原子物理学课后习题详解第4章(褚圣麟)教学内容
《原子物理学》(褚圣麟)第四章-碱金属原子和电子自旋要点
系系限的波长λ∞=408.6nm,试求: (1)3S、3P对应的光谱项和能量;(2)钠原子的电离电势和第一激发
电势。
解、由钠原子的能级图知:
s
p
d
3P对应的光谱项和能量
T 3 P v ~ 1 41 .0 6 n8 m 2 .4 4 16 7 m 0 1
n=4
1 .2k4 e nV m
第4章 碱金属原子和电子自旋
§4.1 碱金属原子光谱
• 一、碱金属原子光谱的实验规律 • 二、碱金属原子的光谱项 • 三、碱金属原子的能量和能级
第4章 碱金属原子和电子自旋
一、碱金属原子光谱的实验规律
1、 碱金属原子光谱具有原子光谱的一般规律性; 2、通常可观察到四个谱线系。 各种碱金属原子的光谱,具有类似的结构。
第4章 碱金属原子和电子自旋
每个线系的每一条光谱线的波数都可以表式为两个光 谱项之差:
~n
~
R n2
• 等式右边的第一项是固定项,它决定线系限及末态。第二
项是动项,它决定初态。
• •
实验上测量出 ~n和 ~ 则可求出
由 Tn 和 R 我们可以求得 n * 。
Tn
R n 2
第4章 碱金属原子和电子自旋
谱项表示 Tnl为 (n: Rl)2
第4章 碱金属原子和电子自旋
锂的光谱项值和有效量子数
数据来源 电子态 n=2
3
4
5
6
7
第二辅 线系
T 43484.4 16280.5 8474.1 5186.9 3499.6 2535.3
s,=0
0.40
n* 1.589 2.596 3.598 4.599 5.599 6.579
原子物理学第四章习题解答
第四章习题解答4-1 一束电子进入1.2T 的均匀磁场时,试问电子的自旋平行于和反平行于磁场的电子的能量差为多大?解:∵磁矩为μu r 的磁矩,在磁场B u r中的能量为:U = -μu r ·B u r= -sz μ B电子自旋磁矩 sz μ=±B μ∴电子自旋平行于和反平行于磁场的能量差u =B μ B – (-B μB) =2B μ B ∴u = 2B μ B =2 ×0.5788×410-eV ·1T -× 1.2 T = 1.39 ×410- eV4-2 试计算原子处于23/2D 状态的磁矩μ及投影μz 的可能值. 解:由23/2D 可知 S=12 J=32L=2 ∴j g =32+12(1)(1)(1)S S L L J J +-++=32+121323223522⨯-⨯⨯=45又j μ=j g Bμ45B μ =1.55 B μ∴μ=1.55 B μ又,j z j j B m g μμ= 又3113,,,2222j m =--∴,142×255j z B B μμμ=±=±或,346×255j z B B μμμ=±=±即,6226(,,,)5555j z B μμ=--4-3 试证实:原子在63/2G 状态的磁矩等于零,并根据原子矢量模型对这一事实作出解释.解:由63/2G 可知:S =52 J = 32L = 4∴5745 31(1)(1)3122··03522(1)22×22JS S L LgJ J⨯-⨯+-+=+=+=+∴(1)0J j Bj j gμμ=+=即原子在63/2G状态的磁矩等于零。
解释:∵原子的总角动量为J L S=+u r u r u r,而处于63/2G态原子各角动量为:(1)4(41)20 4.47L L L=+=+==h h h h5535(1)(1) 2.9622S S S=+=+==h h h h3315(1)(1) 1.94222J J J=+=+==h h h h则它们的矢量关系如图示:Lu r和Su r同时绕Ju r旋进,相对取项保持不变由三角形余弦定理可知:22222211()[(1)(1)(1)]22L J L J S L L J J S S⋅=+-+++-+u r u rh h h=22355715[45]222222=⨯+⨯-⨯=hh而222221573515()(45)2222224S J S J L⋅=+-=⨯+⨯-⨯=-u r u r hh∴相应的磁矩2B BS Sg S Sμμμ=-=-u r u r u rh hB B Lg L L μμμ∆=-=-u ru r u r hhS L μμμ=+u r u ru r由于磁矩μu r 随着角动量绕J u r 旋进,因而对外发生效果的是μu r在J u r 方向上的分量。
原子物理学习题答案(褚圣麟)详解
1.原子的基本状况1.1解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sinmZe r Mv θπε=+,试问上题α粒子与散射的金原子核之间的最短距离m r 多大? 解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米 1.3若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220min124p ZeMv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。
1.4钋放射的一种α粒子的速度为71.59710⨯米/秒,正面垂直入射于厚度为710-米、密度为41.93210⨯3/公斤米的金箔。
试求所有散射在90οθ>的α粒子占全部入射粒子数的百分比。
原子物理学褚圣麟第四、五章复习
第四章:碱金属原子和电子自旋锂、钠、钾、铷、铯、钫化学性质相仿、都是一价、电离电势都比较小,容易被电离,具有金属的一般性质。
一、碱金属原子的光谱1、四个线系(锂为例):其他碱金属光谱系相仿,只是波长不同主线系:波长范围最广,第一条线是红色的,其余在紫外,系限2299.7埃;第一辅线系(漫线系):在可见部分;第二辅线系(锐线系):第一条线在红外,其余在可见部分;伯格漫线系(基线系):全在红外。
