小学奥数专题-重叠问题(精华版)
小学三年级奥数第19讲 重叠问题(含答案分析)
第19讲重叠问题一、知识要点三(1)班准备给参加班级绘画比赛的16位同学和参加朗读比赛的12位同学每人发一份纪念品,当中队长玲玲将28份纪念品发下去时,却多出5份,这是怎么回事?对了,因为有5位同学既参加了绘画比赛,又参加了朗读比赛,所以奖品就多出了5份。
数学中,我们将这样的问题称为重叠问题。
解答重叠问题要用到数学中的一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解答方法。
二、精讲精练【例题1】六一儿童节,学校门口挂了一行彩旗。
小张从前数起,红旗是第8面;从后数起,红旗是第10面。
这行彩旗共多少面?练习1:1、小朋友排队做操,小明从前数起排在第4个,从后数起排在第7个。
这队小朋友共有多少人?2、学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。
这一行座位有多少个?【例题2】同学们排队做操,每行人数同样多。
小明的位置从左数起是第4个,从右数起是第3个,从前数起是第5个,从后数起是第6个。
做操的同学共有多少个?练习2:1、同学们排队跳舞,每行、每列人数同样多。
小红的位置无论从前数从后数,从左数还是从右数起都是第4个。
跳舞的共有多少人?2、为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置从左数第2个,从右数第4个;从前数第3个,从后数第5个。
鲜花队共多少人?【例题3】把两块一样长的木板像下图这样钉在一起成了一块木板。
如果这块钉在一起的木板长120厘米,中间重叠部分是16厘米,这两块木板各长多少厘米?练习3:1、把两段一样长的纸条粘合在一起,形成一段更长的纸条。
这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?2、把两块一样长的木板钉在一起,钉成一块长35厘米的木板。
小学三年级奥数第19讲 重叠问题(含答案分析)
第19讲重叠问题一、知识要点三(1)班准备给参加班级绘画比赛的16位同学和参加朗读比赛的12位同学每人发一份纪念品,当中队长玲玲将28份纪念品发下去时,却多出5份,这是怎么回事?对了,因为有5位同学既参加了绘画比赛,又参加了朗读比赛,所以奖品就多出了5份。
数学中,我们将这样的问题称为重叠问题。
解答重叠问题要用到数学中的一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解答方法。
二、精讲精练【例题1】六一儿童节,学校门口挂了一行彩旗。
小张从前数起,红旗是第8面;从后数起,红旗是第10面。
这行彩旗共多少面?练习1:1、小朋友排队做操,小明从前数起排在第4个,从后数起排在第7个。
这队小朋友共有多少人?2、学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。
这一行座位有多少个?【例题2】同学们排队做操,每行人数同样多。
小明的位置从左数起是第4个,从右数起是第3个,从前数起是第5个,从后数起是第6个。
做操的同学共有多少个?练习2:1、同学们排队跳舞,每行、每列人数同样多。
小红的位置无论从前数从后数,从左数还是从右数起都是第4个。
跳舞的共有多少人?2、为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置从左数第2个,从右数第4个;从前数第3个,从后数第5个。
鲜花队共多少人?【例题3】把两块一样长的木板像下图这样钉在一起成了一块木板。
如果这块钉在一起的木板长120厘米,中间重叠部分是16厘米,这两块木板各长多少厘米?练习3:1、把两段一样长的纸条粘合在一起,形成一段更长的纸条。
这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?2、把两块一样长的木板钉在一起,钉成一块长35厘米的木板。
小学奥数 举一反三 重叠问题
【例题1】六一儿童节,学校门口挂了一行彩旗。
小张从前数起,红旗是第8面;从后数起,红旗是第10面。
这行彩旗共多少面?练习1:1.小朋友排队做操,小明从前数起排在第4个,从后数起排在第7个。
这队小朋友共有多少人?2.学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。
这一行座位有多少个?3.同学们排队去参观展览,无论从前数还是从后起起,李华都排在第8个。
这一排共有多少个同学?【例题2】同学们排队做操,每行人数同样多。
小明的位置从左数起是第4个,从右数起是第3个,从前数起是第5个,从后数起是第6个。
做操的同学共有多少个?练习2:1.同学们排队跳舞,每行、每列人数同样多。
小红的位置无论从前数从后数,从左数还是从右数起都是第4个。
跳舞的共有多少人?2.为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置从左数第2个,从右数第4个;从前数第3个,从后数第5个。
鲜花队共多少人?3.三(4)班排成每行人数相同的队伍入场参加校运动会,梅梅的位置从前数是第6个,从后数是第5个;从左数、从右数都是第3个。
三(4)班共有学生多少人?【例题3】把两块一样长的木板像下图这样钉在一起成了一块木板。
如果这块钉在一起的木板长120厘米,中间重叠部分是16厘米,这两块木板各长多少厘米?练习3:1.把两段一样长的纸条粘合在一起,形成一段更长的纸条。
这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?2.把两块一样长的木板钉在一起,钉成一块长35厘米的木板。
中间重合部分长11厘米,这两块木板各长多少厘米?3.两根木棍放在一起(如图),从头到尾共长66厘米,其中一根木棍长48厘米,中间重叠部分长12厘米。
另一根木棍长多少厘米?【例题4】一次数学测试,全班36人中,做对第一道聪明题的有21人,做对第二道聪明题的有18人,每人至少做对一道。
问两道聪明题都做对的有几人?练习4:1.三(1)班有学生55人,每人至少参加赛跑和跳绳比赛中的一种。
五年级奥数题及答案:重叠问题
15.如果买 3 盒水彩笔和 5 个书包,需要 259 元,如果买 2 盒水彩笔和 3 个书包,需要 161 元, 2 个书包和 2 盒水彩笔共要多少元?
