二元一次方程组课时练习题
二元一次方程组课时练习★★
二元一次方程组练习一1.用代入法...解方程组 2x+3y=10, (1) y=3x+2;解:x-y=5,(2)3x+4y=1;解:x-2y=0,(3)3x+2y=8;解:x+2y=4,(4)5x-2y=-4;解:(5) ⎩⎨⎧=+=-82573y x y x 解:(6) ⎩⎨⎧=+=-24352y x y x 解:(7) ⎩⎨⎧52332=-=n m n m 解:(8) 9 s-13 t+12=0,3 t+ s=2;解:2.已知3xa+5b-5-2y 3a-6b-3=5是关于x,y 的二元一次方程,求a,b 的值。
解:3.已知(x-y+9)2+yx 2 =0,求4x-3y 的值。
解:4.已知方程组 3x+5y=m+2,的解2x+3y=10;满足x-y=2.5,求m 的值。
解:练习二1.用代入法...解方程组 (1) 3x+2y=5,2x-y=8;解:(2) x:y=3:2X+3y=27;解:(3)2x-y=-5,2x+4y=10;解:(4)2s+3t=-1,4s-9t=8;解:(5)3m-4n=7,9m-10n+25=0;解:(6) 4(x+2)=1-5y ,3(y+2)=-3x ;解:(7) 25n m -=2, 2m+3n=4;解:(8)23y x +=13, 43x y -=3; 解:2.若 x=1-2t ,试求x 与y 的关系式.y=3+4t ;解:(提示:消去字母t 即可)3.甲乙两人同解方程组 ⎩⎨⎧-=-=+232y Cx By Ax , 甲正确解得⎩⎨⎧-==11y x ,乙因抄错字母C,解得⎩⎨⎧-==62y x 求A 、B 、C 的值。
解:练习三1.用加减法...解方程组 (1) 4x-y=9,3x+y=5;解:(2) 4x-3y=-5.6,5x+3y=7.4;解:(3) 3x+y=12,x+3y=4;解:(4)4x-3y=15,2x+5y=14;解:(5)4x+2y=8,9x+4y=18;解:(6)2x+3y=7,3x-5y=1;解:(7)3x-5y=6,2x-3y=4;解:(8)nm 53+=22, n m 76-=10; 解:(提示:把1/m 、1/n 作为整体,进行加减消元)2.方程组 2x+5y=6,①和方程组 ax-by=-4③2x-5y=26;② ax+by=-8④的解相同,求a 与b 的值。
人教版七年级数学下册《二元一次方程组》专项练习题-附含答案
人教版七年级数学下册《二元一次方程组》专项练习题-附含答案知识点1-1 二元一次方程(组)1)二元一次方程:含有两个未知数 且 所含未知数的次数项的次数都是1的方程。
注:所有未知数项的次数必须是1 例: 不是 2x -3xy =2 不是 2)将几个相同未知数的一次方程联合起来 就组成了二元一次方程组。
注:①在方程组中 相同未知数必须代表同一未知量。
②二元一次方程组不一定都是二元一次方程组合而成 方程个数也不一定是两个。
例: 是 3)判断二元一次方程组的方法:①方程组中是否一共有两个未知数;②含未知数的项的次数是否都是1;③是否含有多个方程组成.例1.(2021·湖南·衡阳市华新实验中学七年级月考)下列方程中 ①;②;③;④ 是二元一次方程的有( ) A .1个 B .2个C .3个D .4个【答案】A【分析】根据二元一次方程的定义:含有两个未知数 并且含有未知数的项的次数都是1的整式方程叫做二元一次方程 即可判断出答案.【详解】解:①根据二元一次方程定义可知是二元一次方程 此项正确; ②化简后为 不符合定义 此项错误; ③含有三个未知数不符合定义 此项错误;④不符合定义 此项错误;所以只有①是二元一次方程 故选:A .【点睛】本题考二元一次方程 解题的关键是熟练运用二元一次方程的定义 本题属于基础题型.变式1.(2022·山东济南·八年级期末)下列方程中 为二元一次方程的是( ) A .2x +3=0 B .3x -y =2zC .x 2=3D .2x -y =5【答案】D【分析】根据二元一次方程的定义 从二元一次方程的未知数的个数和次数方面辨别. 【详解】解:A .是一元一次方程 故本选项不合题意; B .含有三个未知数 不是二元一次方程 故本选项不合题意;C .只含有一个未知数 且未知数的最高次数是2 不是二元一次方程 故本选项不合题意;D .符合二元一次方程的定义 故本选项符合题意.故选:D .20x y-=3235x y x y -=⎧⎨+=⎩6x y +=()16x y +=31x y z +=+7mn m +=6x y +=()16x y +=6xy x +=31x y z +=+7mn m +=【点睛】此题考查了二元一次方程的定义 含有两个未知数 并且含有未知数的项的次数都是1 像这样的整式方程叫做二元一次方程.例2.(2021·湖南·衡阳市华新实验中学七年级月考)已知是关于 的二元一次方程 则______. 【答案】4【分析】根据二元一次方程的定义 可得方程组 解得m 、n 的值 代入代数式即可.【详解】解:由题意得 解得: ∴ 4 故填:4. 【点睛】本题考查二元一次方程的定义 属于基础题型. 变式2.(2021·天津一中七年级期中)若是关于 的二元一次方程 则( )A .B .C .D .【答案】D【分析】二元一次方程满足的条件:含有2个未知数 未知数的项的次数是1的整式方程. 【详解】解:是关于的二元一次方程解得: .故选:D . 【点睛】此题主要考查了二元一次方程的定义 关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.例3.(2021·河南淇县·七年级期中)下列方程组中 是二元一次方程组的是( )A .B .C .D .【答案】C【分析】根据二元一次方程的定义 含有两个未知数 并且含有未知数的项的次数为1的整式方程对个选项进行一一排查即可.【详解】解:A. 第二个方程中的是二次的 故本选项错误;B.方程组中含有3个未知数 故本选项错误;C. 符合二元一次方程组的定义 故本选项正确;D. 第二个方程中的xy 是二次的 故本选项错误.故选C .3211203n m x y -+-=x y n m +=31211n m -=⎧⎨+=⎩31211n m -=⎧⎨+=⎩40n m =⎧⎨=⎩n m +=20193(2020)(4)2021m n m x n y---++=x y 2020m =±4n =±2020m =-4n =-2020m =4n =2020m =-4n =()()20193202042021m n m x n y ---++=x y ∴2019120200m m ⎧-=⎨-≠⎩3140n n ⎧-=⎨+≠⎩2020m =-4n =2214x y x +=⎧⎨=⎩1236x y y z ⎧-=⎪⎨⎪-=⎩225x y x y +=-⎧⎨-=⎩213xy y y +=⎧⎨=-⎩2x【点睛】:根据组成二元一次方程组的两个方程应共含有两个未知数 且未知数的项最高次数都应是一次的整式方程 判断各选项即可.变式3.(2021·上海市建平中学西校期末)下列方程组 是二元一次方程组的是( ).A .B .C .D . 【答案】B【详解】A 选项:在中最高次数为2 故为二元二次方程组 不合题意;B 选项:为二元一次方程组 符合题意;C 选项:在中 共有3个未知数 为三元一次方程组 不合题意;D 选项:在中最高次数为2 故为二元二次方程组 不合题意.故选B . 【点睛】本题考查了二元一次方程的概念 掌握二元一次方程的概念(含有两个未知数 并且含有未知数的项的次数都是1的方程叫做二元一次方程)是解题关键.例4.(2021·日照市新营中学七年级期中)若方程组是二元一次方程组 则a 的值为________. 【答案】-3【分析】根据二元一次方程组的定义得到|a |-2=1且a -3≠0 然后解方程与不等式即可得到满足条件的a 的值.【详解】解:∵方程组是二元一次方程组 ∴|a |-2=1且a -3≠0 ∴a =-3 故答案为:-3. 【点睛】本题考查了二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起 就组成了一个二元一次方程组.变式4.(2021·全国·七年级课时练习)若是关于 的二元一次方程组 则__ __ __. 【答案】 3或2【分析】二元一次方程组的定义:(1)含有两个未知数;(2)含有未知数的项的次数都是1 据此列式即可求解. 【详解】解:是关于 的二元一次方程组 或0 解得:或2 答案:3或2223xy x y =⎧⎨=⎩231x y y -=⎧⎨=⎩2425x y x z -=-⎧⎨+=⎩227x y y x-+=⎧⎨=⎩223xy x y=⎧⎨=⎩231x y y -=⎧⎨=⎩2425x y x z -=-⎧⎨+=⎩227x y y x -+=⎧⎨=⎩()20390a x ya x -⎧+=⎪⎨-+=⎪⎩23(3)34a b x c xy x y -+-+=⎧⎨+=⎩x y =a b =c =2-3-23(3)34a b x c xy x y -+-+=⎧⎨+=⎩x y 30c ∴+=21a -=31b +=3a =2b =-3c =-2-【点睛】本题主要考查了二元一次方程组的定义 利用它的定义即可求出代数式的解.知识点1-2 二元一次方程(组)的解1)二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值(有序数对) 例:x+y=10 (1 9) (2 8) (3 7)等。
北师大版八年级数学第五章《应用二元一次方程组—增收节支》课时练习题(含答案)
北师大版八年级数学第五章《4.应用二元一次方程组—增收节支》课时练习题(含答案)一、单选题1.“市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.那么该队胜了几场,平了几场?设该队胜了x场,平了y场,根据题意可列方程组为()A.7317x yx y+=⎧⎨+=⎩B.9317x yx y+=⎧⎨+=⎩C.7317x yx y+=⎧⎨+=⎩D.9317x yx y+=⎧⎨+=⎩2.从甲地到乙地有一段长x km的上坡与一段长y km的平路.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54min,从乙地到甲地需42min.根据题意,可列方程组为()A.34545442x yx y+=⎧⎨+=⎩B.34425454x yx y+=⎧⎨+=⎩C.543460425460x yx y⎧+=⎪⎪⎨⎪+=⎪⎩D.423460545460x yx y⎧+=⎪⎪⎨⎪+=⎪⎩3.甲、乙两个工人按计划一个月应生产680个零件,结果甲超额完成计划的20%,乙超额完成计划的15%,两人一共多生产118个零件,则原计划甲、乙各生产零件数为()A.320,360 B.360,320 C.300,380 D.380,3804.某城市规定:出租车起步价所包含的路程为03km,超过3km的部分按每千米另收费(不足1km的按1km计算).甲说“我乘这种出租车走了9.3km,付了19元.”乙说:“我乘这种出租车走了15.8千米,付了31元.”问:出租车的起步价和超过3km后的每千米的收费标准分别是()A.5元、3元B.4元、3元C.4元、2元D.5元、2元5.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x与y的和是()A.9 B.10 C.11 D.126.某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有()A.4种B.3种C.2种D.1种7.某商场2020年的总利润为100万元,2021年的总收入比2020年增加10%,总支出比2020年减少5%,2021年的总利润为140万元,则2020年的总收入和总支出分别是()A.300万元,210万元B.300万元,200万元C.400万元,300万元D.410万元,310万元8.小明去文具店购买了笔和本子共5件,已知两种文具的单价均为正整数且本子的单价比笔的单价贵.在付账时,小明问是不是27元,但收银员却说一共48元,小明仔细看了看后发现自己将两种商品的单价记反了.小明实际的购买情况是()A.1支笔,4本本子B.2支笔,3本本子C.3支笔,2本本子D.4支笔,1本本子二、填空题9.某种商品的进价为18元,标价为x元,由于该商品积压,商店准备按标价的8折销售,可保证利润率达到20%,则标价为_____.10.有大小两种货车,3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨,则4辆大货车与3辆小货车一次可以运货___________吨.11.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十,问甲、乙持钱各几何?”译文是:今有甲、乙两人持钱不知道各有多少,甲若得到乙所有钱的12,则甲有50钱,乙若得到甲所有钱的23,则乙也有50钱,问甲、乙各持钱多少?设甲持钱数为x钱,乙持钱数为y钱,列出关于x,y的二元一次方程组是______.12.小明家准备装修一套新房,若甲、乙两家装修公司合作需6周完成,装修费用为5.2万元;若甲公司单独做4周,剩下的由乙公司做,还需9周完成,此时装修费用为4.8万元.若小明只选甲公司单独完成,则他需要付给甲公司装修费用________万元.13.汽车从甲地到乙地,如果每小时行驶35千米,就要迟到2小时,如果每小时行驶50千米,则可提前1小时到达,则甲、乙两地相距_____________千米.14.如图,用8块相同的长方形地砖拼成了一个长方形图案(地砖间的缝隙忽略不计),则每块地砖的长为________cm.三、解决问题15.我县境内的某段铁路桥长2200m,现有一列高铁列车从桥上通过,测得此列高铁从开始上桥到完全过桥共用30s,整列高铁在桥上的时间是25s,试求此列高铁的车速和车长.16.一张方桌由1个桌面,4条桌腿组成,如果1m3木料可以做方桌的桌面50个或做桌腿300条,现有10m3木料,那么用多少立方米的木料做桌面,多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?17.在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克.若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.18.已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B 型车装满货物一次可运货11吨.某物流公司现有36吨货物,计划同时租用A型车a辆,B 型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案.19.为了做好学校疫情防控工作,某中学开学前需备足防疫物资,准备购买N95口罩(单位:只)和医用外科口罩(单位:包)若干.根据标价,已知购买10只N95口罩和9包医用外科口罩共需236元,购买一只N95口罩的费用是购买一包医用外科口罩费用的5倍.(1)求一只N95口罩和一包医用外科口罩的标价各是多少元?(2)市场上现有甲、乙两所医疗机构对该中学的采购给出如下的优惠方案:甲医疗机构:购买的口罩按标价结算,但每购买一只N95口罩赠送一包医用外科口罩;乙医疗机构:购买的口罩全部按标价打九折结算.若该中学准备购买1000只N95口罩和6000包医用外科口罩,考虑配送成本等其他因素,只能一次性从其中一家采购,问选择哪所医疗机构更省钱?20.滴滴快车是一种便捷的出行工具,计价规则如下表:(1)小王与小张各自乘坐滴滴快车,在同一地点约见,已知到达约见地点,他们的实际行车里程分别为6千米与8.5千米,两人付给滴滴快车的乘车费相同(1)求这两辆滴滴快车的实际行车时间相差多少分钟;(2)实际乘车时间较少的人,由于出发时间比另一人早,所以提前到达约见地点在大厅等候.已知他等候另一人的时间是他自己实际乘车时间的1.5倍,且比另一人的实际乘车时间的一半多8.5分钟,计算两人各自的实际乘车时间。
北师大版八年级数学第五章《应用二元一次方程组-鸡兔同笼》课时练习题(含答案)
北师大版八年级数学第五章《3.应用二元一次方程组-鸡兔同笼》课时练习题(含答案)一、单选题1.甲是乙现在的年龄时,乙8岁,乙是甲现在的年龄时,甲26岁,那么()A.甲20岁,乙14岁B.甲22岁,乙16岁C.乙比甲大18岁D.乙比甲大34岁2.五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为()A.30 B.26 C.24 D.223.《九章算术》中有这样一道题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其译文是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现有30钱,买得2斗酒.问醇酒、行酒各买得多少?设醇酒买得x斗,行酒买得y斗,则可列二元一次方程组为()A.2501030x yx y+=⎧⎨-=⎩B.2501030x yx y-=⎧⎨+=⎩C.2105030x yx y+=⎧⎨+=⎩D.2501030x yx y+=⎧⎨+=⎩4.《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x,y,则可列方程组为()A.15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503x yy x⎧-=⎪⎪⎨⎪-=⎪⎩C.2502503x yx y+=⎧⎪⎨+=⎪⎩D.2502503x yx y-=⎧⎪⎨-=⎪⎩5.我国古代数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊三,直金十二两.问牛、羊各直金几何?”题目大意是:5头牛、2只羊共19两银子;2头牛、3只羊共12两银子,每头牛、每只羊各多少两银子?设1头牛x两银子,1只羊y两银子,则可列方程组为()A.52192312x yx y+=⎧⎨+=⎩B.52122319x yx y+=⎧⎨+=⎩C.25193212x yx y+=⎧⎨+=⎩D.25123219x yx y+=⎧⎨+=⎩6.用如图的长方形和正方形纸板作侧面和底面,做成如图的竖式和横式两种无盖纸盒.现在仓库里有500张正方形纸板和1000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?若设做竖式纸盒x个,横式纸盒y个,则可列方程组()A.+=5004+3=1000x yx y⎧⎨⎩B.+2=5004+3=1000x yx y⎧⎨⎩C.2+=50003+4=1000x yx y⎧⎨⎩D.2+2=5003+4=1000x yx y⎧⎨⎩7.现用190张铁皮做盒子,每张铁皮可做8个盒身,或做22个盒底,一个盒身与两个盒底配成一个盒子.设用x张铁皮做盒身,y张铁皮做盒底正好配套,则可列方程组为()A.1902822x yx y+=⎧⎨⨯=⎩B.1902228x yy x+=⎧⎨⨯=⎩C.2190822y xx y+=⎧⎨=⎩D.21902822y xx y+=⎧⎨⨯=⎩8.普通火车从绵阳至成都历时大约2小时,成绵城际快车开通后,时间大大缩短至几十分钟,现假定普通火车与城际快车两列对开的火车于同一时刻发车,其中普通火车由成都至绵阳,城际快车由绵阳至成都,这两车在途中相遇之后,各自用了80分钟和20分钟到达自己的终点绵阳、成都,则城际快车的平均速度是普通火车平均速度的()倍.A.2 B.2.5 C.3 D.4二、填空题9.一名学生问老师:“你今年多大了?”老师风趣地说“我像你这样大的时候,你才2岁;你到我这么大时,我已经38岁了”,则今年老师的岁数是_____.10.《孙子算经》是中国古代重要的数学著作,其中记载了这样一道有趣的问题:“一百马,一百瓦,大马一拖三,小马三拖一.”意思是:“现有100匹马恰好拉100片瓦.已知1匹大马能拉3片瓦,3匹小马能拉1片瓦.”则共有大马_____匹.11.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十,问甲、乙持钱各几何?”译文是:今有甲、乙两人持钱不知道各有多少,甲若得到乙所有钱的12,则甲有50钱,乙若得到甲所有钱的23,则乙也有50钱,问甲、乙各持钱多少?设甲持钱数为x钱,乙持钱数为y钱,列出关于x,y的二元一次方程组是______.12.某中学为积极开展校园足球运动,计划购买A和B两种品牌的足球,已知一个A品牌足球价格为120元,一个B品牌足球价格为150元.学校准备用3000元购买这两种足球(两种足球都买),并且3000元全部用完,请写出一种购买方案:买_______个A品牌足球,买________个B品牌足球.13.《九章算术》记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两,问一牛一羊共直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问一头牛和一只羊共值金多少两?”根据题意可得,一头牛和一只羊共值金____两.三、解答题14.一张方桌由1个桌面,4条桌腿组成,如果1m3木料可以做方桌的桌面50个或做桌腿300条,现有10m3木料,那么用多少立方米的木料做桌面,多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?15.某村经济合作社决定把22吨竹笋加工后再上市销售,刚开始每天加工3吨,后来在乡村振兴工作队的指导下改进加工方法,每天加工5吨,前后共用6天完成全部加工任务,问该合作社改进加工方法前后各用了多少天?16.有A、B两种型号的货车:用2辆A型货车和1辆B型货车装满货物一次可运货10吨;用1辆A型货车和2辆B型货车装满货物一次可运货11吨.请用学过的方程(组)知识解答下列问题:(1)求A型、B型两种货车装满货物每辆分别能运货多少吨?(2)现某物流公司有31吨货物,计划同时租用A型车m辆,B型车n辆,一次运完,且恰好每辆车都装满货物.若A 型货车每辆需租金100元/次,B 型货车每辆需租金120元/次.请你帮该物流公司选出最省钱的租车方案,并求出最少租车费用.17.某地区2020年进出口总额为520亿元.2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额. (1)设2020年进口额为x 亿元,出口额为y 亿元,请用含x ,y 的代数式填表:(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额度分别是多少亿元?18.今年(2022年)4月20日,是云大附中建校95周年暨云大附中恢复办学40周年校庆日,我校初一年级数学兴趣小组的小明同学发现这样一个有趣的巧合;小明的爸爸和爷爷都是云附的老校友,且爸爸和妹妹的年龄差恰好与爷爷和小明的年龄差的和为95,而爸爸的年龄恰好比爷爷的年龄小40.已知小明今年13岁,妹妹今年4岁.(1)求今年小明的爸爸和爷爷的年龄分别是多少岁?(要求用二元一次方程组解答) (2)假如小明的爸爸和爷爷都是15岁初中华业的,请问小明的爸爸和爷爷分别是哪一年毕业的云附学子?19.某企业有A ,B 两条加工相同原材料的生产线,在一天内,A 生产线共加工a 吨原材料,加工时间为()41a +小时;在一天内,B 生产线共加工b 吨原材料,加工时间为()23b +小时. (1)当1a b ==时,两条生产线的加工时间分别时多少小时?(2)第一天,该企业把5吨原材料分配到A .B 两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到两条生产线的的吨数是多少?(3)第二天开工前,该企业按第一天的分配结果分配了5吨原材料后,又给A 生产线分配了m 吨原材料,给B 生产线分配了n 吨原材料,若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则m 和n 有怎样的数量关系?若此时m 与n 的和为6吨,则m 和n 的值分别为多少吨?参考答案1.A2.B3.D4.A5.A6.B7.A8.A 9.26 10.2511.15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩12. 10 12 13.187##42714.解:设用x 立方米的木料做桌面,y 立方米的木料做桌腿,即做桌面50x 个,做桌腿300y 条,此时恰好能配成方桌50x 张,根据题意得10450300x y x y +=⎧⎨⨯=⎩ 解得64x y =⎧⎨=⎩ 则能配成方桌650300⨯=(张)故用6 m 3的木料做桌面,4 m 3的木料做桌腿,恰好能配成方桌300张. 15.解:设改进加工方法前用了x 天,改进加工方法后用了y 天, 则6,3522.x y x y +=⎧⎨+=⎩解得4,2.x y =⎧⎨=⎩ 经检验,符合题意.答:改进加工方法前用了4天,改进加工方法后用了2天.16.(1)设1辆A 型车装满货物一次可运货x 吨,1辆B 型车装满货物一次可运货y 吨,依题意,得:210211x y x y +=⎧⎨+=⎩,解得:34x y =⎧⎨=⎩.答:1辆A 型车装满货物一次可运货3吨,1辆B 型车装满货物一次可运货4吨. (2)由题意可得:3m +4n =31,即3134mn -=, ∵m ,n 均为整数,∴有17m n =⎧⎨=⎩,54m n =⎧⎨=⎩,91m n =⎧⎨=⎩三种情况.设租车费用为W 元, 则W =100m +120n =100m +120•3134m- =10m +930, ∵10>0,∴W 随m 的增大而增大,∴当m =1时,W 最小,此时W =10×1+930=940.∴当租用A 型车1辆,B 型车7辆,最少租车费用为940元. 17.(1)解:故答案为:1.25x +1.3y ; (2)解:根据题意1.25x +1.3y =520+140,∴5201.25 1.3520140x y x y +=⎧⎨+=+⎩,解得:320200x y =⎧⎨=⎩,2021年进口额1.25x =1.25320400⨯=亿元,2021年出口额是1.3 1.3200260y =⨯=亿元. 18.(1)设今年小明的爸爸x 岁,爷爷y 岁.()()4139540x y y x ⎧-+-=⎨-=⎩. 解得:3676x y =⎧⎨=⎩答:今年小明的爸爸36岁,爷爷76岁; (2)202236152001-+=(年) 202276151961-+=(年)小明的爸爸是2001年华业,爷爷是1961年毕业的云附学子. 19.(1)解:当1a b ==时, 415a +=,235b +=; 即两条生产线的的加工时间分别为5小时和5小时.(2)解∶设分配到A 生产线x 吨,则分配到B 生产线y 吨,根据题意得:54123x y x y +=⎧⎨+=+⎩,解得23x y =⎧⎨=⎩, 即分配到A 生产线2吨,则分配到B 生产线3吨; (3)解:根据题意得:()()421233m n ++=++, 整理得:2m n =, ∵6m n +=, ∴2m =,4n =,答:m 与n 的关系为2m n =,当6m n +=吨时,m 为2吨,n 为4吨.。
人教版七年级数学 下册 第八章 8.3 实际问题与二元一次方程组 课时练(含答案)
第八章 二元一次方程组 8.3 实际问题与二元一次方程组一、选择题1、甲、乙两地相距100千米,一艘轮船往返两地,顺流用4小时,逆流用5小时,•那么这艘轮船在静水中的航速与水速分别是( )A .24千米/时,8千米/时B .22.5千米/时,2.5千米/时C .18千米/时,24千米/时D .12.5千米/时,1.5千米/时2、某个体商店在一次买卖中同时卖出两件上衣,每件都是以135元卖出,若按成本计算,其中一件赢利25%,另一件亏损25%,则这家商店在这次买卖中( )A .不赔不赚B .赚9元C .赔8元D .赔18元3、某校七年级一班40名同学为“希望工程”捐款,共捐款100元,捐款情况如表:表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可列方程组( )A .⎩⎪⎨⎪⎧x +y =272x +3y =66B .⎩⎪⎨⎪⎧x +y =272x +3y =100 C .⎩⎪⎨⎪⎧x +y =273x +2y =66 D .⎩⎪⎨⎪⎧x +y =273x +2y =100 4、有一些苹果箱,若每只装苹果25 kg ,则剩余40 kg 无处装;若每只装30 kg ,则还有20个空箱,这些苹果箱有( )A .12只B .6只C .112只D .128只5、已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x ,乙数为y ,由题意得方程组( )A. 42{ 43x y x y +==B. 42{ 34x y x y+==C. 42{ 1134x yx y-== D. 42{ 43y xx y +==二、填空题6、 一个两位数,个位上的数比十位上的数的2倍多1,若将十位数字与个位数字调换位置,则比原两位数的2倍还多2,则原两位数是_________。
7、某人买了60分的邮票和80分的邮票共20张,用去了13元2角,则60分的邮票买了 枚,80分的邮票买了 枚。
8.1二元一次方程组课时训练(word版含答案)
13.若方程组 的解为 ,则 的值为_______.
