆C :x 2a 2+y 2b 2=1a >b >0 过点M (2,3),可得416+9b 2=1,解得b 2=12.所以C 的方程:x 216+y 212=1.(2)设与直线AM 平行的直线方程为:x -2y =m ,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程x -2y =m 与椭圆方程x 216+y 212=1,可得:3m +2y 2+4y 2=48,化简可得:16y 2+12my +3m 2-48=0,所以Δ=144m 2-4×163m 2-48 =0,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:x -2y =8,直线AM 方程为:x -2y =-4,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d =8+41+4=1255,由两点之间距离公式可得|AM |=(2+4)2+32=35.所以△AMN 的面积的最大值:12×35×1255=18.12(2020年高考课标Ⅲ卷)已知椭圆C :x 225+y 2m 2=1(0<m <5)的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,求△APQ 的面积.【答案】(1)x 225+16y 225=1;(2)52.解析:(1)∵C :x 225+y 2m 2=1(0<m <5)∴a =5,b =m ,根据离心率e =ca=1-b a2=1-m 5 2=154,解得m =54或m =-54(舍),∴C 的方程为:x 225+y 2542=1,即x 225+16y 225=1;(2)不妨设P ,Q 在x 轴上方∵点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,过点P 作x 轴垂线,交点为M ,设x =6与x 轴交点为N 根据题意画出图形,如图∵|BP |=|BQ |,BP ⊥BQ ,∠PMB =∠QNB =90°,又∵∠PBM +∠QBN =90°,∠BQN +∠QBN =90°,∴∠PBM =∠BQN ,根据三角形全等条件“AAS ”,可得:△PMB ≅△BNQ ,∵x 225+16y 225=1,∴B (5,0),∴PM =BN =6-5=1,设P 点为(x P ,y P ),可得P 点纵坐标为y P =1,将其代入x 225+16y 225=1,可得:x P 225+1625=1,解得:x P =3或x P =-3,∴P 点为(3,1)或(-3,1),①当P 点为(3,1)时,故MB =5-3=2,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=2,可得:Q 点为(6,2),画出图象,如图∵A (-5,0),Q (6,2),可求得直线AQ 的直线方程为:2x -11y +10=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =2×3-11×1+1022+112=5125=55,根据两点间距离公式可得:AQ =6+52+2-0 2=55,∴△APQ 面积为:12×55×55=52;②当P 点为(-3,1)时,故MB =5+3=8,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=8,可得:Q 点为(6,8),画出图象,如图∵A (-5,0),Q (6,8),可求得直线AQ 的直线方程为:8x -11y +40=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =8×-3 -11×1+4082+112=5185=5185,根据两点间距离公式可得:AQ =6+52+8-0 2=185,∴△APQ 面积为:12×185×5185=52,综上所述,△APQ 面积为:52.1313(2023年北京卷)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)离心率为53,A 、C 分别是E 的上、下顶点,B ,D 分别是E 的左、右顶点,|AC |=4.(1)求E 的方程;(2)设P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线PA 与直线y =-2交于点N .求证:MN ⎳CD .【答案】(1)x 29+y 24=1(2)证明见解析:(1)依题意,得e =c a =53,则c =53a ,又A ,C 分别为椭圆上下顶点,AC =4,所以2b =4,即b =2,所以a 2-c 2=b 2=4,即a 2-59a 2=49a 2=4,则a 2=9,所以椭圆E 的方程为x 29+y 24=1.(2)因为椭圆E 的方程为x 29+y 24=1,所以A 0,2 ,C 0,-2 ,B -3,0 ,D 3,0 ,因为P 为第一象限E 上的动点,设P m ,n 0<m <3,0<n <2 ,则m 29+n 24=1,易得k BC =0+2-3-0=-23,则直线BC 的方程为y =-23x -2,k PD =n -0m -3=n m -3,则直线PD 的方程为y =n m -3x -3 ,联立y =-23x -2y =n m -3x -3,解得x =33n -2m +63n +2m -6y =-12n 3n +2m -6,即M 33n -2m +6 3n +2m -6,-12n 3n +2m -6,而k PA =n -2m -0=n -2m ,则直线PA 的方程为y =n -2mx +2,令y =-2,则-2=n -2m x +2,解得x =-4m n -2,即N -4mn -2,-2 ,又m 29+n 24=1,则m 2=9-9n 24,8m 2=72-18n 2,所以k MN =-12n3n +2m -6+233n -2m +6 3n +2m -6--4mn-2=-6n +4m -12 n -29n -6m +18 n -2 +4m 3n +2m -6=-6n 2+4mn -8m +249n 2+8m 2+6mn -12m -36=-6n 2+4mn -8m +249n 2+72-18n 2+6mn -12m -36=-6n 2+4mn -8m +24-9n 2+6mn -12m +36=2-3n 2+2mn -4m +12 3-3n 2+2mn -4m +12 =23,又k CD =0+23-0=23,即k MN =k CD ,显然,MN 与CD 不重合,所以MN ⎳CD .14(2023年天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左右顶点分别为A 1,A 2,右焦点为F ,已知A 1F =3,A 2F =1.(1)求椭圆方程及其离心率;(2)已知点P 是椭圆上一动点(不与端点重合),直线A 2P 交y 轴于点Q ,若三角形A 1PQ 的面积是三角形A 2FP 面积的二倍,求直线A 2P 的方程.【答案】(1)椭圆的方程为x 24+y 23=1,离心率为e =12.(2)y =±62x -2 .解析:(1)如图,由题意得a +c =3a -c =1,解得a =2,c =1,所以b =22-12=3,所以椭圆的方程为x 24+y 23=1,离心率为e =c a =12.(2)由题意得,直线A 2P 斜率存在,由椭圆的方程为x 24+y 23=1可得A 22,0 ,设直线A 2P 的方程为y =k x -2 ,联立方程组x 24+y 23=1y =k x -2,消去y 整理得:3+4k 2 x 2-16k 2x +16k 2-12=0,由韦达定理得x A 2⋅x P =16k 2-123+4k 2,所以x P =8k 2-63+4k 2,所以P 8k 2-63+4k 2,--12k3+4k 2,Q 0,-2k .所以S △A 2QA 1=12×4×y Q ,S △A 2PF =12×1×y P ,S △A 1A 2P =12×4×y P ,所以S △A 2QA 1=S △A 1PQ +S △A 1A 2P =2S △A 2PF +S △A 1A 2P ,所以2y Q =3y P ,即2-2k =3-12k3+4k 2,解得k =±62,所以直线A 2P 的方程为y =±62x -2 .15(2022高考北京卷)已知椭圆:E :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),焦距为23.(1)求椭圆E 的方程;(2)过点P (-2,1)作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当|MN |=2时,求k 的值.【答案】解析:(1)依题意可得b =1,2c =23,又c 2=a 2-b 2,所以a =2,所以椭圆方程为x 24+y 2=1;(2)解:依题意过点P -2,1 的直线为y -1=k x +2 ,设B x 1,y 1 、C x 2,y 2 ,不妨令-2≤x 1<x 2≤2,由y -1=k x +2x 24+y 2=1,消去y 整理得1+4k 2 x 2+16k 2+8k x +16k 2+16k =0,所以Δ=16k 2+8k 2-41+4k 2 16k 2+16k >0,解得k <0,所以x 1+x 2=-16k 2+8k 1+4k 2,x 1⋅x 2=16k 2+16k1+4k2,直线AB 的方程为y -1=y 1-1x 1x ,令y =0,解得x M =x 11-y 1,直线AC 的方程为y -1=y 2-1x 2x ,令y =0,解得x N =x 21-y 2,所以MN =x N -x M =x 21-y 2-x 11-y 1=x 21-k x 2+2 +1 -x 11-k x 1+2 +1=x 2-k x 2+2 +x 1k x 1+2=x 2+2 x 1-x 2x 1+2k x 2+2 x 1+2=2x 1-x 2k x 2+2 x 1+2=2,所以x 1-x 2 =k x 2+2 x 1+2 ,即x 1+x 22-4x 1x 2=k x 2x 1+2x 2+x 1 +4即-16k 2+8k 1+4k22-4×16k 2+16k 1+4k 2=k 16k 2+16k 1+4k 2+2-16k 2+8k 1+4k2+4 即81+4k 22k 2+k 2-1+4k 2 k 2+k =k1+4k216k2+16k -216k 2+8k +41+4k 2整理得8-k =4k ,解得k =-416(2022年浙江省高考)如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P (0,1)的两点,且点Q 0,12 在线段AB 上,直线PA ,PB 分别交直线y =-12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值;(2)求|CD |的最小值.【答案】解析:(1)设Q (23cos θ,sin θ)是椭圆上任意一点,P (0,1),则|PQ |2=12cos 2θ+(1-sin θ)2=13-11sin 2θ-2sin θ=-11sin θ+111 2+14411≤14411,当且仅当sin θ=-111时取等号,故|PQ |的最大值是121111.(2)设直线AB :y =kx +12,直线AB 方程与椭圆x 212+y 2=1联立,可得k 2+112 x 2+kx -34=0,设A x 1,y 1 ,B x 2,y 2 ,所以x 1+x 2=-kk 2+112x 1x 2=-34k 2+112 ,因为直线PA :y =y 1-1x 1x +1与直线y =-12x +3交于C ,则x C=4x 1x 1+2y 1-2=4x 1(2k +1)x 1-1,同理可得,x D =4x 2x 2+2y 2-2=4x 2(2k +1)x 2-1.则|CD |=1+14x C -x D =524x 1(2k +1)x 1-1-4x 2(2k +1)x 2-1=25x 1-x 2(2k +1)x 1-1 (2k +1)x 2-1=25x 1-x 2(2k +1)2x 1x 2-(2k +1)x 1+x 2 +1=352⋅16k 2+13k +1=655⋅16k 2+1916+13k +1≥655×4k ×34+1×123k +1=655,当且仅当k =316时取等号,故CD 的最小值为655.17(2021高考北京)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)一个顶点A (0,-2),以椭圆E 的四个顶点为顶点的四边形面积为45.(1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交y =-3交于点M ,N ,当|PM |+|PN |≤15时,求k 的取值范围.【答案】(1)x 25+y 24=1;(2)[-3,-1)∪(1,3].解析:(1)因为椭圆过A 0,-2 ,故b =2,因为四个顶点围成的四边形的面积为45,故12×2a ×2b =45,即a =5,故椭圆的标准方程为:x 25+y 24=1.(2)设B x 1,y 1 ,C x 2,y 2 , 因为直线BC 的斜率存在,故x 1x 2≠0,故直线AB :y =y 1+2x 1x -2,令y =-3,则x M =-x1y 1+2,同理x N =-x 2y 2+2直线BC :y =kx -3,由y =kx -34x 2+5y 2=20可得4+5k 2 x 2-30kx +25=0,故Δ=900k 2-1004+5k 2 >0,解得k <-1或k >1.又x 1+x 2=30k 4+5k 2,x 1x 2=254+5k 2,故x 1x 2>0,所以x M x N >0又PM +PN =x M +x N =x 1y 1+2+x 2y 2+2=x1kx1-1+x2kx2-1=2kx1x2-x1+x2k2x1x2-k x1+x2+1=50k4+5k2-30k4+5k225k24+5k2-30k24+5k2+1=5k故5k ≤15即k ≤3,综上,-3≤k<-1或1<k≤3.考点02双曲线及其性质1(2024·全国·高考Ⅱ)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...:过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n .(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x=2k y n-kx n1-k2-x n=2ky n-x n-k2x n1-k2,相应的y=k x-x n+y n=y n+k2y n-2kx n1-k2.所以该直线与C 的不同于P n 的交点为Q n2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n ,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k 1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV ⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV⋅UW 1-UV ⋅UWUV ⋅UW 2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2c 2+d 2-ac +bd2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n=121-k 1+k m -1+k 1-k mx 2n -y 2n=921-k 1+k m -1+k 1-k m .而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2=x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1 =12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1 =12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k-921-k 1+k 2-1+k 1-k 2.这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m .这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k=x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.2(2023年新课标全国Ⅱ卷)已知双曲线C 的中心为坐标原点,左焦点为-25,0 ,离心率为5.(1)求C的方程;(2)记C左、右顶点分别为A1,A2,过点-4,0的直线与C的左支交于M,N两点,M在第二象限,直线MA1与NA2交于点P.证明:点P在定直线上.【答案】(1)x24-y216=1(2)证明见解析.解析:(1)设双曲线方程为x2a2-y2b2=1a>0,b>0,由焦点坐标可知c=25,则由e=ca=5可得a=2,b=c2-a2=4,双曲线方程为x24-y216=1.(2)由(1)可得A1-2,0,A22,0,设M x1,y1,N x2,y2,显然直线的斜率不为0,所以设直线MN的方程为x=my-4,且-12<m<12,与x24-y216=1联立可得4m2-1y2-32my+48=0,且Δ=64(4m2+3)>0,则y1+y2=32m4m2-1,y1y2=484m2-1,直线MA1的方程为y=y1x1+2x+2,直线NA2的方程为y=y2x2-2x-2,联立直线MA1与直线NA2的方程可得:x+2 x-2=y2x1+2y1x2-2=y2my1-2y1my2-6=my1y2-2y1+y2+2y1my1y2-6y1=m⋅484m2-1-2⋅32m4m2-1+2y1m×484m2-1-6y1=-16m4m2-1+2y148m4m2-1-6y1=-13,由x+2x-2=-13可得x=-1,即x P=-1,据此可得点P在定直线x=-1上运动.3(2022新高考全国II卷)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=±3x.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P x1,y1,Q x2,y2在C上,且.x1>x2>0,y1>0.过P 且斜率为-3的直线与过Q 且斜率为3的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ ∥AB ;③|MA |=|MB |.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1)x 2-y 23=1(2)见解析:(1)右焦点为F (2,0),∴c =2,∵渐近线方程为y =±3x ,∴ba=3,∴b =3a ,∴c 2=a 2+b 2=4a 2=4,∴a =1,∴b =3.∴C 的方程为:x 2-y 23=1;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而x 1=x 2,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为y =k x -2 ,则条件①M 在AB 上,等价于y 0=k x 0-2 ⇔ky 0=k 2x 0-2 ;两渐近线方程合并为3x 2-y 2=0,联立消去y 并化简整理得:k 2-3 x 2-4k 2x +4k 2=0设A x 3,y 3 ,B x 3,y 4 ,线段中点N x N ,y N ,则x N =x 3+x 42=2k 2k 2-3,y N =k x N -2 =6kk 2-3,设M x 0,y 0 , 则条件③AM =BM 等价于x 0-x 3 2+y 0-y 3 2=x 0-x 4 2+y 0-y 4 2,移项并利用平方差公式整理得:x 3-x 4 2x 0-x 3+x 4 +y 3-y 4 2y 0-y 3+y 4 =0,2x 0-x 3+x 4 +y 3-y 4x 3-x 42y 0-y 3+y 4 =0,即x 0-x N +k y 0-y N =0,即x 0+ky 0=8k 2k 2-3;由题意知直线PM 的斜率为-3, 直线QM 的斜率为3,∴由y 1-y 0=-3x 1-x 0 ,y 2-y 0=3x 2-x 0 ,∴y 1-y 2=-3x 1+x 2-2x 0 ,所以直线PQ 的斜率m =y 1-y 2x 1-x 2=-3x 1+x 2-2x 0 x 1-x 2,直线PM :y =-3x -x 0 +y 0,即y =y 0+3x 0-3x ,代入双曲线的方程3x 2-y 2-3=0,即3x +y 3x -y =3中,得:y 0+3x 0 23x -y 0+3x 0 =3,解得P 的横坐标:x 1=1233y 0+3x 0+y 0+3x 0,。