16.一个两位数, 十位数字与个位数字之和是 这个两数是多少?
10,数字之差是 4,且个位数字小于十位数字,
17.一群公猴、母猴、小猴共 38 只,每天摘桃 266 个.已知 1 只公猴每天摘桃 10 个, 1 只 母猴每天摘桃 8 个, 1 只小猴每天摘桃 5 个.又知公猴比母猴少 4 只,那么这群猴子中,小 猴有多少只?
4.一个水池,单开进水管, 6 分钟可将空水池注满,单开出水管 若同时打开进、出水管,多少分钟可将水池注满?
8 分钟可将满池水放完,
5.甲、乙两人修路队共有 76 人,甲队增加本队人数的 两队共增加了 384 人,求甲、乙两队原有各有多少人?
4 倍,乙队增加本队人数的
6 倍后,
6.一个食堂买来面粉是大米的 2 倍,每天吃 30 千克大米, 40 千克面粉,几天后大米全部 吃完,面粉还剩余 160 千克,这个食堂买来大米和面粉各多少千克?
6.一个食堂买来面粉是大米的 2 倍,每天吃 30 千克大米, 40 千克面粉,几天后大米全部 吃完,面粉还剩余 160 千克,这个食堂买来大米和面粉各多少千克?
考点 :列 方程解含有两个未知数的应用题。 分析:由 题意得出:大米吃的总天数和减去 160 千克之后的面粉吃的天数相等,即等量关系
式:(面粉的重量﹣ 160)÷40=大米的重量 ÷30,设出买来大米 x 千克,则买来面粉 2x 千克,据此列出方程并解方程即可. 解答:解 :设买来大米 x 千克,则面粉为 2x 千克, ( 2x﹣ 160) ÷40=x ÷30,
考 差倍问题。 点: 分 从 “如果从甲筐中拿出 18 个放进乙筐,两筐的苹果就同样多 ”,可知甲筐比乙筐多 析: 18×2=36 个, 先设乙筐有 x 个,则甲筐有 x+36 个, 再根据如果从乙筐拿出 13 个放进甲
(完整版)小学奥数重叠问题1
知识要点:前面已学过排队问题,从前面数,从后面数,丽丽都排第6,这一排共有几个人?这里丽丽被重复数了两次,有时我们也把这类问题叫重叠问题。
[ 例1 ] 洗好的8块手帕夹在绳子上晾干,同一个夹子夹住相邻的两块手帕的两边,这样一共要多少个夹子?分析:由图知道,两块手帕有一边重叠,用3个夹子。
三块手帕有两边重叠,用4个夹子,我们发现夹子数总比手帕数多1,因此8块手帕就要用9个夹子。
[ 例2 ] 把图画每两张重叠在一起钉在墙上,现在有5张画要多少个图钉呢?分析:每排两张画要6个图钉,每排三张画要8个图钉,每排四张画要10个图钉。
可以看出,图画每增加一张,图钉就要增加2颗,那么5张画要12个图钉。
[ 例3 ] 有两块一样长的木板,钉在一起,如果每块木板长25厘米,中间钉在一起的长5厘米,现在长木板有多长?分析:把两块木板钉起来,钉在一起的地方的长度就是重叠的部分。
现在的总长就是原来两个总长的和减去重叠的部分。
算式:25+25-5=45(厘米)所以现在木板长45厘米。
[ 例4 ] 张老师出了两道题,做对第一题的有13人,做对第二题的有22人,两道题都做对的有8人,这个班一共有多少人?22人8人分析:做对第一题的13个人里,有8个人也做对第二题,那么做对第二题的22个人里这8个人就又重复数了一次,因此把做对第一题的人数和做对第二题的人数和起来,再减去重复数的这8个人。
算式:13+22-8=27(人)所以这个班一共有27人。
[ 例5 ] 四根长都是8厘米的绳子,把它们打结连在一起,成为一根长绳,打结处每根绳用去1厘米,绳结长度不计,现在这根长绳长多少厘米?分析:两根绳有一个结,三根绳有两个结,那么四根绳有三个结。
一个结用去1+1=2厘米,那么三个结用去2+2+2=6厘米,绳子总长8+8+8+8=32厘米,减去打结的6厘米,32-6=26,现在这根长绳是26厘米。
(完整版)三年级奥数--重叠问题
课堂小测(1)一、简便计算。
(每题5分)(1)585+199 (2)602+ 228 (3)885-698 (4)825-302(5)99999 +9999+999 +99+9 (6)121+119+120+118+123+122 (7)246+178+254+322 (8)471-284+129 (9)745+837-545 (10)785-227-373(11)457+(243+249)(12)871-(401-129)(13)455-(255-188)二、解决问题。