2、巴尔末氢原子光谱规律: ,5,4,3),1-21(1~22===n nR v H λ 碱金属原子光谱:2*∞-~~nR v v n = R 为里德伯常数,当,所以∞v ~是线系限的波数,且有效量子数*n 不是整数,Δ==-*n TR n 3、碱金属原子的光谱项:22*Δ)-(n R n R T == 4、同一线系的有效量子数与主量子数差别不大;与某一量子数对应不同线系的有效量子数差别明显,引进角量子数加以区分:5、每一线系线系限波数恰好是另一线系第二谱项值中最大的那个。
共振线:主线系第一条。
6、碱金属原子氢原子能级的比较n 很大时,碱金属原子能级 很接近氢原子能级;n 较小时,碱金属原子能级 与氢原子能级相差大; 且n 相同,l 不同的能级高低差别很大。
二、原子实极化和轨道贯穿:原子=原子实+价电子1、原子实:碱金属原子中的电子具有规则组合,共同点是在一个完整的结构之外,多余一个电子,这个完整而稳固的结构称为原子实。
由于原子实的存在,发生原子实的极化和轨道在原子实中的贯穿。
2、价电子:原子实外的那个电子称作价电子。
价电子在较大的轨道上运动,与原子实结合不是很强,容易脱离。
它决定元素的化学性质,在较大的轨道上运动。
3、原子实的极化:由于价电子的电场的作用,原子实中带正电的原子核和带负电的电子的中心发生微小相对位移,于是负电的中心不再在原子核上,形成一个电偶极子。
① 角量子数l 小:轨道偏心率大(椭圆),极化强,能量影响大;② 角量子数l 大:轨道偏心率小(接近圆),极化弱,能量影响小。
原子物理学(褚圣麟)完整答案
F 2Ze 2 / 4 R2和F0 2Ze 2r/ 4 R 3 。可见,原0 子表面处粒子所受的斥力最大,越
靠近原子的中心粒子所受的斥力越小,而且瞄准距离越小,使粒子发生散射最强的垂 直入射方向的分力越小。我们考虑粒子散射最强的情形。设粒子擦原子表面而过。此时受
力为F 2Ze 2 / 4 R2 。可0 以认为粒子只在原子大小的范围内受到原子中正电荷的作
Z2
Li
Z
2 H
9
c) 第一激发能之比:
E
2 He
E He
1
E2H E 1 H
22 E1 22
E
1
12 22
E1 E
22
12 12 1 12
4
E
2 Li
E Li
1
E2H E 1 H
22 E1 32
E
1
12 22
E1 E
32
12 12 1 12
9
d) 氢原子和类氢离子的广义巴耳末公式:
{ v~ Z R (2
达到的最小距离多大又问如果用同样能量的氘核(氘核带一个 e电荷而质量是质子的 两倍,
是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大
解:当入射粒子与靶核对心碰撞时,散射角为180 。当入射粒子的动能全部转化为两
粒子间的势能时,两粒子间的作用距离最小。 根据上面的分析可得:
1 Mv2 K 2
解:设 粒子和铅原子对心碰撞,则 粒子到达原子边界而不进入原子内部时的能量有 下式 决定:
1 Mv2 2
2Ze 2 / 4 R 10016 焦耳 103电子伏特
由此可见,具有106 电子伏特能量的粒子能够很容易的穿过铅原子球。粒子在到达原子
原子物理学习题答案(褚圣麟)很详细
For personal use only in study and research; not for commercial use1.原子的基本状况1.1解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε== 得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米 式中212K Mvα=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ , 试问上题α粒子与散射的金原子核之间的最短距离m r 多大? 解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米 1.3 若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最解:当入射粒子与靶核对心碰撞时,散射角为180ο。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220min124p ZeMv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。
1.7能量为3.5兆电子伏特的细α粒子束射到单位面积上质量为22/1005.1米公斤-⨯的银箔上,α粒解:设靶厚度为't 。
非垂直入射时引起α粒子在靶物质中通过的距离不再是靶物质的厚度't ,而是ο60sin /'t t =,如图1-1所示。
原子物理学(褚圣麟)完整答案
原子物理学习题解答刘富义编临沂师范学院物理系理论物理教研室第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭C '放射的,其动能为 7.68 ⨯106 电子伏特。
散射物质是原子序数 Z = 79 的金箔。
试问散射角θ = 150ο所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:M v 2θ K αc o t = 4 π ε 0b = 4 π ε 0b2 Z e 2Z e 22得到:Z e 2ct g θ 7 9 ⨯ (1 .6 0 ⨯ 1 01 9 ) 2 ct g 1 5 0ο- 1 5 b = 2 2= = 3 .9 7 ⨯ 1 0 ( 4π ⨯ 8 .8 5 ⨯ 1 0 - 1 2 ) ⨯ (7 .6 8 ⨯ 1 06 ⨯ 1 0- 1 9) 米 4πε K 0 α式中 K =1 Mv 2是α 粒子的功能。