横看成岭侧成峰 远近高低各不同——2020年高考数学浙江卷第19题线面角问题的多角度分析
数理化解题研究2021年第01期总第494期横看成岭侧成峰远近高低各不同2020年高考数学浙江卷第19题线面角问题的多角度分析章显联(浙江省绍兴鲁迅高级中学312000)摘 要:本文对2020年高考数学浙江卷第19题线面角问题进行多角度分析:非坐标形式的向量法(基底法)、三余弦定理法、等体积法、纯几何法、空间直角坐标系法.给出了复习的两个建议:关注最小,秒杀线面;重视非坐标形式的向量法.关键词:非坐标形式的向量法;线面角;两个原理中图分类号:G632 文献标识码:A 文章编号:1008 -0333(2021)01 -0036 -04一、典型考题所成角为0 ,由已知,得0C 与平面DBC 所成角也为0.由公式,得例1(2020年浙江第19题)如图1,在三棱台ABC-DEF 中,平面 ACFD 丄平面 ABC , /ACB - /ACD -45°,DC -2B C.(1) 证明:EF 丄DB ;(2) 求直线DF 与平面DBC 所成角的正弦值.本题主要考查空间直线互 相垂直的判定和性质,以及直 线与平面所成角的几何计算问题,考查了空间想象能力和思 维能力,平面与空间互相转化 能力,几何计算能力,以及逻辑推理能力,本题属综合性较强 的中档题.笔者认为此题无论图1是试题难度、试题背景、命题立意,还是对数学核心素养 的考查,都很到位,可谓简约不简单.它也是一道解题训 练的优质题,横看成岭侧成峰,很有研究价值.解法1非坐标形式的向量法(基底法)过点D 作D0丄AC 于点0,以{ C B ,C B ,CD }为基底. 不妨设 DC - 2B C -2,贝V DB - 3 , C0 - 2 , / 0CB -:,/0CD - n , /DCB - n ,设平面DBC 的法向量为n - %-CD -0,(• C B -0 得{2% + y + 4z - 0,% + y + z - 0.C O + y C B + zC B ,贝V 由所以n - -3 C0 +2 B + CD.设直线DF 与平面DBC解法2三余弦定理法过点D 作D0丄AC 于点0,由已知,得0在平面DBC 的射影H 在/DCB 的角平分线上,设直线DF 与平面DBC 所成角为0,由已知,得0C 与平面DBC 所成角也为0.由三余弦定理,得 cos n - cos n • cos 0,cos 0 - f •463所以sin 0 -耳.解法3等体积法.过点D 作D0丄AC 于点0,设直线DF 与平面DBC 所 成角为0,由已知,得0C 与平面DBC 所成角也为0.由 % - DBC 二 % - 0BC ,解得 h 二专,sin 0 二豊二专.解法4坐标形式的向量法以0为原点,0D 为Z 轴,0C 为Y 轴,在平面ABC 内, 过点0作0C 垂线为Z 轴,易求D ,C ,B 坐标,从而求得平面DBC 的法向量,利用线面角公式sin 0 - 3 •解法5纯几何法分析(1)题根据已知条件,作DH 丄AC ,根据面面垂直,可得DH 丄BC ,进一步根据直角三角形的知识可判断收稿日期:2020 -10 -05作者简介:章显联(1972. 12 -),男,浙江省龙港人,本科,中学高级教师,从事高中数学教学研究.—36—2021年第01期总第494期数理化解题研究出厶BHC是直角三角形,且Z HBC_90°,则HB丄BC,从而可证出BC丄面DHB,最后根据棱台的定义有EF〃BC,根据平行线的性质可得EF丄DB.(2)题可先设BC_1,根据解直角三角形可得BH_1,HC_2,DH_2,DC_2,DB_3,然后找到CH与面DBC的夹角即为Z HCG,根据棱台的特点可知DF与面DBC所成角与CH与面DBC的夹角相图2等,通过计算乙HCG的正弦值,即可得到DF与面DBC所成角的正弦值.二、考题赏析本题建系有些困难,不存在明显的过同一点的两两垂直的直线.这种情况下,非坐标形式的向量法(基底法)显得更实用.本题解法以{CO,C B,CD}为基底,因为它们不共面长度可求,且它们的夹角也可求.应用此法,可使求解过程更自由.若CO,C B,CD是单位向量且两两垂直,就是通常的坐标形式的向量法了.坐标形式的向量法可以看作是非坐标形式的向量法的一种特殊情形.解法2中0在平面DBC的射影H在Z DCB的角平分线上,利用三余弦定理可求出0C与平面DBC所成角.B图4三正弦定理(最大角定理)设二面角M-AB-N的度数为Y,在平面M上有一条射线AC,它和棱AB所成的角为0,和平面N所成的角为//a,贝V sin a_si叩•sin y.(为了力便于记忆,我们约定:0为线棱角,a为线面角,Y为二面角)证明如图4,C0丄平面N,0B丄AB,BC丄AB,0C△0BC,△0AC,△ABC均为直角三角形,sin y_,si叩_BCBCAC,sin a_器,易得sin a_sin S•sin y.说明由sin a_sin S•sin y且sin S W1,知sin a W sin y,a W y,所以二面角的半平面M内的任意一条直线与另一个半平面N所成的线面角不大于二面角,即二面角是线面角中最大的角.若平面斜线上异于斜足的点在平面上的射影不易确定,则可转换为其他点如是操作或利用等体积法求出垂线段的长,利用公式sin O_h求得.如本题解法3.其实不管是纯几何法还是坐标形式的向量法,都能解决线面角问题,高考试题的参考答案一贯都是纯几何法与坐标形式的向量法,每种方法的学习都可促进学生能力的提高,只是各有侧重.如解法4与解法5.三余弦定理(最小角定理或爪子定理)设点A为平面a上一点,过点A的斜线在平面a上的射影为B0,BC为平面a上的任意直线,那E么Z ABC,乙0BC,乙0BA三、复习建议三角的余弦关系为cosZ ABC图3_cos Z0BC•cos Z0BA.即斜线与平面内一条直线夹角0的余弦值等于斜线与平面所成角a的余弦值乘以射影与平面内直线夹角O的余弦值,cos0_cos a-cos O.(为了便于记忆,我们约定:0为斜线角,a为线面角,O为射影角)证明如图3,^0AB,△0BC,△ABC均为直角三角形,cosQ BCAB,cosaB0AB,cosO B0,易知cosQ_cos a•cos O,得证.说明这三个角中,角0是最大的,其余弦值最小,等于另外两个角的余弦值之积.斜线与平面所成角a是斜线与平面内所有直线所成角中最小的角.1.紧扣最小,秒杀线面在研究空间角的最值与求值问题时,我们应关注最大角与最小角定理,三余弦公式与三正弦公式.这样的考查在近几年的学考、高考试题中已多次出现:例2(2019年浙江高考第8题)设三棱锥V-ABC 的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成的角为a,直线PB与平面ABC所成的角为S,二面角P-AC-B的平面角为Y,则().A.S<Y,a<yB.S<a,0<yC.S<a,y<aD.a<0,y<0解法1由最小角原理,得S<a,记二面角V-AB-C的平面角为y'(显然y_y'),由最大角原理,得S<y,故选B.解法2(特殊位置)取V-ABC为正四面体,P是棱VA上的中点,算出a,0,y的正弦值,可得选项B.例3(2018年浙江高考第8题)已知四棱锥S-ABCD的底面是正方形,侧棱长均相等,E是线段—37—数理化解题研究2021年第01期总第494期AB上的点(不含端点),设SE与BC所成的角为O],SE 与平面ABCD所成的角为O2,二面角S-AB-C的平面角为O3,则()•A.O1W O2W O3B.O3W O2W O1C.O1W O3W O2D.O2W O3W O1解法1作出三个角,通过定量计算得出答案为D.解法2由最小角与最大角原理知:O1M O2,O3M O2,故选D.例4(2014年浙江高考第17题)如图5,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面的射击线CM-移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角O的大小•若AB=15m,图5AC=25m,Z BCM=30°,贝卩tan O的最大值解析由线面角W面面角,求tan O的最大值转化为求二面角M-AC-Q的平面角•易求最大值为5j•例5(2018年11月浙江学考)四边形ABCD为矩形,沿AC将A ADC翻折成A AD'C.设二面角D'-AB-C 的平面角为O,直线AD'与BC所成的角为O1,直线AD'与平面ABC所成的角为O2,当O为锐角时,有()•A.O2W O1W OB.O2W O W O1C.O1W O2W OD.O W O2W O1解析由最小角原理,得O1M O2,由最大角原理,得O M O2,下面比较O]与O的大小即可•故选B.例6(2018年全国高考n卷理科第20题)如图6,在三棱锥P-ABC中,AB=BC=22,PA=PB=PC=4,0为AC的中点•(1)证明:PO丄平面ABC;(2)若点M在棱BC上,且二面角M-PA-C为30°,求PC与平面图6PAM所成角的正弦值.解析(1)略.(2)由题意,知线棱角Z CPA=60°,二面角M-PA-C为30°,由三正弦定理,得sin a=sin60°sin30°=例7(2009年浙江高考理科第17题)如图7,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点•现将△AFD沿AF折起,使平面—38—ABD丄平面ABC.在平面ABD内过点D作DK丄AB,K为垂足•设AK=£,则t的取值范围是•」___E.$____C d/一A B A K B图7解析由三余弦定理及已知,得cos Z DAF= cosZ DAK・cosZ BAF,又Z DAF+Z BAF二;,则cos Z DAK=tan Z BAF.在Rt△DAK中t=cos Z DAB,因此t=tanZ BAF,又由折叠前的图形,知0<Z CAB<Z BAFn<Z EAB=;.4所以tan Z CAB<tan Z BAF<tan Z EAB.所以1<t<1.考查这类空间角的大小是命题者难以割舍的情结,其本质是考查线面角与面面角定义的合理性,是考查学生数学核心素养的有效途径•2.非坐标形式的向量法非坐标形式的向量法比坐标形式的向量法应用更自由,更广泛•相比较纯几何法可避免令人深感畏惧的辅助线的添加技巧等.当然,解题方法中的选择也是当用则用,不分彼此,有时多种方法可揉合于同一道题中,特别是向量与几何的紧密联系与转化•应用非坐标形式的向量法解题的基本步骤:(1)会选基底.只需要不共面的三条线段长度可求,且它们的夹角也可求即可.(2)会表示•会用基底表示其他向量,一般只涉及向量的三角形式及其推广(闭合回路),数乘与平行,数量积与垂直两个定理•特别是要掌握好平面法向量的求法,方法可参考高考真题解法1•(3)会用公式•运算过程中无论是平面向量还是空间向量操作完全一致,运用的公式与坐标形式的向量法一致.笔者尝试用非坐标形式的向量法研究高考数学卷,发现非坐标向量法作为解答立体几何的方法有着诸多的可取之处.例8(2018年浙江高考第19题)如图8,已知多面体ABCA1B1C1中,A1A,B1B,C1C均垂直于平面ABC, Z ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB】丄平面A]B]C];(2)求直线AC】与平面ABB]所成的角的正弦值.解析以{BA,B C,B—}为基底,可证明(1),也可求2021年第01期总第494期数理化解题研究得直线AC]与平面ABB1所成的角的正弦值为晋•例9(2019年浙江高考第19题)如图9,已知三棱柱ABC-A1B1C1,平面A1ACC1丄平面ABC,/ABC-90°,/BAC-30°,A1A二A1C-AC,E,F分别是AC,A]B]的中点(1)证明:EF丄BC;(2)求直线EF与平面A1BC所成角的余弦值.解析以{E b]c B,C B}为基底,可证明(1),也可求得直线EF与平面A]BC所成角的余弦值是3•我们研究的向量是自由向图9量,运用非坐标形式的向量法无需考虑建立空间直角坐标系所需要的特殊要求,使解题过程更自由•例10(2009年浙江高考理科第17题)如图10,在长方形ABCD中,AB-2,BC-1,E为DC的中点,F为线段EC(端点除外)上一动点•现将△AFD沿AF折起,使平面ABD丄平面ABC.在平面ABD内过点D作DK丄AB,K为垂足•设AK-t,则t的取值范围是•图10解析以{K4,KD,KF}为基底,设DF-m,抓住折叠过程中的不变量AD-1,AB-2,由于平面ABD丄平面ABC,DK丄AB,从而DK丄平面ABC.由DF二D A+AF二d K+k A+AF,得m2二(d K+K4+AF)2.化简,得mt-1,即t——.由1<m<2,得<t<1.m2利用非坐标形式的向量法进行的上述解答,化动为静,简捷别致,令人耳目一新.例11(2000年全国高考理科第18题)如图11,已知平行六面体ABCD-A1B1C1D1的底面ABCD是菱形,且/C1CB-/C1CD-/BCD-60°.(1)证明:C]C丄BD;3(2)假定CD-2,CC]-3,记Bi Ai图11面C]BD为a,面CBD为0,求二面角a-BD-0的平面角的余弦值;(3)当CD的值为多少时,能使A]C丄平面C]BD?请给出证明.解析以{Cc1,CD,C B}为基底,则CA]-C c]+CD+CB.(1)由BD-CD-CB,得C2C・BD-0,所以C2C丄BD.(2)易知平面a的法向量为C B;--8CC]+CD+C B,所以平面S的法向量为n--4CC]+CD+C B,从而求得a-D-S的平面角的余弦值为3•(3)当CD-1时,能使A]C丄平面C]BD.设CD-2,可证A]C丄BD,再由A]C丄BC2求得CC2-2.例12(2015年浙江省高考理科第13题)如图12,三棱锥A-BCD中,AB二AC二BD二CD-3,AD-BC-2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是•解析以{BA,BC,BD}为基底,在△ABD,由余弦定理得cos图12/ABD-7,同理得cos/CBD-[,cos/ABC-[,BA・933B C-2,BA・B D-7,B C・BD-2.用基底表示A N,C M,AN--BA+2BC,C M-2(BD+BA-2BC),异面直线AN,CM所成的角的余弦值是简]CM-T•平面向量仅是空间向量的一种特殊情形•“平面向量”可向“空间向量”自然转化.用向量方法求解空间角度与距离问题,为某些位置关系的判断问题创立了一种新的方法•在向量的运算中,要注意数形结合,灵活运用图形的几何意义、向量的几何意义去解题.《新课程标准(2017年版)》对空间向量的应用提出了更多、更高的要求,可见非坐标形式的向量法用于解决立体几何问题,完全符合新课程标准对学生的要求•如何使非坐标形式的向量法成为学生解决立体几何问题的又一个通用的好方法,还需要我们建一步地探索与总结•参考文献:[1]章显联.高考复习要注意回归教材[J].数理化解题研究,2020(13):15-18.[责任编辑:李璟]—39—。
2020全国卷高考专题:平面解析几何
10 平面解析几何1.(2020•北京卷)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ). A . 4 B . 5C . 6D . 7【答案】A【解析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1可得答案.【详解】设圆心(),C x y 1=,化简得()()22341x y -+-=,所以圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,所以||1||OC OM +≥5==,所以||514OC ≥-=, 当且仅当C 在线段OM 上时取得等号,故选:A. 【点睛】本题考查了圆的标准方程,属于基础题.2.(2020•北京卷)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ).A . 经过点OB . 经过点PC . 平行于直线OPD . 垂直于直线OP【答案】B【解析】依据题意不妨作出焦点在x 轴上的开口向右的抛物线,根据垂直平分线的定义和抛物线的定义可知,线段FQ 的垂直平分线经过点P ,即求解.【详解】如图所示:.因为线段FQ 的垂直平分线上的点到,F Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ PF =,所以线段FQ 的垂直平分线经过点P .故选:B.【点睛】本题主要考查抛物线的定义的应用,属于基础题.3.(2020•北京卷)已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________.【答案】 (1). ()3,0 (2).【解析】根据双曲线的标准方程可得出双曲线C 的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离.【详解】在双曲线C 中,a =b =3c ==,则双曲线C 的右焦点坐标为()3,0,双曲线C 的渐近线方程为2y x=±,即0x ±=,所以,双曲线C=故答案为:()3,0【点睛】本题考查根据双曲线的标准方程求双曲线的焦点坐标以及焦点到渐近线的距离,考查计算能力,属于基础题.4.(2020•北京卷)已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值.【答案】(Ⅰ)22182x y +=;(Ⅱ)1. 【解析】(Ⅰ)由题意得到关于a ,b 的方程组,求解方程组即可确定椭圆方程;(Ⅱ)首先联立直线与椭圆的方程,然后由直线MA ,NA 的方程确定点P ,Q 的纵坐标,将线段长度的比值转化为纵坐标比值的问题,进一步结合韦达定理可证得0P Q y y +=,从而可得两线段长度的比值.【详解】(1)设椭圆方程为:()222210x y a b a b+=>>,由题意可得:224112a ba b⎧+=⎪⎨⎪=⎩,解得:2282a b ⎧=⎨=⎩,故椭圆方程为:22182x y +=. (2)设()11,M x y ,()22,N x y ,直线MN 的方程为:()4y k x =+,与椭圆方程22182x y +=联立可得:()222448x k x ++=,即:()()222241326480k x k x k +++-=,则:2212122232648,4141k k x x x x k k --+==++.直线MA 的方程为:()111122y y x x ++=++, 令4x =-可得:()()()1111111141214122122222P k x k x y x y x x x x ++-++++=-⨯-=-⨯-=++++, 同理可得:()()222142Q k x y x -++=+.