1.把两根长2米的木棍绑在一起,使其成为一根长木棍,中间重叠部分是6分米,这根长木棍有多长?2. 把两根同样长的鸡毛掸子绑在一起,使它们变成一根10分米长的棍子,中间重叠部分是10厘米,原来每根鸡毛掸子有多长?3. 从1楼走到4楼共要用30秒,如果每上一层楼的台阶数都相同,那么从1楼到6楼共要用多少秒?4.有一根木头长6分米,打算把每根锯成6段,每锯开一处,需要5分钟,全部锯完需要多少分钟?5.小虎在做一道减法题时,把减数十位上的9写成了6,减数个位上的0写成了2,最后得到的差是376,正确的结果应该是多少?6.小龙在做一道减法题时,把被减数十位上的9看成了6,减数个位上的6看成了9,最后得到的差是545,正确的差是多少?重叠问题(1)(1)把两根长8分米的木棍绑在一起,使其成为一根长木棍,中间重叠部分是15厘米,这根长木棍有多长?(2)把两根长15厘米的纸条贴在一起,使其成为一条长纸条,中间重叠部分是4厘米,这根长纸条有多长?(3)把两根长2米的木棍绑在一起,使其成为一根长木棍,中间重叠部分是6分米,这根长木棍有多长?(4)把两段一样长的纸条贴在一起,是它们变成一段54厘米的纸条,中间重叠部分是6厘米。
原来的纸条有多长?(5)把两段一样长的纸条贴在一起,是它们变成一段100厘米的纸条,中间重叠部分是1分米。
原来的纸条有多长?(6)把两根长的鸡毛掸子绑在一起,使它们变成一根12分米长的棍子,中间重叠部分是8厘米,原来每根鸡毛掸子有多长?(7)两块木板各长80厘米,钉成一块木板,中间重叠部分是12厘米,这块长木板有多长?(8)两块木板各长80厘米,钉成一块长150厘米的木板,中间重合部分是多少厘米?(9)两条长2分米的纸条,粘成一条长18厘米的长纸条,中间重合部分是多少厘米?(10)两根长2米的棍子,绑成一根长39分米的长棍子,中间重合部分是多少厘米?重叠问题(2)(1)同学们排队做操,每行每列的人数同样多。
小学奥数专题-重叠问题(精华版)
小学奥数重叠问题专题日常生活或数学问题中,在把一些数据按照某个标准分类时,常常出现其中的一部分数据同时属于两种或两种以上不同的类别,这样在计算总数时就会出现重复计算的情况,这类问题就叫做重叠问题。
重叠问题中涉及到的容斥原理是奥数的四大原理之一,是奥数重要知识点。
学生学习奥数,一定要掌握容斥原理。
下面小编给大家分享解决重叠的方法。
1. 解答重叠问题要用到数学中一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
2. 解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次。
明确需要要求的是哪一部分,从而找出解答方法。
3. 在数学中,我们经常用平面上封闭曲线的部代表集合和集合之间的关系。
这种图称为韦恩图(也叫文氏图)。
4. 解答重叠问题的常用方法是:先不考虑重叠的情况,把有重复包含的几个计数部分加起来,再从它们的和中排除重复部分元素的个数,使得计算的结果既无遗漏又不重复。
这个原理叫做包含与排斥原理,也叫容斥原理。
5. 容斥原理1:如果被计数的对象,被分为A、B两大类,则:被计数对象的总个数=A 类元素的个数+B类元素的个数-同时属于A类和B类的元素个数。
..容斥原理2:如果被计数的对象,被分为A、B、C三大类,则:被计数对象的总个数=A类元素的个数+B类元素的个数+C类元素的个数-同时属于A类和B类元素的个数-同时属于A类和C类元素个数-同时属于B类和C类元素个数+同时属于A类、B类、C类元素个数。
..一、重叠问题之长度:(1)拼接(对接)(2)搭接(3)打结题目1:(搭接正问题:求总长度)把两段同样是20厘米长的纸条粘合在一起,形成一段更长的纸条。
中间重叠的部分是6厘米,粘好的纸条长多少厘米?题目2:(搭接反问题一:等长搭接,求原来长度)把两段一样长的纸条粘合在一起,形成一段更长的纸条。
4.2三年级奥数(重叠问题)
能动英语——小学三年级奥数(重叠问题)学法指导:解答重叠问题,必须从条件入手认真分析,有时可以根据条件画一画图来帮助我们思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解题的方法。