14.已知二元一次方程 的解为正整数,则满足条件的解共有______对.
15.已知二元一次方程 .若用含 的代数式表示 ,可得 ________;请写出方程的其中的一组正整数解________.
13.0
【分析】
把 代入方程组,求出a、b的值,再求出a+b即可.
【详解】
解:∵关于x、y的二元一次方程组 的解为 ,
∴代入得: ,
解得:a=3,b=-3,
∴a+b=3-3=0,
故答案为:0.
【点睛】
本题考查了二元一次方程组的解和解二元一次方程组,能得出关于a、b的方程组是解此题的关键.
14.2
【分析】
点睛本题考查新定义问题认真阅读题目掌握新定义的特征会根据新定义的特征识别正整数的新特征会根据新定义特征构造不定方程是解题关键
8.1二元一次方程组课时训练
学校:___________姓名:___________班级:___________考号:___________
一、单选题(每小题4分,共计40分)
∴ 可以为:2、15、28、41、54,
∵ ,则 是3的倍数,
∴ 或 ,
∴ 或 ;
①当 时, ,
∵ ,且a为非负整数,
∴ 或 ,
∴ 或 ,
若 ,则 ,
此时 ;
若 ,则 ,
此时 ;
②当 时, ,
∵ ,且a为非负整数,
∴ 是3的倍数,且 ,
【分析】
(1)直接利用定义进行验证,即可得到答案;
(2)由题意,设这个四位数的十位数是a,千位数是b,则个位数为(5 a),百位数为(5 b),然后根据13的倍数关系,以及“5类诚勤数”的定义,利用分类讨论的进行分析,即可得到答案.
精品试题冀教版七年级数学下册第六章二元一次方程组课时练习试卷(含答案解析)
七年级数学下册第六章二元一次方程组课时练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、《孙子算经》是中国古代最重要的数学著作,其中记载:“今有木,不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺.木长几何?”译文:“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问木长多少尺?”设绳子长x尺,木长y尺,可列方程组为().A.4.5112x yx y-=⎧⎪⎨=+⎪⎩B.4.5112x yx y-=⎧⎪⎨=-⎪⎩C.4.5112y xy x-=⎧⎪⎨=+⎪⎩D.4.5112x yy x-=⎧⎪⎨=-⎪⎩2、中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人共乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘.问有多少人,多少辆车?设共有x人,y辆车,可列方程组为()A.()3229y xx y⎧-=⎨=-⎩B.()3229y xx y⎧+=⎨=+⎩C.()3229y xx y⎧-=⎨=+⎩D.()3229y xx y⎧+=⎨=-⎩3、《九章算术》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元.若设共有x人,该物品价值y元,则根据题意可列方程组为()A.8374x yx y-=⎧⎨+=⎩B.8374x yx y+=⎧⎨+=⎩C.8374x yx y+=⎧⎨-=⎩D.8374x yx y-=⎧⎨-=⎩4、用加减法将方程组4311455x yx y-=⎧⎨+=-⎩中的未知数x消去后,得到的方程是().A.2y=6 B.8y=16 C.﹣2y=6 D.﹣8y=165、二元一次方程组325223x yx y-=⎧⎨+=⎩更适合用哪种方法消元()A.代入消元法B.加减消元法C.代入、加减消元法都可以D.以上都不对6、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大9,则这样的两位数共有()A.5个B.6个C.7个D.8个7、李老师为学习进步的学生购买奖品,共用去42元购买单价为6元的A和单价为12元的B两种笔记本(购买本数均为正整数).你认为购买方案共有()种.A.2 B.3 C.4 D.58、有下列方程组:①12xyx y=⎧⎨+=⎩;②311x yyx-=⎧⎪⎨+=⎪⎩;③20135x zx y+=⎧⎪⎨-=⎪⎩;④5723xx y=⎧⎪⎨-=⎪⎩;⑤11xx yπ+=⎧⎨-=⎩,其中二元一次方程组有()A.1个B.2个C.3个D.4个9、在一次爱心捐助活动中,八年级(1)班40名同学共捐款275元,已知同学们捐款的面额只有5元、10元两种,求捐5元和10元的同学各有多少名?若设捐5元的同学有x名,捐10元的有y 名,则可列方程组为()A.40510275x yx y-=⎧⎨+=⎩B.40105275x yx y+=⎧⎨-=⎩C.40510275x yx y+=⎧⎨+=⎩D.40105275x yx y+=⎧⎨+=⎩10、如果二元一次方程组3x y a x y a -=⎧⎨+=⎩的解是二元一次方程3570x y --=的一个解,那么a 的值是( ) A .9 B .7 C .5 D .3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、2、2022年北京冬奥会已经越来越近了,这是我国重要历史节点的重大标志性活动,更是全国人民的一次冰雪运动盛宴,与此同时北京冬奥会吉祥物冰墩墩也受到人们的喜爱,关于冰墩墩的各种周边纪念品:徽章、风铃、抱枕、公仔正在某商场火热销售中.已知徽章和抱枕的价格相同,公仔的单价是风铃的两倍,且徽章和风铃的单价之和不超过120元.元旦节期间,徽章的销售数量是公仔数量的2倍,风铃和抱枕的销售数量相同,其中徽章和风铃共卖出120件,抱枕和公仔的销售总额比风铃和徵章的销售总额多2200元,则徽章和风铃销售总额的最大值是______元.3、三元一次方程:含有___未知数,并且含有未知数的项的___都是____,这样的方程叫做三元一次方程.4、若x 2a ﹣3+yb +2=3是二元一次方程,则a ﹣b =__.5、程大位是我国明朝商人,珠算发明家,他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,问大、小和尚各有多少人?设大和尚x 人,小和尚y 人,根据题意可列方程组为______.三、解答题(5小题,每小题10分,共计50分)1、解方程组:212530x y x y z x y z -=-⎧⎪++=⎨⎪--=⎩. 2、某校艺术节表演了30个节目,其中歌曲类节目比舞蹈类节目的3倍少2个,问歌唱类节目和舞蹈类节目各有多少个.3、甲、乙两公司全体员工踊跃参与“携手防疫,共渡难关”捐款活动,甲公司人均捐款120元,乙公司人均捐款100元.如图是甲、乙两公司员工的一段对话.(1)甲、乙两公司各有多少人?(2)现甲、乙两公司共同使用这笔捐款购买A 、B 两种防疫物资,A 种防疫物资每箱1500元,B 种防疫物资每箱1200元.若购买B 种防疫物资不少于20箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A 、B 两种防疫物资均需购买,并按整箱配送).4、某商店出售两种规格口罩,2大盒、4小盒共装80个口罩;3大盒、5小盒共装110个口罩,大盒与小盒每盒各装多少个口罩?5、解方程组:22263x y x y -=⎧⎨-=⎩-参考答案-一、单选题1、B【解析】【分析】设绳子长x 尺,长木长y 尺,根据“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺”,可得出关于x ,y 的二元一次方程组.【详解】解:设绳子长x 尺,长木长y 尺, 依题意,得: 4.5112x y x y -=⎧⎪⎨=-⎪⎩, 故选:B .【点睛】本题考查了二元一次方程组的应用以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.2、C【解析】【分析】根据题意,找到关于x 、y 的两组等式关系,即可列出对应的二元一次方程组.【详解】解:由每三人共乘一车,最终剩余2辆车可得:3(2)y x -=.由每2人共乘一车,最终剩余9个人无车可乘可得:29x y =+.∴该二元一次方程组为:()3229y xx y ⎧-=⎨=+⎩.故选:C .【点睛】本题主要是考查了列二元一次方程组,熟练根据题意找到等式关系,这是求解该题的关键.3、A【解析】根据题意可得等量关系:人数×8−3=物品价值;人数×7+4=物品价值,根据等量关系列出方程组即可.【详解】解:设有x人,物品价值y元,由题意得:8374x y x y-=⎧⎨+=⎩故选:A.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.4、D【解析】【分析】根据二元一次方程组的加减消元法可直接进行求解.【详解】解:用加减法将方程组4311455x yx y-=⎧⎨+=-⎩①②中的未知数x消去,则有①-②得:﹣8y=16;故选D.【点睛】本题主要考查二元一次方程组的求解,熟练掌握二元一次方程组的求解是解题关键.5、B【解析】【分析】由题意直接根据加减消元法和代入消元法的特点进行判断即可.解:325223x yx y-=⎧⎨+=⎩①②,①+②,得58x=,消去了未知数y,即二元一次方程组325223x yx y-=⎧⎨+=⎩更适合用加减法消元,故选:B.【点睛】本题考查解二元一次方程组,注意掌握解二元一次方程组的方法有:代入消元法和加减消元法两种.6、D【解析】【分析】设原来的两位数为10a+b,则新两位数为10b a+,根据新两位数比原两位数大9,列出方程,找出符合题意的解即可.【详解】解:设原来的两位数为10a+b,根据题意得:10a+b+9=10b+a,解得:b=a+1,因为可取1到8个数,所以这两位数共有8个,它们分别,12,23,34,45,56,67,78,89,都是个位数字比十位数字大1的两位数.故选:D.【点睛】本题考查了二元一次方程的应用,解题的关键是弄清题意,找合适的等量关系,列出方程,再求解,弄清两位数的表示是:10⨯十位上的数+个位上的数,注意不要漏数.7、B【解析】【分析】设购买A 笔记本x 本,购买B 笔记本y 本,先建立二元一次方程,再根据,x y 均为正整数进行分析即可得.【详解】解:设购买A 笔记本x 本,购买B 笔记本y 本,由题意得:61242x y +=,即27x y +=,因为,x y 均为正整数,所以有以下三种购买方案:①当1x =,3y =时,1237+⨯=,②当3x =,2y =时,3227+⨯=,③当5x =,1y =时,5217+⨯=,故选:B .【点睛】本题考查了二元一次方程的应用,正确建立方程是解题关键.8、B【解析】略9、C【解析】【分析】根据题意,x +y =40,5x +10y =275,判断即可.根据题意,得x +y =40,5x +10y =275,∴符合题意的方程组为40510275x y x y +=⎧⎨+=⎩, 故选C .【点睛】本题考查了二元一次方程组的应用,准确找到符合题意的等量关系是解题的关键.10、B【解析】【分析】先求出3x y a x y a -=⎧⎨+=⎩的解,然后代入3570x y --=可求出a 的值. 【详解】解:3x y a x y a -=⎧⎨+=⎩①②, 由①+②,可得2x =4a ,∴x =2a ,将x =2a 代入①,得2a -y =a ,∴y =2a ﹣a =a ,∵二元一次方程组的解是二元一次方程的一个解,∴将2x a y a =⎧⎨=⎩代入方程3x ﹣5y ﹣7=0,可得6a ﹣5a ﹣7=0,故选B.【点睛】本题考查了二元一次方程的解,以及二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键.二、填空题1、2【解析】【分析】将61xy=⎧⎨=⎩代入二元一次方程可得一个关于a的方程,解方程即可得.【详解】解:由题意,将61xy=⎧⎨=⎩代入方程210x ay-=得:2610a⨯-=,解得2a=,2、6100【解析】【分析】设徽章和抱枕的价格为a元,风铃的价格为b元,公仔的价格为2b元,公仔的销售数量为m件,徽章的销售数量为2m件,则风铃和抱枕的销售数量为(120-2m)件,根据题意列出方程求解即可.【详解】解:设徽章和抱枕的价格为a元,风铃的价格为b元,公仔的价格为2b元,公仔的销售数量为m 件,徽章的销售数量为2m件,则风铃和抱枕的销售数量为(120-2m)件,根据题意列方程得,(120)2(1202)22200a m bmb m ma-+---=,化简得,2260601100am bm a b-=--;徽章和风铃销售总额为2(1202)22120ma b m ma bm b +-=-+,把2260601100am bm a b -=--代入得,60601100a b +-;∵120a b +≤,当120a b +=时,徽章和风铃销售总额的最大,最大值是6012011006100⨯-=(元);故答案为:6100.【点睛】本题考查了方程和不等式的应用,解题关键是根据题意中的数量关系,设未知数,列出方程,根据等式的性质进行变形,整体代入求解.3、 三个 次数 1【解析】【分析】由题意直接利用三元一次方程的定义进行填空即可.【详解】解:含有三个未知数,并且含有未知数的项的次数都是1,这样的方程叫做三元一次方程. 故答案为:三个,次数,1.【点睛】本题考查三元一次方程的定义,注意掌握含有三个未知数,并且含有未知数的项的次数都是1,这样的方程叫做三元一次方程.4、3【解析】【分析】先根据二元一次方程的定义求出a 、b 的值,然后代入a ﹣b 计算即可.【详解】解:∵x 2a ﹣3+yb +2=3是二元一次方程,∴2a ﹣3=1,b +2=1,∴a =2,b =﹣1,则a ﹣b =2﹣(﹣1)=2+1=3.故答案为:3.【点睛】本题考查了二元一次方程的定义,熟练掌握二元一次方程组的定义是解答本题的关键.方程的两边都是整式,含有两个未知数,并且未知数的项的次数都是1次的方程叫做二元一次方程.5、100131003x y x y +=⎧⎪⎨+=⎪⎩【解析】【分析】根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程即可.【详解】解:设大和尚x 人,小和尚y 人,共有大小和尚100人,100x y ∴+=;大和尚1人分3个,小和尚3人分1个,正好分完100个馒头,131003x y ∴+=. 联立两方程成方程组得100131003x y x y +=⎧⎪⎨+=⎪⎩.故答案为:100131003x y x y +=⎧⎪⎨+=⎪⎩. 【点睛】本题考查二元一次方程组的应用,解决此类问题的关键就是认真对题,从题目中提取出等量关系,根据等量关系设未知数列方程组.三、解答题1、3,2,3x y z ===-【解析】【详解】解:212530x y x y z x y z -=-⎧⎪++=⎨⎪--=⎩①②③, ②+③得:325x y -=④,由④和①组成一个二次一次方程组21325x y x y -=-⎧⎨-=⎩, 解得:32x y =⎧⎨=⎩, 把32x y =⎧⎨=⎩代入③360z --=, 解得:3z =-,所以原方程组的解是:3,2,3x y z ===-.【点睛】此题考查了解三元一次方程组,解题的关键是利用了消元的思想,消元的方法有:代入消元法与加减消元法.2、歌唱类节目和舞蹈类节目分别有22个和8个【解析】【分析】由题意,歌唱类节目+舞蹈类节目=30个,歌曲类节目=3倍舞蹈类节目-2个,设未知数列方程组求解.【详解】解:设歌唱类节目x 个,舞蹈类节目y 个,由题意,得3032x y x y +=⎧⎨=-⎩, 解得:228x y =⎧⎨=⎩, 答:歌唱类节目和舞蹈类节目分别有22个和8个.【点睛】本题考查了二元一次方程组的应用,正确找到等量关系,并以此列出方程是解题的关键.3、 (1)甲公司150人,乙公司180人(2)共有两种方案,①A 种物资购买8箱,B 种物资购买20箱;②A 种物资购买4箱,B 种物资购买25箱【解析】【分析】(1)设甲公司x 人,乙公司y 人,根据题意列出二元一次方程组,求解即可;(2)设A 种物资购买m 箱,B 种物资购买n 箱,根据题意列出二元一次方程,求出整数解即可.(1)解:设甲公司x 人,乙公司y 人,根据题意得:30120100x y x y=-⎧⎨=⎩, 解得:150180x y =⎧⎨=⎩, 答:甲公司150人,乙公司180人;(2)设A 种物资购买m 箱,B 种物资购买n 箱,由题意得:15001200150120180100m n +=⨯+⨯, 整理得:4245m n =-,20n ,且m 、n 是正整数, 当20n =时,8m =;当25n =时,4m =;答:共有两种方案,①A 种物资购买8箱,B 种物资购买20箱;②A 种物资购买4箱,B 种物资购买25箱.【点睛】本题考查了二元一次方程组的应用,解题关键是理清题意,正确找到等量关系,列出二元一次方程组.4、大盒每盒装20个口罩,小盒每盒装10个口罩.【解析】【分析】设大盒每盒装x 个口罩,小盒每盒装y 个口罩,根据“2大盒、4小盒共装80个口罩;3大盒、5小盒共装110个口罩”建立方程组,解方程组即可得.【详解】解:设大盒每盒装x 个口罩,小盒每盒装y 个口罩,由题意得:248035110x y x y +=⎧⎨+=⎩, 解得2010x y =⎧⎨=⎩,符合题意, 答:大盒每盒装20个口罩,小盒每盒装10个口罩.【点睛】本题考查了二元一次方程组的应用,正确建立方程组是解题关键.5、91015x y ⎧=⎪⎪⎨⎪=-⎪⎩【解析】【分析】根据加减消元法解二元一次方程组即可【详解】解:22263x y x y -=⎧⎨-=⎩①② ①-②得:623y y -+=- 解得15y =- 将15y =-代入①1225x =- 解得910x =∴原方程组的解为:91015 xy⎧=⎪⎪⎨⎪=-⎪⎩【点睛】本题考查了加减消元法解二元一次方程组,掌握加减消元法是解题的关键.。
八上第5章二元一次方程组练习题及答案解析
八上第5章二元一次方程组练习题及答案解析5.1认识二元一次方程组专题 二元一次方程组解的规律探究1. 下表反映了按一定规律排列的方程组和它们的解的对应关系:方程组的序号方程组1方程组2方程组3…方程组n(n 为正整数)方程组⎩⎨⎧=-=+4232y x y x ,⎩⎨⎧=-=+16452y x y x , ⎩⎨⎧=-=+36672y x y x ,…⎩⎨⎧()() 方程组的解⎩⎨⎧()() ⎩⎨⎧-==34y x ,⎩⎨⎧-==56y x ,…⎩⎨⎧()() (1)写出方程组1的求解过程;(2)请依据方程组和它们的解的变化规律,直截了当写出方程组n 和它的解.(n 为正整数)2. 下列是按一定的规律排列的方程组和它的解的解集的对应关系图,若方程组集合中的方程组自左向右依次记作方程组1,方程组2,方程组3,…,方程组n.(1)将方程组1的解填入图中; (2)请依据方程组和它的解的变化规律,将方程组n 和它的解直截了当填入集合图中(注意:1-n 2=(1+n)(1-n); (3)若方程组⎩⎨⎧=-=+161my x y x ,的解是⎩⎨⎧-==,,910y x 求m 的值,并判定该方程组是否符合题中的规律.答案:1.解:(1)⎩⎨⎧2x +y =3 ①x-2y =4 ②,由②得x=2y+4.③把③代入①,得2(2y+4)+y=3. 解得y=-1.把y=-1代入③,得x=2. 因此方程组1的解为⎩⎨⎧-==.12y x ,(2)方程组n 为⎩⎨⎧=-+=+,42,1222n ny x n y x 它的解为⎩⎨⎧-==.21,2n y n x2.解:(1)依次填:1,0.(2)依次填:x+y=1,x-ny=n 2,n,1-n.5.2解二元一次方程组专题 解二元一次方程组的探究性问题 1. 若关于x ,y 的二元一次方程组 ⎩⎨⎧=+=-102y mx y x ,的解均为正整数,m 也是正整数,则满足条件的所有m 值的和为__________.2. 上数学课时,陈老师让同学们解一道关于x 、y 的方程组⎩⎨⎧=--=+)2(142)1(53,,by x y ax 并请小方和小龙两位同学到黑板上板演.但是小方同学看错了方程(1)中的a ,得到方程组的解为⎩⎨⎧==,,23y x 小龙同学看错了方程(2)中的b ,得到方程组的解为⎩⎨⎧-=-=,,12y x 你能按正确的a 、 b 值求出方程组的解吗?请试一试.3.三个同学对问题“若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的方法.甲说:“那个题目仿佛条件不够,不能求解”;乙说:“它们的系数有一定的规律,能够试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为那个题目的解应该是多少?2.解:由题意得方程组⎩⎨⎧=⨯,-14232b 解得⎩⎨⎧-=,4b代入原方程组,得⎩⎨⎧=+-=+,,144253y x y x 解得⎩⎨⎧-==.1231y x ,3.解:依照方程组解的定义,将34x y =⎧⎨=⎩代入方程组111222a x b y c a x b y c +=⎧⎨+=⎩,得⎩⎨⎧=+=+,,2221114343c b a c b x a再依照丙同学的提示,将第二个方程组的两个方程的两边都除以5得5.3鸡兔同笼专题图表信息题1.如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数)使得每行的3个数,每列的3个数,斜对角的3个数之和均相等.(1)求x,y的值;(2)画图完成此方阵图.2. 有三把梯子,分别是五步梯、七步梯、九步梯,每攀沿一步阶梯上升的高度是一致的.每把梯子的扶杆长(即梯长)、顶档宽、底档宽如图所示,并把横档与扶杆榫合处称作连接点(如点A).(1)通过运算,补充填写下表:梯子种类两扶杆总长(米)横档总长(米)连接点数(个)五步梯 4 2.0 10七步梯九步梯(2)一把梯子的成本由材料费和加工费组成,假定加工费以每个连接点1元运算,而材料费中扶杆的单价与横档的单价不相等(材料损耗及其它因素忽略不计).现已知一把五步梯、七步梯的成本分别是26元、36元,试求出一把九步梯的成本.答案:1.解:(1)由题意,得⎩⎨⎧++=-+--++=++,,x x y x y y x x 43223243解得⎩⎨⎧=-=.21y x ,(2)如图.2.解:(1)七步梯、九步梯的扶杆长分别是5米、6米; 横档总长分别是:21×(0.4+0.6)×7=3.5(米)、21(0.5+0.7)×9=5.4(米); 连接点个数分别是14个、18个.故依次填入:5,3.5,14,6,5.4,18.(2)设扶杆单价为x 元/米,横档单价为y 元/米,依题意得⎩⎨⎧=⨯++=⨯++,,361415.352610124y x y x 解得⎩⎨⎧==.23y x ,故九步梯的成本为6×3+5.4×2+1×18=46.8(元),答:一把九步梯的成本为46.8元.5.4增收节支专题方案设计问题1.某中学拟组织九年级师生去韶山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在那个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”依照以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?2. (2020福建龙岩)已知:用2辆A型车和1辆B型车装满物资一次可运货10吨;用1辆A型车和2辆B型车装满物资一次可运货11吨.