很明显0P Qy y <,且:P Q PB yPQ y =,注意到: ()()()()()()()()122112121242424421212222P Q x x x x x x y y k k x x x x +++++⎛⎫+++=-++=-+⨯ ⎪++++⎝⎭,而:()()()()()122112124242238x x x x x x x x +++++=+++⎡⎤⎣⎦2222648322384141k k k k ⎡⎤⎛⎫--=+⨯+⎢⎥ ⎪++⎝⎭⎣⎦()()()22226483328412041k k k k -+⨯-++=⨯=+, 故0,P Q P Q y y y y +==-.从而1PQPB y PQy ==. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.5.(2020•全国1卷)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A . 2 B . 3 C . 6 D . 9【答案】C【解析】利用抛物线的定义建立方程即可得到答案.【详解】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p=+,解得6p.故选:C.【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题.6.(2020•全国1卷)已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( ) A. 210x y --= B. 210x y +-=C. 210x y -+=D. 210x y ++=【答案】D【解析】由题意可判断直线与圆相离,根据圆的知识可知,四点,,,A P B M 共圆,且AB MP ⊥,根据44PAMPM AB SPA ⋅==可知,当直线MP l ⊥时,PM AB ⋅最小,求出以MP 为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程.【详解】圆的方程可化为()()22114x y -+-=,点M 到直线l的距离为2d ==>,所以直线l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAMPM AB SPA AM PA ⋅==⨯⨯⨯=,而PA =,当直线MP l ⊥时,min MP =,min 1PA =,此时PM AB ⋅最小.∴()1:112MP y x -=-即1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩. 所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即2210x y y +--=, 两圆的方程相减可得:210x y ++=,即为直线AB 的方程.故选:D .【点睛】本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题.7.(2020•全国1卷)已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为______________. 【答案】2【解析】根据双曲线的几何性质可知,2b BF a=,AF c a =-,即可根据斜率列出等式求解即可.【详解】联立22222221x cx y a b a b c =⎧⎪⎪-=⎨⎪⎪=+⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,所以2b BF a =.依题可得,3BF AF =,AF c a =-,即()2223b c a a c a a c a -==--,变形得3c a a +=,2c a =, 因此,双曲线C 的离心率为2.故答案为:2.【点睛】本题主要考查双曲线的离心率的求法,以及双曲线的几何性质的应用,属于基础题.8.(2020•全国1卷)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【答案】(1)2219x y +=;(2)证明详见解析. 【解析】(1)由已知可得:(),0A a -, (),0B a ,()0,1G ,即可求得21AG GB a ⋅=-,结合已知即可求得:29a =,问题得解(2)设()06,P y ,可得直线AP 的方程为:()039y y x =+,联立直线AP 的方程与椭圆方程即可求得点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭,同理可得点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭,即可表示出直线CD 的方程,整理直线CD 的方程可得:()02043233y y x y ⎛⎫=- ⎪-⎝⎭,命题得证.【详解】(1)依据题意作出如下图象:由椭圆方程222:1(1)x E y a a+=>可得:(),0A a -, (),0B a ,()0,1G∴(),1AG a =,(),1GB a =-∴218AG GB a ⋅=-=,∴29a =∴椭圆方程为:2219x y += (2)证明:设()06,P y , 则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+ 所以点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭. 同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭∴直线CD 的方程为:0022********2000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭故直线CD 过定点3,02⎛⎫⎪⎝⎭【点睛】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.9.(2020•全国2卷)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A.B.C.D.【答案】B【解析】由题意可知圆心在第一象限,设圆心的坐标为(),,0a a a >,可得圆的半径为a ,写出圆的标准方程,利用点()2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y --=的距离.【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限, 则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5,圆心到直线的距离均为121132555d ⨯--==; 圆心到直线的距离均为225532555d ⨯--==圆心到直线230x y --=的距离均为d ==230x y --=.故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.10.(2020•全国2卷)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A. 4 B. 8C. 16D. 32【答案】B【解析】因为2222:1(0,0)x y C a b a b -=>>,可得双曲线的渐近线方程是b y x a=±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab值,根据2c =值不等式,即可求得答案.【详解】2222:1(0,0)x y C a b a b -=>>∴双曲线的渐近线方程是b y x a=±直线x a =与双曲线2222:1(0,0)x yC a b a b-=>>的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限.联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故(,)D a b ,联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩,故(,)E a b -,∴||2ED b = ∴ODE 面积为:1282ODES a b ab =⨯==△,双曲线2222:1(0,0)x y C a b a b -=>>∴其焦距为28c =≥==,当且仅当a b ==∴C 的焦距的最小值:8,故选:B.【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.11.(2020•全国2卷)已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)221:13627x y C +=,22:12C y x =.【解析】(1)求出AB 、CD ,利用43CD AB =可得出关于a 、c 的齐次等式,可解得椭圆1C 的离心率的值;(2)由(1)可得出1C 的方程为2222143x y c c+=,联立曲线1C 与2C 的方程,求出点M 的坐标,利用抛物线的定义结合5MF =可求得c 的值,进而可得出1C 与2C 的标准方程. 【详解】(1)(),0F c ,AB x ⊥轴且与椭圆1C 相交于A 、B 两点,则直线AB 的方程为x c =,联立22222221x cx y a b a b c=⎧⎪⎪+=⎨⎪=+⎪⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,则22bAB a =,抛物线2C 的方程为24y cx =,联立24x c y cx =⎧⎨=⎩,解得2x cy c =⎧⎨=±⎩,4CD c ∴=, 43CD AB =,即2843b c a=,223b ac =,即222320c ac a +-=,即22320e e +-=, 01e <<,解得12e =,因此,椭圆1C 的离心率为12;(2)由(1)知2a c =,b =,椭圆1C 的方程为2222143x y c c+=,联立222224143y cx x y c c ⎧=⎪⎨+=⎪⎩,消去y 并整理得22316120x cx c +-=,解得23x c =或6x c =-(舍去), 由抛物线的定义可得25533c MF c c =+==,解得3c =.因此,曲线1C 的标准方程为2213627x y +=,曲线2C 的标准方程为212y x =.【点睛】本题考查椭圆离心率求解,同时也考查了利用抛物线的定义求抛物线和椭圆的标准方程,考查计算能力,属于中等题.12.(2020•全国3卷)设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( ) A. 1,04⎛⎫⎪⎝⎭B. 1,02⎛⎫ ⎪⎝⎭C. (1,0)D. (2,0)【答案】B【解析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4DOx EOx π∠=∠=,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2,故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.13.(2020•全国3卷)设双曲线C :22221x y a b -=(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( )A. 1B. 2C. 4D. 8【答案】A【解析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案. 【详解】5ca=,c ∴=,根据双曲线的定义可得122PF PF a -=, 的12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=,12F P F P ⊥,()22212||2PF PF c ∴+=, ()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A.【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.14.(2020•全国3卷)已知椭圆222:1(05)25x y C m m +=<<的离心率为4,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.【答案】(1)221612525x y +=;(2)52. 【解析】(1)因为222:1(05)25x y C m m+=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积. 【详解】(1)222:1(05)25x y C m m +=<<∴5a =,b m =,根据离心率4c e a ====, 解得54m =或54m =-(舍),∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=;(2)不妨设P ,Q 在x 轴上方点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥, 过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N根据题意画出图形,如图||||BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=︒,又90PBM QBN ∠+∠=︒,90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”,可得:PMB BNQ ≅△△,221612525x y +=,∴(5,0)B ,∴651PM BN ==-=, 设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时,故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2),画出图象,如图(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:5d ===,根据两点间距离公式可得:AQ ==,∴APQ面积为:15252⨯=;②当P 点为(3,1)-时,故5+38MB ==,PMB BNQ ≅△△,∴||||8MB NQ ==,可得:Q 点为(6,8),画出图象,如图(5,0)A -,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:d ===,根据两点间距离公式可得:AQ ==∴APQ面积为:1522=,综上所述,APQ 面积为:52. 【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.15.(2020•江苏卷)在平面直角坐标系xOy 中,若双曲线22x a ﹣25y =1(a >0)的一条渐近线方程为y x ,则该双曲线的离心率是____. 【答案】32【解析】根据渐近线方程求得a ,由此求得c ,进而求得双曲线的离心率.【详解】双曲线22215xy a -=,故b =由于双曲线的一条渐近线方程为2yx =,即22b a a=⇒=,所以3c ===,所以双曲线的离心率为32c a =.故答案为:32【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的求法,属于基础题. 16.(2020•江苏卷)在平面直角坐标系xOy 中,已知0)P ,A ,B 是圆C :221()362x y +-=上的两个动点,满足PA PB =,则△PAB 面积的最大值是__________. 【答案】【解析】根据条件得PC AB ⊥,再用圆心到直线距离表示三角形P AB 面积,最后利用导数求最大值.【详解】PA PB PC AB =∴⊥设圆心C 到直线AB 距离为d ,则||1AB PC ==所以11)2PABSd ≤⋅+=令222(36)(1)(06)2(1)(236)04y d d d y d d d d '=-+≤<∴=+--+=∴=(负值舍去) 当04d ≤<时,0y '>;当46d ≤<时,0y '≤,因此当4d =时,y 取最大值,即PABS取最大值为故答案为:【点睛】本题考查垂径定理、利用导数求最值,考查综合分析求解能力,属中档题.17.(2020•江苏卷)在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值; (3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标. 【答案】(1)6;(2)-4;(3)()2,0M 或212,77⎛⎫-- ⎪⎝⎭.【解析】(1)根据椭圆定义可得124AF AF +=,从而可求出12AF F △的周长; (2)设()0,0P x ,根据点A 在椭圆E 上,且在第一象限,212AF F F ⊥,求出31,2A ⎛⎫⎪⎝⎭,根据准线方程得Q 点坐标,再根据向量坐标公式,结合二次函数性质即可出最小值;(3)设出设()11,M x y ,点M 到直线AB 的距离为d ,由点O 到直线AB 的距离与213S S =,可推出95d =,根据点到直线的距离公式,以及()11,M x y 满足椭圆方程,解方程组即可求得坐标. 【详解】(1)∵椭圆E 的方程为22143x y +=,∴()11,0F -,()21,0F由椭圆定义可得:124AF AF +=. ∴12AF F △的周长为426+=(2)设()0,0P x ,根据题意可得01x ≠.∵点A 在椭圆E 上,且在第一象限,212AF F F ⊥∴31,2A ⎛⎫⎪⎝⎭,∵准线方程为4x =,∴()4,Q Q y , ∴()()()()200000,04,4244Q OP QP x x y x x x ⋅=⋅--=-=--≥-,当且仅当02x =时取等号.∴OP QP ⋅的最小值为4-.(3)设()11,M x y ,点M 到直线AB 的距离为d .∵31,2A ⎛⎫⎪⎝⎭,()11,0F - ∴直线1AF 的方程为()314y x =+,∵点O 到直线AB 的距离为35,213S S = ∴2113133252S S AB AB d ==⨯⨯⨯=⋅,∴95d =,∴113439x y -+=① ∵2211143x y +=②,∴联立①②解得1120x y =⎧⎨=⎩,1127127x y ⎧=-⎪⎪⎨⎪=-⎪⎩. ∴()2,0M 或212,77⎛⎫-- ⎪⎝⎭. 【点睛】本题考查了椭圆的定义,直线与椭圆相交问题、点到直线距离公式的运用,熟悉运用公式以及根据213S S =推出95d =是解答本题的关键. 18.(2020•新全国1山东)已知曲线22:1C mx ny +=.( )A . 若m >n >0,则C 是椭圆,其焦点在y 轴上B . 若m =n >0,则CC . 若mn <0,则C是双曲线,其渐近线方程为y = D . 若m =0,n >0,则C 是两条直线 【答案】ACD【解析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【详解】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n+=, 因为0m n >>,所以11m n<,即曲线C 表示焦点在y 轴上的椭圆,故A 正确; 对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线CB不正确;对于C ,若0mn <,则221mx ny +=可化为22111x y m n+=,此时曲线C 表示双曲线, 由220mx ny +=可得y =,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=,y n=±,此时曲线C表示平行于x 轴的两条直线,故D 正确;故选:AC D. 