练习一1、小朋友排队做操,小明从前数起排在第4个,从后数起排在第7个。
这队小朋友共有多少人?2、学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。
这一行座位有多少个?3、同学们排队去参观展览,无论从前数还是从后起起,李华都排在第8个。
这一排共有多少个同学?练习二1、同学们排队跳舞,每行、每列人数同样多。
小红的位置无论从前数从后数,从左数还是从右数起都是第4个。
跳舞的共有多少人?2、为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置从左数第2个,从右数第4个;从前数第3个,从后数第5个。
鲜花队共多少人?3、三(4)班排成每行人数相同的队伍入场参加校运动会,梅梅的位置从前数是第6个,从后数是第5个;从左数、从右数都是第3个。
三(4)班共有学生多少人?练习三1、把两段一样长的纸条粘合在一起,形成一段更长的纸条。
这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?2、把两块一样长的木板钉在一起,钉成一块长35厘米的木板。
中间重合部分长11厘米,这两块木板各长多少厘米?3、两根木棍放在一起(如图),从头到尾共长66厘米,其中一根木棍长48厘米,中间重叠部分长12厘米。
另一根木棍长多少厘米?练习四1、三(1)班有学生55人,每人至少参加赛跑和跳绳比赛中的一种。
已知参加赛跑的有36人,参加跳绳的有38人。
两项比赛都参加的有几人?2、两块木板各长75厘米,像下图这样钉成一块长130厘米的木板,中间重合部分是多少厘米?3、三(5)班有42名同学,会下象棋的有21名同学,会下围棋的有17名,两种棋都不会的有10名。
两种棋都会下的有多少名?练习五1、三(4)班做完语文作业的有37人,做完数学作业的有42人,两种作业都完成的有31人,每人至少完成一种作业。
三年级奥数重叠问题精编版
三年级奥数重叠问题精编版MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】重叠问题1、学校组织看文艺表演,冬冬的座位从左数是第7个,从右数是第10个,这一行座位有多少个?2、为庆祝六一,小朋友们排成方形的鲜花队,无论从前、从后数,还是从左、从右数,李丽都在第5个,鲜花队一共有多少个小朋友?3、同学们排成方形的队伍跳集体舞,无论从前从后数,还是从左从右数,赵英都是第4个。
跳集体舞的一共有多少个同学?4、三(5)班同学参加了音乐、美术这两个课外兴趣小组。
已知参加音乐组的有32人,参加美术组的有30人,两个小组都参加的有10人。
三(5)班共有学生多少人5、三(1)班订《数学报》的有32人,订《语文报》的有30人,两份报纸都订的有10人,全班每人至少订一种报纸,三(1)班有学生多少人?6、、三(1)班有学生55人,每人至少参加跳绳和踢毽子比赛的一种,已知参加跳绳的有36人,参加踢毽子的有38人。
两项都参加的有几人?7、三(5)班有42名同学,会下象棋的有21名同学,会下围棋的有17名同学,两种都不会的有10名同学。
两种都会下的有多少名同学?8、学校乐器队招收了42名新学员,其中会拉小提琴的有25名,会弹电子琴的有22名,两项都不会的有3名。
两项都会的有多少名?9、三(6)班有学生55人,参加学校绘画比赛的有20人,既参加绘画比赛又参加书法比赛的有12人,两项比赛没参加的有14人。
参加书法比赛的有多少人?10、乐器兴趣小组有42人其中会弹钢琴的有27人,既会弹钢琴又会弹古筝的有16人,两项都不会的只有1人。
会弹古筝的有多少人?11、同学们排队做操,每行人数同样多。
小明的位置从左数起是第4个,从右数起是第3个;从前数是第5个,从后数是第6个。
做操的同学一共有多少个?12、三(4)班有学生56人,做对第一道思考题的有29人,做对第二道思考题的有27人,两道题都做错的有7人。
小学奥数几何中的重叠问题
目
1.了解容斥原理二量重叠和三量重叠的内容;
2.掌握容斥原理的在组合计数等各个方面的应用.