α 21.2 已知散射角为θ 的α粒子与散射核的最短距离为2 Z e 21 1 r m = (4 π ε)( 1 + ) ,试问上题α粒子与散射的金原子核M v 2 s i nθ2之间的最短距离r m 多大?解:将 1.1 题中各量代入r m 的表达式,得:1 2 Z e 21 = (1 + r m i n( 4π ε Mv 2 ) ) s i n θ0 2 - 1 9 24 ⨯ 79 ⨯ (1 .6 0 ⨯ 1 0 ) 1 = 9 ⨯ 1 0 9⨯⨯ (1 + ) 7 .6 8 ⨯ 1 0 6 ⨯ 1 .6 0 ⨯ 1 0 - 1 9sin 7 5ο = 3 .0 2 ⨯ 1 0 - 1 4 米1.3 若用动能为 1 兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个 +e 电荷而质量是质子的 两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。
原子物理学课后答案(褚圣麟)第3章第4章第6章
第三章 量子力学初步3.1 波长为οA 1的X 光光子的动量和能量各为多少? 解:根据德布罗意关系式,得:动量为:12410341063.6101063.6----∙∙⨯=⨯==秒米千克λhp 能量为:λ/hc hv E ==焦耳151083410986.110/1031063.6---⨯=⨯⨯⨯=。
3.2 经过10000伏特电势差加速的电子束的德布罗意波长?=λ 用上述电压加速的质子束的德布罗意波长是多少?解:德布罗意波长与加速电压之间有如下关系:meVh 2/=λ 对于电子:库仑公斤,19311060.11011.9--⨯=⨯=e m把上述二量及h 的值代入波长的表示式,可得:οοολA A A V 1225.01000025.1225.12===对于质子,库仑公斤,19271060.11067.1--⨯=⨯=e m ,代入波长的表示式,得:ολA 319273410862.2100001060.11067.1210626.6----⨯=⨯⨯⨯⨯⨯⨯=3.3 电子被加速后的速度很大,必须考虑相对论修正。
因而原来ολA V25.12=的电子德布罗意波长与加速电压的关系式应改为:ολA V V)10489.01(25.126-⨯-=其中V 是以伏特为单位的电子加速电压。
试证明之。
证明:德布罗意波长:p h /=λ对高速粒子在考虑相对论效应时,其动能K 与其动量p 之间有如下关系:222022c p c Km K =+而被电压V 加速的电子的动能为:eV K =2200222/)(22)(c eV eV m p eV m ceV p +=+=∴因此有:2002112/c m eV eVm h p h +⋅==λ一般情况下,等式右边根式中202/c m eV 一项的值都是很小的。
所以,可以将上式的根式作泰勒展开。
只取前两项,得:)10489.01(2)41(260200V eVm h cm eVeVm h -⨯-=-=λ由于上式中οA VeV m h 25.122/0≈,其中V 以伏特为单位,代回原式得:ολA V V)10489.01(25.126-⨯-=由此可见,随着加速电压逐渐升高,电子的速度增大,由于相对论效应引起的德布罗意波长变短。
原子物理学习题答案(褚圣麟)
1.原子的基本状况1.1解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε== 得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米 式中212K Mv α=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ ,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min04pZe r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。
1.4 钋放射的一种α粒子的速度为71.59710⨯米/秒,正面垂直入射于厚度为710-米、密度为41.93210⨯3/公斤米的金箔。
试求所有散射在90οθ>的α粒子占全部入射粒子数的百分比。
原子物理学课后习题详解第4章(褚圣麟)
原子物理学课后习题详解第4章(褚圣麟)第四章碱金属原子4、1 已知Li 原子光谱主线系最长波长ολA 6707=,辅线系系限波长ολA 3519=∞。
求锂原子第一激发电势与电离电势。
解:主线系最长波长就是电子从第一激发态向基态跃迁产生得。
辅线系系限波长就是电子从无穷处向第一激发态跃迁产生得。
设第一激发电势为1V ,电离电势为∞V ,则有:伏特。
伏特375.5)11(850.111=+=∴+===∴=∞∞∞∞λλλλλλe hc V c h c h eV ehc V c heV 4、2 Na 原子得基态3S 。
已知其共振线波长为5893οA ,漫线系第一条得波长为8193οA ,基线系第一条得波长为18459οA ,主线系得系限波长为2413οA 。
试求3S 、3P 、3D 、4F 各谱项得项值。
解:将上述波长依次记为οοοολλλλλλλλAA A A p f d p p f d p 2413,18459,8193,5893,,,,max max max max max max ====∞∞即容易瞧出: 16max3416max 3316max316310685.0110227.1110447.21110144.41~---∞-∞∞=-=?=-=?=-=?===米米米米f D F d p D p P P P S T T T T T v T λλλλλ4、3 K 原子共振线波长7665οA ,主线系得系限波长为2858οA 。