某物流公司现有31吨物资,打算同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满物资.依照以上信息,解答下列问题:⑴1辆A型车和1辆B型车都装满物资一次可分别运货多少吨?⑵请你帮该物流公司设计租车方案;⑶若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.答案:1.解:(1)设平安公司60座和45座客车每天每辆的租金分别为x 元,y 元. 由题意列方程组200425000x y x y -=⎧⎨+=⎩,解得900700x y =⎧⎨=⎩.答:平安公司60座和45座客车每天每辆的租金分别为900元,700元. (2)九年级师生共需租金:5×900+1×700=5200(元). 答:共需租金5200元.2.解:⑴设1辆A 型车和1辆B 型车都装满物资一次可分别运货x 吨、y 吨,依照题意得210211x y x y +=⎧⎨+=⎩,解得34x y =⎧⎨=⎩, 故1辆A 型车和1辆B 型车都装满物资一次可分别运货3吨、4吨.⑵依照题意可得3a +4b =31,b =3134a-,使a ,b 都为整数的情形共有a =1,b =7或a =5,b =4或a =9,b =1三种情形, 故租车方案分别为: ○1A 型车1辆,B 型车7辆;○2 A 型车5 辆,B 型车4辆; ○3A 型车9辆,B 型车1辆.⑶设租车费为w 元,则w =100a +120b , 方案○1租车费为100×1+120×7=940(元); 方案○2租车费为100×5+120×4=980(元); 方案○3租车费为100×9+120×1=1020(元).故方案(1)最省钱,即租用A 型车1辆,B 型车7辆.最少租车费为940元.5.5里程碑上的数专题 行程问题1. 一辆汽车在公路上匀速行驶,司机在路边看到一个里程碑上是一个两位数,行驶一小时后,他看到的里程碑上的数,恰好是第一个里程碑上的数颠倒顺序后的两位数,再过一小时,他看到的里程碑上的数,又恰好是第一次看到的两位数中间添上一个零的三位数,那么他第一次看到的两位数是( ) A .14 B .15 C .16 D .172. 某人在电车路轨旁与路轨平行的路上行走,他留意到每隔6分钟有一部电车从他后面驶向前面,每隔2分钟有一部电车从对面驶向后面.假设电车和此人行走的速度都不变(分别为12u u ,表示),请你依照下面的示意图,求电车每隔几分钟(用t 表示)从车站开出一部?3. 甲、乙两人分别从相距30千米的A 、B 两地同时相向而行,通过3小时后相距3千米,再通过2小时,甲到B 地所剩路程是乙到A 地所剩路程的2倍,求甲、乙两人的速度.答案:1.C 【解析】 设第一次他看到的两位数的个位数为x ,十位数为y ,汽车行驶速度为v ,依照题意得⎩⎨⎧⨯=+-+⨯=+-+,,1)10(1001)10(10v y x x y v x y y x解得x=6y.∵xy 为1-9内的自然数,∴x=6,y=1; 即两位数为16.答:他第一次看到的两位数是16. 2.解:依照题意得1211216()2()u u u tu u u t-=⎧⎨+=⎩,解得122u u =. 3t =∴(分钟).答:电车每隔3分钟从车站开出一部.3.解:设甲的速度为xkm/h ,乙的速度为ykm/h ,则有两种情形: (1)当甲和乙相遇前相距3千米时, 依题意得⎩⎨⎧-=-=++,,)530(2530303)(3y x y x5.6二元一次方程组与一次函数专题 二元一次方程组与一次函数关系的应用1. (2020江苏镇江)甲、乙两车从A 地将一批物品匀速运往B 地,甲动身0.5小时后乙开始动身,结果比甲早1小时到达B 地.如图,线段OP 、MN 分别表示甲、乙两车离A 地的距离s(千米)与时刻t (小时)的关系,a 表示A 、B 两地间的距离.请结合图象中的信息解决如下问题:(1)分别运算甲、乙两车的速度及a 的值;(2)乙车到达B 地后以原速赶忙返回,请问甲车到达B 地后以多大的速度赶忙匀速返回,才能与乙车同时回到A 地?并在图中画出甲、乙在返回过程中离A 地的距离s (千米)与时刻t (小时)的函数图象.2. 小华观看钟面(图1),了解到钟面上的分针每小时旋转360度,时针每小时旋转30度.他为了进一步研究钟面上分针与时针的旋转规律,从下午2:00开始对钟面进行了一个小时的观看.为了研究方便,他将分针与原始位置OP (图2)的夹角记为y 1度,时针与原始位置OP 的夹角记为y 2度(夹角是指不大于平角的角),旋转时刻记为t 分钟,观看终止后,他利用所得的数据绘制成图象(图3),并求出了y 1与t 的函数关系式:16(030)6360(3060)t t y t t ⎧=⎨-+⎩<≤≤≤. 请你完成:(1)求出图3中y 2与t 的函数关系式;(2)直截了当写出A 、B 两点的坐标,并说明这两点的实际意义;(3)若小华连续观看一小时,请你在图3 中补全图象.答案:1.解:(1)由题意知,甲的速度为405.160=km/h ,乙的速度为605.05.160=-km/h. 设甲到达B 地的时刻为t ,则⎩⎨⎧=-=,3060,40a t a t 解得t=4.5,a=180. (2)如图,线段PE 、NE 分别表示甲、乙两车返回时离A 地的距离s (千米)与时刻 (小时)的关系,点E 的横坐标为:18020.5 6.560⨯+=,若甲、乙两车同时返回A 地, 则甲返回时需用的时刻为:1806.5240-=(小时),∴甲返回的速度为90k m /h. 图象如图所示.2.解:(1)由图3可知:y 2的图象通过点(0,60)和(60,90),设y 2=at+b ,则0606090a b a b +=⎧⎨+=⎩, 解得1260a b ⎧=⎪⎨⎪=⎩. ∴图3中y 2与t 的函数关系式为:y 2=12t+60. (2)A 点的坐标是A (12011,72011),点A 是6(030)y t t =≤≤和y 2=12t+60的交点;B 点的坐标是B (60013,108013),点B 是6360(3060)y t t =-+<≤和y 2=12t+60的交点. (3)补全图象如下:5.7三元一次方程专题三元一次方程的应用1.小明、小敏、小新商量要在毕业前夕给老师办公室的4道窗户剪贴窗花表达大伙的尊师之情.小明说:“我来出一道数学题:把剪4个窗花的任务分配给3个人,每人至少剪个,有多少种分配方法”小敏想了想说:“设各人的任务为x、y、z,能够列出方程x+y+z=4.”小新接着说:“那么问题就成了问那个方程有几个正整数解.”现在请你说说看:那个方程正整数解的个数是()A.6个B.5个C.4个D.3个2.某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成;乙种盆景由10朵红花、12朵黄花搭配而成;丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了朵.3.把数字1,2,3,…,9分别填入下图的9个圈内,要求三角形ABC和三角形DEF的每条边上三个圈内的数字之和都等于18.(1)给出一种符合要求的填法;(2)共有多少种不同填法?证明你的结论.答案:1.D 【解析】(1)当x=1时,y=1,z=2或y=2,z=1;(2)当y=1时,x=1,z=2或x=2,y=1;(3)当z=1时,x=1,y=2或y=1,x=2.故选D.2.4380 【解析】设步行街摆放有甲、乙、丙三种造型的盆景分别有x盆、y盆、z盆.由题意,有1510102900 25253750x y zx z++=⎧⎨+=⎩①②,由①,得3x+2y+2z=580,③由②,得x+z=150,④把④代入③,得x+2y=280,∴2y=280﹣x,⑤由④得z=150﹣x.⑥∴4x+2y+3z=4x+(280﹣x)+3(150﹣x)=730,∴24x+12y+18z=6(4x+2y+3z)=6×730=4380.故黄花一共用了4380朵.3.解:(1)如图给出了一个符合要求的填法.(2)共有6种不同填法.证明:把填入A,B,C三处圈内的三个数之和记为x;D,E,F三处圈内的三个数之和记为y;其余三个圈所填的数位之和为z.明显有x+y+z=1+2+…+9=45,①图中六条边,每条边上三个圈中之数的和为18,因此有z+3y+2x=6×18=108,②②-①,得x+2y=108-45=63,③把AB,BC,CA边上三个圈中的数相加,则可得2x+y=3×18=54,④联立③,④,解得x=15,y=24,继而解得之z=6.在1,2,3,…,9中三个数之和为24的仅为7,8,9,因此在D,E,F三处圈内,只能填7,8,9三个数,共有6种不同填法.明显,当这三个圈中的数一旦确定,依照题目要求,其余六个圈内的数也随之确定,从而得结论,共有6种不同的填法.。
课时练习 数学文化中的二元一次方程组的应用
专题(8)数学文化中的二元一次方程组的应用类型一盈不足问题1. 《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三:人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问共有多少人?这个物品的价格是多少?设共有x人,物品的价格为y元,可列方程组为( )A.8374x yx y-=⎧⎨+=⎩B.8374x yx y+=⎧⎨-=⎩C.8473x yx y-=⎧⎨+=⎩D.8473x yx y+=⎧⎨-=⎩2. 《算法统宗》中有如下问题:“哑子来买肉,难言钱数目,一斤少三十,八两多十八,试问能算者,合与多少肉”,其大意是一个哑子来买肉,说不出钱的数目,买一斤(16两)还差30文钱,买八两多十八文钱,求肉数和肉价,则该问题中,肉价是每两多少文?类型二几何问题3. 我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?请解答.类型三行程问题4. 请欣赏下列描述《西游记》中孙悟空追妖精的数学诗:悟空顺丰探妖踪,千里只行4分钟.归时四分行六百,风速多少才称雄?解释:孙悟空顺风去查妖精的行踪,4分钟就飞跃1000里,逆风返回时4分钟走了600里,问风速是多少?类型四匹配问题5. 我国古代算术名著《算法统宗》中有这样一道题,原文如下:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?大意为:有100个和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?请列方程(或方程组)解答上述问题.6. 我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房都住7人,那么有7人无房可住;如果每一间客房都住9人,那么就空出一间房.求该店有客房多少间?该批住店房客多少人?易错知识点:实际问题;二元一次方程组易错考法:列二元一次方程组解决盈不足问题、几何问题、行程问题、匹配问题专题(8)数学文化中的二元一次方程组的应用类型一盈不足问题【1题答案】【答案】A【解析】【分析】设共有x人,物品的价格为y元,根据“每人出8元,则多3元:每人出7元,则差4元”,即可得出关于x y,的二元一次方程组.【详解】设共有x人,物品的价格为y元,依题意,得:8374x yx y-=⎧⎨+=⎩.故选:A.【点睛】本题主要考查了由实际问题抽象出二元一次方程组,解题的关键是理解题意,确定相等关系,并据此列出方程.【2题答案】【答案】肉价是每两6文【解析】【分析】设肉价每两x文,哑子有钱y元,根据买一斤(16两)还差30文钱,买八两多十八文钱,列出方程组,再解即可.【详解】解:设肉价每两x文,哑子有钱y元,由题意得:1630818x yx y-=⎧⎨+=⎩,解得:666xy=⎧⎨=⎩,答:肉价是每两6文.【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.类型二几何问题【3题答案】【答案】1个大桶可以盛酒1324斛,1个小桶可以盛酒724斛.【分析】直接利用5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛,分别得出等式组成方程组求出答案.【详解】解:设1个大桶可以盛酒x 斛,1个小桶可以盛酒y 斛,则5352x y x y +=⎧⎨+=⎩,解得:1324724x y ⎧=⎪⎪⎨⎪=⎪⎩,答:1个大桶可以盛酒1324斛,1个小桶可以盛酒724斛.【点睛】此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键.类型三 行程问题【4题答案】【答案】风速为每分钟50里.【解析】【分析】设悟空的速度为每分钟x 里,风速为每分钟y 里,依题意可以列出方程组()()410004600x y x y ⎧+⎪⎨-⎪⎩==,解这个方程组即可解决问题.【详解】解:设悟空的速度为每分钟x 里,风速为每分钟y 里,依题意得:()()410004600x y x y ⎧+⎪⎨-⎪⎩==解这个方程组得20050x y =,=⎧⎨⎩答:风速为每分钟50里.【点睛】本题考查二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.类型四 匹配问题【5题答案】【答案】大和尚有25人,小和尚有75人【分析】设大和尚有x 人,小和尚有y 人,根据等量关系:大和尚人数+小和尚人数=100,大和尚的馒头数+小和尚的馒头数=100列出二元一次方程组,解方程组即可求解.【详解】解:设大和尚有x 人,小和尚有y 人.根据题意,得100131003x y x y +=⎧⎪⎨+=⎪⎩,解得2575x y =⎧⎨=⎩.答:大和尚有25人,小和尚有75人.【点睛】本题考查二元一次方程组的应用,理解题意,找到等量关系,正确表示出小和尚的馒头数是解答的关键.【6题答案】【答案】该店有客房8间,该批住店房客有63人【解析】【分析】设该店有客房x 间,该批住店房客有y 人,根据“如果每一间客房都住7人,那么有7人无房可住;如果每一间客房都住9人,那么就空出一间房”列方程组求解即可.【详解】解:设该店有客房x 间,该批住店房客有y 人由题意可知:()7791x y x y+=⎧⎨-=⎩解得:863x y =⎧⎨=⎩答:该店有客房8间,该批住店房客有63人【点睛】本题考查了由实际问题抽象出二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组,找到两个等量关系是解决本题的关键.易错知识点:实际问题;二元一次方程组易错考法:列二元一次方程组解决盈不足问题、几何问题、行程问题、匹配问题。
人教版七年级数学下册第八章二元一次方程组课时分层练习题及答案(每课时2-3套)
8.1 二元一次方程组基础题知识点1 认识二元一次方程(组)1.下列方程中,是二元一次方程的是(D )A .3x -2y =4zB .6xy +9=0C .1x +4y =6D .4x =y -242.下列方程组中,是二元一次方程组的是(A )A .⎩⎪⎨⎪⎧x +y =42x +3y =7 B .⎩⎪⎨⎪⎧2a -3b =115b -4c =6C .⎩⎪⎨⎪⎧x 2=9y =2x D .⎩⎪⎨⎪⎧x +y =8x 2-y =4 3.(龙口市期中)在方程(k -2)x 2+(2-3k)x +(k +1)y +3k =0中,若此方程为关于x ,y 的二元一次方程,则k 值为(C )A .-2B .2或-2C .2D .以上答案都不对4.写出一个未知数为a ,b 的二元一次方程组:答案不唯一,如⎩⎪⎨⎪⎧2a +b =1,a -b =2等.5.已知方程x m -3+y2-n=6是二元一次方程,则m -n =3.6.已知xm +n y 2与xym -n的和是单项式,则可列得二元一次方程组⎩⎪⎨⎪⎧m +n =1m -n =2.知识点2 二元一次方程(组)的解7.二元一次方程x -2y =1有无数多个解,下列四组值中不是该方程的解的是(B )A .⎩⎪⎨⎪⎧x =0y =-12 B .⎩⎪⎨⎪⎧x =1y =1 C .⎩⎪⎨⎪⎧x =1y =0 D .⎩⎪⎨⎪⎧x =-1y =-1 8.(丹东中考)二元一次方程组⎩⎪⎨⎪⎧x +y =5,2x -y =4的解为(C )A .⎩⎪⎨⎪⎧x =1y =4B .⎩⎪⎨⎪⎧x =2y =3C .⎩⎪⎨⎪⎧x =3y =2D .⎩⎪⎨⎪⎧x =4y =1 9.若⎩⎪⎨⎪⎧x =1,y =2是关于x ,y 的二元一次方程ax ―3y =1的解,则a 的值为(D )A .-5B .-1C .2D .7知识点3 建立方程组模型解实际问题10.(温州中考)已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x ,乙数为y ,根据题意,列方程组正确的是(A )A .⎩⎪⎨⎪⎧x +y =7x =2y B .⎩⎪⎨⎪⎧x +y =7y =2xC .⎩⎪⎨⎪⎧x +2y =7x =2yD .⎩⎪⎨⎪⎧2x +y =7y =2x 11.(盘锦中考)有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨,设一辆大货车一次可以运货x 吨,一辆小货车一次可以运货y 吨,根据题意所列方程组正确的是(A )A .⎩⎪⎨⎪⎧2x +3y =15.55x +6y =35B .⎩⎪⎨⎪⎧2x +3y =355x +6y =15.5C .⎩⎪⎨⎪⎧3x +2y =15.55x +6y =35D .⎩⎪⎨⎪⎧2x +3y =15.56x +5y =35 中档题12.(大名县期末)若方程x |a|-1+(a -2)y =3是二元一次方程,则a 的取值范围是(C ) A .a >2 B .a =2 C .a =-2 D .a <-213.(萧山区期中)方程y =1-x 与3x +2y =5的公共解是(B )A .⎩⎪⎨⎪⎧x =-3y =-2B .⎩⎪⎨⎪⎧x =3y =-2C .⎩⎪⎨⎪⎧x =-3y =4D .⎩⎪⎨⎪⎧x =3y =2 14.(内江中考)植树节这天有20名同学种了52棵树苗,其中男生每人种树3棵,女生每人种树2棵.设男生有x 人,女生有y 人,根据题意,下列方程组正确的是(D )A .⎩⎪⎨⎪⎧x +y =523x +2y =20B .⎩⎪⎨⎪⎧x +y =522x +3y =20C .⎩⎪⎨⎪⎧x +y =202x +3y =52D .⎩⎪⎨⎪⎧x +y =203x +2y =52 15.(齐齐哈尔中考)为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有(B )A .1种B .2种C .3种D .4种16.(滨州模拟)若⎩⎪⎨⎪⎧x =a ,y =b 是方程2x +y =0的解,则6a +3b +2=2.17.已知两个二元一次方程:①3x -y =0,②7x -2y =2.(1)对于给出x 的值,在下表中分别写出对应的y 的值; x -2 -1 0 1 2 3 4 y ① -6 -3 0 3 6 9 12 y ②-8-4.5-12.569.513(2)请你写出方程组⎩⎪⎨⎪⎧3x -y =0,7x -2y =2的解.解:⎩⎪⎨⎪⎧x =2,y =6.18.已知甲种物品每个重4 kg ,乙种物品每个重7 kg ,现有甲种物品x 个,乙种物品y 个,共重76 kg .(1)列出关于x ,y 的二元一次方程; (2)若x =12,则y =4;(3)若乙种物品有8个,则甲种物品有5个; (4)写出满足条件的x ,y 的全部整数解. 解:(1)4x +7y =76.(4)由4x +7y =76,得x =76-7y4.又由题意得y 为正整数,当y =0时,x =19; 当y =1时,x =76-74=694,不合题意;当y =2时,x =76-2×74=312,不合题意;当y =3时,x =76-3×74=554,不合题意;当y =4时,x =76-4×74=12;当y =5时,x =76-5×74=414,不合题意;当y =6时,x =76-6×74=172,不合题意;当y =7时,x =76-7×74=274,不合题意;当y =8时,x =76-8×74=5;当y =9时,x =76-9×74=134,不合题意;当y =10时,x =76-10×74=32,不合题意;当y =11时,x =76-11×74<0,不合题意.∴满足x ,y 的全部整数解是⎩⎪⎨⎪⎧x =5,y =8,⎩⎪⎨⎪⎧x =12,y =4,⎩⎪⎨⎪⎧x =19,y =0.19.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼中放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?解:(1)设0.8元的邮票买了x 枚,2元的邮票买了y 枚,根据题意得⎩⎪⎨⎪⎧x +y =13,0.8x +2y =20.(2)设有x 只鸡,y 个笼,根据题意得⎩⎪⎨⎪⎧4y +1=x ,5(y -1)=x.综合题20.甲、乙两人共同解方程组⎩⎪⎨⎪⎧ax +5y =15,①4x -by =-2,②由于甲看错了方程①中的a ,得到方程组的解为⎩⎪⎨⎪⎧x =-3,y =-1;乙看错了方程②中的b ,得到方程组的解为⎩⎪⎨⎪⎧x =5,y =4.试计算a 2 016+(-110b)2 017.解:把⎩⎪⎨⎪⎧x =-3,y =-1代入方程②中,得4×(-3)-b ×(-1)=-2,解得b =10.把⎩⎪⎨⎪⎧x =5,y =4代入方程①中,得5a+5×4=15,解得a=-1.∴a2 016+(-110b)2 017=(-1)2 016+(-110×10)2 017=1+(-1)=0. 不用注册,免费下载!【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
人教版 七年级下册数学 第8章 二元一次方程组 课时训练(含答案)