目
一、两量重叠问题
在一些计数问题中,经常遇到有关集合元素个数的计算•求两个集合并集的元素的个数,不能简单地
把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个
数,用式子可表示成:AUB A B AI B(其中符号U”读作 并”,相当于中文 和”或者 或”的意思;符 号“I”读作 交”,相当于中文 且”的意思.)则称这一公式为包含与排除原理, 简称容斥原理.图示如下:A表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分,记为:AI B,即阴影面积•图示如下:
二、三量重叠问题
A类、B类与C类元素个数的总和A类元素的个数B类元素个数C类元素个数 既是A类又是B类的元素个数 既是B类又是C类的元素个数 既是A类又是C类的元素个数 同时是A类、B类、C类 的元素个数.用符号表示为:AU BUC A B C AI B BI C AI C AI BI C.图示如下:
另一个长方形长10厘米宽厘米它们中间重叠的部分是个边长4厘米的正几何中的重叠问题两个长方形如图摆放时出现了重叠见图中的阴影部分重叠部分恰好是边长为厘米的正方形如果利用两个长方形面积之和来计算被覆盖桌面的面积那么重叠部分在两个长方形面积中各被计算了一次而实际上这部分只需计算一次就可以了
数学竞赛
小学奥数几何中的
几何中的重叠问题
【难度】2星 【题型】解答
将图中的三个圆标上 圆面积C圆面积)纸片共同重叠的面积,
A、B、C•根据包含排除法,三个纸片盖住桌面的总面积(A圆面积B
(A与B重合部分面积A与C重合部分面积B与C重合部分面积)三个
三年级奥数4种重叠问题
三年级奥数4种重叠问题
以下是三年级奥数中的 4 种重叠问题:
1. 鸡兔同笼问题:假设有若干只鸡和若干只兔子,它们共有若干只脚。
如果假设其中的一些鸡变成了兔子,那么脚的总数会增加;如果假设其中的一些兔子变成了鸡,那么脚的总数会减少。
问有多少只鸡和兔子?
2. 重叠盒子问题:有若干个盒子,每个盒子都可以容纳若干只小动物。
现在要根据每个盒子的容量,将小动物平均分到每个盒子中。
问有多少个盒子和小动物?
3. 重叠蛋糕问题:有若干个蛋糕,每个蛋糕都可以切成若干份。
现在要根据每个蛋糕的切块数,将蛋糕平均分到每个小朋友手中。
问有多少个蛋糕和小朋友?
4. 重叠排队问题:有若干个小朋友,每个小朋友都可以排在若干种位置。
现在要根据每个小朋友的位置,将小朋友排队。
问有多少个小朋友和排队方式?。
(完整版)三年级奥数--重叠问题
一、简易计算。
(每题5分)(1)585+199(2)602+ 228(3)885-698(4)825-302(5)99999+9999+999 +99+9(6)121+119+120+118+123+122(7)246+178+254+322(8)471-284+129(9)745+837-545(10)785-227-373(11)457+(243+249)(12)871-(401-129)(13)455-(255-188)二、解决问题。
1.把两根长2米的木棍绑在一起,使其成为一根长木棍,中间重叠部分是6分米,这根长木棍有多长?2.把两根同样长的鸡毛掸子绑在一起,使它们变成一根10分米长的棍子,中间重叠部分是10厘米,原来每根鸡毛掸子有多长?3.从1楼走到4楼共要用30秒,如果每上一层楼的台阶数都相同,那么从1楼到6楼共要用多少秒?4.有一根木头长6分米,打算把每根锯成6段,每锯开一处,需要5分钟,全部锯完需要多少分钟?5.小虎在做一道减法题时,把减数十位上的9写成了6,减数个位上的0写成了2,最后得到的差是376,正确的结果应该是多少?6.小龙在做一道减法题时,把被减数十位上的9看成了6,减数个位上的6看成了9,最后得到的差是545,正确的差是多少?重叠问题(1)(1)把两根长8分米的木棍绑在一起,使其成为一根长木棍,中间重叠部分是15厘米,这根长木棍有多长?(2)把两根长15厘米的纸条贴在一起,使其成为一条长纸条,中间重叠部分是4厘米,这根长纸条有多长?(3)把两根长2米的木棍绑在一起,使其成为一根长木棍,中间重叠部分是6分米,这根长木棍有多长?(4)把两段一样长的纸条贴在一起,是它们变成一段54厘米的纸条,中间重叠部分是6厘米。
原来的纸条有多长?(5)把两段一样长的纸条贴在一起,是它们变成一段100厘米的纸条,中间重叠部分是1分米。
原来的纸条有多长?(6)把两根长的鸡毛掸子绑在一起,使它们变成一根12分米长的棍子,中间重叠部分是8厘米,原来每根鸡毛掸子有多长?(7)两块木板各长80厘米,钉成一块木板,中间重叠部分是12厘米,这块长木板有多长?(8)两块木板各长80厘米,钉成一块长150厘米的木板,中间重合部分是多少厘米?(9)两条长2分米的纸条,粘成一条长18厘米的长纸条,中间重合部分是多少厘米?(10)两根长2米的棍子,绑成一根长39分米的长棍子,中间重合部分是多少厘米?重叠问题(2)(1)同学们排队做操,每行每列的人数同样多。
三年级奥数第19讲----重叠问题
第19讲重叠问题一、知识要点三(1)班准备给参加班级绘画比赛的16位同学和参加朗读比赛的12位同学每人发一份纪念品,当中队长玲玲将28份纪念品发下去时,却多出5份,这是怎么回事?对了,因为有5位同学既参加了绘画比赛,又参加了朗读比赛,所以奖品就多出了5份。
数学中,我们将这样的问题称为重叠问题。