已知K 原子得基态4S 。
试求4S 、4P 谱项得量子数修正项p s ??,值各为多少?解:由题意知:P P s p p v T A A λλλοο/1~,2858,76654max ====∞∞由24)4(s R T S ?-=,得:S k T R s 4/4=?- 设R R K ≈,则有max411,229.2P P P T s λλ-==?∞ 与上类似 764.1/44=-≈?∞P T R p4、4 Li 原子得基态项2S 。
原子物理学第四五六七节课后习题答案
第四章 碱金属原子1. 已知Li 原子光谱主线系最长波长0A 6707=λ,辅线系系限波长A 3519=∞λ.求Li 原子第一激发电势和电离电势.解:主线系最长波长是原子从第一激发态跃迁至基态的光谱线的波长E h hc νλ∆==第一激发电势1eU E =∆34811976.626210310V 1.850V 1.602210 6.70710E hc U e e λ---∆⨯⨯⨯====⨯⨯⨯辅线系系限波长是原子从无穷处向第一激发态跃迁产生的 辅线系~~*2n R n νν∞=-,~~*n n νν∞→∞=192 5.648910J hc eU λ-∞==⨯ 2 3.526V U =电离电势:U =U 1+U 2=2. Na 原子的基态3S .已知其共振线波长为58930A ,漫线系第一条的波长为81930A ,基线系第一条的波长为184590A ,主线系的系限波长为24130A 。
试求3S 、3P 、3D 、4F 各谱项的项值. 解:主线系波数~p 22s p ,3,4,(3)()n R Rn n ν=-=-∆-∆~~p 2s ,(3)n Rn νν∞→∞==-∆系限波长:p λ∞=24130A =72.41310m -⨯~1613S 71m 4.144210m 2.41310T ν--∞-===⨯⨯ 共振线为主线系第一条线, 是原子从3P 到3S 跃迁产生的光谱线 共振线波长:λp1=58930A =75.89310m -⨯~61p 13S 3P 71 1.696910m 5.89310mT T ν--=-==⨯⨯1616S 3P 3m 104473.2m 106969.1--⨯=⨯-=T T漫线系(第一辅线系)波数~d22p d ,3,4,(3)()n R Rn n ν=-=-∆-∆漫线系第一条线是原子从3D 到3P 跃迁产生的光谱线 漫线系第一条光谱线的波长7d18.19310m λ-=⨯167D 3P 31~d m 102206.1m10193.81--⨯=⨯=-=T T ν1616P 3D 3m 102267.1m 102206.1--⨯=⨯-=T T基线系(柏格曼线系)波数,5,4,)()3(2f 2d ~f=∆--∆-=n n RR n ν 基线系第一条线是原子从4F 到3D 跃迁产生的光谱线 基线系第一条光谱线的波长6f 1 1.845910m λ-=⨯156F 4D 31fm 104174.5m108459.1--⨯=⨯=-=T T ν 1515D 3F 4m 108496.6m 104174.5--⨯=⨯-=T T3. K 原子共振线波长为7665Å,主线系系限波长为2858Å. 已知K 原子的基态为4S. 试求4S 、4P 谱项的量子数修正项∆S 、∆P 值各为多少?K 原子的主线系波数,5,4,)()4(2P 2S ~p=∆--∆-=n n RR n ν2S ~~p )4(,∆-==∞→∞Rn n νν1617~m 104990.3m 10858.211---∞∞⨯=⨯==p λν 16~S 4m 104990.3-∞⨯==νT而 2S S 4)4(∆-=RT 所以 S4S 4T R =∆- 17m 100973731.1-∞⨯=≈R R 7709.14S =∆- 2291.2S =∆K 原子共振线为主线系第一条线, 是原子从4P 到4S 跃迁产生的光谱线1p A 7665=λ167P 4S 41pm 103046.1m10665.7--⨯=⨯=-=T T ν 1616S 4P 4m 101944.2m 103046.1--⨯=⨯-=T T 而 2P P 4)4(∆-=RT 所以 P4P 4T R =∆- 17m 100973731.1-∞⨯=≈R R7638.14P4P =-=∆T R第五章 多电子原子1. He 原子的两个电子处在2p3d 电子组态.问可能组成哪几种原子态?用原子态的符号表示之.已知电子间是LS 耦合.解:p 电子的轨道角动量和自旋角动量量子数分别为,11=l 211=s . d 电子的轨道角动量和自旋角动量量子数分别为,21=l 212=s . 因为是LS 耦合,所以.,,1,212121l l l l l l L -⋯-++=.1,2,3=L.0,1.2121=-+=S s s s s S 或而 .,,1,S L S L S L J -⋯-++=.1,0,1===J S L 原子态为11P . .0,1,2,1,1===J S L 原子态为30,1,2P ..2,0,2===J S L 原子态为12D ..1,2,3,1,2===J S L 原子态为31,2,3D ..3,0,3===J S L 原子态为13F . .2,3,4,1,3===J S L 原子态为32,3,4F .2. 已知He 原子的两个电子被分别激发到2p 和3d 轨道,其所构成的原子态为3D ,问这两电子的轨道角动量p l 1与p l 2之间的夹角,自旋角动量p s 1与p s 2之间的夹角分别为多少?(1). 