人教版七年级下册第8章二元一次方程组课时训练一、选择题1. 二元一次方程组的解是()A.3,xy=⎧⎨=⎩B.1,2xy=⎧⎨=⎩C.5,2xy=⎧⎨=-⎩D.2,1xy=⎧⎨=⎩2. (2020·嘉兴)用加减消元法解二元一次方程组3421x yx y+=⎧⎨-=⎩,①,②时,下列方法中无法消元....的是()A.①×2–②B.②×(﹣3)–①C.①×(﹣2)+②D.①–②×33. 数学文化中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为()A.B.C.D.4. 已知关于x,y的方程x2m-n-2+4y m+n+1=6是二元一次方程,则m,n的值为()A. m=1,n=-1B. m=-1,n=1C. m=13,n=-43 D. m=-13,n=435. (2020·绥化)“十·一”国庆期间,学校组织466名八年级学生参加社会实践活动,现已准备了49座和37座两种客车共10辆,刚好坐满,设49座客车x辆,37A.10,4937466.x yx y=⎧⎨+=⎩+B.10,3749466.x yx y=⎧⎨+=⎩+C.466,493710.x yx y=⎧⎨+=⎩+D.466, 374910. x yx y=⎧⎨+=⎩+6. 滴滴快车是一种便捷的出行工具,计价规则如下表:计算项目里程费时长费远途费两人所付车费相同,那么这两辆滴滴快车的行车时间相差()A.10分钟B.13分钟C.15分钟D.19分钟7. (2020·随州)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”.设鸡有x只,兔有y只,8. (2020·恩施)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛1).A. B. C. D.二、填空题9. (2020·_________.10. (2020·绍兴)若关于x,y式A可以是(写出一个即可).11. (2020·岳阳)我国古代数学名著《九章算术》上有这样一个问题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各几何?”其大意是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现用30钱,买得2斗酒.问醇酒、斗,根据题意,可列方程组为.12. 某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1 020元,入住1个单人间和5个双人间共需700元,则入住单人间和双人间各5个共需____________元.13.2m -n 的算术平方根为( )A .± 2 B.2 C .2 D .414. (2020·杭州).15. 已知⎩⎨⎧x =3y =-2是方程组⎩⎨⎧ax +by =3bx +ay =-7的解,则代数式(a +b )(a -b )的值为________.三、解答题16. 解方程组:⎩⎨⎧x -y =2x -y =y +1.17. (12分)某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元. (1)求每本甲种词典和每本乙种词典的价格分别为多少元?(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?18. (2020·扬州)阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x 、y 满足3x -y =5①,2x +3y =7②,求x -4y 和7x +5y 的值. 本题常规思路是将①②两式联立组成方程组,解得工y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得x -4y =-2,由①+②X 2可得7x +5y =19.这样的解題思想就是通常所说的“整体思想”。
2022年京改版七年级数学下册第五章二元一次方程组课时练习试题(含答案解析)
京改版七年级数学下册第五章二元一次方程组课时练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若12x y =⎧⎨=⎩是关于x 、y 的二元一次方程ax -5y =1的解,则a 的值为( ) A .-5 B .-1 C .9 D .112、已知代数式2ax bx c ++,当1x =-时,其值为4;当1x =时,其值为8;当x =2时,其值为25;则当3x =时,其值为( ).A .4B .8C .62D .523、某污水处理厂库池里现有待处理的污水m 吨.另有从城区流入库池的待处理污水(新流入污水按每小时n 吨的定流量增加).若该厂同时开动2台机组,需30小时处理完污水;若同时开动3台机组,需15小时处理完污水.若5小时处理完污水,则需同时开动的机组数为( )A .6台B .7台C .8台D .9台4、由方程组250x m x y m +=⎧⎨+-=⎩可以得出关于x 和y 的关系式是( ) A .5x y += B .25x y += C .35x y += D .30x y +=5、已知关于x ,y 的二元一次方程组434ax y x by -=⎧⎨+=⎩的解是22x y =⎧⎨=-⎩,则a +b 的值是( ) A .1 B .2 C .﹣1 D .06、《九章算术》中记载了一个问题,原文如下:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”大意是:有几个人一起去买一件物品,每人出8文,多3文;每人出7文,少4文,求人数及该物品的价格.小明用二元一次方程组解此问题,若已经列出一个方程83x y -=,则符合题意的另一个方程是( )A .74x y -=B .74x y +=C .47yx += D .47yx -= 7、下列方程中,是关于x 的一元二次方程的是( )A .x (x -2)=0B .x 2-1-y =0C .x 2+1=x 2-2xD .ax 2+c =0 8、已知()210x y --=,则( )A .10x y =⎧⎨=⎩B .21x y =⎧⎨=⎩C .00x y =⎧⎨=⎩D .3232x y ⎧=⎪⎪⎨⎪=⎪⎩ 9、如图,在大长方形中不重叠的放入七个长、宽都相同的小长方形,根据图中给出的数据,可得出阴影部分面积为( )A .48B .52C .58D .6410、关于,x y 的二元一次方程组的解345223x y k x y k -=-⎧⎨-=+⎩满足310x y k -=+,则k 的值是( )A .2B .2-C .3-D .3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若x ,y 满足方程组327233x y x y +=⎧⎨+=⎩,则化数式2())(x y x y -+-的值为 _____. 2、已知方程组21419x y x y -=-⎧⎨+=⎩,则x +y 的值是______. 3、已知方程3241252m n x y +--=是二元一次方程,则m =__,n =__. 4、方程组2723x y x y +=⎧⎨-=⎩的解是 ______. 5、二元一次方程组40610x y y x -=⎧⎨-=⎩的解为 _____. 三、解答题(5小题,每小题10分,共计50分)1、阳光超市从厂家购进甲、乙两种商品进行销售,若该超市购进甲种商品3件,乙种商品2件,共需花费900元;若购进甲种商品2件,购进乙种商品1件,共需花费500元;(1)求甲、乙两种商品每件的进价分别为多少元;(2)由于甲、乙两种商品受到市民欢迎,十一月份超市决定购进甲、乙两种商品共80件,且保持(1)的进价不变,已知甲种商品每件的售价为150元,乙种商品每件的售价400元,要使十一月份购进的甲、乙两种商品共80件全部销售完的总利润不少于6500元,那么该超市最多购进甲种商品多少件?2、解方程组:3455792x y x y +=⎧⎪⎨-+=-⎪⎩3、为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市民“一户一表”生活用水阶梯式计费价格表的部分信息:(说明:①每户生产的污水量等于该户自来水用量;②水费=自来水费用+污水处理费)已知小王家2018年7月用水16吨,交水费43.2元.8月份用水25吨,交水费75.5元.(1)求a、b的值;(2)小王家10月份忘记了去交水费,当他11月去交水费时发现两个月一共用水50吨,其中10月份用水超过30吨,一共交水费215.8元,其中包含30元滞纳金,求小王家11月份用水多少吨?(滞纳金:因未能按期缴纳水费,逾期要缴纳的“罚款金额”)4、方程组1327x yx y+=-⎧⎨-=⎩的解满足2x-ky=10(k是常数).(1)求k的值;(2)求出关于x,y的方程(k-1)x+2y=13的正整数解.5、解方程组:(1)2 27 x yx y(2)317 {31 x yx y-=+=----------参考答案-----------一、单选题1、D【分析】把12xy=⎧⎨=⎩代入ax-5y=1解方程即可求解.【详解】解:∵12xy=⎧⎨=⎩是关于x、y的二元一次方程ax-5y=1的解,∴将12xy=⎧⎨=⎩代入ax-5y=1,得:101a-=,解得:11a=.故选:D.【点睛】此题考查了二元一次方程解的含义,解题的关键是熟练掌握二元一次方程解的含义.2、D【分析】将已知的三组x和代数式的值代入代数式中,通过联立三元一次方程组484225a b ca b ca b c-+=⎧⎪++=⎨⎪++=⎩,求出a、b、c的值,然后将3x=代入代数式即可得出答案.【详解】由条件知:484225a b ca b ca b c-+=⎧⎪++=⎨⎪++=⎩,解得:521abc=⎧⎪=⎨⎪=⎩.当3x=时,2252152ax bx c x x++=++=.故选:D.【点睛】本题考查三元一次方程组的解法,解题关键是掌握三元一次方程组的解法.3、B【分析】设同时开动x台机组,每台机组每小时处理a吨污水,根据“如果同时开动2台机组要30小时刚好处理完污水,同时开动3台机组要15小时刚好处理完污水”,即可得出关于m,n的二元一次方程组,解之即可得出m,n的值(用含a的代数式表示),再由5小时内将污水处理完毕,即可得出关于关于x 的一元一次方程,解之可得出结论.【详解】解:设同时开动x台机组,每台机组每小时处理a吨污水,依题意,得23030 31515a m na m n⨯=+⎧⎨⨯=+⎩,解得:30m an a=⎧⎨=⎩,∵5ax=30a+5a,∴x=7.答:要同时开动7台机组.【点睛】本题考查的是用二元一次方程组来解决实际问题,正确的理解题意是解题的关键.4、C【分析】分别用x ,y 表示m ,即可得到结果;【详解】由25x m +=,得到52m x =-,由0x y m +-=,得到m x y =+,∴52x x y -=+,∴35x y +=;故选C .【点睛】本题主要考查了二元一次方程组的化简,准确分析计算是解题的关键.5、B【分析】将22x y =⎧⎨=-⎩代入434ax y x by -=⎧⎨+=⎩即可求出a 与b 的值; 【详解】解:将22x y =⎧⎨=-⎩代入434ax y x by -=⎧⎨+=⎩得: 11a b =⎧⎨=⎩,故选:B .【点睛】本题考查二元一次方程组的解;熟练掌握方程组与方程组的解之间的关系是解题的关键.6、B【分析】根据题意,可知设每人出x 文,总共y 文,再列另一个方程即可.【详解】∵83x y -=,∴设每人出x 文,总共y 文,∴另一个方程为74x y +=,故选B .【点睛】本题考查了二元一次方程组,正确设未知数,灵活列方程是解题的关键.7、A【分析】根据一元二次方程的定义,对选项逐个判断即可,一元二次方程是指化简后,只含有一个未知数并且未知数的次数为2的整式方程.【详解】解:A 、含有一个未知数,且未知数次数为2,为一元二次方程,符合题意;B 、含有两个未知数,不是一元二次方程,不符合题意;C 、210x +=,含有一个未知数,不是一元二次方程,不符合题意;D 、当0a =时,不是一元二次方程,不符合题意;【点睛】此题考查了一元二次方程的定义,解题的关键是理解一元二次方程的概念.8、B【分析】根据二元一次方程组的解法以及非负数的性质即可求出答案.【详解】解:由题意可知:3010 x yx y+-=⎧⎨--=⎩解得:21xy=⎧⎨=⎩,故选:B.【点睛】本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.9、B【分析】设小长方形的宽为a,长为b,根据图形列出二元一次方程组求出a、b的值,再由大长方形的面积减去7个小长方形的面积即可.【详解】设小长方形的宽为a,长为b,由图可得:31626a bb a+=⎧⎨-=⎩①②,①-②得:2a =,把2a =代入①得:10b =,∴大长方形的宽为:3632612a +=⨯+=,∴大长方形的面积为:1612192⨯=,7个小长方形的面积为:77210140ab =⨯⨯=,∴阴影部分的面积为:19214052-=.故选:B .【点睛】本题考查二元一次方程组,以及代数式求值,根据题意找出a 、b 的等量关系式是解题的关键.10、B【分析】解方程组,用含k 的式子表示,然后将方程组的解代入310x y k -=+即可.【详解】解:345223x y k x y k -=-⎧⎨-=+⎩①②, ①-②得:323x y k -=-,∵310x y k -=+,∴2310k k -=+,解得:2k =-,故选:B .【点睛】本题考查了二元一次方程组解,和二元一次方程组的解的应用,运用整体法得出323x y k -=-,可以是本题变得简便.二、填空题1、0【解析】【分析】二元一次方程组两式相加得x +y =2,两式相减得x -y =4,将结果代入2())(x y x y -+-=0.【详解】∵327233x y x y +=⎧⎨+=⎩①② 令+①②有5510x y +=∴2x y +=令①-②有4x y -=∴4x y -=将2x y +=,4x y -=代入2())(x y x y -+-得224440=--=.故答案为:0.【点睛】本题考查了已知式子的值解代数式值和解二元一次方程组,通过加减消元法化简二元一次方程组,得出所求代数式中含有的部分,再代入计算即可.2、6【解析】【分析】利用加减消元法求出二元一次方程组的解,然后进行代数式求值即可得到答案.【详解】解:21419x y x y -=-⎧⎨+=⎩①② 把② ×2-①得:939y =,解得133y =把133y =代入① 中解得53x = ∴6x y +=.故答案为:6.【点睛】本题主要考查了利用加减消元法解二元一次方程组,代数式求值,解题的关键在于能够熟练掌握加减消元法.3、 -2 14##0.25【解析】【分析】根据二元一次方程的定义得到:31m +=,241n -=.据此可以求得m 、n 的值.【详解】 解:方程3241252m n x y +--=是二元一次方程, 31m ∴+=,241n -=,解得2m =-,14n =.故答案是:2-;14.本题考查了二元一次方程的定义.解题的关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.4、51xy=⎧⎨=⎩##15yx=⎧⎨=⎩【解析】【分析】根据二元一次方程组的解法步骤,分步计算即可得到正确答案.【详解】解:27,23,x yx y+=⎧⎨-=⎩①②,①+②得:2x=10,∴x=5.把x=5代入①得:5+2y=7, 解得:y=1.∴原方程组的解为:51xy=⎧⎨=⎩.故答案为:51xy=⎧⎨=⎩.【点睛】本题考查的是二元一次方程组的解法,牢记加减消元法或代入消元法的解法步骤是解题关键.5、205 xy=⎧⎨=⎩【分析】利用加减消元法解二元一次方程组即可得到答案.【详解】解:40610x y y x -=⎧⎨-=⎩①②, 用①+②得:210y =,解得5y =,把5y =代入①中得:200x -=,解得20x,∴方程组的解为205x y =⎧⎨=⎩. 【点睛】本题主要考查了解二元一次方程组,解题的关键在于能够熟练掌握加减消元法.三、解答题1、(1)甲种商品每件进价为100,乙种商品每件进价300元;(2)30件【分析】(1)设甲种商品每件进价为x 元,乙种商品每件进价y 元,根据等量关系:3件甲种商品的花费+2件乙种商品的花费=900;2件甲种商品的花费+1件乙种商品的花费=500,即可列出方程组,解方程组即可;(2)设该超市购进甲种商品m 件,根据不等关系:甲商品的利润+乙商品的利润≥6500,列出不等式,不等式即可,再取不等式解集中最大的整数值即可.【详解】(1)设甲种商品每件进价为x 元,乙种商品每件进价y 元,根据题意的329002500x y x y +=⎧⎨+=⎩解得100300x y =⎧⎨=⎩ 故甲种商品每件进价为100,乙种商品每件进价300元(2)设该超市购进甲种商品m 件,根据题意得:(150-100)m +(400-300)(80-m )≥6500解得m ≤30∵m 为整数∴m 的最大整数值为30.即该超市最多购进甲种商品30件.【点睛】本题考查了解二元一次方程组及解不等式的应用,关键是理解题意,找到等量关系和不等关系,然后列出方程组和不等式即可解决问题.2、112x y =⎧⎪⎨=⎪⎩. 【分析】根据解二元一次方程组的方法,7⨯①得到③,3⨯②得到④,+③④消元得解,然后代入①求解即可.【详解】 解:3455792x y x y +=⎧⎪⎨-+=-⎪⎩①②, 7⨯①得:212835x y +=③,3⨯②得:1521272x y -+=-④, +③④得:55552y =,解得:12y=,将12y=代入①得:1x=,∴方程组的解为:112xy=⎧⎪⎨=⎪⎩.【点睛】题目主要考查二元一次方程组的解法,熟练掌握加减消元法是解题关键.3、(1)a=1.8,b=2.8;(2)小王家11月份用水11吨【分析】(1)根据7月份和8月份的水费列出方程组,解方程组即可求得a和b;(2)设小王家11月份用水y吨,由于两个月一共用水50吨,其中10月份用水超过30吨,则分y≤17和17<y<30,分别列方程求解,再结合问题的实际意义可得本题答案.【详解】解:(1)由题意得:16(0.9)43.917(0.9)8(0.9)75.5aa b+=⎧⎨+++=⎩①②,解①,得a=1.8,将a=1.8代入②,解得b=2.8,∴a=1.8,b=2.8.(2)设小王家11月份用水y吨,当y≤17时,2.7y+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30,解得y=11,当17<y<30时,17×2.7+(y﹣17)×3.7+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30,解得y=9.125(舍去),∴小王家11月份用水11吨.【点睛】本题考查了一元一次方程和二元一次方程组在实际问题中的应用,理清题目中的数量关系,并正确分段是解答本题的关键.4、(1)4k =;(2)15x y =⎧⎨=⎩,32x y =⎧⎨=⎩ 【分析】(1)先求出方程组的解,再代入方程,即可求出k 值;(2)把k 的值代入方程()1213k x y -+=得:1332x y -=,再根据x 、y 都是正整数,得到14x ≤≤,由此求解即可.【详解】解:(1)1327x y x y +=-⎧⎨-=⎩①②, 把①×2得:222x y +=-③,用②+③得:55=x ,解得1x =,把1x =代入①,解得2y =-,∴方程组的解为:12x y =⎧⎨=-⎩, 将12x y =⎧⎨=-⎩代入210x ky -=得:2210k +=, 解得:4k =;(2)把4k =代入方程()1213k x y -+=得:3213x y +=,即1332x y -=,∵x 、y 都是正整数,∴11331x x ≥⎧⎨-≥⎩, ∴14x ≤≤,当1x =时,5y =;当3x =时,2y =;∴关于x ,y 的方程()1213k x y -+=的正整数解为15x y =⎧⎨=⎩或32x y =⎧⎨=⎩. 【点睛】本题主要考查了解一元一次方程和解二元一次方程组,解题的关键在于能够熟练掌握解一元一次方程和解二元一次方程组的方法.5、(1)31x y =⎧⎨=⎩;(2)52x y =⎧⎨=-⎩ 【分析】(1)利用把两个方程相加先消去y 求解,x 再求解y ,从而可得方程组的解;(2)把方程①乘以3,再与方程②相加消去,y 求解,x 再求解,y 从而可得答案.【详解】解:(1)227x y x y ①②①+②得:39,x =解得:3,x =把3x =代入①得:32,y解得:1,y =所以方程组的解是31 xy=⎧⎨=⎩(2)31731 x yx y①②①3⨯得:9351x y③②+③得:1050,x解得:5,x=把5x=代入①得:2,y=-所以原方程组是解是52 xy=⎧⎨=-⎩【点睛】本题考查的是利用加减消元法解二元一次方程组,掌握“加减法解二元一次方程组”是解本题的关键.。
(湘教版)初中七年级数学下册:全套课时作业练习题(含答案)
建立二元一次方程组(30分钟 50分)一、选择题(每小题4分,共12分) 1.下列方程中,是二元一次方程的是( ) A.3x 2-2y=4 B.6x+y+9z=0 C.1x +4y=6D.4x=y−242.以{x =1,y =2为解的二元一次方程组是() A.{x −y =3,3x −y =1B.{x −y =−1,3x +y =−5C.{x −2y =−3,3x +5y =−5D.{x −y =−1,3x +y =53.(2013·广州中考)已知两数x,y 之和是10,x 比y 的3倍大2,则下面所列方程组正确的是( )A.{x +y =10,y =3x +2B.{x +y =10,y =3x −2C.{x +y =10,x =3y +2D.{x +y =10,x =3y −2二、填空题(每小题4分,共12分)4.请写出一个二元一次方程组 ,使它的解是{x =2,y =−1.5.方程(k 2-1)x 2+(k+1)x+2ky=k+3,当k= 时,它为一元一次方程;当k= 时,它为二元一次方程.6.母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从信息中可知,若设鲜花x 元/束,礼盒y 元/盒,则可列方程组为 .三、解答题(共26分)7.(8分)下列各组数据中哪些是方程3x-2y =11的解?哪些是方程2x+3y=16的解?哪些是方程组{3x −2y =11,2x +3y =16的解?为什么? ①{x =1,y =−4.②{x =5,y =2.③{x =7,y =23.④{x =15,y =6.8.(8分)(1)若{x =a,y =b 是方程2x+y=0的解,求6a +3b+2的值.(2)若{x =a,y =b 是方程3x-y=1的解,求6a-2b+3的值.【拓展延伸】9.(10分)为民医疗器械经销部经营甲、乙两种医疗器械,甲器械每台2万元,乙器械每台5万元,今年厂方给经销部规定了24万元的营销任务,那么该经销部要想刚好完成任务,有哪些销售方案可选择?若乙医疗器械的利润是甲医疗器械的3倍,那么你觉得选择哪个方案更好些?答案解析1.【解析】选D.4x=y−24含有两个未知数x,y,并且含x,y 项的次数都是1,是二元一次方程.选项A 有二次项,选项B 有三个未知数,选项C 分母中有未知数,故A,B,C 都不是二元一次方程. 2.【解析】选D.将{x =1,y =2分别代入四个方程组中,只有D 中的两个方程同时成立.3.【解析】选C.由题意知,x+y=10,x-3y=2,即x=3y+2,所以{x +y =10,x =3y +2.4.【解析】以{x =2,y =−1为解的二元一次方程有无数个,如x+y=1,x-y=3,x+2y=0等,只要满足x=2,y=-1即可.然后从中选两个方程,但是这两个方程的对应项的系数不能成倍数关系. 答案:{x +y =1,x +2y =0(答案不唯一)5.【解析】无论是一元一次方程还是二元一次方程,都不可能有二次项,所以k 2-1=0,即k=±1.当k=-1时,原方程为-2y=2是一元一次方程;当k=1时,原方程为x+y=2为二元一次方程. 答案:-1 16.【解析】一束鲜花x 元,一盒礼盒y 元,由一束鲜花和两盒礼盒共55元,得:x+2y=55;由两束鲜花和3盒礼盒共90元,得2x+3y=90,故{x +2y =55,2x +3y =90.答案:{x +2y =55,2x +3y =907.【解析】①②是方程3x-2y=11的解.②③是方程2x+3y=16的解.②是方程组{3x −2y =11,2x +3y =16的解. 因为方程组的解必须是方程组中两个方程的公共解.8.【解析】(1)把{x =a,y =b 代入方程2x+y=0得2a+b=0,两边同时乘以3得:6a+3b=0,所以6a+3b+2=2.(2)把{x =a,y =b 代入3x-y=1得3a-b=1,则6a-2b+3=2(3a-b)+3=5.【归纳整合】解决本题的方法为整体代入法,将含a,b 的式子整体代入,使得整个求解过程更加简便,在解决整体代入法求值问题时,要多观察式子的特点,合理运用整体代入法.9.