解答重叠问题要用到数学中的一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解答方法.二、精讲精练【例题1】六一儿童节,学校门口挂了一行彩旗。
小张从前数起,红旗是第8面;从后数起,红旗是第10面。
这行彩旗共多少面?【思路导航】根据题意,画出下图:从图上可以看出,从前数起红旗是第8面,从后数起是第10面,这样红旗就数了两次,重复了一次,所以这行彩旗共有8+10-1=17面。
练习1:1。
小朋友排队做操,小明从前数起排在第4个,从后数起排在第7个.这队小朋友共有多少人?2。
学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。
这一行座位有多少个?3。
同学们排队去参观展览,无论从前数还是从后起起,李华都排在第8个.这一排共有多少个同学?【例题2】同学们排队做操,每行人数同样多。
小明的位置从左数起是第4个,从右数起是第3个,从前数起是第5个,从后数起是第6个.做操的同学共有多少个?【思路导航】根据题意,画出下图:由图可看出:小明的位置从左数第4个,右数第3个,说明横行有4+3-1=6个人;从前数第5个,从后数第6个,说明竖行有5+6-1=10人,所以做操的同学共有:6×10=60人。
练习2:1.同学们排队跳舞,每行、每列人数同样多。
小红的位置无论从前数从后数,从左数还是从右数起都是第4个。
跳舞的共有多少人?2.为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置从左数第2个,从右数第4个;从前数第3个,从后数第5个。
小学奥数 重叠问题
重叠问题一、知识要点三(1)班准备给参加班级绘画比赛的16位同学和参加朗读比赛的12位同学每人发一份纪念品,当中队长玲玲将28份纪念品发下去时,却多出5份,这是怎么回事?对了,因为有5位同学既参加了绘画比赛,又参加了朗读比赛,所以奖品就多出了5份。
数学中,我们将这样的问题称为重叠问题。
解答重叠问题要用到数学中的一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解答方法。
二、精讲精练【例题1】六一儿童节,学校门口挂了一行彩旗。
小张从前数起,红旗是第8面;从后数起,红旗是第10面。
这行彩旗共多少面?【思路导航】根据题意,画出下图:从图上可以看出,从前数起红旗是第8面,从后数起是第10面,这样红旗就数了两次,重复了一次,所以这行彩旗共有8+10-1=17面。
练习1:1.小朋友排队做操,小明从前数起排在第4个,从后数起排在第7个。
这队小朋友共有多少人?2.学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。
这一行座位有多少个?3.同学们排队去参观展览,无论从前数还是从后起起,李华都排在第8个。
这一排共有多少个同学?【例题2】同学们排队做操,每行人数同样多。
小明的位置从左数起是第4个,从右数起是第3个,从前数起是第5个,从后数起是第6个。
做操的同学共有多少个?【思路导航】根据题意,画出下图:由图可看出:小明的位置从左数第4个,右数第3个,说明横行有4+3-1=6个人;从前数第5个,从后数第6个,说明竖行有5+6-1=10人,所以做操的同学共有:6×10=60人。
练习2:1.同学们排队跳舞,每行、每列人数同样多。
小红的位置无论从前数从后数,从左数还是从右数起都是第4个。
跳舞的共有多少人?2.为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置从左数第2个,从右数第4个;从前数第3个,从后数第5个。
小学奥数专题-重叠问题(精华版)
小学奥数重叠问题专题日常生活或数学问题中,在把一些数据按照某个标准分类时,常常出现其中的一部分数据同时属于两种或两种以上不同的类别,这样在计算总数时就会出现重复计算的情况,这类问题就叫做重叠问题。
重叠问题中涉及到的容斥原理是奥数的四大原理之一,是奥数重要知识点。
学生学习奥数,一定要掌握容斥原理。
下面小编给大家分享解决重叠的方法。
1. 解答重叠问题要用到数学中一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
2. 解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次。
明确需要要求的是哪一部分,从而找出解答方法。
3. 在数学中,我们经常用平面上封闭曲线的内部代表集合和集合之间的关系。
这种图称为韦恩图(也叫文氏图)。
4. 解答重叠问题的常用方法是:先不考虑重叠的情况,把有重复包含的几个计数部分加起来,再从它们的和中排除重复部分元素的个数,使得计算的结果既无遗漏又不重复。
这个原理叫做包含与排斥原理,也叫容斥原理。
5. 容斥原理1:如果被计数的对象,被分为A、B两大类,则:被计数对象的总个数=A 类元素的个数+B类元素的个数-同时属于A类和B类的元素个数。
容斥原理2:如果被计数的对象,被分为A、B、C三大类,则:被计数对象的总个数=A 类元素的个数+B类元素的个数+C类元素的个数-同时属于A类和B类元素的个数-同时属于A类和C类元素个数-同时属于B类和C类元素个数+同时属于A类、B类、C类元素个数。
一、重叠问题之长度:(1)拼接(对接)(2)搭接(3)打结题目1:(搭接正问题:求总长度)把两段同样是20厘米长的纸条粘合在一起,形成一段更长的纸条。