【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养.19.(2020•新全国1山东).C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.【答案】163【解析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y 并整理得到关于x 的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果. 【详解】∵抛物线的方程为24y x =,∴抛物线焦点F 坐标为(1,0)F , 又∵直线AB 过焦点F∴直线AB 的方程为:1)y x =- 代入抛物线方程消去y 并化简得231030x x -+=,解法一:解得121,33x x ==所以12116||||3|33AB x x =-=-=解法二:10036640∆=-=> 设1122(,),(,)A x y B x y ,则12103x x +=,过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示. 12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:163【点睛】本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题.20.(2020•新全国1山东)已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1). (1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【答案】(1)22163x y +=;(2)详见解析. 【解析】(1)由题意得到关于a ,b ,c 的方程组,求解方程组即可确定椭圆方程.(2)设出点M ,N 的坐标,在斜率存在时设方程为y kx m =+, 联立直线方程与椭圆方程,根据已知条件,已得到m,k 的关系,进而得直线MN 恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点Q 的位置.的【详解】(1)由题意可得:222222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2)设点()()1122,,,M x y N x y .因为AM ⊥AN ,∴·0AM AN =,即()()()()121222110x x y y --+--=,①当直线MN 的斜率存在时,设方程为y kx m =+,如图1. 代入椭圆方程消去y 并整理得:()22212k4260xkmx m +++-=2121222426,1212km m x x x x k k-+=-=++ ②, 根据1122,y kx m y kx m =+=+,代入①整理可得:()()()()221212k1x 2140x km k x x m ++--++-+=将②代入,()()()22222264k 121401212m km km k m k k -⎛⎫++---+-+= ⎪++⎝⎭, 整理化简得()()231210k m k m +++-=,∵2,1A ()不在直线MN 上,∴210k m +-≠,∴23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭, 所以直线过定点直线过定点21,33E ⎛⎫-⎪⎝⎭. 当直线MN 的斜率不存在时,可得()11,N x y -,如图2.代入()()()()121222110x x y y --+--=得()2212210x y -+-=,结合2211163x y +=,解得()1122,3x x ==舍,此时直线MN 过点21,33E ⎛⎫- ⎪⎝⎭,,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,所以AE 中点Q 满足QD 为定值(AE 3=). 由于()21,32,13,A E ⎛⎫-⎪⎝⎭,故由中点坐标公式可得41,33Q ⎛⎫ ⎪⎝⎭. 故存在点41,33Q ⎛⎫⎪⎝⎭,使得|DQ|为定值. 【点睛】本题考查椭圆的标准方程和性质,圆锥曲线中的定点定值问题,关键是第二问中证明直线MN 经过定点,并求得定点的坐标,属综合题,难度较大.21.(2020•天津卷)设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( )A. 22144x y -=B. 2214y x -=C. 2214x y -=D. 221x y -=【答案】D【解析】由抛物线的焦点()1,0可求得直线l 的方程为1yx b+=,即得直线的斜率为b -,再根据双曲线的渐近线的方程为b y x a =±,可得b b a -=-,1bb a-⨯=-即可求出,a b ,得到双曲线的方程. 【详解】由题可知,抛物线的焦点为()1,0,所以直线l 的方程为1yx b+=,即直线的斜率为b -,又双曲线的渐近线的方程为b y x a =±,所以b b a -=-,1bb a-⨯=-,因为0,0a b >>,解得1,1a b ==.故选:D .【点睛】本题主要考查抛物线的简单几何性质,双曲线的几何性质,以及直线与直线的位置关系的应用,属于基础题.22.(2020•天津卷)已知直线80x +=和圆222(0)x y r r +=>相交于,A B 两点.若||6AB =,则r 的值为_________.【答案】5【解析】根据圆的方程得到圆心坐标和半径,由点到直线的距离公式可求出圆心到直线的距离d ,进而利用弦长公式||AB =r .【详解】因为圆心()0,0到直线80x -+=的距离4d ==,由||AB =6==5r .故答案为:5.【点睛】本题主要考查圆的弦长问题,涉及圆的标准方程和点到直线的距离公式,属于基础题.23.(2020•天津卷)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【答案】(Ⅰ)221189x y +=;(Ⅱ)132y x =-,或3y x =-. 【解析】(Ⅰ)根据题意,并借助222a b c =+,即可求出椭圆的方程;(Ⅱ)利用直线与圆相切,得到CP AB ⊥,设出直线AB 的方程,并与椭圆方程联立,求出B 点坐标,进而求出P 点坐标,再根据CP AB ⊥,求出直线AB 的斜率,从而得解.【详解】(Ⅰ)椭圆()222210x y a b a b+=>>的一个顶点为()0,3A -,∴3b =,由OA OF =,得3c b ==,又由222a b c =+,得2228313a =+=,的所以,椭圆的方程为221189x y +=;(Ⅱ)直线AB 与以C 为圆心的圆相切于点P ,所以CP AB ⊥,根据题意可知,直线AB 和直线CP 的斜率均存在, 设直线AB 的斜率为k ,则直线AB 的方程为3y kx ,即3y kx =-,2231189y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,可得()2221120k x kx +-=,解得0x =或21221k x k =+. 将21221k x k =+代入3y kx =-,得222126321213k y k k k k =⋅--=++, 所以,点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭,因为P 为线段AB 的中点,点A 的坐标为()0,3-, 所以点P 的坐标为2263,2121k k k -⎛⎫⎪++⎝⎭,由3OC OF =,得点C 的坐标为()1,0, 所以,直线CP 的斜率为222303216261121CPk kk k k k --+=-+-+=,又因为CP AB ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =或1k =.所以,直线AB 的方程为132y x =-或3y x =-. 【点睛】本题考查了椭圆标准方程的求解、直线与椭圆的位置关系、直线与圆的位置关系、中点坐标公式以及直线垂直关系的应用,考查学生的运算求解能力,属于中档题.当看到题目中出现直线与圆锥曲线位置关系的问题时,要想到联立直线与圆锥曲线的方程.24.(2020•浙江卷)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|P A |–|PB |=2,且P 为函数y=|OP |=( )A.2B.C.D.【答案】D【解析】根据题意可知,点P既在双曲线的一支上,又在函数y =P 的坐标,得到OP 的值.【详解】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a =-=-=,即双曲线的右支方程为()22103yx x -=>,而点P还在函数y =的图象上,所以,由()22103y x x y ⎧⎪⎨->==⎪⎩,解得22x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP ==D . 【点睛】本题主要考查双曲线的定义的应用,以及二次曲线的位置关系的应用,意在考查学生的数学运算能力,属于基础题.25.(2020•浙江卷)设直线:(0)l y kx b k =+>,圆221:1C x y +=,222:(4)1C x y -+=,若直线l 与1C ,2C 都相切,则k =_______;b =______.【答案】 (1).3 (2). 3-【解析】由直线与圆12,C C 相切建立关于k ,b 的方程组,解方程组即可. 【详解】由题意,12,C C1=1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得33k b ==-.故答案为:33-【点晴】本题主要考查直线与圆的位置关系,考查学生的数学运算能力,是一道基础题.26.(2020•浙江卷)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(Ⅰ)若116=p ,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值. 【答案】(Ⅰ)1(,0)32;(Ⅱ【解析】【详解】(Ⅰ)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32;(Ⅱ)设()()()112200,,,,,,:A x y B x y M x y I x y m λ=+,由()22222222220x y y my m x y m λλλ⎧+=⇒+++-=⎨=+⎩, 1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++, 由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++, 又22222()220y pxy p y m y p y pm x y mλλλ⎧=⇒=+⇒--=⎨=+⎩, 012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222m x p m λλ∴=+-+.由2222142,?22x y x px y px⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒==-222221822228162p p p m p p p λλλλλ+⇒-+=+⋅=++≥+,所以24218p p +≥,21160p ≤,10p ≤, 所以,p 的最大值为10,此时2105(,)A .法2:设直线:(0,0)l x my t m t =+≠≠,()00,A x y .将直线l 的方程代入椭圆221:12x C y +=得:()2222220m y mty t +++-=,所以点M 的纵坐标为22M mty m =-+. 将直线l 的方程代入抛物线22:2C y px =得:2220y pmy pt --=, 所以02M y y pt =-,解得()2022p m y m+=,因此()220222p m xm+=,由220012x y +=解得22212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,所以当102,5m t ==时,p 取到最大值为1040. 【点晴】本题主要考查直线与圆锥曲线的位置关系的综合应用,涉及到求函数的最值,考查学生的数学运算能力,是一道有一定难度的题.27.(2020•上海卷)椭圆22143x y +=,过右焦点F 作直线l 交椭圆于P 、Q 两点,P 在第二象限已知()(),,'','Q Q Q Q Q x y Q x y 都在椭圆上,且y'0Q Q y +=,'FQ PQ ⊥,则直线l 的方程为【答案】10x y +-=28.(2020•上海卷)双曲线22122:14x y C b-=,圆2222:4(0)C x y b b +=+>在第一象限交点为A ,(,)A A A x y ,曲线2222221,44,A A x y x x b x y b x x ⎧-=>⎪Γ⎨⎪+=+>⎩。
解析几何-2020年高考数学十年真题精解(全国Ⅰ卷) 解析几何(原卷版)
十年高考真题精解解析几何十年树木,百年树人,十年磨一剑。
本专辑按照最新2020年考纲,对近十年高考真题精挑细选,去伪存真,挑选符合最新考纲要求的真题,按照考点/考向同类归纳,难度分层精析,对全国卷Ⅰ具有重要的应试性和导向性。
三观指的观三题(观母题、观平行题、观扇形题),一统指的是统一考点/考向,并对十年真题进行标灰(调整不考或低频考点标灰色)。
(一)2020考纲(二)本节考向题型研究汇总一、考向题型研究一: 圆锥曲线的基础性质(2019新课标I 卷T10理科).已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=(2013新课标Ⅰ卷T4理科)已知双曲线C :2222=1x y a b -(a >0,b >0)的离心率为2,则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x ± D .y =±x(2013新课标Ⅰ卷T10理科)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y +B .22=13627x y +C .22=12718x y + D .22=1189x y +(2015新课标I 卷T14理科)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 .(2014新课标Ⅰ卷T4理科)已知F 为双曲线C :x 2﹣my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( ) A. B. 3 C.m D.3m(2011新课标I 卷T14理科)在平面直角坐标系xoy ,椭圆C 的中心为原点,焦点F 1F 2在x 轴上,离心率为.过F l 的直线交于A ,B 两点,且△ABF 2的周长为16,那么C的方程为.(2012新课标I 卷T10文科)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =C 的实轴长为(A (B ) (C )4 (D )8轨迹条件点集:({M ||MF 1+|MF 2|=2a,|F 1F 2|<2a =点集:{M ||MF 1|-|MF 2|. =±2a,|F 2F 2|>2a}.点集{M | |MF |=点M 到直线l 的距离}.图形方程标准方程 (>0) (a>0,b>0) px y 22=参数方程(t 为参数) 范围 ─a x a ,─b y b |x| a ,y R x 0中心原点O (0,0) 原点O (0,0)顶点(a,0), (─a,0), (0,b) ,(0,─b) (a,0), (─a,0) (0,0)对称轴x 轴,y 轴;长轴长2a,短轴长2bx 轴,y 轴;实轴长2a, 虚轴长2b.x 轴焦点 F 1(c,0), F 2(─c,0) F 1(c,0), F 2(─c,0)12222=+b y a x b a >12222=-by a x 为离心角)参数θθθ(sin cos ⎩⎨⎧==b y a x 为离心角)参数θθθ(tan sec ⎩⎨⎧==b y a x ⎩⎨⎧==pt y pt x 222)0,2(p F双曲线:(1)等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率. (2)共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:. (3)共渐近线的双曲线系方程:的渐近线方程为如果双曲线的渐近线为时,它的双曲线方程可设为. 抛物线:(1)抛物线2y =2px(p>0)的焦点坐标是(2p ,0),准线方程x=-2p,开口向右;抛物线2y =-2px(p>0)的焦点坐标是(-2p ,0),准线方程x=2p ,开口向左;抛物线2x =2py(p>0)的焦点坐标是(0,2p ),准线方程y=-2p,开口向上;抛物线2x =-2py (p>0)的焦点坐标是(0,-2p ),准线方程y=2p,开口向下. (2)抛物线2y =2px(p>0)上的点M(x0,y0)与焦点F 的距离20p x MF +=;抛物线2y =-2px(p>0)上的点M(x0,y0)与焦点F 的距离02x pMF -=(3)设抛物线的标准方程为2y =2px(p>0),则抛物线的焦点到其顶点的距离为2p ,顶点到准线的距离2p ,焦点到准线的距离为p.(4)已知过抛物线2y =2px(p>0)焦点的直线交抛物线于A 、B 两点,则线段AB 称为焦点弦,设222a y x ±=-x y ±=2=e λ=-2222b y a x λ-=-2222b y a x 02222=-by a x )0(2222≠=-λλb y a x 02222=-b y a x 0=±b y a x )0(2222≠=-λλby a xA(x1,y1),B(x2,y2),则弦长AB =21x x ++p 或α2sin 2pAB =(α为直线AB 的倾斜角),221p y y -=,2,41221p x AF p x x +==(AF 叫做焦半径).二、考向题型研究二: 简单的离心率求解问题(2019新课标I 卷T10文科)双曲线C :﹣=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C的离心率为( ) A .2sin40° B .2cos40°C .D .(2016新课标I 卷T5文科)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) A .13 B .12 C .23 D .34(2011新课标I 卷T7理科)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A ,B 两点,|AB|为C 的实轴长的2倍,则C 的离心率为( ) A .B .C .2D .3(2012新课标I 卷T4文科)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的左、右焦点,P 为直线32a x =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为(A )12 (B )23 (C )34 D .45一、直接求出或求出a 与b 的比值,以求解。
2020年高考卷 数学(浙江卷)附答案