【解析】设销售甲医疗器械x 台,乙医疗器械y 台,根据题意,得2x+5y=24.因为x,y 都是非负整数,所以x=24−5y 2=12-2y-y2.当y=0时,x=12;当y=2时,x=7;当y=4时,x=2.所以销售方案有三种:方案一:销售甲器械12台,乙器械0台;方案二:销售甲器械7台,乙器械2台;方案三:销售甲器械2台,乙器械4台.设甲医疗器械的利润为a(a>0),则方案一的利润为12a+0×3a=12a(元);方案二的利润为7a+2×3a=13a(元);方案三的利润为2a+4×3a=14a(元).因为14a>13a>12a,所以选择方案三更好些.二元一次方程组的应用(第1课时)(30分钟 50分)一、选择题(每小题4分,共12分)1.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x 分钟,下坡用了y 分钟,根据题意可列方程组为( )A.{3x +5y =1 200,x +y =16B.{360x +560y =1.2,x +y =16C.{3x +5y =1.2,x +y =16D.{360x +560y =1 200,x +y =162.(2013·潍坊中考)为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是 2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是( )A.{x −y =22x ×2.5%+y ×0.5%=10 000B.{x −y =22x 2.5%+y 0.5%=10 000C.{x +y =10 000x ×2.5%−y ×0.5%=22D.{x +y =10 000x 2.5%−y 0.5%=223.已知甲、乙两种商品的进价和为100元,为促销而打折销售,若甲商品打8折,乙商品打6折,则可赚50元;若甲商品打6折,乙商品打8折,则可赚30元,则甲、乙两种商品的定价分别是( ) A.50元,150元 B.150元,50元 C.100元,50元D.50元,100元二、填空题(每小题4分,共12分)4.甲种电影票每张20元,乙种电影票每张15元.若购买甲,乙两种电影票共40张,恰好用去700元,则甲种电影票买了 张.5.学校组织一次有关历史知识的竞赛,共有20道题,每一题答对得5分,答错或不答都倒扣1分,小明最终得了76分,那么他答对 道题.6.一个长方形的长减少5cm,宽增加2cm ,就变成了一个正方形,并且这两个图形的面积相等,则原长方形的面积为 cm 2. 三、解答题(共26分)7.(8分)(2013·济南中考)某寄宿制学校有大、小两种类型的学生宿舍共50间,大宿舍每间可住8人,小宿舍每间可住6人.该校360名住宿生恰好住满这50间宿舍.求大、小宿舍各有多少间.8.(8分)(2013·宜宾中考)2013年4月20日,四川省芦山县发生7.0级强烈地震,造成大量的房屋损毁,急需大量帐篷.某企业接到任务,须在规定时间内生产一批帐篷.如果按原来的生产速度,每天生产120顶帐篷,那么在规定时间内只能完成任务的90%.为按时完成任务,该企业所有人员都支援到生产第一线,这样,每天能生产160顶帐篷,刚好提前一天完成任务.问规定时间是多少天?生产任务是多少顶帐篷? 【拓展延伸】9.(10分)一辆汽车从A 地驶往B 地,前13路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A 地到B 地一共行驶了2.2h.请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组解决的问题,并写出解题过程.答案解析1.【解析】选B.第一个等量关系式为:360x x +560x y =1.2,第二个等量关系式为:x+y=16,构成方程组{360x +560y =1.2,x +y =16.2.【解析】选B.根据“吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人”所得的方程是x-y=22;调查的吸烟的人数是x 2.5%,不吸烟的人数是y0.5%,根据共调查了10000人,列方程得x2.5%+y0.5%=10000,所以可列方程组{x −y =22,x 2.5%+y 0.5%=10 000.3.【解析】选B.设甲的定价为x 元,乙的定价为y 元.则{0.8x +0.6y =150,0.6x +0.8y =130,解得:{x =150,y =50.4.【解析】设购买甲种电影票x 张,乙种电影票y 张,由题意得{x +y =40,20x +15y =700,解得{x =20,y =20.即甲种电影票买了20张. 答案:20【归纳整合】二元一次方程组的优点当我们遇到两个量之间出现两种等量关系时,可以考虑列二元一次方程组解题.虽然本题也可列一元一次方程,但相比较而言,列二元一次方程组比列一元一次方程更好. 5.【解析】设他答对x 道题,答错或不答y 道题.根据题意,得{x +y =20,5x −y =76,解得{x =16,y =4.答案:166.【解析】设长方形的长为xcm,宽为ycm,则根据题意得{xy =(x −5)(y +2),x −5=y +2,解这个方程组得{x =253,y =43,所以长方形的面积xy=1009. 答案:10097.【解析】设大宿舍有x 间,小宿舍有y 间,根据题意得{x +y =50,8x +6y =360,解得{x =30,y =20. 答:大宿舍有30间,小宿舍有20间.8.【解析】设规定时间为x 天,生产任务是y 顶帐篷,由题意得,{120x =90%y,160(x −1)=y,解得{x =6,y =800.答:规定时间是6天,生产任务是800顶帐篷. 9.【解析】本题答案不唯一, 方法一:问题:普通公路段和高速公路段各长多少千米? 设普通公路段长为xkm,高速公路段长为ykm.由题意可得:{2x =y,x 60+y 100=2.2,解得{x =60,y =120.答:普通公路段长为60km,高速公路段长为120km.方法二:问题:汽车在普通公路段和高速公路段上各行驶了多少小时?设汽车在普通公路段上行驶了xh,在高速公路段上行驶了yh.由题意可得:{x +y =2.2,60x ×2=100y,解得:{x =1,y =1.2.答:汽车在普通公路段上行驶了1h,在高速公路段上行驶了1.2h.二元一次方程组的应用(第2课时)(30分钟 50分)一、选择题(每小题4分,共12分)1.如图所示的两台天平保持平衡,已知每块巧克力的质量相等,且每个果冻的质量也相等,则每块巧克力和每个果冻的质量分别为( )A.10g,40gB.15g,35gC.20g,30gD.30g,20g2.根据以下对话,可以求得小红所买的笔和笔记本的价格分别是( )A.1.2元/支,3.6元/本B.0.8元/支,3.6元/本C.1.2元/支,2.6元/本D.0.8元/支,2.6元/本3.某校团委与社区联合举办“保护地球,人人有责”活动,选派20名学生分三组到120个店铺发传单,若第一、二、三小组每人分别负责8,6,5个店铺,且每组至少有两人,则学生分组方案有( ) A.6种B.5种C.4种D.3种二、填空题(每小题4分,共12分)4.(2013·绍兴中考)我国古代数学名著《孙子算经》中有这样一道题:今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是鸡有23只,兔有12只.现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是鸡有 只,兔有 只.5.如图,正方形是由k 个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k= .6.(2013·鞍山中考)如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为220cm,此时木桶中水的深度是 cm. 三、解答题(共26分)7.(8分)(2013·莱芜中考)某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同,求两种跳绳的单价各是多少元?8.(8分)(2013·嘉兴中考)某镇水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)年降水量为多少万立方米?每人年平均用水量为多少立方米?(2)政府号召节约用水,希望将水库的使用年限提高到25年,则该镇居民人均每年需节约多少立方米水才能实现目标? 【拓展延伸】9.(10分)某公园的门票价格如表所示:某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人?答案解析1.【解析】选C.设每块巧克力的质量为xg,每个果冻的质量为yg,由题意得{3x =2y,x +y =50,解得{x =20,y =30.2.【解析】选A.设小红所买的笔和笔记本的价格分别是x 元/支,y 元/本,则{5x +10y =42,10x +5y =30,解得{x =1.2,y =3.6.所以小红所买的笔和笔记本的价格分别是1.2元/支,3.6元/本.3.【解析】选B.设第一小组有x 人,第二小组有y 人,则第三小组有(20-x-y)人,则8x+6y+5(20-x-y)=120,3x+y=20,当x=2时,y=14,20-x-y=4,符合题意;当x=3时,y=11,20-x-y=6,符合题意;当x=4时,y=8,20-x-y=8,符合题意;当x=5时,y=5,20-x-y=10,符合题意;当x=6时,y=2,20-x-y=12,符合题意,故学生分组方案有5种.4.【解析】设鸡有x 只,兔有y 只,根据题意可得{x +y =33,2x +4y =88,解得:{x =22,y =11, 即鸡有22只,兔有11只.答案:22 115.【解析】设矩形的长为x,矩形的宽为y,中间竖的矩形为n 个,则可列方程组{x +2y =2x,2x =ny,解得n=4.则k=2+2+4=8. 答案:86.【解析】设长铁棒长为xcm,短铁棒长为ycm,由题意可得{(1−13)x =(1−15)y,x +y =220,解得{x =120,y =100,所以水的深度为(1−13)×120=80(cm).答案:807.【解析】设长跳绳的单价是x 元,短跳绳的单价是y 元. 由题意,得{x =2y +4,2x =5y.解得{x =20,y =8.所以长跳绳的单价是20元,短跳绳的单价是8元.8.【解析】(1)设年降水量为x 万立方米,每人年平均用水量为y 立方米,则:{12 000+20x =16×20y,12 000+15x =20×15y,解得{x =200,y =50. 答:年降水量为200万立方米,每人年平均用水量为50立方米. (2)设该城镇居民年平均用水量为z 立方米才能实现目标,则: 12000+25×200=20×25z,解得z=34. 所以50-34=16.答:该城镇居民人均每年需要节约16立方米的水才能实现目标. 9.【解析】设甲班有x 人,乙班有y 人,根据题意得,{8x +10y =920,5(x +y)=515,解得{x =55,y =48.答:甲班有55人,乙班有48人.三元一次方程组(30分钟 50分)一、选择题(每小题4分,共12分)1.下列方程中,是三元一次方程组的是( )A.{2x +y =1y +4x =3B.{4x +3y =7z 2x −yz =4C.{2x −y =1y −3z =24x −z =0D.{3x −yz =6x −y =1xz −3y =82.若方程组{3x +5y =a +4,2x +3y =a的解x 与y 的值的和为3,则a 的值为()A.7B.4C.0D.-43.(2012·德阳中考)为确保信息安全,信息需加密传输,发送方由明文→密文(加密);接收方由密文→明文(解密).已知加密规则为:明文a,b,c,d 对应密文a+2b,2b+c,2c+3d,4d.例如:明文1,2,3,4对应的密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( ) A.4,6,1,7 B.4,1,6,7 C.6,4,1,7D.1,6,4,7二、填空题(每小题4分,共12分)4.解方程组时,①+②可消去未知数 ,得到一个二元一次方程 .5.已知方程组{x +y =2,y +z =3,z +x =7则x+y+z=.6.已知甲、乙、丙三人各有一些钱,其中甲的钱数是乙的钱数的2倍,乙的钱数比丙的钱数多1元,丙的钱数比甲的钱数少11元.三人共有 元. 三、解答题(共26分)7.(8分)李红在做这样一个题目:在等式y=ax 2+bx+c 中,当x=1时,y=6;当x=2时,y=21;当x=-1时,y=0;当x=-2时,y 等于多少?她想,在求y 值之前应先求a,b,c 的值,你认为她的想法对吗?请你帮她求出a,b,c 及y 的值.8.(8分)某单位职工在植树节时去植树,甲、乙、丙三个小组共植树50棵,乙小组植树的棵数是甲、丙两小组的和的14x ,甲小组植树的棵数恰是乙小组与丙小组的和,问每小组各植树多少棵?【拓展延伸】9.(10分)某企业为了激励员工参与技术革新,设计了技术革新奖,这个奖项分设一、二、三等,按获奖等级颁发一定数额的奖金,每年评选一次,下表是近三年技术革新获奖人数及奖金总额情况.三等奖人数(人) 2012年 那么技术革新一、二、三等奖的奖金数额分别是多少万元?答案解析1.【解析】选C.三元一次方程组里必须有三个方程,故排除A,B;D 中有两个方程不是一次方程,故它也不是三元一次方程组.2.【解析】选A.把x+y=3和原方程组联立,得到一个关于x,y,a 的三元一次方程组,求得a=7.3.【解析】选C.根据题意,得{a +2b =14,2b +c =9,2c +3d =23,4d =28.解得{a =6,b =4,c =1,d =7.故选C.4.【解析】方程①和②中未知数y 的系数互为相反数,相加可消去未知数y,得2x+z=27. 答案:y 2x+z=275.【解析】{x +y =2 ①,y +z=3 ②,z +x =7 ③,①+②+③得:2x+2y+2z=12,所以x+y+z=6. 答案:66.【解析】设甲有x 元、乙有y 元、丙有z 元,根据题意,得{x =2y,y =z +1,z =x −11,解得{x =20,y =10,z =9,所以三人共有20+10+9=39(元). 答案:397.【解析】她的想法对.根据题意,得{a +b +c =6,4a +2b +c =21,a −b +c =0,解得{a =4,b =3,c =−1.所以该等式为y=4x 2+3x-1,所以当x=-2时,y=4×4-3×2-1=9,即y=9.8.【解析】设甲小组植树x 棵、乙小组植树y 棵、丙小组植树z 棵,根据题意,得{x +y +z =50,y =14(x +z),x =y +z,解得{x =25,y =10,z =15.答:甲小组植树25棵、乙小组植树10棵、丙小组植树15棵.9.【解析】设一、二、三等奖的奖金数额分别是x 万元、y 万元、z 万元,根据题意,得{10x +20y +30z =41,12x +20y +28z =42,14x +25y +40z =54,解得{x =1,y =45,z =12.答:一、二、三等奖的奖金数额分别是1万元、45万元、12万元.同底数幂的乘法(30分钟 50分)一、选择题(每小题4分,共12分) 1.计算(-x)2·x 3的结果是( ) A.x 5B.-x 5C.x 6D.-x 62.下列各式计算正确的个数是( ) ①x 4·x 2=x 8;②x 3·x 3=2x 6;③a 5+a 7=a 12; ④(-a)2·(-a 2)=-a 4;⑤a 4·a 3=a 7. A.1B.2C.3D.43.下列各式能用同底数幂乘法法则进行计算的是( ) A.(x+y)2·(x-y)2 B.(x+y)2(-x-y) C.(x+y)2+2(x+y)2D.(x-y)2(-x-y)二、填空题(每小题4分,共12分)4.(2013·天津中考)计算a ·a 6的结果等于 .5.若2n-2×24=64,则n=.6.已知2x·2x·8=213,则x=.三、解答题(共26分)7.(8分)计算:(1)(-3)3·(-3)4·(-3).(2)a3·a2-a·(-a)2·a2.(3)(2m-n)4·(n-2m)3·(2m-n)6.(4)y·y n+1-2y n·y2.8.(8分)已知a x=5,a y=4,求下列各式的值:(1)a x+2.(2)a x+y+1.【拓展延伸】9.(10分)已知2a=3,2b=6,2c=12,试确定a,b,c之间的关系.答案解析1.【解析】选A.(-x)2·x3=x2·x3=x2+3=x5.2.【解析】选B.x4·x2=x4+2=x6,故①错误;x3·x3=x3+3=x6,故②错误;a5与a7不是同类项,不能合并,故③错误;(-a)2·(-a2)=a2·(-a2)=-a2·a2=-a2+2=-a4,故④正确;a4·a3=a4+3=a7,故⑤正确.3.【解析】选B.A,D选项底数不相同,不是同底数幂的乘法,C选项不是乘法;(x+y)2(-x-y)=-(x+y)2(x+y)=-(x+y)3.4.【解析】根据同底数幂的乘法法则“同底数幂相乘,底数不变,指数相加”,所以a·a6=a1+6=a7.答案:a75.【解析】因为2n-2×24=2n-2+4=2n+2,64=26,所以2n+2=26,即n+2=6,解得n=4.答案:46.【解析】因为2x·2x·8=2x·2x·23=2x+x+3,所以x+x+3=13,解得x=5.答案:57.【解析】(1)(-3)3·(-3)4·(-3)=(-3)3+4+1=(-3)8=38.(2)a3·a2-a·(-a)2·a2=a3+2-a·a2·a2=a5-a5=0.(3)(2m-n)4·(n-2m)3·(2m-n)6=(n-2m)4·(n-2m)3·(n-2m)6=(n-2m)4+3+6=(n-2m)13.(4)y·y n+1-2y n·y2=y n+1+1-2y n+2=y n+2-2y n+2=(1-2)y n+2=-y n+2.8.【解析】(1)a x+2=a x×a2=5a2.(2)a x+y+1=a x·a y·a=5×4×a=20a.9.【解析】方法一:因为12=3×22=6×2,所以2c=12=3×22=2a×22=2a+2,即c=a+2,①又因为2c=12=6×2=2b×2=2b+1,所以c=b+1,②①+②得2c=a+b+3.方法二:因为2b=6=3×2=2a×2=2a+1,所以b=a+1,①又因为2c=12=6×2=2b×2=2b+1,所以c=b+1,②①-②得2b=a+c.多项式的乘法(第1课时)(30分钟 50分)一、选择题(每小题4分,共12分) 1.化简5(2x-3)+4(3-2x)的结果为( ) A.2x-3 B.2x+9 C.8x-3D.18x-32.下列各式中计算错误的是( ) A.2x-(2x 3+3x-1)=4x 4+6x 2-2x B.b(b 2-b+1)=b 3-b 2+b C.-12x(2x 2-2)=-x 3+xD.23x (32x 3−3x +1)=x 4-2x 2+23x3.今天数学课上,老师讲了单项式乘以多项式.放学后,小华回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现一道题:-3xy ·(4y-2x-1)=-12xy 2+ 6x 2y+ .空格的地方被钢笔水弄污了,你认为横线上应填写( ) A.3xyB.-3xyC.-1D.1二、填空题(每小题4分,共12分)4.(-2x 2)3·(x 2+x 2y 2+y 2)的结果中次数是10的项的系数是 .5.当x=1,y=15时,3x(2x+y)-2x(x-y)= .6.如图是在正方形网格中按规律填成的阴影,根据此规律,第n 个图中的阴影部分小正方形的个数是 .三、解答题(共26分) 7.(8分)先化简,再求值. x(x 2-6x-9)-x(x 2-8x-15)+2x(3-x), 其中x=-16.8.(8分)如图,一长方形地块用来建造住宅、广场、商厦,求这块地的面积.【拓展延伸】9.(10分)阅读:已知x 2y=3,求2xy(x 5y 2-3x 3y-4x)的值.分析:考虑到x,y 的可能值较多,不能逐一代入求解,故考虑整体思想,将x 2y=3整体代入. 解:2xy(x 5y 2-3x 3y -4x)=2x 6y 3-6x 4y 2-8x 2y =2(x 2y)3-6(x 2y)2-8x 2y =2×33-6×32-8×3=-24.你能用上述方法解决以下问题吗?试一试! 已知ab=3,求(2a 3b 2-3a 2b+4a)·(-2b)的值.答案解析1.【解析】选A.原式=10x-15+12-8x=(10x-8x)+(-15+12)=2x-3.2.【解析】选A.2x-(2x 3+3x-1)=2x-2x 3-3x+1 =-2x 3-x+1.3.【解析】选A.-3xy ·(4y-2x-1) =-3xy ·4y+(-3xy)·(-2x)+(-3xy )·(-1)=-12xy 2+6x 2y+3xy,所以应填写3xy. 4.【解析】(-2x 2)3·(x 2+x 2y 2+y 2) =-8x 6·(x 2+x 2y 2+y 2) =-8x 8-8x 8y 2-8x 6y 2,所以次数是10的项是-8x 8y 2,系数是-8. 答案:-85.【解析】3x(2x+y)-2x(x-y)=6x 2+3xy-2x 2+2xy=4x 2+5xy, 当x=1,y=15时,原式=4x 2+5xy=4×12+5×1×15=4+1=5.答案:56.【解析】根据图形可知:第一个图形中阴影部分小正方形个数为4=2+2=1×2+2, 第二个图形中阴影部分小正方形个数为8=6+2=2×3+2, 第三个图形中阴影部分小正方形个数为14=12+2=3×4+2, ……所以第n 个图形中阴影部分小正方形个数为n(n+1)+2=xn 2+n+2,故此题答案为n 2+n+2. 答案:n 2+n+27.【解析】x(x 2-6x-9)-x(x 2-8x-15)+2x(3-x) =x 3-6x 2-9x-xx 3+8x 2+15x+6x-2x 2=12x. 当x=-16时,原式=12×(−16)=-2.8.【解析】长方形地块的长为:(3a+2b)+(2a-b),宽为4a, 这块地的面积为:4a ·[(3a+2b)+(2a-b)] =4a ·(5a+b)=4a ·5a+4a ·b=20a 2+4ab. 答:这块地的面积为20a 2+4ab. 9.【解析】(2a 3b 2-3a 2b+4a)·(-2b)=-4a 3b 3+6a 2b 2-8ab=-4(ab)3+6(ab)2-8ab,当ab=3时,原式=-4×33+6×32-8×3=-108+54-24=-78.幂的乘方与积的乘方(30分钟 50分)一、选择题(每小题4分,共12分)1.(2013·遵义中考)计算(−12ab 2)3的结果是( ) A.-32a 3b 6B.-12a 3b 5C.-18a 3b 5D.-18a 3b 6 2.(2013·泸州中考)下列各式计算正确的是( )A.(a 7)2=a 9B.a 7·a 2=a 14C.2a 2+3a 3=5a 5D.(ab)3=a 3b 3 3.如果(2a m b m+n )3=8a 9b 15成立,则m,n 的值为( )A.m=3,n=2B.m=3,n=9C.m=6,n=2D.m=2,n=5二、填空题(每小题4分,共12分)4.若(x 2)n =x 8,则n= .5.若a n =3,b n =2,则(a 3b 2)n = .6.