中间重叠的部分是6厘米,粘好的纸条长多少厘米?题目2:(搭接反问题一:等长搭接,求原来长度)把两段一样长的纸条粘合在一起,形成一段更长的纸条。
这段更长的纸条长30厘米,中间重叠的部分是6厘米,原来两条纸条各长多少厘米?题目3:(搭接反问题一:不等长搭接,求原来长度)两根木棍放在一起,从头到尾共长66厘米,其中一根木棍长48厘米,中间重叠部分长12厘米。
小学奥数几何中的重叠问题
小学奥数几何中的重叠问题1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-U I (其中符号“U ”读作“并”,相当于中文“和”或者“或”的意思;符号“I ”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B I ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B I ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B U 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =I (意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+U U I I I I I .图示如下:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.7-7-3.几何中的重叠问题教学目标知识要点1.先包含——A B +重叠部分A B I 计算了2次,多加了1次; 2.再排除——A B A B +-I把多加了1次的重叠部分A B I 减去.图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++重叠部分A B I 、B C I 、C A I 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++---I I I重叠部分A B C I I 重叠了3次,但是在进行A B C ++- A B B C A C --I I I 计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+I I I I I .【例 1】 把长38厘米和53厘米的两根铁条焊接成一根铁条.已知焊接部分长4厘米,焊接后这根铁条有多长?【考点】几何中的重叠问题 【难度】1星 【题型】解答 【解析】 因为焊接部分为两根铁条的重合部分,所以,由包含排除法知,焊接后这根铁条长3853487+-=(厘米).【答案】87厘米【巩固】 把长23厘米和37厘米的两根铁条焊接成一根铁条.已知焊接部分长3厘米,焊接后这根铁条有多长?【考点】几何中的重叠问题 【难度】1星 【题型】解答 【解析】 焊接部分为两根铁条的重合部分,由包含排除法知,焊接后这根铁条长:2337357+-=(厘米). 【答案】57厘米【例 2】 两张长4厘米,宽2厘米的长方形纸摆放成如图所示形状.把它放在桌面上,覆盖面积有多少平方厘米?【考点】几何中的重叠问题 【难度】1星 【题型】解答【解析】 两个长方形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为2厘米的正方形,如果利用两个42⨯的长方形面积之和来计算被覆盖桌面的面积,那么重叠部分在两个长方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,被覆盖面积=长方形面积之和-重叠部分.于是,被覆盖面积4222212=⨯⨯-⨯=(平方厘米).【答案】12厘米【巩固】 如图3,一张长8厘米,宽6厘米,另一个正方形边长为6厘米,它们中间重叠的部分是一个边长为4厘米的正方形,求这个组合图形的面积.【考点】几何中的重叠问题 【难度】1星 【题型】解答【解析】 两个图形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为4厘米的正方形,如果利用长方形和正方形面积之和来计算被覆盖桌面的面积,那么重叠部分在长方形和正方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,组合图形的面积=长方形面积+正方形面积-重叠部分.于是,组合图形的面积:86664468⨯+⨯-⨯=(平方厘米).【答案】68平方厘米【巩固】 一个长方形长12厘米,宽8厘米,另一个长方形长10厘米,宽6厘米,它们中间重叠的部分是一个边长4厘米的正方形,求这个组合图形的面积.【考点】几何中的重叠问题 【难度】1星 【题型】解答图32厘米4厘米图3例题精讲【解析】 两个长方形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为4厘米的正方形,如果利用两个长方形面积之和来计算被覆盖桌面的面积,那么重叠部分在两个长方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,组合图形的面积=长方形面积之和-重叠部分.于是,组合图形的面积12810644140=⨯+⨯-⨯=(平方厘米).【答案】140平方厘米【例 3】 三个面积均为50平方厘米的圆纸片放在桌面上(如图),三个纸片共同重叠的面积是10平方厘米.