20201.已知集合,,则ABCD2.已知,若(i为虚数单位)是实数,则a=A1B-1C2D-23.若实数x,y满足约束条件,则的取值范围是ABCD4. 函数在区间的图像大致为ABCD5. 某几何体的三视图(单位:)如图所示,则该几何体的体积(单位:)是ABCD6. 已知空间中不过同一点的三条直线则“在同一平面” 是“两两相交”的A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件7.已知等差数列的前项的和,公差,.记下列等式不可能成立的是ABCD8.已知点, ,.设点满足,且为函数的图像上的点,则ABCD9.已知,若在上恒成立,则ABCDA若S有4个元素,则有7个元素B若S有4个元素,则有6个元素C若S有3个元素,则有4个元素D若S有3个元素,则有5个元素11.已知数列满足,则______12.设,则=_______;_______.13.已知=2,则=______;=______.14.已知圆锥展开图的侧面积为2π,且为半圆,则底面半径为______.15.设直线l:y=kx+b(k>0),圆:,:,若直线l与,都相切,则k=______;b=______.16.一个盒子里有1个红1个绿2个黄四个相同的球,每次拿一个,不放回,拿出红球即停,设拿出黄球的个数为,则;;17.设,为单位向量,满足,,,设的夹角为,则的最小值为.18.(本题满分14分)19(本题满分15分)如图,三棱台中,面面,,。
(Ⅰ)证明:;(Ⅱ)求与面所成角的正弦值。
(第19题图)20.(本题满分15分)已知中,.(I)若数列为等比数列,且公比,且,求与的通项公式;(Ⅱ)若数列为等差数列,且公差,证明:21.(15分)如图,已知椭圆,抛物线,点是椭圆与抛物线的交点,过点的直线交椭圆于点,交抛物线于(不同于).(I)若,求抛物线的焦点坐标;(Ⅱ)若存在不过原点的直线使为线段的中点;求的最大值. 22.(本题满分15 分)已知函数,其中为自然对数的底数.(Ⅰ)证明:函数在上有唯一零点;(Ⅱ)记为函数在上的零点,证明:(i)(ⅱ).参考答案1.B2.C3.B4.A5.A6.B7.D8.D9.C 10.A 11.10 12.80 ,12213. 14.1 15. 16.17.282918 正确答案及相关解析正确答案19 正确答案及相关解析正确答案20 正确答案及相关解析正确答案21 正确答案及相关解析正确答案22 正确答案及相关解析正确答案。
2020高考真题数学分类汇编—平面解析几何含答案
2020高考真题数学分类汇编—平面解析几何一、选择题(共15小题)1.(2020•天津)设双曲线C的方程为﹣=1(a>0,b>0),过抛物线y2=4x的焦点和点(0,b)的直线为l.若C的一条渐近线与l平行,另一条渐近线与l垂直,则双曲线C的方程为()A.﹣=1 B.x2=1C.﹣y2=1 D.x2﹣y2=12.(2020•北京)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为()A.4 B.5 C.6 D.73.(2020•浙江)已知点O(0,0),A(﹣2,0),B(2,0).设点P满足|PA|﹣|PB|=2,且P为函数y=3图象上的点,则|OP|=()A.B.C.D.4.(2020•北京)设抛物线的顶点为O,焦点为F,准线为l.P是抛物线上异于O的一点,过P作PQ⊥l于Q,则线段FQ的垂直平分线()A.经过点O B.经过点PC.平行于直线OP D.垂直于直线OP5.(2020•新课标Ⅲ)点(0,﹣1)到直线y=k(x+1)距离的最大值为()A.1 B.C.D.26.(2020•新课标Ⅲ)设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD⊥OE,则C的焦点坐标为()A.(,0)B.(,0)C.(1,0)D.(2,0)7.(2020•新课标Ⅱ)设O为坐标原点,直线x=a与双曲线C:﹣=1(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的面积为8,则C的焦距的最小值为()A.4 B.8 C.16 D.328.(2020•新课标Ⅱ)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x﹣y﹣3=0的距离为()A.B.C.D.9.(2020•新课标Ⅰ)已知圆x2+y2﹣6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1 B.2 C.3 D.410.(2020•新课标Ⅰ)已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A.2 B.3 C.6 D.911.(2020•新课标Ⅲ)在平面内,A,B是两个定点,C是动点.若•=1,则点C的轨迹为()A.圆B.椭圆C.抛物线D.直线12.(2020•新课标Ⅰ)设F1,F2是双曲线C:x2﹣=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则△PF1F2的面积为()A.B.3 C.D.213.(2020•新课标Ⅲ)设双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为.P 是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a=()A.1 B.2 C.4 D.814.(2020•新课标Ⅰ)已知⊙M:x2+y2﹣2x﹣2y﹣2=0,直线l:2x+y+2=0,P为l上的动点.过点P作⊙M的切线PA,PB,切点为A,B,当|PM|•|AB|最小时,直线AB的方程为()A.2x﹣y﹣1=0 B.2x+y﹣1=0 C.2x﹣y+1=0 D.2x+y+1=015.(2020•上海)已知椭圆+y2=1,作垂直于x轴的垂线交椭圆于A、B两点,作垂直于y轴的垂线交椭圆于C、D两点,且AB=CD,两垂线相交于点P,则点P的轨迹是()A.椭圆B.双曲线C.圆D.抛物线二.多选题(共1小题)16.(2020•山东)已知曲线C:mx2+ny2=1.()A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m=n>0,则C是圆,其半径为C.若mn<0,则C是双曲线,其渐近线方程为y=±xD.若m=0,n>0,则C是两条直线三.填空题(共9小题)17.(2020•天津)已知直线x﹣y+8=0和圆x2+y2=r2(r>0)相交于A,B两点.若|AB|=6,则r的值为.18.(2020•北京)已知双曲线C:﹣=1,则C的右焦点的坐标为;C的焦点到其渐近线的距离是.19.(2020•上海)已知椭圆C:+=1的右焦点为F,直线l经过椭圆右焦点F,交椭圆C于P、Q两点(点P在第二象限),若点Q关于x轴对称点为Q′,且满足PQ⊥FQ′,求直线l的方程是.20.(2020•浙江)已知直线y=kx+b(k>0)与圆x2+y2=1和圆(x﹣4)2+y2=1均相切,则k=,b =.21.(2020•新课标Ⅲ)设双曲线C:﹣=1(a>0,b>0)的一条渐近线为y=x,则C的离心率为.22.(2020•江苏)在平面直角坐标系xOy中,若双曲线﹣=1(a>0)的一条渐近线方程为y=x,则该双曲线的离心率是.23.(2020•新课标Ⅰ)已知F为双曲线C:﹣=1(a>0,b>0)的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C的离心率为.24.(2020•山东)斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则|AB|=.25.(2020•上海)已知直线l1:x+ay=1,l2:ax+y=1,若l1∥l2,则11与l2的距离为.四.解答题(共12小题)26.(2020•天津)已知椭圆+=1(a>b>0)的一个顶点为A(0,﹣3),右焦点为F,且|OA|=|OF|,其中O为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C满足3=,点B在椭圆上(B异于椭圆的顶点),直线AB与以C为圆心的圆相切于点P,且P为线段AB的中点.求直线AB的方程.27.(2020•北京)已知椭圆C:+=1过点A(﹣2,﹣1),且a=2b.(Ⅰ)求椭圆C的方程;(Ⅱ)过点B(﹣4,0)的直线l交椭圆C于点M,N,直线MA,NA分别交直线x=﹣4于点P,Q.求的值.28.(2020•上海)已知双曲线Γ1:﹣=1与圆Γ2:x2+y2=4+b2(b>0)交于点A(x A,y A)(第一象限),曲线Γ为Γ1、Γ2上取满足x>|x A|的部分.(1)若x A=,求b的值;(2)当b=,Γ2与x轴交点记作点F1、F2,P是曲线Γ上一点,且在第一象限,且|PF1|=8,求∠F1PF2;(3)过点D(0,+2)斜率为﹣的直线l与曲线Γ只有两个交点,记为M、N,用b表示•,并求•的取值范围.29.(2020•江苏)在平面直角坐标系xOy中,已知椭圆E:+=1的左、右焦点分别为F1、F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.(1)求△AF1F2的周长;(2)在x轴上任取一点P,直线AP与椭圆E的右准线相交于点Q,求•的最小值;(3)设点M在椭圆E上,记△OAB与△MAB的面积分别为S1,S2,若S2=3S1,求点M的坐标.30.(2020•浙江)如图,已知椭圆C1:+y2=1,抛物线C2:y2=2px(p>0),点A是椭圆C1与抛物线C2的交点,过点A的直线l交椭圆C1于点B,交抛物线C2于点M(B,M不同于A).(Ⅰ)若p=,求抛物线C2的焦点坐标;(Ⅱ)若存在不过原点的直线l使M为线段AB的中点,求p的最大值.31.(2020•山东)已知椭圆C:+=1(a>b>0)的离心率为,且过点A(2,1).(1)求C的方程;(2)点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足.证明:存在定点Q,使得|DQ|为定值.32.(2020•新课标Ⅱ)已知椭圆C1:+=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.(1)求C1的离心率;(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程.33.(2020•新课标Ⅱ)已知椭圆C1:+=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合,过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.(1)求C1的离心率;(2)设M是C1与C2的公共点.若|MF|=5,求C1与C2的标准方程.34.(2020•新课标Ⅰ)已知A,B分别为椭圆E:+y2=1(a>1)的左、右顶点,G为E的上顶点,•=8.P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.35.(2020•新课标Ⅲ)已知椭圆C:+=1(0<m<5)的离心率为,A,B分别为C的左、右顶点.(1)求C的方程;(2)若点P在C上,点Q在直线x=6上,且|BP|=|BQ|,BP⊥BQ,求△APQ的面积.36.(2020•新课标Ⅰ)已知A,B分别为椭圆E:+y2=1(a>1)的左、右顶点,G为E的上顶点,•=8.P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.37.(2020•上海)已知抛物线y2=x上的动点M(x0,y0),过M分别作两条直线交抛物线于P、Q两点,交直线x=t于A、B两点.(1)若点M纵坐标为,求M与焦点的距离;(2)若t=﹣1,P(1,1),Q(1,﹣1),求证:y A•y B为常数;(3)是否存在t,使得y A•y B=1且y P•y Q为常数?若存在,求出t的所有可能值,若不存在,请说明理由.2020高考真题数学分类汇编—平面解析几何参考答案一、选择题(共15小题)1.(2020•天津)设双曲线C的方程为﹣=1(a>0,b>0),过抛物线y2=4x的焦点和点(0,b)的直线为l.若C的一条渐近线与l平行,另一条渐近线与l垂直,则双曲线C的方程为()A.﹣=1 B.x2=1C.﹣y2=1 D.x2﹣y2=1【解答】解:抛物线y2=4x的焦点坐标为(1,0),则直线l的方程为y=﹣b(x﹣1),∵双曲线C的方程为﹣=1(a>0,b>0)的渐近线方程为y=±x,∵C的一条渐近线与l平行,另一条渐近线与l垂直,∴﹣=﹣b,•(﹣b)=﹣1,∴a=1,b=1,∴双曲线C的方程为x2﹣y2=1,故选:D.2.(2020•北京)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为()A.4 B.5 C.6 D.7【解答】解:如图示:,半径为1的圆经过点(3,4),可得该圆的圆心轨迹为(3,4)为圆心,1为半径的圆,故当圆心到原点的距离的最小时,连结OB,A在OB上且AB=1,此时距离最小,由OB=5,得OA=4,即圆心到原点的距离的最小值是4,故选:A.3.(2020•浙江)已知点O(0,0),A(﹣2,0),B(2,0).设点P满足|PA|﹣|PB|=2,且P为函数y=3图象上的点,则|OP|=()A.B.C.D.【解答】解:点O(0,0),A(﹣2,0),B(2,0).设点P满足|PA|﹣|PB|=2,可知P的轨迹是双曲线的右支上的点,P为函数y=3图象上的点,即在第一象限的点,联立两个方程,解得P(,),所以|OP|==.故选:D.4.(2020•北京)设抛物线的顶点为O,焦点为F,准线为l.P是抛物线上异于O的一点,过P作PQ⊥l于Q,则线段FQ的垂直平分线()A.经过点O B.经过点PC.平行于直线OP D.垂直于直线OP【解答】解:(本题属于选择题)不妨设抛物线的方程为y2=4x,则F(1,0),准线为l为x=﹣1,不妨设P(1,2),∴Q(﹣1,2),设准线为l与x轴交点为A,则A(﹣1,0),可得四边形QAFP为正方形,根据正方形的对角线互相垂直,故可得线段FQ的垂直平分线,经过点P,故选:B.5.(2020•新课标Ⅲ)点(0,﹣1)到直线y=k(x+1)距离的最大值为()A.1 B.C.D.2【解答】解:因为点(0,﹣1)到直线y=k(x+1)距离d===;∵要求距离的最大值,故需k>0;可得d≤=;当k=1时等号成立;故选:B.6.(2020•新课标Ⅲ)设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD⊥OE,则C的焦点坐标为()A.(,0)B.(,0)C.(1,0)D.(2,0)【解答】解:将x=2代入抛物线y2=2px,可得y=±2,OD⊥OE,可得k OD•k OE=﹣1,即,解得p=1,所以抛物线方程为:y2=2x,它的焦点坐标(,0).故选:B.7.(2020•新课标Ⅱ)设O为坐标原点,直线x=a与双曲线C:﹣=1(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的面积为8,则C的焦距的最小值为()A.4 B.8 C.16 D.32【解答】解:由题意可得双曲线的渐近线方程为y=±x,分别将x=a,代入可得y=±b,即D(a,b),E(a,﹣b),则S△ODE=a×2b=ab=8,∴c2=a2+b2≥2ab=16,当且仅当a=b=2时取等号,∴C的焦距的最小值为2×4=8,故选:B.8.(2020•新课标Ⅱ)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x﹣y﹣3=0的距离为()A.B.C.D.【解答】解:由题意可得所求的圆在第一象限,设圆心为(a,a),则半径为a,a>0.故圆的方程为(x﹣a)2+(y﹣a)2=a2,再把点(2,1)代入,求得a=5或1,故要求的圆的方程为(x﹣5)2+(y﹣5)2=25或(x﹣1)2+(y﹣1)2=1.故所求圆的圆心为(5,5)或(1,1);故圆心到直线2x﹣y﹣3=0的距离d==或d==;故选:B.9.(2020•新课标Ⅰ)已知圆x2+y2﹣6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1 B.2 C.3 D.4【解答】解:由圆的方程可得圆心坐标C(3,0),半径r=3;设圆心到直线的距离为d,则过D(1,2)的直线与圆的相交弦长|AB|=2,当d最大时弦长|AB|最小,当直线与CD所在的直线垂直时d最大,这时d=|CD|==2,所以最小的弦长|AB|=2=2,故选:B.10.(2020•新课标Ⅰ)已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A.2 B.3 C.6 D.9【解答】解:A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,因为抛物线上的点到焦点的距离和到准线的距离相等,故有:9+=12⇒p=6;故选:C.11.(2020•新课标Ⅲ)在平面内,A,B是两个定点,C是动点.若•=1,则点C的轨迹为()A.圆B.椭圆C.抛物线D.直线【解答】解:在平面内,A,B是两个定点,C是动点,不妨设A(﹣a,0),B(a,0),设C(x,y),因为=1,所以(x+a,y)•(x﹣a,y)=1,解得x2+y2=a2+1,所以点C的轨迹为圆.故选:A.12.(2020•新课标Ⅰ)设F1,F2是双曲线C:x2﹣=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则△PF1F2的面积为()A.B.3 C.D.2【解答】解:由题意可得a=1,b=,c=2,∴|F1F2|=2c=4,∵|OP|=2,∴|OP|=|F1F2|,∴△PF1F2为直角三角形,∴PF1⊥PF2,∴|PF1|2+|PF2|2=4c2=16,∵||PF1|﹣|PF2||=2a=2,∴|PF1|2+|PF2|2﹣2|PF1|•|PF2|=4,∴|PF1|•|PF2|=6,∴△PF1F2的面积为S=|PF1|•|PF2|=3,故选:B.13.(2020•新课标Ⅲ)设双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为.P 是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a=()A.1 B.2 C.4 D.8【解答】解:由题意,设PF2=m,PF1=n,可得m﹣n=2a,,m2+n2=4c2,e=,可得4c2=16+4a2,可得5a2=4+a2,解得a=1.故选:A.14.(2020•新课标Ⅰ)已知⊙M:x2+y2﹣2x﹣2y﹣2=0,直线l:2x+y+2=0,P为l上的动点.过点P作⊙M的切线PA,PB,切点为A,B,当|PM|•|AB|最小时,直线AB的方程为()A.2x﹣y﹣1=0 B.2x+y﹣1=0 C.2x﹣y+1=0 D.2x+y+1=0【解答】解:化圆M为(x﹣1)2+(y﹣1)2=4,圆心M(1,1),半径r=2.∵=2S△PAM=|PA|•|AM|=2|PA|=.∴要使|PM|•|AB|最小,则需|PM|最小,此时PM与直线l垂直.直线PM的方程为y﹣1=(x﹣1),即y=,联立,解得P(﹣1,0).则以PM为直径的圆的方程为.联立,可得直线AB的方程为2x+y+1=0.故选:D.15.(2020•上海)已知椭圆+y2=1,作垂直于x轴的垂线交椭圆于A、B两点,作垂直于y轴的垂线交椭圆于C、D两点,且AB=CD,两垂线相交于点P,则点P的轨迹是()A.椭圆B.双曲线C.圆D.抛物线【解答】解:∵AB≤2,∴CD≤2,判断轨迹为上下两支,即选双曲线,设A(m,t),D(t,n),所以P(m,n),因为,,消去t可得:2n2﹣,故选:B.二.多选题(共1小题)16.