解:已知原子态为3D ,电子组态为2p3d, 所以2,1,1,221====l l S L 因此'1212221211212221222211113733212/)(cos cos 26)1(6)1(22)1(οθθθπ==---=-+==+==+==+=l l l l L l l l l L L l l p p p p P p p p p P L L P l l p hl l p 所以'0'0471061373180=-=οθL(2).1212122s s S s s p p P =======因为所以而'2212221222212221228109312/)(cos cos 2οθθθ=-=---=-+=s s s s S s s s s S p p p p P p p p p P 所以'0'0327028109180=-=οθS4. 试以两个价电子l 1=2和l 2=3为例说明,不论是LS 耦合还是jj 耦合都给出同样数目的可能状态. (1) LS 耦合.3,221==l l.,,1,212121l l l l l l L -⋯-++=.1,23,4,5=L.2121==s s.0,1=S.,,1,S L S L S L J -⋯-++=当S =0时,J =L , L 的5个取值对应5个单重态, 即1=L 时,1=J ,原子态为11P . 2=L 时,2=J ,原子态为12D . 3=L 时,3=J ,原子态为13F .4=L 时,4=J ,原子态为14G . 5=L 时,5=J ,原子态为15H .当S =1时,.1,,1-+=L L L J代入一个L 值便有一个三重态.5个L 值共有5乘3等于15个原子态,分别是:1=L 时,0,1,2=J 原子态为30,1,2P 2=L 时,1,2,3=J 原子态为31,2,3D 3=L 时,2,3,4=J 原子态为32,3,4F4=L 时,3,4,5=J 原子态为33,4,5G 5=L 时,4,5,6=J 原子态为34,5,6H因此,LS 耦合时共有20个可能状态. (2) jj 耦合.,...,.2527;2325;21212121j j j j j j J j j s l j s l j -++===-=+=或或或 将每个j 1、j 2 合成J 得:.1,2,3,42523.2,3,4,52723.0,1,2,3,4,52525.1,2,3,4,5,6272521212121============J j j J j j J j j J j j ,合成和,合成和,合成和,合成和4,3,2,15,4,3,25,4,3,2,1,06,5,4,3,2,1)25,23()27,23()25,25()27,25(共20个可能状态所以,无论是LS耦合还是jj耦合,都会给出20种可能状态.6.已知He原子的一个电子被激发到2p轨道,另一个电子还在1s轨道,试做出能级跃迁图来说明可能出现哪些光谱线跃迁.解:在1s2p组态的能级和1s1s基态之间存在中间激发态,电子组态为1s2s.利用LS耦合规则求出各电子组态的原子态如下:1s1s:1S01s2s:1S0、3S11s2p:1P1、3P0,1,2根据选择定则,这些原子态之间可以发生5条光谱线跃迁。
原子物理学习题答案(褚圣麟)很详细
1.原子的基本状况1.1解:根据卢瑟福散射公式: 得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ ,试问上题α粒子与散射的金原子核之间的最短距离m r 多大? 解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米 1.3 若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最解:当入射粒子与靶核对心碰撞时,散射角为180ο。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。
1.7能量为3.5兆电子伏特的细α粒子束射到单位面积上质量为22/1005.1米公斤-⨯的银箔上,α粒解:设靶厚度为't 。
非垂直入射时引起α粒子在靶物质中通过的距离不再是靶物质的厚度't ,而是ο60sin /'t t =,如图1-1所示。
因为散射到θ与θθd +之间Ωd 立体角内的粒子数dn 与总入射粒子数n 的比为:dnNtd nσ= (1) 而σd 为:2sin )()41(422220θπεσΩ=d Mvze d (2)把(2)式代入(1)式,得:2sin )()41(422220θπεΩ=d Mvze Nt n dn (3)式中立体角元0'0'220,3/260sin /,/====Ωθt t t L ds dN 为原子密度。
褚圣麟原子物理学习题解答
原子物理学习题解答(褚圣麟编)第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。
散射物质是原子序数79Z =的金箔。
试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mvα=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ ,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。
原子物理学第四,五,六,七章课后习题答案-推荐下载
原子的基态为 4S. 试求 4S 、4P 谱项的量子数修正项∆S 、∆P 值各为 多少?
K 原子的主线系波数
~
p n
n ,
~
R (4 S )2
1 p
~
p n
~
1 2.858 107
~
T4S 3.4990 106 m 1
而
T4S
所以 4 S
R T4P
1.3046 106 m1
第五章 多电子原子
1. He 原子的两个电子处在 2p3d 电子组态.问可能组成哪几种原子态?用
原子态的符号表示之.已知电子间是 LS 耦合.