(25)2 014×(−52)2 013×(-1)2013= .三、解答题(共26分)7.(8分)比较3555,4444,5333的大小.8.(8分)计算:(1)(-a 3b 6)2-(-a 2b 4)3.(2)2(a n b n )2+(a 2b 2)n .【拓展延伸】9.(10分)阅读材料:一般地,如果a(a>0,且a ≠1)的b 次幂等于N,那么数b 叫做以a 为底N 的对数,记作log a N=b. 例如,因为54=625,所以log 5625=4;因为32=9,所以log 39=2.对数有如下性质:如果a>0,且a ≠1,M>0,N>0,那么lo g a (MN)=log a M+log a N.完成下列各题:(1)因为 ,所以log 28= .(2)因为 ,所以log 216= .(3)计算:log 2(8×16)= + = .答案解析1.【解析】选D.(−12ab 2)3=(−12)3·a 3·(b 2)3=-18a 3b 6. 2.【解析】选 D.根据幂的乘方法则,(a 7)2=a 7×2=a 14,选项A 错误;根据同底数幂相乘法则,a 7·a 2=a 7+2=a 9,选项B 错误;2a 2与3a 3不是同类项,不能合并,选项C 错误;选项D 符合积的乘方的运算法则,是正确的,故选D.3.【解析】选A.因为(2a m b m+n )3=8a 3m b 3(m+n)=8a 9b 15,所以3m=9,3(m+n)=15,解得m=3,n=2.4.【解析】因为(x 2)n =x 2n =x 8,所以2n=8,所以n=4.答案:45.【解析】(a 3b 2)n =a 3n b 2n =(a n )3(b n )2=33×22=27×4=108.答案:1086.【解析】原式=(25)2 014×(52)2 013 =(25×52)2 013×25 =12013×25=25.答案:25 7.【解析】因为3555=3111×5=(35)111=243111,4444=4111×4=(44)111=256111,5333=5111×3=(53)111=125111,又因为125<243<256,所以125111<243111<256111,所以5333<3555<4444.8.【解析】(1)原式=a 6b 12-(-a 6b 12)=a 6b 12+a 6b 12=x2a 6b 12.(2)原式=2a 2n b 2n +a 2n b 2n =3a 2n b 2n .9.【解析】(1)因为23=8,所以log 28=3.(2)因为24=16,所以log 216=4.(3)log 2(8×16)=log 28+log 216=3+4=7.答案:(1)23=8 3x x x x x (2)24=16 4x x x x x (3)log 28 log 216 7单项式的乘法(30分钟 50分)一、选择题(每小题4分,共12分)1.(2013·绍兴中考)计算3a ·2b 的结果是( )A.3abB.6aC.6abD.5ab2.下列计算中,错误的是( )A.(2xy)3(-2xy)2=32x 5y 5B.(-2ab 2)2(-3a 2b)3=-108a 8b 7C.(−23xy)2(94x 2y)=x 4y 3 D.(13m 2n)(−13mn 2)2=127m 4n 43.某商场4月份售出某品牌衬衣b 件,每件c 元,营业额a 元.5月份采取促销活动,售出该品牌衬衣3b 件,每件打八折,则5月份该品牌衬衣的营业额比4月份增加( )A.1.4a 元B.2.4a 元C.3.4a 元D.4.4a 元二、填空题(每小题4分,共12分)4.(2013·泰州中考)计算:3a ·2a 2= .5.计算:(−37ab 2)(73a 2b)= .6.光的速度约为x 3×105km/s,太阳光到达地球需要的时间约为5×102s,则地球与太阳间的距离约为 km. 三、解答题(共26分)7.(8分)计算:(1)4y 3·(-2x 2y).(2)25x 2y 3·516xyz.(3)(3x 2y)3·(-4xy 2).(4)(-xy 2z 3)4·(-x 2y)3.8.(8分)有理数x,y 满足条件|2x-3y+1|+(x+3y+5)2=0,求代数式(-2xy)2·(-y 2)·6xy 2的值.【拓展延伸】x 9.(10分)已知三角表示2ab c ,方框表示(-3x z ω)y ,求×.答案解析1.【解析】选C.3a ·2b=3×2a ·b=6ab.2.【解析】选D.选项A 中,(2xy)3(-2xy)2=8x 3y 3×4x 2y 2=32x 5y 5,故此选项正确;选项B 中,(-2ab 2)2(-3a 2b)3=x 4a 2b 4×(-27)a 6b 3=-108a 8b 7,故此选项正确;选项C 中,(−23xy)2(94x 2y)x =49x x 2y 2×94x 2y=x 4y 3,故此选项正确;选项D 中,(13m 2n)(−13mn 2)2=13m 2n ×19m 2n 4=127m 4n 5,故此选项错误.3.【解析】选A.由题意知bc=a.因为5月份售出该品牌衬衣3b 件,每件打八折,则每件为0.8c 元.所以5月份该品牌衬衣的营业额为:3b ·0.8c=2.4bc=2.4a(元).所以5月份该品牌衬衣的营业额比4月份增加2.4a-a=1.4a(元).4.【解析】3a ·2a 2=6a 3.答案:6a 35.【解析】(−37ab 2)(73a 2b) =[(−37)×73](a ·a 2)(b 2·b) =-a 3b 3.答案:-a 3b 36.【解析】(3×105)×(5×102)=(3×5)×(105×102)=15×107=1.5×108.答案:1.5×1087.【解析】(1)原式=[4×(-2)]x 2·(y 3·y)=-8x 2y 4.(2)原式=(25×516)(x 2·x)(y 3·y)·z =18x 3y 4z. (3)原式=27x 6y 3·(-4xy 2)=[27×(-4)](x 6·x)(y 3·y 2)=-108x 7y 5.(4)原式=x 4y 8z 12·(-x 6y 3)=-(x 4·x 6)(y 8·y 3)z 12=-x 10y 11z 12.8.【解题指南】由|2x-3y+1|+(x+3y+5)2=0知,2x-3y+1=0,x+3y+5=0,建立方程组,解得x,y 后,代入代数式求值.【解析】由题意得{2x −3y +1=0,x +3y +5=0,可得{x =−2,y =−1. 所以(-2xy)2·(-y 2)·6xy 2=4x 2y 2·(-y 2)·6xy 2=-24x 3y 6.当x=-2,y=-1时,原式=-24×(-2)3×(-1)6=-24×(-8)=192.9.【解析】×=2mn 3·(-3n 5m)2=2mn 3·9n 10m 2=18n 13m 3.多项式的乘法(第2课时)(30分钟 50分)一、选择题(每小题4分,共12分)1.下列计算中,正确的有( )①(2a-3)(3a -1)=6a 2-11a+3;②(m+n)(n+m)=m 2+mn+n 2;③(a-2)(a+3)=a 2-6;④(1-a)(1+a)=1-a 2.A.4个B.3个C.2个D.1个2.若(x+3)(x+m)=x 2+kx-15,则m-k 的值为( )A.-3B.5C.-2D.23.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2x)那样拼成一个正方形,则中间空的部分的面积是()A.2mnB.(m+n)2C.(m-n)2D.m2-n2二、填空题(每小题4分,共12分)4.当x=-7时,代数式(2x+5)(x+1)-(x-3)(x+1)的值为.5.已知(x2+px+8)(x2-3x+q)的展开式中不含x2项和x3项,则p+q的值为.6.若(x+a)(x+b)=x2-6x+8,则ab=.三、解答题(共26分)7.(8分)(1)化简(x+1)2-x(x+2).(2)先化简,再求值.(x+3)(x-3)-x(x-2),其中x=4.8.(8分)若(x-1)(x+1)(x+5)=x3+bx2+cx+d,求b+d的值.【拓展延伸】9.(10分)计算下列式子:(1)(x-1)(x+1)=.(2)(x-1)(x2+x+1)=.(3)(x-1)(x3+x2+x+1)=.(4)(x-1)(x4+x3+x2+x+1)=.用你发现的规律直接写出(x-1)(x n+x n-1+…+x+1)的结果.答案解析1.【解析】选C.因为(2a-3)(3a-1)=6a2-11a+3;(m+n)(n+m)=m2+2mn+n2;(a-2)(a+3)=a2+a-6;(1-a)(1+a)=1-a2,故正确的有2个.2.【解析】选A.因为(x+3)(x+m)=x2+(3+m)x+3m=x2+kx-15.所以m+3=k,3m=-15,解得m=-5,k=-2.所以m-k=-5-(-2)=-5+2=-3.3.【解析】选C.由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)2,又因为原矩形的面积为4mn,所以中间空的部分的面积=(m+n)2-4mn=(m-n)2.4.【解析】(2x+5)(x+1)-(x-3)(x+1)=(2x2+2x+5x+5)-(x2+x-3x-3)=x2+9x+8.把x=-7代入得:原式=(-7)2+9×(-7)+8=-6.答案:-65.【解析】因为(x2+px+8)(x2-3x+q)=x4-3x3+qx2+p x3-3px2+qpx+8x2-24x+8q=x4+(p-3)x3+(q-3p+8)x2+(qp-24)x+8q,又因为(x2+px+8)(x2-3x+q)的展开式中不含x2项和x3项,所以p-3=0,q-3p+8=0,所以p=3,q=1,所以p+q=4.答案:46.【解析】因为(x+a)(x+b)=x2+bx+ax+ab=x2+(a+b)x+ab,所以x2+(a+b)x+ab=x2-6x+8,所以ab=8.答案:87.【解析】(1)原式=(x+1)(x+1)-x(x+2)=x2+x+x+1-x2-2x=x2+2x+1-x2-2x=1.(2)原式=x2-3x+3x-9-x2+2x=2x-9.当x=4时,原式=2×4-9=-1.8.【解析】(x-1)(x+1)(x+5)=(x2-1)(x+5)=x3+5x2-x-5所以b=5,c=-1,d=-5.即b+d=5-5=0.9.【解析】(1)x2-1(2)x3-1(3)x4-1(4)x5-1(x-1)(x n+x n-1+…+x+1)=x n+1-1.平方差公式(30分钟50分)一、选择题(每小题4分,共12分)1.化简:(a+1)2-(a-1)2=()A.2B.4C.4aD.2a2+22.下列各式计算正确的是()A.(x+2)(x-2)=x2-2B.(2a+b)(-2a+b)=4a2-b2C.(2x+3)(2x-3)=2x2-9D.(3ab+1)(3ab-1)=9a2b2-13.下列运用平方差公式计算错误的是()A.(a+b)(a-b)=a2-b2B.(x+1)(x-1)=x2-1C.(2x+1)(2x-1)=2x2-1D.(-a+2b)(-a-2b)=a2-4b2二、填空题(每小题4分,共12分)4.如果x+y=-4,x-y=8,那么代数式x2-y2的值是.5.计算:2 01422 013×2 015+1=.6.观察下列各式,探索发现规律:22-1=3=1×3;42-1=15=3×5;62-1=35=5×7;82-1=63=7×9;102-1=99=9×11;…用含正整数n的等式表示你所发现的规律为.三、解答题(共26分)7.(8分)(1)(2013·株洲中考)先化简,再求值:(x-1)(x+1)-x(x-3),其中x=3.8.(8分)(2013·义乌中考)如图1,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿着线段AB剪开,把剪成的两张纸片拼成如图2的等腰梯形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请直接用含a,b的代数式表示S1,S2.(2)请写出上述过程所揭示的乘法公式.【拓展延伸】9.(10分)阅读下列材料:某同学在计算3×(4+1)(42+1)时,把3写成4-1后,发现可以连续运用平方差公式计算:3×(4+1)(42+1)=(4-1)(4+1)(42+1)=(42-1)(42+1)=162-1.很受启发,后来在求(2+1)(22+1)(24+1)(28+1)…(21024+1)的值时,又改造此法,将乘积式前面乘以1,且把1写为2-1得(2+1)(22+1)(24+1)(28+1)…(21024+1)=(2-1)(2+1)(22+1)(24+1)(28+1)…(21024+1)=(22-1)(22+1)(24+1)(28+1)…(21024+1)=(24-1)(24+1)(28+1)…(21024+1)=…=(21024-1)(21024+1)=22048-1.回答下列问题:(1)请借鉴该同学的经验,计算:(3+1)(32+1)(34+1)(38+1).(2)借用上面的方法,再逆用平方差公式计算:(1−122)(1−132)(1−142)…(1−12 0132).答案解析1.【解析】选C.(a+1)2-(a-1)2=[(a+1)-(a-1)]·[(a+1)+(a-1)]=2×2a=4a.2.【解析】选D.(x+2)(x-2)=x2-4≠x2-2;(2a+b)(-2a+b)=(b+2a)(b-2a)=b2-4a2≠4a2-b2;(2x+3)(2x-3)=4x2-9≠2x2-9;(3ab+1)(3ab-1)=9a2b2-1.3.【解析】选C.根据平方差得(2x+1)(2x-1)=4x2-1,所以C错误.而A,B,D符合平方差公式条件,计算正确.4.【解析】因为x+y=-4,x-y=8,所以x 2-y 2=(x+y)(x-y)=(-4)×8=-32.答案:-325.【解析】原式=2 0142(2 014−1)(2 014+1)+1= 2 01422 0142−1+1=2 01422 0142=1.答案:16.【解析】观察式子,每个式子中等号左边的被减数是偶数的平方,减数都是1,等号右边是此偶数前后两个连续奇数的乘积,所以用含正整数n 的等式表示其规律为(2n)2-1=(2n-1)(2n+1). 答案:(2n)2-1=(2n-1)(2n+1)7.【解析】原式=x 2-1-(x 2-3x)=x 2-1-x 2+3x=3x-1,当x=3时,原式=3×3-1=8.(2)解方程:(x-4)(x+3)+(2+x)(2-x)=4.【解析】去括号得x 2-4x+3x-12+4-x 2=4,移项得x 2-4x+3x-x 2=4+12-4,合并同类项得-x=12,系数化为1得x=-12.8.【解析】(1)图1中阴影部分面积为S 1=a 2-b 2;图2中阴影部分面积为S 2=12(2b+2a)(a-b)=(a+b)(a-b).(2)(a+b)(a-b)=a 2-b 2.9.【解析】(1)(3+1)(32+1)(34+1)(38+1)=12(32-1)(32+1)(34+1)(38+1) =12(34-1)(34+1)(38+1)=12(38-1)(38+1) =12(316-1).(2)(1−12)(1−13)(1−14)…(1−12 013) =(1−12)(1+12)(1−13)(1+13)…(1−12 013)(1+12 013) =12×32×23×43×…×2 0122 013×2 0142 013=12×2 0142 013=1 0072 013.完全平方公式(30分钟 50分)一、选择题(每小题4分,共12分)1.(2013·湘西州中考)下列运算正确的是( )A.a 2-a 4=a 8B.(x-2)(x-3)=x 2-6C.(x-2)2=x 2-4D.2a+3a=5a2.若a+1a =7,则a 2+1a 2的值为( )A.47B.9C.5D.513.如图是一个正方形,分成四部分,其面积分别是a 2,ab,ab,b 2,则原正方形的边长是()A.a 2+b 2B.a+bC.a-bD.a 2-b 2二、填空题(每小题4分,共12分)4.(2013·晋江中考)若a+b=5,ab=6,则a-b= .5.(2013·泰州中考)若m=2n+1,则m 2-4mn+4n 2的值是 .6.若(x +1x )2=9,则(x −1x )2的值为 .三、解答题(共26分)7.(10分)(1)(2013·福州中考)化简:(a+3)2+a(4-a).(2)(2013·宁波中考)先化简,再求值:(1+a)(1-a)+(a-2)2,其中a=-3.8.(6分)利用完全平方公式计算:(1)482.(2)1052.【拓展延伸】9.(10分)如图所示,有四个同样大小的直角三角形,两条直角边分别为a,b,斜边为c,拼成一个正方形,但中间却留有一个小正方形,你能利用它们之间的面积关系,得到关于a,b,c 的等式吗?答案解析1.【解析】选D.A.a 2与a 4不是同类项,不能合并,故本选项错误;B.(x-2)(x-3)=x 2-5x+6,故本选项错误;C.(x-2)2=x 2-4x+4,故本选项错误;D.2a+3a=5a,故本选项正确.2.【解析】选A.因为a+1a =7,所以(a +1a )2=72,a 2+2·a ·1a +(1a )2=49,a 2+2+1a 2=49,所以a 2+1a 2=47.3.【解析】选B.因为a 2+2ab+b 2=(a+b)2,所以边长为a+b.4.【解析】因为(a-b )2=(a+b)2-4ab=25-24=1,所以a-b=±1.答案:±15.【解析】因为m=2n+1,即m-2n=1,所以原式=(m-2n)2=1.答案:16.【解析】由(x +1x )2=9,可得x 2+2+1x 2=9. 即x 2+1x 2=7,(x −1x )2=x 2-2+1x 2=7-2=5.答案:57.【解析】(1)原式=a 2+6a+9+4a-a 2=10a+9.(2)原式=1-a 2+a 2-4a+4=-4a+5,当a=-3时,原式=12+5=17.8.【解析】(1)482=(50-2)2=2500-200+4=2304.(2)1052=(100+5)2=10000+1000+25=11025.9.【解析】因为小正方形的边长为b-a,所以它的面积为(b-a)2,所以大正方形的面积为4×12×a ×b+(b-a)2. 又因为大正方形的面积为c 2,所以4×12×a ×b+(b-a)2=c 2, 即2ab+b 2-2ab+a 2=c 2,得a 2+b 2=c 2.运用乘法公式进行计算(30分钟 50分)一、选择题(每小题4分,共12分)1.若a 2+ab+b 2+A=(a -b)2,则A 式应为( )A.abB.-3abC.0D.-2ab2.计算(m-2n-1)(m+2n-1)的结果为()A.m2-4n2-2m+1B.m2+4n2-2m+1C.m2-4n2-2m-1D.m2+4n2+2m-13.计算(2a+3b)2(2a-3b)2的结果是()A.4a2-9b2B.16a4-72a2b2+81b4C.(4a2-9b2)2D.4a4-12a2b2+9b4二、填空题(每小题4分,共12分)4.计算(-3x+2y-z)(3x+2y+z)=.5.矩形ABCD的周长为24,面积为32,则其四条边的平方和为.6.已知a-b=3,则a(a-2b)+b2的值为.三、解答题(共26分)7.(8分)求代数式(a+2b)(a-2b)+(a+2b)2-4ab的值,其中a=1,b=110.8.(8分)计算:(x+1)(x+2)(x+3)(x+4).【拓展延伸】9.(10分)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中的系数等等.(1)根据上面的规律,写出(a+b)5的展开式.(2)利用上面的规律计算:25-5×24+10×23-10×22+5×2-1.答案解析1.【解析】选B.因为(a-b)2=a2-2ab+b2,所以a2+ab+b2+A=a2-2ab+b2,所以A=-3ab.2.【解析】选A.(m-2n-1)(m+2n-1)=[(m-1)-2n][(m-1)+2n]=(m-1)2-4n2=m2-2m+1-4n2=m2-4n2-2m+1.3.【解析】选B.(2a+3b)2(2a-3b)2=[(2a+3b)(2a-3b)]2=(4a2-9b2)2=16a4-72a2b2+81b4.4.【解析】(-3x+2y-z)(3x+2y+z)=[2y-(3x+z)][2y+(3x+z)]=4y2-(3x+z)2=4y2-9x2-6xz-z2.答案:4y2-9x2-6xz-z25.【解析】因为矩形ABCD的周长为24,面积为32,所以2AB+2BC=24,AB·BC=32,所以AB+BC=12.因为AB2+BC2+CD2+AD2=2AB2+2BC2,所以AB2+BC2+CD2+AD2=2[(AB+BC)2-2AB·BC]=2×(122-64)=160,所以AB2+BC2+CD2+AD2=160.答案:1606.【解析】a(a-2b)+b2=a2-2ab+b2=(a-b)2.当a-b=3时,原式=32=9.答案:97.【解析】原式=a2-4b2+a2+4ab+4b2-4ab=2a2,当a=1,b=110时,原式=2a2=2×12=2.8.【解析】原式=[(x+1)(x+4)][(x+2)(x+3)]=(x2+5x+4)(x2+5x+6)=[(x2+5x)+4][(x2+5x)+6]=(x2+5x)2+10(x2+5x)+24=x4+10x3+25x2+10x2+50x+24=x4+10x3+35x2+50x+24.9.【解析】(1)(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.(2)原式=25+5×24×(-1)+10×23×(-1)2+10×22×(-1)3+5×2×(-1)4+(-1)5 =(2-1)5=1.多项式的因式分解(30分钟50分)一、选择题(每小题4分,共12分)1.(2013·茂名中考)下列各式由左边到右边的变形中,属于因式分解的是()A.a(x+y)=ax+ayB.x2-4x+4=x(x-4)+4C.10x2-5x=5x(2x-1)D.x2-16+6x=(x+4)(x-4)+6x2.(2013·柳州中考)下列式子是因式分解的是()A.x(x-1)=x2-1B.x2-x=x(x+1)C.x2+x=x(x+1)D.x2-x=(x+1)(x-1)3.若多项式x2-px-6因式分解的结果是(x-1)(x+6),则p的值是()A.-1B.1C.5D.-5二、填空题(每小题4分,共12分)4.由(x-2)(x-1)=x2-3x+2,则x2-3x+2因式分解为.5.若x+5,x-3都是多项式x2-kx-15的因式,则k=.6.如果多项式M可因式分解为3(1+2x)(-2x+1),则M=.三、解答题(共26分)7.(8分)两位同学将一个二次三项式因式分解,一位同学因看错了一次项系数而分解成2(x-1)(x-9),另一位同学因看错了常数项而分解成2(x-2)(x-4),求原多项式.8.(8分)已知关于x的二次三项式x2+mx+n有一个因式(x+5),且m+n=17,试求m,n的值.【拓展延伸】9.(10分)已知多项式x4+2x3-x+m能因式分解,且有一个因式为x-1.(1)当x=1时,求多项式x4+2x3-x+m的值.(2)根据(1)的结果,求m的值.。
2024年第八章 二元一次方程组课堂练习题及答案第1课时 和差倍分与配套问题
能力突破
素养达标
5.一批宿舍,若每间住1人,则10人无法安排;若每间住3人,则有10间无人
住,这批宿舍有 20
间.