(2020•山东)已知曲线C:mx2+ny2=1.()A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m=n>0,则C是圆,其半径为C.若mn<0,则C是双曲线,其渐近线方程为y=±xD.若m=0,n>0,则C是两条直线【解答】解:A.若m>n>0,则,则根据椭圆定义,知=1表示焦点在y轴上的椭圆,故A正确;B.若m=n>0,则方程为x2+y2=,表示半径为的圆,故B错误;C.若m<0,n>0,则方程为=1,表示焦点在y轴的双曲线,故此时渐近线方程为y=±x,若m>0,n<0,则方程为=1,表示焦点在x轴的双曲线,故此时渐近线方程为y=±x,故C正确;D.当m=0,n>0时,则方程为y=±表示两条直线,故D正确;故选:ACD.三.填空题(共9小题)17.(2020•天津)已知直线x﹣y+8=0和圆x2+y2=r2(r>0)相交于A,B两点.若|AB|=6,则r的值为5.【解答】解:根据题意,圆x2+y2=r2的圆心为(0,0),半径为r;则圆心到直线x﹣y+8=0的距离d==4,若|AB|=6,则有r2=d2+()2=16+9=25,故r=5;故答案为:518.(2020•北京)已知双曲线C:﹣=1,则C的右焦点的坐标为(3,0);C的焦点到其渐近线的距离是.【解答】解:双曲线C:﹣=1,则c2=a2+b2=6+3=9,则c=3,则C的右焦点的坐标为(3,0),其渐近线方程为y=±x,即x±y=0,则点(3,0)到渐近线的距离d==,故答案为:(3,0),.19.(2020•上海)已知椭圆C:+=1的右焦点为F,直线l经过椭圆右焦点F,交椭圆C于P、Q两点(点P在第二象限),若点Q关于x轴对称点为Q′,且满足PQ⊥FQ′,求直线l的方程是x+y﹣1=0.【解答】解:椭圆C:+=1的右焦点为F(1,0),直线l经过椭圆右焦点F,交椭圆C于P、Q两点(点P在第二象限),若点Q关于x轴对称点为Q′,且满足PQ⊥FQ′,可知直线l的斜率为﹣1,所以直线l的方程是:y=﹣(x﹣1),即x+y﹣1=0.故答案为:x+y﹣1=0.20.(2020•浙江)已知直线y=kx+b(k>0)与圆x2+y2=1和圆(x﹣4)2+y2=1均相切,则k=,b=﹣.【解答】解:由条件得C1(0,0),r1=1,C2(4,0),r2=1,因为直线l与C1,C2都相切,故有d1==1,d2==1,则有=,故可得b2=(4k+b)2,整理得k(2k+b)=0,因为k>0,所以2k+b=0,即b=﹣2k,代入d1==1,解得k=,则b=﹣,故答案为:;﹣.21.(2020•新课标Ⅲ)设双曲线C:﹣=1(a>0,b>0)的一条渐近线为y=x,则C的离心率为.【解答】解:由双曲线的方程可得渐近线的方程为:y=±x,由题意可得=,所以离心率e===,故答案为:.22.(2020•江苏)在平面直角坐标系xOy中,若双曲线﹣=1(a>0)的一条渐近线方程为y=x,则该双曲线的离心率是.【解答】解:双曲线﹣=1(a>0)的一条渐近线方程为y=x,可得,所以a=2,所以双曲线的离心率为:e==,故答案为:.23.(2020•新课标Ⅰ)已知F为双曲线C:﹣=1(a>0,b>0)的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C的离心率为2.【解答】解:F为双曲线C:﹣=1(a>0,b>0)的右焦点(c,0),A为C的右顶点(a,0),B为C上的点,且BF垂直于x轴.所以B(c,),若AB的斜率为3,可得:,b2=c2﹣a2,代入上式化简可得c2=3ac﹣2a2,e=,可得e2﹣3e+2=0,e>1,解得e=2.故答案为:2.24.(2020•山东)斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则|AB|=.【解答】解:由题意可得抛物线焦点F(1,0),直线l的方程为y=(x﹣1),代入y2=4x并化简得3x2﹣10x+3=0,设A(x1,y1),B(x2,y2),则x1+x2=;x1x2=1,∴由抛物线的定义可得|AB|=x1+x2+p=+2=.故答案为:.25.(2020•上海)已知直线l1:x+ay=1,l2:ax+y=1,若l1∥l2,则11与l2的距离为.【解答】解:直线l1:x+ay=1,l2:ax+y=1,当l1∥l2时,a2﹣1=0,解得a=±1;当a=1时l1与l2重合,不满足题意;当a=﹣1时l1∥l2,此时l1:x﹣y﹣1=0,l2:x﹣y+1=0;则11与l2的距离为d==.故答案为:.四.解答题(共12小题)26.(2020•天津)已知椭圆+=1(a>b>0)的一个顶点为A(0,﹣3),右焦点为F,且|OA|=|OF|,其中O为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C满足3=,点B在椭圆上(B异于椭圆的顶点),直线AB与以C为圆心的圆相切于点P,且P为线段AB的中点.求直线AB的方程.【解答】解:(Ⅰ)由已知可得b=3,记半焦距为c,由|OF|=|OA|可得c=b=3,由a2=b2+c2,可得a2=18,∴椭圆的方程为+=1,(Ⅱ):∵直线AB与C为圆心的圆相切于点P,∴AB⊥CP,根据题意可得直线AB和直线CP的斜率均存在,设直线AB的方程为y=kx﹣3,由方程组,消去y可得(2k2+1)x2﹣12kx=0,解得x=0,或x=,依题意可得点B的坐标为(,),∵P为线段AB的中点,点A的坐标为(0,﹣3),∴点P的坐标为(,),由3=,可得点C的坐标为(1,0),故直线CP的斜率为=,∵AB⊥CP,∴k•=﹣1,整理可得2k2﹣3k+1=0,解得k=或k=1,∴直线AB的方程为y=x﹣3或y=x﹣3.27.(2020•北京)已知椭圆C:+=1过点A(﹣2,﹣1),且a=2b.(Ⅰ)求椭圆C的方程;(Ⅱ)过点B(﹣4,0)的直线l交椭圆C于点M,N,直线MA,NA分别交直线x=﹣4于点P,Q.求的值.【解答】解:(Ⅰ)椭圆C:+=1过点A(﹣2,﹣1),且a=2b,则,解得b2=2,a2=8,∴椭圆方程为+=1,(Ⅱ)由题意可得直线l的斜率存在,设直线方程为y=k(x+4),由,消y整理可得(1+4k2)x2+32k2x+64k2﹣8=0,∴△=﹣32(4k2﹣1)>0,解得﹣<k<,设M(x1,y1),N(x2,y2),∴x1+x2=﹣,x1x2=,则直线AM的方程为y+1=(x+2),直线AN的方程为y+1=(x+2),分别令x=﹣4,可得y P=﹣1=﹣,y Q=﹣∴|PB|=|y P|=||,QB|=|y Q|=||,∴=||=|| ∵(2k+1)x1x2+(4k+2)(x1+x2)+8(2k+1)=,∴||=||=||=1,故=1.28.(2020•上海)已知双曲线Γ1:﹣=1与圆Γ2:x2+y2=4+b2(b>0)交于点A(x A,y A)(第一象限),曲线Γ为Γ1、Γ2上取满足x>|x A|的部分.(1)若x A=,求b的值;(2)当b=,Γ2与x轴交点记作点F1、F2,P是曲线Γ上一点,且在第一象限,且|PF1|=8,求∠F1PF2;(3)过点D(0,+2)斜率为﹣的直线l与曲线Γ只有两个交点,记为M、N,用b表示•,并求•的取值范围.【解答】解:(1)由x A=,点A为曲线Γ1与曲线Γ2的交点,联立,解得y A=,b=2;(2)由题意可得F1,F2为曲线Γ1的两个焦点,由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=8,2a=4,所以|PF2|=8﹣4=4,因为b=,则c==3,所以|F1F2|=6,在△PF1F2中,由余弦定理可得cos∠F1PF2===,由0<∠F1PF2<π,可得∠F1PF2=arccos;(3)设直线l:y=﹣x+,可得原点O到直线l的距离d==,所以直线l是圆的切线,设切点为M,所以k OM=,并设OM:y=x与圆x2+y2=4+b2联立,可得x2+x2=4+b2,可得x=b,y=2,即M(b,2),注意直线l与双曲线的斜率为负的渐近线平行,所以只有当y A>2时,直线l才能与曲线Γ有两个交点,由,可得y A2=,所以有4<,解得b2>2+2或b2<2﹣2(舍去),因为为在上的投影可得,•=4+b2,所以•=4+b2>6+2,则•∈(6+2,+∞).29.(2020•江苏)在平面直角坐标系xOy中,已知椭圆E:+=1的左、右焦点分别为F1、F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.(1)求△AF1F2的周长;(2)在x轴上任取一点P,直线AP与椭圆E的右准线相交于点Q,求•的最小值;(3)设点M在椭圆E上,记△OAB与△MAB的面积分别为S1,S2,若S2=3S1,求点M的坐标.【解答】解:(1)由椭圆的标准方程可知,a2=4,b2=3,c2=a2﹣b2=1,所以△AF1F2的周长=2a+2c=6.(2)由椭圆方程得A(1,),设P(t,0),则直线AP方程为y=,椭圆的右准线为:x==4,所以直线AP与右准线的交点为Q(4,•),•=(t,0)•(t﹣4,0﹣•)=t2﹣4t=(t﹣2)2﹣4≥﹣4,当t=2时,()min=﹣4.(3)若S2=3S1,设O到直线AB距离d1,M到直线AB距离d2,则×|AB|×d2=×|AB|×d1,即d2=3d1,A(1,),F1(﹣1,0),可得直线AB方程为y=(x+1),即3x﹣4y+3=0,所以d1=,d2=,由题意得,M点应为与直线AB平行且距离为的直线与椭圆的交点,设平行于AB的直线l为3x﹣4y+m=0,与直线AB的距离为,所以=,即m=﹣6或12,当m=﹣6时,直线l为3x﹣4y﹣6=0,即y=(x﹣2),联立,可得(x﹣2)(7x+2)=0,即或,所以M(2,0)或(﹣,﹣).当m=12时,直线l为3x﹣4y+12=0,即y=(x+4),联立,可得+18x+24=0,△=9×(36﹣56)<0,所以无解,综上所述,M点坐标为(2,0)或(﹣,﹣).30.(2020•浙江)如图,已知椭圆C1:+y2=1,抛物线C2:y2=2px(p>0),点A是椭圆C1与抛物线C2的交点,过点A的直线l交椭圆C1于点B,交抛物线C2于点M(B,M不同于A).(Ⅰ)若p=,求抛物线C2的焦点坐标;(Ⅱ)若存在不过原点的直线l使M为线段AB的中点,求p的最大值.【解答】解:(Ⅰ)p=,则=,则抛物线C2的焦点坐标(,0),(Ⅱ)直线l与x轴垂直时,此时点M与点A或点B重合,不满足题意,设直线l的方程为y=kx+t,A(x1,y1),B(x2,y2),M(x0,y0),由,消y可得(2k2+1)x2+4kty+2t2﹣2=0,∴△=16k2t2﹣4(2k2+1)(2t2﹣2)≥0,即t2<1+2k2,∴x1+x2=﹣,∴x0=(x1+x2)=﹣,∴y0=kx0+t=,∴M(﹣,),∵点M在抛物线C2上,∴y2=2px,∴p===,联立,解得x1=,y1=,代入椭圆方程可得+=1,解得t2=∴p2===≤=,∴p≤,当且仅当1=2k2,即k2=,t2=时等号成立,故p的最大值为.31.(2020•山东)已知椭圆C:+=1(a>b>0)的离心率为,且过点A(2,1).(1)求C的方程;(2)点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足.证明:存在定点Q,使得|DQ|为定值.【解答】解:(1)∵离心率,∴a=c,又a2=b2+c2,∴b=c,a=b,把点A(2,1)代入椭圆方程得,,解得b2=3,故椭圆C的方程为.(2)①当直线MN的斜率存在时,设其方程为y=kx+m,联立,得(2k2+1)x2+4kmx+2m2﹣6=0,由△=(4km)2﹣4(2k2+1)(2m2﹣6)>0,知m2<6k2+3,设M(x1,y1),N(x2,y2),则x1+x2=,x1x2=,∵AM⊥AN,∴=(x1﹣2,y1﹣1)•(x2﹣2,y2﹣1)=0,即(k2+1)x1x2+(km﹣k﹣2)(x1+x2)+m2﹣2m+5=0,∴(k2+1)•+(km﹣k﹣2)()+m2﹣2m+5=0,化简整理得,4k2+8km+3m2﹣2m﹣1=(2k+m﹣1)(2k+3m+1)=0,∴m=1﹣2k或m=,当m=1﹣2k时,y=kx﹣2k+1,过定点A(2,1),不符合题意,舍去;当m=时,y=kx,过定点.设D(x0,y0),则y0=kx0+m,(i)若k≠0,∵AD⊥MN,∴,解得,,∴=+==,∴点D在以(,)为圆心,为半径的圆上,故存在Q(,),使得|DQ|=,为定值.(ii)若k=0,则直线MN的方程为y=,∵AD⊥MN,∴D(2,),∴|DQ|=,为定值.②当直线MN的斜率不存在时,设其方程为x=t,M(t,s),N(t,﹣s),且,∵AM⊥AN,∴=(t﹣2,s﹣1)•(t﹣2,﹣s﹣1)=t2﹣4t﹣s2+5==0,解得t=或2(舍2),∴D(,1),此时|DQ|=,为定值.综上所述,存在定点Q(,),使得|DQ|为定值,且该定值为.32.(2020•新课标Ⅱ)已知椭圆C1:+=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.(1)求C1的离心率;(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程.【解答】解:(1)由题意设抛物线C2的方程为:y2=4cx,焦点坐标F为(c,0),因为AB⊥x轴,将x=c 代入抛物线的方程可得y2=4c2,所以|y|=2c,所以弦长|CD|=4c,将x=c代入椭圆C1的方程可得y2=b2(1﹣)=,所以|y|=,所以弦长|AB|=,再由|CD|=|AB|,可得4c=,即3ac=2b2=2(a2﹣c2),整理可得2c2+3ac﹣2a2=0,即2e2+3e﹣2=0,e∈(0,1),所以解得e=,所以C1的离心率为;(2)由椭圆的方程可得4个顶点的坐标分别为:(±a,0),(0,±b),而抛物线的准线方程为:x=﹣c,所以由题意可得2c+a+c+a﹣c=12,即a+c=6,而由(1)可得=,所以解得:a=4,c=2,所以b2=a2﹣c2=16﹣4=12,所以C1的标准方程为:+=1,C2的标准方程为:y2=8x.33.(2020•新课标Ⅱ)已知椭圆C1:+=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合,过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.(1)求C1的离心率;(2)设M是C1与C2的公共点.若|MF|=5,求C1与C2的标准方程.【解答】解:(1)因为F为C1的焦点且AB⊥x轴,可得F(c,0),|AB|=,设C2的标准方程为y2=2px(p>0),因为F为C2的焦点且CD⊥x轴,所以F(,0),|CD|=2p,因为|CD|=|AB|,C1,C2的焦点重合,所以,消去p,可得4c=,所以3ac=2b2,所以3ac=2a2﹣2c2,设C1的离心率为e,由e=,则2e2+3e﹣2=0,解得e=(﹣2舍去),故C1的离心率为;(2)由(1)可得a=2c,b=c,p=2c,所以C1:+=1,C2:y2=4cx,联立两曲线方程,消去y,可得3x2+16cx﹣12c2=0,所以(3x﹣2c)(x+6c)=0,解得x=c或x=﹣6c(舍去),从而|MF|=x+=c+c=c=5,解得c=3,所以C1和C2的标准方程分别为+=1,y2=12x.34.(2020•新课标Ⅰ)已知A,B分别为椭圆E:+y2=1(a>1)的左、右顶点,G为E的上顶点,•=8.P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.【解答】解:(1)由题设得,A(﹣a,0),B(a,0),G(0,1),则,,由得a2﹣1=8,即a=3,所以E的方程为.(2)设C(x1,y1),D(x2,y2),P(6,t),若t≠0,设直线CD的方程为x=my+n,由题可知,﹣3<n<3,由于直线PA的方程为,所以,同理可得,于是有3y1(x2﹣3)=y2(x1+3)①.由于,所以,将其代入①式,消去x2﹣3,可得27y1y2=﹣(x1+3)(x2+3),即②,联立得,(m2+9)y2+2mny+n2﹣9=0,所以,,代入②式得(27+m2)(n2﹣9)﹣2m(n+3)mn+(n+3)2(m2+9)=0,解得n=或﹣3(因为﹣3<n<3,所以舍﹣3),故直线CD的方程为,即直线CD过定点(,0).若t=0,则直线CD的方程为y=0,也过点(,0).综上所述,直线CD过定点(,0).35.(2020•新课标Ⅲ)已知椭圆C:+=1(0<m<5)的离心率为,A,B分别为C的左、右顶点.(1)求C的方程;(2)若点P在C上,点Q在直线x=6上,且|BP|=|BQ|,BP⊥BQ,求△APQ的面积.【解答】解:(1)由e=得e2=1﹣,即=1﹣,∴m2=,故C的方程是:+=1;(2)由(1)A(﹣5,0),设P(s,t),点Q(6,n),根据对称性,只需考虑n>0的情况,此时﹣5<s<5,0<t≤,∵|BP|=|BQ|,∴有(s﹣5)2+t2=n2+1①,又∵BP⊥BQ,∴s﹣5+nt=0②,又+=1③,联立①②③得或,当时,则P(3,1),Q(6,2),而A(﹣5,0),则=(8,1),=(11,2),∴S△APQ==|8×2﹣11×1|=,同理可得当时,S△APQ=,综上,△APQ的面积是.36.(2020•新课标Ⅰ)已知A,B分别为椭圆E:+y2=1(a>1)的左、右顶点,G为E的上顶点,•=8.P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.【解答】解:如图所示:(1)由题意A(﹣a,0),B(a,0),G(0,1),∴=(a,1),=(a,﹣1),•=a2﹣1=8,解得:a=3,故椭圆E的方程是+y2=1;(2)由(1)知A(﹣3,0),B(3,0),设P(6,m),则直线PA的方程是y=(x+3),联立⇒(9+m2)x2+6m2x+9m2﹣81=0,由韦达定理﹣3x c=⇒x c=,代入直线PA的方程为y=(x+3)得:y c=,即C(,),直线PB的方程是y=(x﹣3),联立方程⇒(1+m2)x2﹣6m2x+9m2﹣9=0,由韦达定理3x D=⇒x D=,代入直线PB的方程为y=(x﹣3)得y D=,即D(,),则①当x c=x D即=时,有m2=3,此时x c=x D=,即CD为直线x=,②当x c≠x D时,直线CD的斜率K CD==,∴直线CD的方程是y﹣=(x﹣),整理得:y=(x﹣),直线CD过定点(,0).综合①②故直线CD过定点(,0).37.(2020•上海)已知抛物线y2=x上的动点M(x0,y0),过M分别作两条直线交抛物线于P、Q两点,交直线x=t于A、B两点.(1)若点M纵坐标为,求M与焦点的距离;(2)若t=﹣1,P(1,1),Q(1,﹣1),求证:y A•y B为常数;(3)是否存在t,使得y A•y B=1且y P•y Q为常数?若存在,求出t的所有可能值,若不存在,请说明理由.【解答】解:(1)解:∵抛物线y2=x上的动点M(x0,y0),过M分别作两条直线交抛物线于P、Q两点,交直线x=t于A、B两点.点M纵坐标为,∴点M的横坐标x M=()2=2,∵y2=x,∴p=,∴M与焦点的距离为MF==2+=.(2)证明:设M(),直线PM:y﹣1=(x﹣1),当x=﹣1时,,直线QM:y+1=(x﹣1),x=﹣1时,y B=,∴y A y B=﹣1,∴y A•y B为常数﹣1.(3)解:设M(),A(t,y A),直线MA:y﹣y0=(x﹣y02),联立y2=x,得+=0,∴y0+y p=,即y P=,同理得y Q=,∵y A•y B=1,∴y P y Q=,要使y P y Q为常数,即t=1,此时y P y Q为常数1,∴存在t=1,使得y A•y B=1且y P•y Q为常数1.。
备战2020年浙江省高考数学优质卷分类解析:平面解析几何(解析版)
∴顶点坐标是(
),故选 D.