解:p 电子的轨道角动量和自旋角动量量子数分别为 l1 1,
d 电子的轨道角动量和自旋角动量量子数分别为 l1
R (4 S )2
R R 1.0973731107 m1
4 S 1.7709
S 2.2291
R (n P )2
R (4 S )2
R T4S
m 1
,
n 4,5,
3.4990 106 m1
K 原子共振线为主线系第一条线, 是原子从 4P 到 4S 跃迁产生的光
1.2206 106 m1
~
f 1
T3D
T4F
1 1.8459 106 m
T4F T3D 5.4174 105 m 1 6.8496 105 m 1
5.4174 105 m 1
3. K 原子共振线波长为 7665Å,主线系系限波长为 2858Å. 已知 K
第四章 碱金属原子
0
原子物理学习题标准答案(褚圣麟)很详细
hcRH(12
12)
其中hcRH13.6电子伏特
1
n
E1
13.6
(1
1) 10.2
电子伏特
22
E2
13.6
(1
12) 12.1
电子伏特
3
E3
13.6
(1
12)
12.8
电子伏特
4
其中E1和E2小于12.5电子伏特,E3大于12.5电子伏特。可见,具有
12.5电子伏特能量的
电子不足以把基态氢原子激发到n4的能级上去,所以只能出现n3的能级间的跃迁。
A,漫线系第一条的波长为
8193A,
基线系第一条的波长为
18459A,主线系的系限波长为
2413
A。试求
、
、
、
4F
各
3S
3P
3D
谱项的项值。
解:将上述波长依次记为
p max,d max,f max,p,
即p max5893 A,d max8193 A,f max18459 A,p2413 A
容易看出:
(1.60
10
19)2
1.14 1013
米
106
1.60
10
19
由上式看出:rmin与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核
代替质子时,其与靶核的作用的最小距离仍为
1.14 1013米。
1/14
1.7能量为3.5兆电子伏特的细粒子束射到单位面积上质量为1.05 102公斤/米2的银
箔上,粒
解:设靶厚度为t'。非垂直入射时引起粒子在靶物质中通过的距离不再是靶物质的
厚度t',而是t
原子物理褚圣麟课后习题答案和解析
原子物理学习题第一章作业教材 20页 3题:若用动能为 1 MeV 的质子射向金箔,问质子和金箔原子核(Z=79)可以达到的最小距离多大?又问如用同样能量的氕核代替质子,最小距离为多大?解:r m =Z 1*Z 2*e 2/4*π*ε0*E = …… = 1.14 ⨯ 10-13 m氕核情况结论相同-----------------------------------------------------------------------------------------------21页 4题:α粒子的速度为 1.597 ⨯ 107 m/s ,正面垂直入射于厚度为 10-7米、密度为1.932 ⨯104 kg/m 3 的金箔。
试求所有散射在 θ ≥ 90︒ 的α粒子占全部入射粒子的百分比。
金的原子量为197。
解:金原子质量 M Au = 197 ⨯ 1.66 ⨯ 10-27 kg = 3.27 ⨯ 10-25 kg箔中金原子密度 N = ρ/M Au = …… = 5.91 ⨯ 1028 个/m 3入射粒子能量 E = 1/2 MV 2 = 1/2 ⨯ 4 ⨯ 1.66 ⨯ 10-27 kg ⨯ (1.597 ⨯ 107 m/s)2 = 8.47 ⨯ 10-13 J若做相对论修正 E = E 0/(1-V 2/C 2)1/2 = 8.50 ⨯ 10-13 J对心碰撞最短距离 a=Z 1⨯Z 2⨯e 2/4⨯π⨯ε0⨯E = …. = 4.28 ⨯ 10-14 m 百分比d n/n(90︒→180︒)=⎪⎭⎫ ⎝⎛︒-︒⨯90sin 145sin 14222Nta π= … = 8.50 ⨯ 10-4%-----------------------------------------------------------------------------------------------------------21页7题:3.5 MeV α粒子细束射到质量厚度为 0.01 kg/m2 的银箔上(图1-1)。
《原子物理学》习题答案(褚圣麟 版)
因? 答: 粒子散射的理论值是在“一次散射“的假定下得出的。而 粒子通过金属箔,经过
好多原子核的附近,实际上经过多次散射。至于实际观察到较小的 角,那是多次小角散射 合成的结果。 既然都是小角散射, 哪一个也不能忽略, 一次散射的理论就不适用。 所以, 粒 子散射的实验数据在散射角很小时与理论值差得较远。 1.6 已知 粒子质量比电子质量大 7300 倍。 试利用中性粒子碰撞来证明: 粒子散射“受 电子的影响是微不足道的”。 证明:设碰撞前、后 粒子与电子的速度分别为: v , v ', 0, ve 。根据动量守恒定律,得:
临沂师范学院物理系临沂师范学院物理系临沂师范学院物理系临沂师范学院物理系理论物理教研室理论物理教研室理论物理教理论物理教研室第一章原子的基本状况11若卢瑟福散射用的粒子是放射性物质镭放射的其动能为电子伏676810特
