一氧化碳与二氧化碳转化催化剂

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一氧化碳和二氧化碳转化催化剂

一、一氧化碳转化催化剂

随着石油资源的不断消耗、能源问题的日益加剧,研究和开发新的能源体系迫在眉睫。由天然气或煤气化生产合成气(CO+H 2 ),合成气再催化转化合成低碳醇等清洁燃料成为国内外能源化工领域的研究热点。由合成气选择催化合成低碳混合醇是当前C1化学领域十分活跃的研究课题之一。

CO加氢合成低碳醇反应过程通常伴随着甲醇、烃类和CO 2等副产物的生成,高选择性和高活性并具有优良稳定性的催化剂的设计与开发是低碳醇合成技术的关键。

目前研究相对比较集中的催化剂体系主要有改性的甲醇合成催化剂、Cu-Co 基以及

MoS 2 基催化剂体系等。

催化剂研究的重点在于探索活性中心的最佳匹配、构效关系及合成低碳醇的选择性规律等方面,旨在提高低碳醇合成过程的单程转化率、C 2+ OH 选择性和醇产率等。

1改性甲醇合成催化剂

对甲醇合成催化剂Zn-Cr、Cu-Zn 通过添加碱金属助剂改性可获得低碳混合醇。其中改性的Zn-Cr 催化剂操作条件苛刻,要求在高温(350~450 ℃)、高压(12~16 MPa)下进行,具有最大异丁醇选择性。而改进的Cu-Zn 则为低温低压下碱金属促进的甲醇合成催化剂,对合成气转化具有较高的转化率。

关于改性的Zn-Cr 催化剂,主要是K 或Cs 促进的Zn/Cr 尖晶石结构催化剂,碱金属K、Cs 的添加,尤其是Cs 助剂可显著提高目标产物的生成速率。

催化剂的研究通常发生在气固相间,通过对超临界流体中Zn-Cr-K 催化剂上合成气制低碳醇的研究,发现超临界相的存在有利于提高CO 转化率,促进碳链增长,提高C 2+OH含量,且催化剂对生成醇的选择性随反应温度的变化缓慢。

碱金属的添加也可促使Cu-Zn甲醇合成催化剂上生成低碳醇,其中Cs 是最好的助剂,Rb 和K 次之,但K 价

格相对便宜,通常被用作Cu-Zn 催化剂的助剂。另外,Al 2O 3或Cr 2 O3被用作结构助剂以增加催化剂比表面积和防止烧结。对含Cr 的Cu-Zn催化剂研究表明,Cr 含量显著影响催化剂活性和选

择性,当Cr 含量较低时,催化剂上可获得最优的低碳醇产率,作为结构助剂,使催化剂具有较大的比表面积、抑制Cu 颗粒的烧结,使催化剂具有优良的稳定性。研究发现,助剂Cs 的质量分数对Cu/ZnO/Al 2 O 3 催化剂上合成低碳醇的性能影响显著。

2、Cu-Co 体系催化剂

Cu-Co 体系催化剂又称改性的F-T 合成催化剂。催化剂的主要物相为Cu-Co尖晶石相,在合成气反应介质中,Cu-Co 尖晶石相被消耗,产生高度分开的Cu-Co簇,是醇形成的活性位。通过对共沉淀法和灼烧法制备的Cu-Co 尖晶石化合物的对比研究发现,共沉淀法制得的催化剂具有较高的催化活性与选择性。超声辅助的反相共沉淀法制备的Cu-Co 基催化剂具有较小的颗粒尺寸、较大的比表面积、活性组分高度分散等,可有效提高合成低碳醇的催化性能。随着对制备工艺研究的深入,等离子体和高能球磨等非常规技术也被应用

于Cu-Co 基催化剂的制备。等离子体技术作为一种有效的分子活化和表面改性手段,可产生大量非平衡高能活化物种,使活性组分高度分散且在表面富集,并产生晶格缺陷等效应,提高反应的转化率和目标产物的选择性。

3、MoS 2 基催化剂

MoS 2 基催化剂因具有独特的耐硫性,较高的活性和醇选择性以及寿命长等优点,被认为是最具有应用前景的合成低碳醇催化体系之一。传统硫化钼催化剂对CO 加氢合成低碳醇的反应活性和C 2+ OH选择性均较低,过渡金属尤其是Fe、Co、Ni 的加入,因具

有较强的加氢能力和促进碳链增长的能力,可提高催化剂活性和C 2+ OH 选择性。以Co 作为第二组分添加少量K 助剂的担载型Mo-Co-K 催化剂的研究较多,其中还原态Co 是碳链形成必不可少的组分,且随Co 含量的增大C 2+ OH 选择性增加。贵金属Rh 作为MoS 2 基催化剂的助剂时,可催化反应物分子CO 的解离、插入和加氢等。

MoS 2 基催化剂上低碳醇形成的活性和选择性还受载体的显著影响。通过研究发现活性炭为载体时,催化剂具有较高的活性.

CO 选择催化加氢合成低碳混合醇

是煤炭资源洁净利用的重要途径之一,低碳醇作为燃料和汽油添加剂对国家能源战略具有十分重要的意义。

4、CO甲烷化催化剂

为开发性能较优的合成气甲烷化催化剂,采用固相混合法制备了20%Ni/Al 2 O 3 催化剂,通过H 2 程序升温还原(H 2 -TPR)和X 射线衍射(XRD)表征发现,简单固相混合法制备的催化剂具有较好的分散性和还原性能。在CO 甲烷化反应体系中随着温度、压力和进料比的增大,催化剂稳定性增强;空速增大,催化剂稳定性降低。催化剂由于表面沉积无定形胶质碳

(Cβ)而失活,升高温度和压力会使催化剂表面活性碳物种(Cα)向更稳定的蠕虫状碳(C v)和石墨型碳(C c )沉积,从而催化剂稳定性增强。

5、CO气相催化合成草酸二乙酯催化剂

利用颗粒强度实验机,对CO 气相催化氧化偶联制草酸二乙酯催化剂的载体和催化剂强度进行测试。结果表明,随焙烧温度的升高,载体和催化剂的破碎强度明显提高,不同类型的Al 2 O 3 ,

其强度差别较大。由不同方式得到的α-Al 2 O 3 的强度也不相同。断裂强度随焙烧温度的升高变化不大。焙烧温度

越高,催化剂强度比载体强度增加得越多。催化剂强度随助催化剂含量增加而增大,但不随活性组分负载量发生明显变化。经1000 h 实验,催化剂的强度没有变化, 符合工业生产的强度要求。6、CO 歧化制备纳米碳纤维催化剂

Fe催化剂上CO歧化制备纳米碳纤维(CNFs)过程中起到一定的催化作用。随着还原时间和温度的增加,催化剂的相态不同,粒径也从20~30 nm增加到

500~2 000 nm。催化剂的相态和粒径对CNFs的生长速率、产率和形貌结构有显著影响。还原处理后催化剂初始粒

相关文档
最新文档