4
5
6
第1课时 和差倍分与配套问题
基础通关
能力突破
素养达标
6.学生课桌装配车间共有木工9人,每个木工每天能装配双人课桌4张
或者单人椅10把.一张双人课桌与两把单人椅配为一套.问几人装配双
+ + + = ,
根据题意,得ቊ
+ + − = ( + + + ),
= ,
解得ቊ
= .
∴10x+y=14,10y+x=41.
答:聪聪现在的年龄是14岁,妈妈现在的年龄是41岁.
11
个座位.
(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(用二
元一次方程组解答)
7
8
9
10
第1课时 和差倍分与配套问题
基础通关
能力突破
素养达标
解:(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调
配22座新能源客车(x+5)辆,
+ = ,
= ,
依题意,得ቊ
十位数字与个位数字正好相反.同时,他还发现,过10年,妈妈岁数减1(岁)刚
好是自己岁数加1(岁)的2倍;再过1年,他们两人的年龄又一次相反,且十位
数字与个位数字的和为7,求聪聪和他妈妈现在的年龄.
11
第1课时 和差倍分与配套问题
基础通关
能力突破
素养达标
解:设聪聪的年龄为(10x+y)岁,则妈妈的年龄为(10y+x)岁.
解二元一次方程组(第二课时 加减消元法)(练习)七年级数学下册同步课堂(人教版)(解析版)
第八章二元一次方程组8.2解二元一次方程组(第二课时加减消元法)精选练习答案基础篇一、单选题(共10小题)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为()A .﹣4B .4C .﹣2D .2【答案】B 【详解】试题解析:512{34a b a b +=-=①②,①+②:4a+4b=16则a+b=4,故选B .2.若|321|20x y x y --++-=,则x ,y 的值为()A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩【答案】D 【详解】详解:∵32120x y x y --++-,∴321020x y x y --⎧⎨+-⎩==将方程组变形为32=1=2x y x y -⎧⎨+⎩①②,①+②×2得,5x=5,解得x=1,把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为11x y =⎧⎨=⎩.故选D .3.以方程组21x y x y +=⎧⎨-=⎩的解为坐标的点(x ,y )在平面直角坐标系中的位置是()A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【详解】解:解方程组21x yx y+=⎧⎨-=⎩,得1.50.5xy=⎧⎨=⎩,∴点(1.5,0.5)在第一象限.故选:A.4.用加减消元法解二元一次方程组3421x yx y+=⎧⎨-=⎩①②时,下列方法中无法消元的是()A.①×2﹣②B.②×(﹣3)﹣①C.①×(﹣2)+②D.①﹣②×3【答案】D【详解】方程组利用加减消元法变形即可.解:A、①×2﹣②可以消元x,不符合题意;B、②×(﹣3)﹣①可以消元y,不符合题意;C、①×(﹣2)+②可以消元x,不符合题意;D、①﹣②×3无法消元,符合题意.故选:D.5.方程组3276211x yx y+=⎧⎨-=⎩,的解是()A.15xy=-⎧⎨=⎩,B.12xy=⎧⎨=⎩,C.31xy,=⎧⎨=-⎩D.212xy=⎧⎪⎨=⎪⎩,【答案】D 【详解】解:327 6211x yx y+=⎧⎨-=⎩①②,①+②得:9x=18,即x=2,把x=2代入②得:y=1 2,则方程组的解为:212 xy=⎧⎪⎨=⎪⎩,故选D.6.若二元一次方程组3,354x yx y+=⎧⎨-=⎩的解为,,x ay b=⎧⎨=⎩则-a b的值为()A .1B .3C .14-D .74【答案】D 【详解】解:3,354,x y x y +=⎧⎨-=⎩①②+①②,得447x y -=,所以74x y -=,因为,,x a y b =⎧⎨=⎩所以74x y a b -=-=.故选D.7.若方程组31331x y ax y a+=+⎧⎨+=-⎩的解满足x +y =0,则a 的值为()A .﹣1B .1C .0D .无法确定【答案】A 【详解】方程组两方程相加得:4(x+y )=2+2a ,即x+y=12(1+a ),由x+y=0,得到12(1+a )=0,解得:a=-1.故选A .8.用加减法解方程组2333211x y x y +=⎧⎨-=⎩时,有下列四种变形,其中正确的是()A .4669633x y x y +=⎧⎨-=⎩B .6396222x y x y +=⎧⎨-=⎩C .6936411x y x y +=⎧⎨-=⎩D .4639611x y x y +=⎧⎨-=⎩【答案】A 【详解】解:若消去x ,则有:6996422x y x y +=⎧⎨-=⎩;若消去y ,则有:4669633x y x y +=⎧⎨-=⎩;∴用加减消元法正确的是A ;9.关于x ,y 的方程组2318517ax y x by +=⎧⎨-+=⎩(其中a ,b 是常数)的解为34x y =⎧⎨=⎩,则方程组2()3()18()5()17a x y x y x y b x y ++-=⎧⎨+--=-⎩的解为()A .34x y =⎧⎨=⎩B .71x y =⎧⎨=-⎩C . 3.50.5x y =⎧⎨=-⎩D . 3.50.5x y =⎧⎨=⎩【答案】C 【详解】详解:由题意知:3{4x y x y +=-=①②,①+②,得:2x =7,x =3.5,①﹣②,得:2y =﹣1,y =﹣0.5,所以方程组的解为 3.50.5x y =⎧⎨=-⎩.故选C .10.“若方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是()A .48x y =⎧⎨=⎩B .912x y =⎧⎨=⎩C .1520x y =⎧⎨=⎩D .9585x y ⎧=⎪⎪⎨⎪=⎪⎩【答案】D 【详解】∵方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,∴111222985985a b c a b c +=⎧⎨+=⎩,两边都除以5得:11122298559855a b c a b c ⎧+=⎪⎪⎨⎪+=⎪⎩,对照方程组111222a x b y c a x b y c +=⎧⎨+=⎩可得,方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为9585x y ⎧=⎪⎪⎨⎪=⎪⎩,提升篇二、填空题(共5小题)11.已知x 、y 满足方程组3123x y x y +=-⎧⎨+=⎩,则x y +的值为__________.【答案】1【详解】解:3123x y x y +=-⎧⎨+=⎩①②①2⨯得:262x y +=-③③-②得:55,y =-1,y ∴=-把1y =-代入①:31,x ∴-=-2,x ∴=所以方程组的解是:2,1x y =⎧⎨=-⎩1.x y ∴+=故答案为:1.12.已知x 2{y 1==是二元一次方程组mx ny 7{nx my 1+=-=的解,则m+3n 的立方根为.【答案】2【详解】把x 2{y 1==代入方程组mx ny 7{nx my 1+=-=,得:2m n 7{2n m 1+=-=,解得13m 5{9n 5==,∴139m 3n 3855+=+⨯=33m 3n 82+,故答案为2.13.若单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,则m-7n 的算术平方根是_________.【答案】4【详解】根据同类项定义由单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,可以得到关于m 、n 的二元一次方程4=m ﹣n ,2m+n=2,解得:m=2,n=﹣2,因此可求得m ﹣7n=16,即m ﹣7n 的算术平方根==4,故答案为4.14.二元一次方程组627x y x y +=⎧⎨+=⎩的解为_____.【答案】15x y =⎧⎨=⎩【详解】627x y x y +=⎧⎨+=⎩①②,②﹣①得1x =③将③代入①得5y =∴15x y =⎧⎨=⎩故答案为15x y =⎧⎨=⎩15.已知32x y =⎧⎨=-⎩是方程组37ax by bx ay +=⎧⎨+=-⎩的解,则代数式(a+b)(a-b)的值为_________【答案】−8【详解】解:把32x y =⎧⎨=-⎩代入方程组得:323 327a b b a -=⎧⎨-=-⎩①②,①×3+②×2得:5a =−5,即a =−1,把a =−1代入①得:b =−3,则(a+b)(a-b)=a 2−b 2=1−9=−8,故答案为−8.三、解答题(共2小题)16.解二元一次方程组(1)31529x y x y +=⎧⎨-=⎩(2)3523153232x y x y x+=⎧⎪-+⎨-=-⎪⎩【答案】(1)12x y =⎧⎨=-⎩(2)2345x y ⎧=-⎪⎪⎨⎪=⎪⎩【详解】(1)31529x y x y +=⎧⎨-=⎩①②,将①式×2+②得6529x x +=+,1111x =,解得1x =,将1x =代入①得:2y =-,故解为:12x y =⎧⎨=-⎩(2)3523153232x y x y x +=⎧⎪-+⎨-=-⎪⎩,将方程组整理得:()()35223135312x y x y x +=⎧⎪⎨--+=-⎪⎩即35231510x y x y +=⎧⎨--=-⎩①②,①+②得:108y -=-,解得:45y =,将45y =代入①得:23x =-,∴解为2345x y ⎧=-⎪⎪⎨⎪=⎪⎩17.用消元法解方程组35432x y x y -=⎧⎨-=⎩①②时,两位同学的解法如下:解法一:解法二:由②,得3(3)2x x y +-=,③由①-②,得33x =.把①代入③,得352x +=.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“⨯”.(2)请选择一种你喜欢的方法,完成解答.【答案】(1)解法一中的计算有误;(2)原方程组的解是12x y =-⎧⎨=-⎩【详解】(1)解法一中的计算有误(标记略)(2)由①-②,得:33x -=,解得:1x =-,把1x =-代入①,得:135y --=,解得:2y =-,所以原方程组的解是12x y =-⎧⎨=-⎩.。
北师大版八年级数学上册第五章《应用二元一次方程组-里程碑上的数》课时练习题(含答案)
北师大版八年级数学上册第五章《5.应用二元一次方程组-里程碑上的数》课时练习题(含答案)一、单选题1.一个两位数,十位数字比个位数字大4;将这个两位数的十位数字与个位数字对调后,比原数减少了36,求原两位数.若设原两位数十位数字是x ,个位数字是y ,则列出方程组为( )A .4101036x y x y y x -=⎧⎨+=+-⎩B .4101036x y x y y x +=⎧⎨+=+-⎩C .4103610x y x y y x-=⎧⎨+-=+⎩D .4103610y x x y y x-=⎧⎨+-=+⎩2.如图,AB ⊥BC ,∠ABC 的度数比∠DBC 的度数的两倍少15°,设∠ABD 和∠DBC 的度数分别为x °,y °,那么下面可以求出这两个角的度数的方程组是( ).A .9015x y x y +=⎧⎨=-⎩B .90215x y x y +=⎧⎨=+⎩C .90152x y x y +=⎧⎨=-⎩D .90215x y x y +=⎧⎨=-⎩3.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了min x ,下坡用了min y ,根据题意可列方程组( )A .35120016x y x y +=⎧⎨+=⎩B .35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩C .35 1.216x y x y +=⎧⎨+=⎩D .351200606016x y x y ⎧+=⎪⎨⎪+=⎩4.《算法统宗》中有一道题为“隔沟计算”,其原文是:甲乙隔沟放牧,二人暗里参详,甲云得乙九只羊,多你一倍之上;乙说得甲九只羊,二家之数相当,两人闲坐恼心肠,画地算了半晌.这个题目的意思是:甲、乙两个牧人隔着山沟放羊,两人都在暗思对方有多少只羊,甲对乙说:“我若得你9只羊,我的羊多你一倍.”乙对甲说:“我若得你9只羊,我们两家的羊数就一样多.”设甲有x只羊,乙有y只羊,根据题意列出二元一次方程组为()A.()929,99.x yy x⎧-=+⎨+=-⎩B.()929,99.x yy x⎧+=-⎨+=-⎩C.92,9.x yy x+=⎧⎨+=⎩D.92,99.x yy x-=⎧⎨+=-⎩5.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,物品价格为y钱,可列方程组为()A.8374x yx y-=⎧⎨+=⎩B.8374x yx y+=⎧⎨-=⎩C.8374y xy x-=⎧⎨-=⎩D.8374x yx y-=⎧⎨-=⎩6.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x与y的和是()A.9 B.10 C.11 D.127.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x元,水笔每支为y元,那么根据题意,下列方程组中,正确的是()A.3201036x yx y-=⎧⎨+=⎩B.3201036x yx y+=⎧⎨+=⎩C.3201036y xx y-=⎧⎨+=⎩D.3102036x yx y+=⎧⎨+=⎩8.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A.9天B.11天C.13天D.22天二、填空题9.《九章算术》中记载了一道数学问题,其译文为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hú,是古代一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶可以盛酒x 斛、1个小桶可以盛酒y 斛.根据题意,可列方程组为__________.10.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十,问甲、乙持钱各几何?”译文是:今有甲、乙两人持钱不知道各有多少,甲若得到乙所有钱的12,则甲有50钱,乙若得到甲所有钱的23,则乙也有50钱,问甲、乙各持钱多少?设甲持钱数为x 钱,乙持钱数为y 钱,列出关于x ,y 的二元一次方程组是______. 11.某公司向银行申请了甲、乙两种贷款,共计68万元,每年需付出3.2万元利息.已知甲种贷款每年的利率为4.5%,乙种贷款每年的利率为5%,则该公司申请的甲种贷款的数额为_____万元.12.小明作业本中有一页被墨水污染了,已知他所列的方程组是正确的,写出题中被墨水污染的条件和第一个方程,并求解这道应用题.应用题:小东在某商场看中的一台电视和一台空调在“五一”前共需要5500元,由于该商场开展“五一”促销活动,同样的电视打八折销售,于是小东在促销期间购买了同样的电视一台,空调两台,共花费7200元,求“五一”前同样的电视和空调每台各多少元?解:设“五一”的同样的电视每台x 元,空调每台y 元,根据题意,得()0.824007200x y ⎧⎪⎨+-=⎪⎩■■■■①②. 被墨水污染的条件是:_________________;被墨水污染的第一个方程是:___________. 三、解答题13.2022年北京冬奥会和冬残奥会的吉祥物“冰墩墩”和“雪容融”深受国内外广大朋友的喜爱,北京奥组委官方也推出了许多与吉祥物相关的商品,其中有A 型冰墩墩和B 型雪容融两种商品.已知购买1个A 型商品和1个B 型商品共需要220元,购买3个A 型商吕和2个B 型商品共需要560元,求每个A 型商品的售价.14.根据市场调查,某厂某种消毒液的大瓶装(500g) 和小瓶装(250g) 两种产品的销售数量(按瓶计算)比为2:5.该厂每天生产这种消毒液22.5吨,这些消毒液应分装大、小瓶两种产品各多少瓶?15.如图,在33⨯的方格内,填写了一些代数式和数.(1)在图1中各行、各列及对角线上三个数之和都相等,请你求出x ,y 的值; (2)把满足(1)的其它6个数填入图2中的方格内.16.5月19日是“中国旅游日”,为拓宽学生视野,某校组织去井冈山开展研学旅行活动.在此次活动中,小明、小亮等同学随家长一同到某游乐园游玩.已知成人票每张35元,学生票按成人票五折优惠.他们一共12人,门票共需350元. (1)小明他们一共去了几个成人,几个学生?(2)如果团体票(16人或16人以上)按成人票六折优惠,请你帮助小明算一算,用哪种方式购票更省钱?17.如果一个自然数N 的个位数字不为0,且能分解成A ×B ,其中A 与B 都是两位数,A 的十位数字比B 的十位数字大2,A 、B 的个位数字之和为10,则称数N 为“美好数”,并把数N 分解成N A B =⨯的过程,称为“美好分解”.例如:∵2989 6149=⨯,61的十位数字比49的十位数字大2,且61、49的个位数字之和为10,∴2989是“美好数”;又如:∵6053519=⨯,35的十位数字比19的十位数字大2,但个位数字之和不等于10,∴605不是“美好数”.(1)判断525,1148是否是“美好数”?并说明理由;(2)把一个大于4000的四位“美好数”N 进行“美好分解”,即分解成N A B =⨯,A 的各个数位数字之和的2倍与B 的各个数位数字之和的和能被7整除,求出所有满足条件的N .18.如图,在数轴上有A ,B 两点,其中点A 在点B 的左侧,已知点B 对应的数为4,点A 对应的数为a .(1)若7113372663145a ⎛⎫=⨯-⨯÷⨯ ⎪⎝⎭,则线段AB 的长为______(直接写出结果);(2)若点C 在射线AB 上(不与A ,B 重合),且236AC BC -=,求点C 对应的数;(结果用含a 的式子表示)(3)若点M 在线段AB 之间,点N 在点A 的左侧(M 、N 均不与A 、B 重合),且2AM BM -=,当3AMAN =,6BN BM =时,求a 的值。
人教版初中数学消元-解二元一次方程组精选课时练习(含答案)2
y
1
x 2
26.
y
7 2
参考答案
答案第 1页,总 3页
本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
x 9 27. 2
y 4
x 10
x 6
28.(1)
y
10
(2)
y
4
x 1
29.
y
1
x 2
x 3
30.(1)
y
2
,(2)
y
2
.
x 5
x 3
31.(1)是
y
B.①×(﹣3)+②×2,消去 x
C.①×2﹣②×3,消去 y
D.①×3﹣②×2,消去 x
2.关于 x,y
的方程组
a1x+b1y=c1 a2x+b2y=c2
的解是
x y
= =
4 1
,则关于
x,y
的方程组
a1 a2
x-1 x-1
+b1 +b2
-y -y
=c1 =c2
的解是( )
A.
x y
= =
3 1
B.
(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“ ”.
(2)请选择一种你喜欢的方法,完成解答.
2x 3y 7
37.解方程组:
x
3
y
8
.
5x 3y n 38.已知关于 x,y 的二元一次方程组 3x 2 y 2n 1 的解适合方程 x+y=6,求 n 的
值.