原子物理学习题解答
刘富义 编
临沂师范学院物理系 理论物理教研室
第一章 原子的基本状况
2
所以有:
d n n
'
N t d
2
N0 1 t ( A Au 4
0
cos 2 2 Z e 80 2 d )2 ( ) 2 1 90 Mu2 3 s in 2
等式右边的积分: I
180 90
d sin 2 d 2 180 2 1 90 sin 3 sin 3 2 2
由上式看出: rmin 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代 替质子时,其与靶核的作用的最小距离仍为 1.14 10
《原子物理》(褚圣麟)习题解答
1
3
=RH [
4.试估算一次电离的氦离子 He 、二次电离的锂离子 Li
的第一玻尔轨道半径、电离电
势、第一激发电势和赖曼系第一条谱线波长分别与氢原子的上述物理量之比值。 解: He 、 Li
都是类氢粒子,由玻尔理论可列表如下:
r1 ( A)
H 0.529 0.265 0.176
0
V (V )
4 0 h 2 v2 e2 m 0.529 10 10 (m) ,其中 a1 2 2 a1 4 0 a1 4 me
由此求得电子的线速度: v 2.18核转动的频率: f
v 6.56 1015 ( s 1 ) 。 2a1
电子的加速度: a
v2 8.98 10 22 (ms 2 ) 。 a1
2. 试用氢原子的里德伯常数计算基态氢原子的电离电势和第一激发电势。
第 4 页
~ =RH 〔 解:∵
1 1 ~ =RH 。∴ U hcR H 13.6(V ) 2 〕,电离情况对应于 n=∞,即 2 1 n e 3 RH , 4
4 2 me 4 2n 当 n 1 时, n cR 2 2 = n n 4 0 2 n 3 h 3
第 7 页
9. Li 原子序数 Z=3,其光谱的主线系可用下式表示:
~=
R R 2 (1 0.5951) (n 0.0401) 2
+++ + ++
已知 Li 原子电离成 Li 离子需要 203.44ev 的功。问如果把 Li 离子电离成 Li 离子, 需要多少 ev 的功? 解:第一步,由已知公式求出 Li Li 所需的功:
原子物理学,褚圣麟第四章
第四章 碱金属原子和电子自旋
价电子:原子实外的那个价电子称作价电子。它 决定元素的化学性质,在较大的轨道上运动。
问:碱金属原子的能级为什么比氢原子的能级低?
2. 与氢原子的区别 原子实的极化
e
l 小轨道偏心率大,极化强,能量影响大; l 大轨道偏心率小(接近圆),极化弱,能量影
响小;
4 . 2 原子实的极化和轨道贯穿 轨道贯穿
4 . 1 碱金属原子的光谱
第四章 碱金属原子和电子自旋
元素周期表
4 . 1 碱金属原子的光谱
第四章 碱金属原子和电子自旋
碱金属元素 符 号 原子序数
锂 Li 3
钠 Na 11
钾 K 19
铷 Rb 37
铯 Cs 55
钫 Fr 87
特性:化学性质相仿,属于同一族,都是一价, 电离电势较小。
4 . 1 碱金属原子的光谱
第四章 碱金属原子和电子自旋
e
e
E
hcR n
*2
*2
非贯穿轨道
贯穿轨道
Z R R R T 2 2 * * * 2 n n Z 1 * n (n Z ) n 结果:l 较小轨道,偏心率大,引起较强极化,
极化产生的电场为另加的吸引力,使能量降低;同 时引起轨道贯穿,平均有效电荷数增大,能量减小。
4.4 电子自旋同轨道运动的相互作用
第四章 碱金属原子和电子自旋
正确的矢量图
pj
B
pl
3 j 2
pj
1 j 2 B
pl
s
pl
ps
pj
s
ps
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 碱金属原子
4.1 已知Li 原子光谱主线系最长波长ολA 6707=,辅线系系限波长ο
λA 3519=∞。
求锂原子第一激发电势和电离电势。
解:主线系最长波长是电子从第一激发态向基态跃迁产生的。
辅线系系限波长是电子从无穷处向第一激发态跃迁产生的。
设第一激发电势为1V ,电离电势为∞V ,则有: 伏特。
伏特375.5)11(850.111=+=∴+===∴=∞
∞∞
∞λλλλλλ
e hc V c h c h eV e
hc V c h
eV 4.2 Na 原子的基态3S 。
已知其共振线波长为5893οA ,漫线系第一条的波长为8193ο
A ,基线系第一条的波长为18459οA ,主线系的系限波长为2413ο
A 。
试求3S 、3P 、3D 、4F 各谱项的项值。
解:将上述波长依次记为 οοοολλλλλλλλA
A A A p f d p p f d p 2413,18459,8193,5893,
,,,max max max max max max ====∞∞即
容易看出: 1
6max
3416max 331
6max
316310685.0110227.1110447.21110144.41~---∞-∞
∞
⨯=-=⨯=-
=⨯=-=⨯===米米米米f D F d p D p P P P S T T T T T v T λλλλλ 4.3 K 原子共振线波长7665οA ,主线系的系限波长为2858οA 。
已知K 原子的基态4S 。
试求4S 、4P 谱项的量子数修正项p s ∆∆,值各为多少?