4.【浙江省湖州三校 2019 年普通高等学校招生全国统一考试】双曲线
的距离是( )
A.1
B.2
C.4
D.
【答案】A 【解析】 因为双曲线的焦点到渐近线的距离等于虚轴长一半,
所以双曲线
的一个焦点到一条渐近线的距离是 1,选 A.
的一个焦点到一条渐近线
5.【浙江省金丽衢十二校 2019 届高三第一次联考】双曲线
C
由部分椭圆
C1
:y 2 a2
x2 b2
1(a
b
0, y
0)
和部分抛物线 C2 : y x2 1( y 0) 连接而成, C1 与 C2 的公共点为 A , B ,其中 C1 所在椭圆的离心率
为 2. 2
(Ⅰ)求 a , b 的值; (Ⅱ)过点 B 的直线 l 与 C1 ,C2 分别交于点 P ,Q( P ,Q ,A ,B 中任意两点均不重合),若 AP AQ , 求直线 l 的方程. 【答案】(Ⅰ) a 2, b 1 ;(Ⅱ) 4x y 4 0 .
,
,过 , 分别作 的垂线交该椭圆于不同于的 , 两点,若
的两个顶点 ,则椭圆的离
心率是__________. 【答案】 【解析】 过 作 的垂线的方程为
过 作 的垂线的方程为
因为
,所以
,与 ,与
联立方程组解得 联立方程组解得
, ,
15.【浙江省金华十校 2019 届高三上期末】已知 F 为抛物线 C:
【答案】(1)见证明;(2)
【解析】
(1)显然 斜率存在,设直线 的方程
,
代入抛物线方程
中,得
,
设
,由韦达定理得到
高考解析几何大题
高考解析几何大题高考解析几何大题:1. 说明:本题涉及三角形的面积计算和相似三角形的性质。
要求:给定一个平面内的三角形ABC,点D、E分别位于边AC、BC上,且满足AD:DC = 1:2,BE:EC = 1:3。
已知△BED与△ABC相似,且其面积为8平方厘米,求△ABC的面积。
解析:根据已知条件可知,△ABC与△BED相似,则△ABC与△EDC也相似。
因此,设△ABC和△EDC的对应边长分别为a和3a。
根据相似三角形的性质,有:∴△ABC的面积 : △EDC的面积 = a² : (3a)² = 1 : 9。
已知△EDC的面积为8平方厘米,代入上述比例关系,得到:△ABC的面积 = 9 × 8 = 72(平方厘米)。
2. 说明:本题涉及平行线、相似三角形的性质和比例关系的运用。
要求:平面内给定一组平行线l、m和n,其中l与m的距离为d₁,l与n的距离为d₂,且d₁:d₂ = 5:9。
现有一个等腰直角三角形ABC,BC边上有一点P,该点到距离m的距离为h₁,到距离n的距离为h₂,求证:h₁:h₂ = 25:81。
解析:由于△ABC是等腰直角三角形,所以AD ⊥ BC,其中D为BC的中点。
假设直线l经过B点,与AD交于点E,则E为线段AD的中点。
根据相似三角形的性质,可得△ABE ∽△BCD。
因此,h₁:h₂ = AD:DC = AE:DB = 5:4。
又已知d₁:d₂ = 5:9。
由于△ABE ∽△BCD,所以BE:BC = AE:AD = 5:4。
由此可得:BE:BC = h₁:h₂ = d₁:d₂ × AE:AD = 5:9 × 5:4 = 25:81。
所以,h₁:h₂ = 25:81。
2020学年普通高等学校招生全国统一考试(浙江卷)数学及答案解析
2020年普通高等学校招生全国统一考试(浙江卷)数学一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U={1,2,3,4,5},A={1,3},则C U A=( )A.∅B.{1,3}C.{2,4,5}D.{1,2,3,4,5}解析:根据补集的定义,C U A是由所有属于集合U但不属于A的元素构成的集合,由已知,有且仅有2,4,5符合元素的条件.C U A={2,4,5}.答案:C2.双曲线221 3xy-=的焦点坐标是( )A.(-2,0),(2,0)B.(-2,0),(2,0)C.(0,-2),(0,2)D.(0,-2),(0,2)解析:∵双曲线方程可得双曲线的焦点在x轴上,且a2=3,b2=1,由此可得c=22a b+=2,∴该双曲线的焦点坐标为(±2,0)答案:B3.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是( )A.2B.4C.6D.8解析:根据三视图:该几何体为底面为直角梯形的四棱柱.如图所示:故该几何体的体积为:V=()112222+⋅⋅=6.答案:C4.复数21i-(i为虚数单位)的共轭复数是( )A.1+iB.1-iC.-1+iD.-1-i解析:化简可得()()()2121111iz ii i i+===+--+,∴z的共轭复数z=1-i.答案:B5.函数y=2|x|sin2x的图象可能是( ) A.B.C.D.解析:根据函数的解析式y=2|x|sin2x ,得到:函数的图象为奇函数,故排除A 和B.当x=2π时,函数的值也为0,故排除C.答案:D6.已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件解析:∵m ⊄α,n ⊂α,∴当m ∥n 时,m ∥α成立,即充分性成立, 当m ∥α时,m ∥n 不一定成立,即必要性不成立, 则“m ∥n ”是“m ∥α”的充分不必要条件. 答案:A7.设0<p <1,随机变量ξ的分布列是则当p 在(0,1)内增大时,( ) A.D(ξ)减小 B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小解析:设0<p <1,随机变量ξ的分布列是E(ξ)=1110122222p p p -⨯+⨯+⨯=+;方差是D(ξ)=2222211111111012222222422p p p p p p p p ---⨯+--⨯+--⨯=-++=--⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭+⎭⎝,∴p ∈(0,12)时,D(ξ)单调递增; p ∈(12,1)时,D(ξ)单调递减;∴D(ξ)先增大后减小. 答案:D8.已知四棱锥S-ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点).设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S-AB-C 的平面角为θ3,则( )A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1解析:∵由题意可知S 在底面ABCD 的射影为正方形ABCD 的中心.过E 作EF ∥BC ,交CD 于F ,过底面ABCD 的中心O 作ON ⊥EF 交EF 于N ,连接SN ,取CD 中点M ,连接SM ,OM ,OE ,则EN=OM , 则θ1=∠SEN ,θ2=∠SEO ,θ3=∠SMO. 显然,θ1,θ2,θ3均为锐角.∵13tan tan SN SN SONE OM OM θθ===,,SN ≥SO ,∴θ1≥θ3, 又32sin sin SO SOSM SE θθ==,,SE ≥SM ,∴θ3≥θ2.答案:D9.已知a b e ,,是平面向量,e 是单位向量.若非零向量a 与e 的夹角为3π,向量b 满足2430b e b -⋅+=,则a b -的最小值是( )3323解析:由2430b e b -⋅+=,得()()3b e b e -⋅-=0,∴()()3b e b e -⊥-,如图,不妨设e =(1,0),则b 的终点在以(2,0)为圆心,以1为半径的圆周上,又非零向量a 与e 的夹角为3π,则a 的终点在不含端点O 的两条射线y=3x(x >0)上.不妨以3为例,则a b-的最小值是(2,0)3x=y=0的距离减1.231=3131-+.答案:A10.已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3),若a 1>1,则( ) A.a 1<a 3,a 2<a 4 B.a 1>a 3,a 2<a 4 C.a 1<a 3,a 2>a 4 D.a 1>a 3,a 2>a 4解析:a 1,a 2,a 3,a 4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a 1>1,设公比为q ,当q >0时,a 1+a 2+a 3+a 4>a 1+a 2+a 3,a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3),不成立, 即:a 1>a 3,a 2>a 4,a 1<a 3,a 2<a 4,不成立,排除A 、D.当q=-1时,a 1+a 2+a 3+a 4=0,ln(a 1+a 2+a 3)>0,等式不成立,所以q ≠-1;当q <-1时,a 1+a 2+a 3+a 4<0,ln(a 1+a 2+a 3)>0,a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3)不成立, 当q ∈(-1,0)时,a 1>a 3>0,a 2<a 4<0,并且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3),能够成立, 答案:B二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2020年高考数学浙江卷附答案解析版
c 2 , a 1 可得, b2 c2 a2 4 1 3 ,即双曲线的右支方程为 x 2 y2 1x>0 ,而点 P 还在函数
(Ⅱ)若数列 bn为等差数列,且公差d>0 ,证明:c 1c 2
c <n1
1 (n N
d
) .*
此
卷
21.如图,已知椭圆C1:
x2 y 2
12,抛物线C
:y
2 2 p2x p
>0 ,点 A 是椭圆C 1与抛物线
C2 的交点,过点 A 的直线l 交椭圆C1 于点 B ,交抛物线C2 于 M( B ,M 不同于 A ).
故选:B 【考点】交集概念 【考查能力】基本分析求解 2. 【答案】C
【解析】因为a 1 a 2i 为实数,所以a 2 0 ,∴a 2
故选:C 【考点】复数概念 【考查能力】基本分析求解 3. 【答案】B 【解析】绘制不等式组表示的平面区域如图所示,
目标函数即: y 1 x 1 z , 22
,则
z
x
2
y
的取值范围是
A. (,4] C.[5, )
B.[4, ) D. (, )
4.函数 y xcosx sinx (,) 区间[–π, π] 的图象大致为
() ()
A
B
C
D
5.某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm3 )是( )
A. 7
B. 14
3
3
C.3
毕业学校
姓名
考生号
一道解析几何高考题的解析与探究——以 2020年全国卷Ⅰ理科第 20题为例
解析:设点 P、C、D 的坐标为 P(6,t),C(x1,y1),D(x2,y2),则
t
t
直线 PA 的方程是 y = ( x + 3 ),直线 PB 的方程是 y = ( x 9
3
t
ì
ïy = 9 ( x + 3 ),
ï
消 元 得 ( t 2 + 9 ) x 2 + 6t 2 x + 9t 2 3 );联 立 í 2
ï + y = 1,
î9
技法点拨
106
2mny + n2 - 9 = 0,设 C(x1,y1),D(x2,y2),则 y 1 + y 2 = y1 y2 =
n2 - 9
m2 + 9
(1)。又直线 AC 的方程为 y =
直线 BD 的方程为 y =
共点 P,所以
9y 1
x1 + 3
=
y2
x2 - 3
后对 C、D 横坐标分两种情况考虑,考查了分类与整合的数学
思想,强调思维的严谨性。
思路 3:先求直线带参数的方程(即共点的直线系方程)。
先引进直线 CD 的方程,当斜率不为零时,设其为 x=my+
n,联立直线 CD 与椭圆 E 的方程,利用韦达定理找到 C、D 坐标
的关系(用参数 m,n 表示),然后写出直线 AC、BD 的方程,利用
功能,以下着重讨论第二问的解法。
二、试题解析
思路 1:从命题者的角度寻找答案。
此题的命题背景是极点和极线的位置关系,即寻找极线
x=6 对应的极点。
解析:由于椭圆及直线 x=6 都是关于 x 轴对称的图形,若
2020年高考浙江高考数学试题及答案(精校版)
1.已知集合 P={x|1<x<4},Q={x|2<x<3},则 P∩Q=( )
. < ≤ . < < A {x|1 x 2}
B {x|2 x 3}
. ≤ < . < < C {x|3 x 4}
D {x|1 x 4}
【分析】直接利用交集的运算法则求解即可.
解:集合 = < < , = < < , P {x|1 x 4} Q {x|2 x 3}
A.
B.
.C 3
.D 6
6.已知空间中不过同一点的三条直线 m,n,l,则“m,n,l 在同一平面”是“m,n,l 两 两相交”的( )
A.充分不必要条件 C.充分必要条件
B.必要不充分条件 D.既不充分也不必要条件
7.已知等差数列{an}的前 n 项和 Sn,公差 d≠0,
≤ .记 = , = ﹣ , , 1
=y 3 图象上的点,则|OP|=( )
A.
B.
C.
D.
9.已知 ,a b∈R 且 ab≠0,若(x﹣a)(x﹣b)(x﹣2a﹣b)≥0 在 ≥x 0 上恒成立,则( )
A.a<0
B.a>0
C.b<0
D.b>0
10.设集合 , , , , , S T S⊆N* T⊆N* S T 中至少有两个元素,且 ,S T 满足:
联立两个方程,解得 P( , ),
所以|OP|=
=.
故选:D.