试卷第 4页,总 6页
x
x
y
y
3.2
3.2
的解为(
)
新人教版数学人教版七年级下《8.1二元一次方程组》课时练习含答案
新人教版数学七年级下册8.1二元一次方程组课时练习一、选择题:1.下列方程中,是二元一次方程的是( ) A .324x y z -= B .690xy += C .146y x += D .244y x -=答案:D知识点:二元一次方程的定义 解析:解答:A 中有三个未知数,所以是三元方程,B 中未知项的次数为2,C 中1x不是整式. 分析:掌握判断二元一次方程的三个必需条件:①含有两个未知数;②含有未知数的项的次数是1;③等式两边都是整式.2.下列方程组中,是二元一次方程组的是( )A .228423119 (237)54624x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩ 答案:A知识点:二元一次方程组的定义 解析:解答:B 中的方程组中含有三个未知数,C 中x 2这一项是二次的,D 中的x 2这一项是二次的,A 是符合二元一次方程组定义的.分析:二元一次方程组的三个必需条件:①方程组中一共含有两个未知数,②每个含未知数的项次数为1;③一共有两个方程且每个方程都是整式方程.3.二元一次方程51121a b -=( )A .有且只有一解B .有无数解C .无解D .有且只有两解 答案:B知识点:二元一次方程的解 解析:解答:不加限制条件时,一个二元一次方程有无数个解. 分析:不加限制条件时,一个二元一次方程有无数个解.4.方程1y x =-与325x y +=的公共解是( )A .3333...2422x x x x B C D y y y y ==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩答案:C知识点:二元一次方程的解 解析:解答:使两个二元一次方程都成立的两个未知数的值是它们的公共解,所以逐个代入验证. 分析:将选项中的未知数的值代入时,不能满足其中的任意一个都可以将答案排除.5.若()22320x y -++=,则xy的值是( ) A .-1 B .-2 C .-3 D .32答案:C知识点:绝对值的非负性;平方的非负性;解二元一次方程组;代数式求值 解析:解答:因为()22320x y ++=-,又因为()220,320x y ≥+≥-,所以20320x y =⎧⎨+=⎩-解得223x y =⎧⎪⎨=-⎪⎩,所以2233x y ⎛⎫=÷-=- ⎪⎝⎭. 分析:目前为止我们所学的具有非负性的只有绝对值与平方,这个要牢牢记住.6.方程组43235x y kx y -=⎧⎨+=⎩的解与x 与y 的值相等,则k 等于( )A .2B .1C .6D .4 答案:B知识点:二元一次方程组的解 解析:解答:因为x 与y 的值相等,所以我们可以将方程组中的所有y 都换成x 即43235x x kx x -=⎧⎨+=⎩,那么1x kx =⎧⎨=⎩,所以k =1.分析:将方程组中的所有x 换成y 有一样的解法.7.下列各式,属于二元一次方程的个数有( ) ①27xy x y +-=; ②41x x y +=-; ③15y x+=; ④x y =; ⑤222x y -= ⑥62x y - ⑦1x y z ++= ⑧()2212y y x y x -=-+y A .1 B .2 C .3 D .4 答案:C知识点:二元一次方程的定义 解析:解答:其中②④⑧是二元一次方程,所以选择C .分析:根据二元一次方程的定义来判定,含有两个未知数且含未知数的项的次数是1次的整式方程叫二元一次方程,注意⑧整理后是二元一次方程.8.某年级学生共有246人,其中男生人数y 比女生人数x 的2倍少2人,则下面所列的方 程组中符合题意的有( )246.22x y A y x +=⎧⎨=-⎩246.22x y B x y +=⎧⎨=+⎩216.22x y C y x +=⎧⎨=+⎩246.22x y D y x +=⎧⎨=+⎩ 答案:B知识点:二元一次方程组的应用 解析:解答:题目中的相等关系是①男生人数+女生人数=年级总人数,②男生人数比女生人数的2倍少2人则女生人数的2倍比男生人数多2,所以可以列出B . 分析:列二元一次方程组的关键是找到题目中的相等关系.9.如果21ax y +=是关于x 、y 的二元一次方程,那么a 的值应满足( )A .a 是有理数B .a ≠0C .a =1D .a 是正有理数答案:B知识点:二元一次方程的定义解析:解答:二元一次方程中含有两个未知数,所以a ≠0,若a=0,则等式中只含有y 一个未知数,这个等式就不是二元一次方程. 分析:紧扣二元一次方程的定义解题.10.若()()217a x b y -++=是关于x 、y 的二元一次方程,则( ) A .a ≠2 B .b ≠-1C .a ≠2且b ≠-1D .a ≠2或b ≠-1答案:C知识点:二元一次方程的定义解析:解答:二元一次方程中含有两个未知数,所以a ≠2且b ≠-1,若a=2或b =-2,则等式中只含有一个未知数或不含有未知数,这个等式就不是二元一次方程. 分析:紧扣二元一次方程的定义解题.11.已知二元一次方程组⎩⎨⎧=--=+②.643①,3y x y x 下列说法中,正确的是( )A.同时适合方程①、②的x 、y 的值是方程组的解B.适合方程①的x 、y 的值是方程组的解C.适合方程②的x 、y 的值是方程组的解D.同时适合方程①、②的x 、y 的值不一定是方程组的解 答案:A知识点:二元一次方程组的解解析:解答:二元一次方程组的解是二元一次方程组的两个方程的公共解,所以选A . 分析:紧扣二元一次方程组的解的定义解题.12.已知⎩⎨⎧-==11y x 是方程32=-ay x 的一个解,那么a 的值是( )A .1B .3C .-3D .-1答案:A知识点:二元一次方程的解;解一元一次方程解析:解答:将11x y =⎧⎨=-⎩代入方程23x ay -=得23a +=,解得1a =.分析:根据二元一次方程组的解的定义可以得到关于a 的一元一次方程,进而求得a 的值.13.方程4x +3y =16的所有正整数解的个数是( ) A .4 B . 3 C .2 D .1 答案:D知识点:二元一次方程的解解析:解答:因为要求的是方程的正整数解,所以可以将x 从1开始取值,同时y 的值也是正整数时,未知数x 、y 的值就是方程的正整数解,所以这个方程的正整数解为14x y =⎧⎨=⎩.分析:当2,3x =时,y 的值不是整数;当x 取大于3的整数时,y 的值不是正数,所以方程的正整数解只有14x y =⎧⎨=⎩.14.方程234mx y x -=+是关于x 、y 的二元一次方程,则m 的值范围是( ) A .m ≠0 B .m ≠−2 C .m ≠3 D .m ≠4 答案:D知识点:二元一次方程的定义 解析:解答:因为方程两边都含有x 的未知数,所以应该先将含有x 的项进行移项与合并得到()324m x y --=,又因为这个方程是关于x 、y 的二元一次方程,所以m -3≠0即m ≠3.分析:一个方程是关于x 、y 的二元一次方程则这个方程中的其它字母可以看作已知数进行运算,并且含未知数的项系数不为0.15.有一个两位数,它的十位数数字与个位数字之和为5,则符合条件的数有( ) A .4个 B .5个 C .6个 D .无数个 答案:B知识点:二元一次方程的应用;二元一次方程的解 解析:解答:设这个两位数十位与个位上的数字分别为x 、y ,那么根据题意可知即求5x y +=的非负整数解,其中0x ≠,所以解得14x y =⎧⎨=⎩,25x y =⎧⎨=⎩,32x y =⎧⎨=⎩,41x y =⎧⎨=⎩,50x y =⎧⎨=⎩,所以共有五个符合条件的两位数.分析:根据题意及两位数的实际意义将问题转化成求解二元一次方程的正整数解,但是实际中十位上的数字是不可以为0的,但是个位上的数字是可以为0的. 二、填空题16.已知方程2x +3y -4=0,用含x 的代数式表示y 为:y =_______;用含y 的代数式表示x 为:x =________. 答案:4243,32x y-- 知识点:二元一次方程的应用 解析:解答:因为2x +3y -4=0,所以3y =4-2x ,所以423x y -=,同理可得432yx -=. 分析:将一个二元一次方程写成用含x 的代数式表示y 时,可以将x 看作一个已知数,解一个关于y 的一元一次方程,用含y 的代数式表示x 时是一样的道理.17、在二元一次方程1322x y -+=中,当x =4时,y =_______;当y =-1时,x =______. 答案:43;-10知识点:二元一次方程的解 解析:解答:将x =4代入二元一次方程得14322y -⨯+=,解得43y =;将y =-1代入二元一次方程得()13122x -+⨯-=,解得x =-10.分析:根据二元一次方程的解,将一个未知数的值代入方程即可求得另一个未知数的解.18、若33125m n x y ---=是二元一次方程,则m =_____,n =______. 答案:43;2 知识点:二元一次方程的定义;解一元一次方程 解析:解答:因为33125m n xy ---=是二元一次方程,所以3m -3=1,n -1=1,所以43m =,n =2. 分析:根据二元一次方程的定义,所含未知数的次数都是1可列得3m -3=1,n -1=1. 19.已知2,3x y =-⎧⎨=⎩是方程x -ky =1的解,那么k =_______.答案:-1知识点:二元一次方程的解;解一元一次方程 解析: 解答:因为23x y =-⎧⎨=⎩ 是方程1x ky -=的解,所以231k --=,解得1k =-.分析:求方程中所含的字母系数的值,先把方程的解代入方程中,列出关于字母系数的方程,解之即可. 202157x y =⎧⎨=⎩为解的一个二元一次方程是_________. 答案:23x y -=;答案不唯一知识点:二元一次方程的解;二元一次方程的定义 解析:解答:符合二元一次方程的定义及所给的解即可,答案不唯一.分析:因为22573x y -=⨯-=,所以可列的二元一次方程23x y -=.三、解答题21.当y =-3时,二元一次方程3x +5y =-3和3y -2ax =a +2(关于x ,y 的方程)有相同的解,求a 的值. 答案:119-知识点:二元一次方程的解;解一元一次方程 解析:解答:解:∵y =-3时,3x +5y =-3,∴3x +5×(-3)=-3,∴x =4,∵方程3x +5y =-3•和3x -2ax =a +2有相同的解,∴3×(-3)-2a ×4=a +2,∴a =119-. 分析:根据题意先求得两个二元一次方程的公共解,再将公共解代入方程3y -2ax =a +2中从而求得a 的值.22.已知x ,y 是有理数,且()()221210x y -++=,则x -y 的值是多少?答案:12-知识点:二元一次方程的解;平方的非负性;绝对值 解析:解答:解:由()()221210x y -++=,可得10x -=│且210y +=,∴11,2x y =±=-. 当x =1,y =12-时,x -y =1+12=32;当x =-1,y =12-时,x -y =-1+12=12-.分析:任何有理数的平方都是非负数,且题中两非负数之和为0,则这两非负数()21x -与()221y +都等于0,从而得到│x │-1=0,2y +1=0.23.已知方程1352x y +=,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为41x y =⎧⎨=⎩.答案: x -y =3知识点:二元一次方程的解;二元一次方程的定义 解析:解答:解:经验算41x y =⎧⎨=⎩是方程12x+3y=5的解,再写一个方程x -y =3.分析:任写一个关于x 、y 的二元一次代数式,将41x y =⎧⎨=⎩代入求得的值写在等式右边即可;注意答案不唯一.24.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去2021,•问明明两种邮票各买了多少枚?答案:解:设0.8元的邮票买了x 枚,2元的邮票买了y 枚,根据题意得130.8220x y x y +=⎧⎨+=⎩.(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼? 答案:解:设有x 只鸡,y 个笼,根据题意得415(1)y xy x+=⎧⎨-=⎩.知识点:二元一次方程组的应用解析:解答:解:(1)设0.8元的邮票买了x 枚,2元的邮票买了y 枚,根据题意得130.8220x y x y +=⎧⎨+=⎩.(2)设有x 只鸡,y 个笼,根据题意得415(1)y xy x +=⎧⎨-=⎩.分析:实际问题的关键在于找到相等关系,(1)的相等关系为:两种邮票共有13枚与共花去2021(2)中的相等关系为:每个笼中放4只鸡,则多余一只鸡与每个笼里放5只,则多一个笼子.25、是否存在整数m ,使关于x 的方程()2922x m x +=--在整数范围内有解,你能找到 几个m 的值?你能求出相应的x 的解吗?答案: 存在四个m 的值,使得这个方程在整数范围内有解;m =1,x =-7 ;m =-1,x =7 ;m =7,x =-1 ;m =-7,x =1 知识点:二元一次方程的应用解析:解答:解:存在四组,理由:∵原方程可化简为mx =-7,∴当m =1时,x =-7;m =-1时,x =7;m =7时,x =-1;m =-7时x =1.分析:原方程的化简过程为:移项得()2229x m x +-=-,合并同类项得()mx=-.+-=-,即7m x227。
人教版初中消元-解二元一次方程组精选课时练习(含答案)6
人教版初中消元-解二元一次方程组精选课时练习(含答案) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.同时满足方程1132x y +=与325+=x y 的解是( ) A .2,x =3y = B .3,x =-4y = C .3,x =2y =- D .3,x =-2y =-2.用代入法解方程组23,328,y x x y =-⎧⎨-=⎩①②,时,将方程①代入②中,所得的方程正确的是( )A .3468x x +-=B .3468x x -+=C .3238x x +-= D .3268x x --= 3.二元一次方程组62x y x y +=⎧⎨=⎩的解是( ) A .33x y =⎧⎨=⎩ B .42x y =⎧⎨=⎩ C .21x y =⎧⎨=⎩ D .60x y =⎧⎨=⎩4.若关于x ,y 的方程组45ax by bx ay +=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,则+a b 的值是( ) A .1 B .2 C .3 D .45.如果255411x y x y -=⎧⎨-=⎩,则x :y 的值为( ) A .12 B .13 C .2 D .3 6.已知关于x ,y 的二元一次方程组57345x y a x y a -=⎧⎨-+=⎩,且x ,y 满足x –2y =0,则a 的值为( )A .2B .–4C .0D .5 7.用代入消元法解方程组25,328x y x y -=⎧⎨-=⎩时,消去y 后得到的方程是( )A .34100x x --=B .3458x x -+=C .32(52)8x x --=D .32(25)8x x --=8.用代入法解方程组2,25,x y x y =⎧⎨-=⎩①②较简单的方法是( ) A .由①得12y x =,然后代入②消去y B .由②得25y x =-,然后代入①消去yC .将①代入②消去xD .由②得1(5)2x y =+,然后代入①消去x 9.若|324|x y +-与26(573)x y +-互为相反数,则x ,y 的值是( ) A .21x y =⎧⎨=-⎩ B .11x y =⎧⎨=-⎩ C .12x y =-⎧⎨=⎩ D .11x y =-⎧⎨=⎩ 10.甲、乙两人同求方程ax -by =7的整数解,甲正确地求出一个解为11x y =⎧⎨=-⎩,乙把ax -by =7看成ax -by =1,求得一个解为12x y =⎧⎨=⎩,则a ,b 的值分别为( )A .25a b =⎧⎨=⎩B .52a b =⎧⎨=⎩C .35a b =⎧⎨=⎩D .53a b =⎧⎨=⎩ 11.方程组22{?23x y m x y +=++=中,若未知数x 、y 满足x-y>0,则m 的取值范围是( ) A .m >1B .m <1C .m >-1D .m <-1 12.解方程组①216511y x x y =+⎧⎨+=-⎩②2310236x y x y +=⎧⎨-=-⎩,比较简便的方法是( ) A .均用代入消元法 B .均用加减消元法C .①用代入消元法,②用加减消元法D .①用加减消元法,②用代入消元法 13.用加减消元法解方程组323415x y x y -=⎧⎨+=⎩①②消去y ,最简捷的方法是( ) A .①×4-②×3 B .①×4+②×3 C .②×2-① D .②×2+① 14.利用加减消元法解方程组2510536x y x y +=-⎧⎨-=⎩①②,下列做法正确的是( )C .要消去y ,可以将①×5+②×3D .要消去x ,可以将①×(-5)+②×2二、填空题15.若关于x ,y 的二元一次方程组57x y k x y k +=⎧⎨-=⎩,的解是二元一次方程2318x y +=的的平方根是________.16.(广西南宁市2018届九年级中考数学全真模拟试卷(二))已知方程组1132x my x y +=⎧⎨+=⎩有正整数解,则整数m 的值为_____.17.甲、乙两人共同解方程组由于甲看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=-⎩,,乙看错了方程②中的b ,得到方程组的解为54x y =⎧⎨=⎩,,则20172016110a b ⎛⎫+- ⎪⎝⎭的值为________.18.已知关于x ,y 的方程组3225435x y k x y k +=⎧⎨+=-⎩与方程3x y +=的解相同,则k 的值为________. 19.已知关于x ,y 的方程组23,32 1.x y k x y k +=⎧⎨+=+⎩①②,的解的和是k -,则k =________.20.解方程组10,2 4.x y x y +=⎧⎨-=⎩①②时,为了消去x ,可以将方程________变形为________. 三、解答题21.解方程组:32422x y x y -=⎧⎨-=⎩22.已知2003(x +y)2 与|12x +32y -1|的值互为相反数,试求: (1)求x 、y 的值;(2)计算x 2003+y 2004的值.23.解下列方程组:(1)6314x y x y -=⎧⎨-=⎩(2)6323()2()28x y x y x y x y +-⎧+=⎪⎨⎪+--=⎩. 24.3,25;x y x y =⎧⎨+=⎩25.解下列方程组.(1) 25{?242x y x y -=+= (2) ()()1212{?33211x y x y +-=-=- 26.三个同学同时解一道题:“若方程组111222,a x b y c a x b y c +=⎧⎨+=⎩的解是3,4,x y =⎧⎨=⎩求方程组111222325,325a x b y c a x b y c +=⎧⎨+=⎩的解”. 三个人各自提出不同的想法:甲说:“这个题目好像条件不够,不能求出它的解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元的方法来解决呢”?参考他们的讨论,你认为这个题目应该怎么解?27.解方程组(1)37528y x x y =-⎧⎨+=⎩ (2)324237x y x y -=⎧⎨+=⎩ (3)23,3813;x y x y -=⎧⎨-=⎩ (4) 223210x y x y +=⎧⎨-=⎩28.用加减消元法解下列方程组:(1)38,27;x y x y +=⎧⎨-=⎩(2)9215,3410;x y x y +=⎧⎨+=⎩(3)3(1)4(4),5(1)3(5).x y y x -=-⎧⎨-=+⎩ 29.对于有理数,规定新运算:x ※y =ax +by +xy ,其中a 、b 是常数,等式右边的是通常的加法和乘法运算。
人教版七年级数学下册-《二元一次方程组》课时练习(有答案)
七年级数学8.1《二元一次方程组》课时练习一、选择题:1、在下列方程中:(1)8x -4y =5;(2)3x 2-2y =1;(3)2x+3y =8;(4)2x +4y =3z ;(5)2xy +3x =0;(6)x 2+y 3=1.其中二元一次方程有( ) A .1个 B .2个 C .3个 D .4个2、某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( ) A .x ﹣y=20 B .x +y=20 C .5x ﹣2y=60 D .5x +2y=603、由方程组⎩⎪⎨⎪⎧2x +m =1,y -3=m 可得出x 与y 的关系是( ) A .2x +y =4 B .2x -y =4C .2x +y =-4D .2x -y =-44、下列方程组中,是二元一次方程组的是( )A.⎩⎪⎨⎪⎧2x +y =3,x -2y =5B.⎩⎪⎨⎪⎧12x -y 3=1,xy =5C.⎩⎪⎨⎪⎧x -2y =1,x +3z =8D.⎩⎪⎨⎪⎧32x -23y =-1,x 3+2y=3 5、若方程x 2m -1+5y 3n -2=7是关于x ,y 的二元一次方程,则(m -n)2020=( ) A. 0 B. 1 C. -1 D.无法确定6、已知⎩⎪⎨⎪⎧x =2,y =-3是关于x ,y 的二元一次方程ax -(2a -3)y =7的解,则a 的值为( ) A. 2 B. 4 C.3 D.57、下列各组数是二元一次方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解的是 ( ) A.⎩⎪⎨⎪⎧x =2,y =1 B.⎩⎪⎨⎪⎧x =1,y =2 C.⎩⎪⎨⎪⎧x =1,y =-2 D.⎩⎪⎨⎪⎧x =2,y =-1 8、学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( )A .B .C .D . 9、为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( ) A .4种 B .3种 C .2种 D .1种10、已知⎩⎪⎨⎪⎧x =2,y =1是方程y =kx -3的一组解,则k =( ) A. 2 B. -1 C.3 D.111、夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( ) A .B .C .D .12、某单位购买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元;乙种水的桶数是甲种水桶数的75%.设买甲种水x 桶,买乙种水y 桶,则所列方程组中正确的是( )A.⎩⎪⎨⎪⎧8x +6y =250,y =75%xB.⎩⎪⎨⎪⎧8x +6y =250,x =75%y C.⎩⎪⎨⎪⎧6x +8y =250,y =75%x D.⎩⎪⎨⎪⎧6x +8y =250,x =75%y 二、填空题:13、将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有 种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
认识二元一次方程组
一、判断下列方程是否是二元一次方程
(1)x+y +2z=6 ( ) (2)xy +4y -5y =9 ( )
(3)2x -5=3y +2x ( ) (4)3x 2-2y 2=10 ( )
(5)2x -3y ( ) (6) ( ) 二、判断后面括号中给出的x 、y 的值是否是前面方程的解
(1)2x-3y=6(x=0,y=4) ( ) (2)5x+2y=8(x=2,y=-1) ( )
三、能力提升
1.若(a-2)x-(b+1)y=7是关于x 、y 的二元一次方程,那么( )
≠2 ≠1 ≠2 且b ≠1 ≠2 且b ≠-1
2.若
是方程ax-y=3的解,则a 值为______。
3.方程2x 2m +3+3y 5n -7=4是关于x 、y 二元一次方程,则m=_______,n=______。
4.二元一次方程2x+y=5的解有________个,正整数解有_____个,分别是_________________________ 。
四、达标测试
1.下列各式中,是二元一次方程的是( )
+2y=3z =1 +y=1 =2008
11-=3x y
12x y =⎧⎨=⎩
2.关于二元一次方程4x+5y=13的解,下列说法正确的是( )
A.只有一个解
B.有两个解
C.有无数组解
D.任何一组有理数都是它的解。
3.写出以 x=1 为解的二元一次方程组
Y=-1
求解二元一次方程组(代入法)
认真预习教材,尝试完成下列各题:
1.我们把________,从而求出方程组的解的方法,叫做代入消元法,简称代入法. 2.用代入法解二元一次方程组的步骤是:
(1)把方程组中的一个方程变形,写出_________的形式;
(2)把它_________中,得到一个一元一次方程;
(3)解这个__________;
(4)把求得的值代入到_________,从而得到原方程组的解.
基础练习
1.将y=-2x-4代入3x-y=5可得()
A.3x-2x+4=5 B.3x+2x+4=5 C.3x+2x-4=5 D.3x-2x-4=5
2.将y=1
2x+3代入2x+4y=-1后,化简的结果是________,从而求得x的值是_____.
215
152715
157 (7722)
x x y
x x
B x
C y
D y ----===3.当a=3时,方程组122ax y x y +=⎧⎨+=⎩的解是_________.
4.把方程7x-2y=15写成用含x 的代数式表示y 的形式,得( )
A .x= 5.用代入法解方程组252138x y x y +=-⎧⎨+=⎩较为简便的方法是( )
A .先把①变形
B .先把②变形
C .可先把①变形,也可先把②变形
D .把①、②同时变形
6.已知方程2x+3y=2,当x 与y 互为相反数时,x=______,y=_______.
7.若方程组431(1)3x y kx k y +=⎧⎨+-=⎩的解x 和y 的值相等,则k=________.
8.已知x=-1,y=2是方程组的1311ax by bx ay +=⎧⎨+=-⎩解,则ab=________.
9.把下列方程写成用含x 的代数式表示y 的形式:
①3x+5y=21 ②2x-3y=-11; ③4x+3y=x-y+1 ④2(x+y )=3(x-y )-1
10.若x-3y=2x+y-15=1,则x=______,y=_______.
11.用代入法解下列方程组:
(1)23328y x x y =-⎧⎨-=⎩ 3(2)3814x y x y -=⎧⎨-=⎩
23
(3)25
3s t
t s =⎧⎪+⎨=⎪⎩
356(4)415x y x y -=⎧⎨+=-⎩。