解:由题意知:P P s p p v T A A λλλο
ο/1~,2858,76654max ====∞∞
由24)
4(s R T S ∆-=,得:S k T R s 4/4=∆- 设R R K ≈,则有max
411,229.2P P P T s λλ-=
=∆∞ 与上类似 764.1/44=-≈∆∞P T R p
4.4 Li 原子的基态项2S 。
当把Li 原子激发到3P 态后,问当3P 激发态向低能级跃迁时可能产生哪些谱线(不考虑精细结构)?
答:由于原子实的极化和轨道贯穿的影响,使碱金属原子中n 相同而l 不同的能级有很大差别,即碱金属原子价电子的能量不仅与主量子数n 有关,而且与角量子数l 有关,可以记为),(l n E E =。
理论计算和实验结果都表明l 越小,能量越低于相应的氢原子的能量。
当从3P 激发态向低能级跃迁时,考虑到选择定则:1±=∆l ,可能产生四条光谱,分别由以下能级跃迁产生:。
S P S P P S S P 23;22;23;33→→→→ 4.5 为什么谱项S 项的精细结构总是单层结构?试直接从碱金属光谱双线的规律和从电子自旋与轨道相互作用的物理概念两方面分别说明之。
答:碱金属光谱线三个线系头四条谱线精细结构的规律性。
第二辅线系每一条谱线的二成分的间隔相等,这必然是由于同一原因。
第二辅线系是诸S 能级到最低P 能级的跃迁产生的。
最低P 能级是这线系中诸线共同有关的,所以如果我们认为P 能级是双层的,而S 能级是单层的,就可以得到第二辅线系的每一条谱线都是双线,且波数差是相等的情况。
主线系的每条谱线中二成分的波数差随着波数的增加逐渐减少,足见不是同一个来源。
主线系是诸P 能级跃迁到最低S 能级所产生的。
我们同样认定S 能级是单层的,而推广所有P 能级是双层的,且这双层结构的间隔随主量子数n 的增加而逐渐减小。
这样的推论完全符合碱金属原子光谱双线的规律性。
因此,肯定S 项是单层结构,与实验结果相符合。
碱金属能级的精细结构是由于碱金属原子中电子的轨道磁矩与自旋磁矩相互作用产生附加能量的结果。
S 能级的轨道磁矩等于0,不产生附加能量,只有一个能量值,因而S 能级是单层的。
4.6 计算氢原子赖曼系第一条的精细结构分裂的波长差。
解:赖曼系的第一条谱线是n=2的能级跃迁到n=1的能级产生的。
根据选择定则,跃迁只能发生在S P 2
212→之间。
而S 能级是单层的,所以,赖曼系的第一条谱线之精细结构是由P 能级分裂产生的。
氢原子能级的能量值由下式决定: )432
11()()(34222n j n S Z Rhca n Z Rhc E -+⨯----=σ 其中1)()(=-=-S Z Z σ
)
1()2()1()2()
1()2()1()2(2/122/12222/122/122/122/3211
2/122/32S E P E hc c h
S E P E S E P E hc c h
S E P E -=
∴=--=∴=-λλλλΘΘ 因此,有: 44)1(64
516)2(64
16)2()]
1()2()][1()2([)]
1()2([2
2/122
2/122
2/322/122/122/122/322/122/3212a Rhc S E a Rhc P E a Rhc P E S E P E S E P E S E P E hc +-=+-=+-=---=
-=∆λλλ
将以上三个能量值代入λ∆的表达式,得:
ο
λA a a a R R a a a 313222
222
1039.51039.5)
1548)(1148(464164
1548641148644--⨯=⨯=++=⋅+⨯+=∆米 4.7 Na 原子光谱中得知其3D 项的项值163102274.1-⨯=米D T ,试计算该谱项之精细
结构裂距。
解:已知17163100974.1,102274.1--⨯=⨯==米米Na D R T
134
*2*
*3*655.3)
1(/9901.2-=+=∆===∴米所以有:而l l n Z Ra T n n Z T R n D
Na 4.8 原子在热平衡条件下处在各种不同能量激发态的原子的数目是按玻尔兹曼分布的,
即能量为E 的激发态原子数目KT E E e g g N N /)(0
00--=。
其中0N 是能量为0E 的状态的原子数,0g g 和是相应能量状态的统计权重,K 是玻尔兹曼常数。
从高温铯原子气体光谱中测出其共振光谱双线321.8521,5.89432121::的强度比===I I A A ο
ολλ。
试估算此气体的温度。
已知相应能级的统计权重4,221==g g 。
解:相应于21λλ,的能量分别为: 2211/;/λλhc E hc E ==
所测得的光谱线的强度正比于该谱线所对应的激发态能级上的粒子数N ,即
1
2
2
1212132322
121g g e e g g N N I I N
I KT E E KT E E ====∴∝---- 由此求得T 为:
K g g K E E T 277332ln 1
212=-=。