9.已知 ,a b∈R 且 ab≠0,若(x﹣a)(x﹣b)(x﹣2a﹣b)≥0 在 ≥x 0 上恒成立,则( )
A.a<0
B.a>0
C.b<0
D.b>0
【分析】设 f(x)=(x﹣a)(x﹣b)(x﹣2a﹣b),求得 f(x)的零点,根据 f(0)
2020年高考数学(文数)选择题强化专练——解析几何、立体几何、三角函数与解三角形、函数与导数含答案
(文数)选择题强化专练——解析几何、立体几何、三角函数与解三角形、函数与导数一、选择题(本大题共15小题,共75.0分)1.已知双曲线-=1(a>0,b>0)的离心率为2,则渐近线方程为()A. y=±2xB. y=±xC. y=±xD. y=±x2.已知焦点为F的抛物线的方程为,点Q的坐标为(3,4),点P在抛物线上,则点P到y轴的距离与到点Q的距离的和的最小值为()A. 3B.C.D. 73.过双曲线的左焦点作倾斜角为30°的直线l,若l与y轴的交点坐标为(0,b),则该双曲线的离心率为()A. B. C. D.4.椭圆2x2-my2=1的一个焦点坐标为(0,),则实数m=()A. B. C. D.5.在平面直角坐标系中,经过点P(2,-),渐近线方程为y=x的双曲线的标准方程为()A. B. C. D.6.设m,n表示不同的直线,α,β表示不同的平面,且m,n⊂α.则“α∥β”是“m∥β且n∥β”的()A. 充分但不必要条件B. 必要但不充分条件C. 充要条件D. 既不充分又不必要条件7.已知四棱锥E-ABCD,底面ABCD是边长为1的正方形,ED=1,平面ECD⊥平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为()A. B. C. D. 18.已知正方形ABCD的边长为2,CD边的中点为E,现将△ADE,△BCE分别沿AE,BE折起,使得C,D两点重合为一点记为P,则四面体P-ABE外接球的表面积是()A. B. C. D.9.将函数向右平移个单位后得到函数,则具有性质A. 在上单调递增,为偶函数B. 最大值为1,图象关于直线对称C. 在上单调递增,为奇函数D. 周期为,图象关于点对称10.要得到函数y=-sin3x的图象,只需将函数y=sin3x+cos3x的图象( )A. 向右平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向左平移个单位长度11.△ABC的内角A,B,C的对边分别为a,b,c,若,,,则b=( )A. B. C. D.12.在中,角的对边分别是,若,则的形状是()A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 等腰或直角三角形13.函数f(x)=|log2x|+x-2的零点个数为()A. 1B. 2C. 3D. 414.已知函数f(x)=(x<-1),则()A. f(x)有最小值4B. f(x)有最小值-4C. f(x)有最大值4D. f(x)有最大值-415.若曲线y=x2与曲线y=a ln x在它们的公共点P处具有公共切线,则实数a等于()A. 1B.C. -1D. 2答案和解析1.【答案】C【解析】解:双曲线-=1(a>0,b>0)的离心率为2,可得e==2,即有c=2a,由c2=a2+b2,可得b2=3a2,即b=a,则渐近线方程为y=±x,即为y=±x.故选:C.运用双曲线的离心率公式和a,b,c的关系可得b=a,再由近线方程y=±x,即可得到所求方程.本题考查双曲线的渐近线方程的求法,注意运用离心率公式和a,b,c的关系,考查运算能力,属于基础题.2.【答案】B【解析】【分析】本题考查了抛物线的定义,属于中档题.利用抛物线的定义进行转化,可知当三点共线时满足题设最小要求.【解答】解:如图所示:抛物线y2=4x的焦点为F(1,0),准线l:x=-1,过点P作PM⊥l,垂足为M,则|PM|=|PF|,因为Q(3,4)在抛物线外,因此当F、P、Q三点共线时,|PF|+|PQ|取得最小值,也即|PM|+|PQ|最小∴(|PM|+|PQ|)min=(|PF|+|PQ|)min=|QF|=.则点P到y轴的距离与到点Q的距离的和的最小值为.故选B.3.【答案】A【解析】解:直线l的方程为,令x=0,得.因为,所以a2=c2-b2=3b2-b2=2b2,所以.故选:A.求出直线方程,利用l与y轴的交点坐标为(0,b),列出关系式即可求解双曲线的离心率.本题考查直线与双曲线的位置关系以及双曲线的标准方程,考查运算求解能力.4.【答案】A【解析】【分析】利用椭圆的标准方程,结合焦点坐标,求解即可.本题考查了椭圆的标准方程,椭圆的性质及其几何意义的应用,是基本知识的考查,基础题.【解答】解:椭圆2x2-my2=1的标准方程为:,一个焦点坐标为(0,),可得,解得m=,故选:A.5.【答案】B【解析】解:根据题意,双曲线的渐近线方程为y=x,设双曲线方程为:,双曲线经过点P(2,-),则有8-1=a,解可得a=7,则此时双曲线的方程为:,故选:B.设出双曲线的方程,经过点P(2,-),求出a的值,即可得双曲线的方程.本题考查双曲线的几何性质,涉及双曲线的标准方程的求法,注意双曲线离心率公式的应用.6.【答案】A【解析】解:当α∥β 时,因为m,n⊂α,故能推出m∥β且n∥β,故充分性成立.当m∥β且n∥β 时,m,n⊂α,若m,n是两条相交直线,则能推出α∥β,若m,n不是两条相交直线,则α与β 可能相交,故不能推出α∥β,故必要性不成立.故选:A.由面面平行的性质得,充分性成立;由面面平行的判定定理知,必要性不成立.本题考查平面与平面平行的判定和性质,充分条件、必要条件的定义域判断方法.7.【答案】B【解析】解:如图所示,由题意可得:ED⊥平面ABCD时,△ADE的面积最大,可得点C即点D到平面ABE的距离最大.此时该四棱锥的体积==.故选:B.如图所示,由题意可得:ED⊥平面ABCD时,△ADE的面积最大,可得点C即点D到平面ABE的距离最大.即可得出此时该四棱锥的体积.本题考查了空间线面位置关系、数形结合方法,考查了推理能力与计算能力,属于中档题.8.【答案】C【解析】解:如图,PE⊥PA,PE⊥PB,PE=1,△PAB是边长为2的等边三角形,设H是△PAB的中心,OH⊥平面PAB,O是外接球的球心,则OH=,PH=,则.故四面体P-ABE外接球的表面积是S=.故选:C.由题意画出图形,找出四面体P-ABE外接球的球心,求得半径,代入球的表面积公式求解.本题考查多面体外接球表面积与体积的求法,考查数形结合的解题思想方法,是中档题.9.【答案】A【解析】【分析】本题主要考查三角函数平移、单调性、奇偶性、周期的知识,解答本题的关键是掌握相关知识,逐一分析,进行解答.【解答】解:将f(x)=2x的图象向右平移个单位,得g(x)=2(x-)=(2x-)=-2x,则g(x)为偶函数,在上单调递增,故A正确,g(x)的最大值为1,对称轴为2x=kπ,k∈Z,即x=,k∈Z,当k=1,图象关于x=对称,故B错误,由2kπ≤2x≤2kπ+π,k∈Z,函数g(x)单调递增,∴kπ≤x≤kπ+,k∈Z,∴g(x)在上不是单调函数,故C错误,函数的周期T=π,不关于点对称,故D错误 .故选A.10.【答案】C【解析】【分析】本题考查三角函数的图象的平移变换,是基础题.由条件利用y=A sin(ωx+φ)的图象变换规律,得出结论.【解答】解:因为,所以将其图象向左平移个单位长度,可得,故选C.11.【答案】B【解析】【分析】本题主要考查了正弦定理,两角和与差的三角函数公式,是基础题.先求出sin B,再根据正弦定理求解即可.【解答】解:在△ABC中,,,则,,=,,.故选B.12.【答案】D【解析】【分析】本题考查三角形的形状判断,着重考查正弦定理的应用与三角函数化简运算的能力,属于中档题.化简,得出A=或B=A,即可求解.【解答】解:∵c-a cos B=(2a-b)cos A,C=π-(A+B),∴由正弦定理得:sin C-sin A cos B=2sin A cosA-sin B cos A,∴sin A cos B+cos A sin B-sin A cos B=2sin A cosA-sin B cos A,∴cos A(sin B-sin A)=0,∴cos A=0,或sin B=sin A,∵在中,角的取值范围均为,∴A=或B=A或B=π-A(舍去),故选D.13.【答案】B【解析】【分析】本题考查函数的零点的求法,零点个数问题,考查数形结合以及计算能力,转化思想的应用.转化函数零点问题为方程的根的问题,通过两个函数的图象交点个数判断求解即可.【解答】解:函数f(x)=|log2x|+x-2的零点个数,就是方程|log2x|+x-2=0的根的个数.令h(x)=|log2x|,g(x)=2-x,画出两函数的图象,如图.由图象得h(x)与g(x)有2个交点,∴方程|log2x|+x-2=0的解的个数为2.故选B.14.【答案】A【解析】【分析】本题主要考查利用基本不等式求函数最值的知识,属于中档题.利用“配凑”将函数化为基本不等式的形式,然后根据基本不等式进行计算即可.【解答】解:f(x)==-=-=-=-(x+1)++2,因为x<-1,所以x+1<0,-(x+1)>0,所以f(x)≥2+2=4,当且仅当-(x+1)=,即x=-2时,等号成立.故f(x)有最小值4.故选A.15.【答案】A【解析】【分析】本题考查了利用导数研究曲线上某点切线方程,属于中档题.利用导数的几何意义求切线的斜率以及切线方程,即可得结论.【解答】解:∵曲线的导数为,∴在P(s,t)处的斜率为,又∵曲线y=a ln x的导数为,∴在P(s,t)处的斜率为,∴曲线与曲线y=a ln x在它们的公共点P(s,t)处具有公共切线,∴,并且,t=a ln s,即,∴,解得s2=e,∴a=1.故选A.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年浙江高考解析几何题
作者:题海降龙
【真题回放】
(2017浙江—抛物线与圆)
如图,已知抛物线x 2=y ,点A (﹣,),B (,),抛物线上的点P (x ,y )(﹣<x <),过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围;(2)求|PA |•|PQ |的最大值.
【原创解法】
(2018浙江—抛物线与半椭圆)
如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.
(1)设AB 中点为M ,证明:PM 垂直于y 轴;
(2)若P 是半椭圆x 2
+2
4
y =1(x <0)上的动点,求△P AB 面积的取值范围.
【解析】
(Ⅰ)设00(,)P x y ,2111(,)4A y y ,2
221(,)4
B y y .因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程2
2014()422
y x y y ++=⋅
即22
000280y y y x y -+-=的两个不同的实数根所以1202y y y +=因此,PM 垂直于y
轴.
(Ⅱ)由(Ⅰ)可知1202
12002,8,
y y y y y x y +=⎧⎪⎨=-⎪⎩所以2221200013||()384PM y y x y x =+-=-
,12||y y -=.因此,PAB △
的面积3
2212001||||(4)24
PAB
S PM y y y x =⋅-=-△.因为2
200
01(0)4y x x +=<,所以22
00004444[4,5]y x x x -=--+∈.PAB △
面积的取值范围是15104
.
【原创解法】2018年属于简单题,关键处理好第一小题的韦达定理。
(2019浙江—抛物线与三角形)
(2019浙江)过焦点F (1,0)的直线与抛物线 y 2
=2px 交于A,B 两点,C 在抛物线,△ABC 的
重心P 在x 轴上,AC 交x 轴于点Q (点Q 在点P 的右侧)。
(1)求抛物线方程及准线方程;
(2)记△AFP ,△CQP 的面积分别为 S 1,
S 2,求
S 1
S 2
的最小值及此时点P 的坐标
【原创解法】
2020年浙江高考解几预测
近三年浙江高考解析几何都是以抛物线为大背景即抛物线与圆、椭圆、三角形的组合图形呈现。
2020年在维稳的大环境下,抛物线出现的可能性最大,但平时也需要练一下椭圆问题。
毕竟我们无法猜测高考出卷老师刹那间的灵感(想法),猜中的可能性比买彩票中奖更难。
希望在临近高考时,下面几题能激发您灵感,悟出真谛!
【题海感悟】
1、(求参变量范围)已知抛物线2
2(0)x py p =>的准线与圆()2
2
316x y +-=相
切.
(1)求抛物线的方程;
(2)过抛物线的焦点F ,作直线l 与抛物线交于,A B 两点,若在直线()
0y t t =<上总存在点P 使得PAB ∆为正三角形,求实数t 的取值范围.
2、(存在性问题)如图,已知直线1:2(0)l y x m m =+<与抛物线1C
)0(2>=a ax y 和圆2C :5)1(22=++y x 都相切,F 是1C (1)求m 与a 的值;
(2)设直线2l 过点F ,与抛物线1C 交于,A B 两点,在抛物线1C 的准线l 上是否存在一点P ,使得PAB ∆为正三角形,若存在,求出点P 若不存在,请说明理由.
3、(轨迹与最值)在平面直角坐标系x Oy 中,抛物线y=x 2上异于坐标原点O 的两不同动点A 、B 满足AO ⊥BO 。
(1)求△AOB 的重心G (即三角形三条中线的交点)的轨迹方程;
(2)△AOB 的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
4、(向量思想参变量)给定抛物线C:x y 42
=,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点.
(Ⅰ)设l 的斜率为1,求OA 与OB 夹角的余弦值;(Ⅱ)设]9,4[,∈=λλ若AF FB
,求l 在y 轴上截距的变化范围.
5、(交点问题)已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过(2,0)A -、(2,0)B 、31,2C ⎛⎫
⎪⎝⎭
三点.(1)求椭圆E 的方程:
(2)若点D 为椭圆E 上不同于A 、B 的任意一点,(1,0),(1,0)F H -,当DFH 内切圆的面积最大时。
求内切圆圆心的坐标;
(3)若直线:(1)(0)l y k x k =-≠与椭圆E 交于M 、N 两点,证明直线AM 与直线BN 的交点在直线4x =上.
6、(定值问题)如图,过点M (2,2)且平行于x 轴的直线交椭圆2
22
x y m +=(0m >)
于,A B 两点,且3AM MB =
.
(I )求椭圆的标准方程;
(II )过点M 且斜率为正的直线交椭圆于点,C D ,直线,AC BD 分别交直线2x =于
点,E F ,求证:
11
||||
ME MF -
是定值.7、(面积范围)已知抛物线()2:20C y px p =>的焦点是()1,0F ,直线11:l y k x =,22:l y k x =分别与抛物线C 相交于点A 和点B ,过A ,B 的直线与圆22:4
O x y +=相切.
(1)求直线AB 的方程(含1k 、2k );
(2)若线段OA 与圆O 交于点M ,线段OB 与圆O 交于点N ,求△MON S 的取值范围.
(第6题图)
8、(面积最值)已知抛物线2:2(0)L y px p =>的焦点为F ,过点(5,0)M 的动直线l 与抛物线L 交于A ,B 两点,直线AF 交抛物线L 于另一点C ,AC 的最小值为4.
(I)求抛物线L 的方程;
(Ⅱ)记ABC ∆、AFM ∆的面积分别为1S ,2S ,
求12S S ×的最小值.
9、
(定点问题)如图,已知点E (m,0)(m >0)为抛物线y 2=4x 内一个定点,过E 作斜率分别为k 1,k 2的两条直线交抛物线于点A ,B ,C ,D ,且M ,N 分别是AB ,CD 的中点.(1)若m =1,k 1k 2=-1,求△EMN 面积的最小值;(2)若k 1+k 2=1,求证:直线MN 过定点
10、(求点问题)已知椭圆C 的方程为()222210x y a b a b +=>>,21,2P ⎛⎫ ⎪ ⎪⎝⎭
在椭圆上,离心率22e =,左、右焦
点分别为12F F 、.(1)求椭圆C 的方程;
(2)直线y kx =(0k >)与椭圆C 交于A ,B ,连接1AF ,1BF 并延长交椭圆C 于D ,E ,连接DE ,求DE k 与
k 之间的函数关系式.
11、(最值问题)已知F 是抛物线)0(22
>=p py x C :的焦点,M 是抛物线C 上位于第一象限内的任意一点,过O F M ,,三点的圆的圆心为Q 点Q 到抛物线C 的准线的距离为4
3。
(1)求抛物线C 的方程;
(2)若点M 的横坐标为2,直线4
1
+
=kx y l :与抛物线C 有两个不同的交点B A ,,l 与圆C 有两个不同的交点E D ,,求当22
1
≤≤k 时,
2
2DE AB +的最小值.
12、(定值问题)已知抛物线C:px y 22
=经过点),(21P ,过点Q(0,1)的直线l 与抛物线C 有两个不同的交点
A,B,且直线PA 交y 轴于M,直线PB 交y 轴于N.(1)求直线l 的斜率的取值范围;
(2)设O 为原点,QO QN QO QM μλ==,,,求证:
μ
λ
1
1
+
为定值.
13、(切线问题)如图,已知抛物线py x C 2:21=的焦点在抛物线2
2:1C y x =+上,点P 是抛物线1C 上的动点.(1)求抛物线1C 的方程及其准线方程;
(2)过点P 作抛物线2C 的两条切线,A 、B 分别为两个切点,求PAB ∆面积的最小值.
14、(定点问题)已知过抛物线()2
:20C y px p =>的焦点F 的直线交抛物线于
()()()112212,,,A x y B x y x x <两点,且6AB =.
(1)求该抛物线C 的方程;
(2)已知抛物线上一点(),4M t ,过点M 作抛物线的两条弦MD 和ME ,且MD ME ⊥,判断直线DE 是否过定点?并说明理由.
15、(基本技能)它的长轴右端点A 与短轴上端点B 的连线AB ∥OM .(1)求椭圆的离心率;
(2)若Q 是椭圆上任意一点,F 2是右焦点,求∠F 1QF 2的取值范围;
(3)过F 1作AB 的平行线交椭圆于C 、D 两点,若|CD |=3,求椭圆的方程.。