三个纸片盖住桌面的总面积是100厘米.问:图中阴影部分面积之和是多少?【考点】几何中的重叠问题 【难度】2星 【题型】解答【解析】 将图中的三个圆标上A 、B 、C .根据包含排除法,三个纸片盖住桌面的总面积=(A 圆面积B+圆面积C +圆面积-)(A 与B 重合部分面积A +与C 重合部分面积B +与C 重合部分面积+)三个纸片共同重叠的面积,得:100505050A =++-()(与B 重合部分面积A +与C 重合部分面积B +与C 重合部分面积10+),得到A 、B 、C 三个圆两两重合面积之和为:16010060-=平方厘米,而这个面积对应于圆上的那三个纸片共同重叠的面积的三倍与阴影部分面积的和,即:60103=⨯+阴影部分面积,则阴影部分面积为:603030-=(平方厘米).【答案】30平方厘米【巩固】 如图,已知甲、乙、丙3个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6,8,5,而3个圆覆盖的总面积为73.求阴影部分的面积.【考点】几何中的重叠问题 【难度】2星 【题型】解答 【解析】 设甲圆组成集合A ,乙圆组成集合B ,丙圆组成集合C .=30,=6,=8,=5,=73,而=.有73=30×3-6-8-5+,即=2,即甲、乙、丙三者的公共面积(⑧部分面积)为2.那么只是甲与乙(⑧),乙与丙(⑧),甲与丙(⑧)的公共的面积依次为6-2=4,8-2=6,5-2=3,所以有阴影部分(⑧、⑧、⑧部分之和)的面积为73-4-6-3-2=58.【答案】58【例 4】 如图,三角形纸板、正方形纸板、圆形纸板的面积相等,都等于60平方厘米.阴影部分的面积总和是40平方厘米,3张板盖住的总面积是100平方厘米,3张纸板重叠部分的面积是多少平方厘米?【考点】几何中的重叠问题 【难度】3星 【题型】解答【解析】 阴6412CBA10A B C ==A B I B C I A C I A B C U U A B C U U A B C +--A B B C A C A B C --+I I I I I A B C I I A B C I I叠部分的面积60310040220()(平方厘米).=⨯--÷=【答案】20平方厘米【巩固】如图所示,A、B、C分别是面积为12、28、16的三张不同形状的纸片,它们重叠在一起,露在外面的总面积为38.若A与B、B与C的公共部分的面积分别为8、7,A、B、C这三张纸片的公共部分为3.求A与C公共部分的面积是多少?【考点】几何中的重叠问题【难度】3星【题型】解答Array【解析】设A与C公共部分的面积为x,由包含与排除原理可得:⑧ 先“包含”:把图形A、B、C的面积相加:12281656++=,那么每两个图形的公共部分的面积都重复计算了1次,因此要排除掉.⑧ 再“排除”:5687x---,这样一来,三个图形的公共部分被全部减掉,因此还要再补回.⑧ 再“包含”:56873x---+,这就是三张纸片覆盖的面积.根据上面的分析得:5687338xx=.---+=,解得:6【答案】6。
小学奥数专题-几何中的重叠问题
1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考. 教学目标知识要点7-7-3.几何中的重叠问题1.先包含——A B +重叠部分A B 计算了2次,多加了1次;2.再排除——A B A B +-把多加了1次的重叠部分A B 减去. 图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++ 重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++--- 重叠部分A B C 重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.【例 1】 把长38厘米和53厘米的两根铁条焊接成一根铁条.已知焊接部分长4厘米,焊接后这根铁条有多长?【考点】几何中的重叠问题 【难度】1星 【题型】解答【解析】 因为焊接部分为两根铁条的重合部分,所以,由包含排除法知,焊接后这根铁条长3853487+-=(厘米).【答案】87厘米【巩固】 把长23厘米和37厘米的两根铁条焊接成一根铁条.已知焊接部分长3厘米,焊接后这根铁条有多长?【考点】几何中的重叠问题 【难度】1星 【题型】解答【解析】 焊接部分为两根铁条的重合部分,由包含排除法知,焊接后这根铁条长:2337357+-=(厘米).【答案】57厘米【例 2】 两张长4厘米,宽2厘米的长方形纸摆放成如图所示形状.把它放在桌面上,覆盖面积有多少平方厘米?【考点】几何中的重叠问题 【难度】1星 【题型】解答图32厘米4厘米【解析】 两个长方形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为2厘米的正方形,如果利用两个42⨯的长方形面积之和来计算被覆盖桌面的面积,那么重叠部分在两个长方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,被覆盖面积=长方形面积之和-重叠部分.于是,被覆盖面积4222212=⨯⨯-⨯=(平方厘米).【答案】12厘米【巩固】 如图3,一张长8厘米,宽6厘米,另一个正方形边长为6厘米,它们中间重叠的部分是一个边长为4厘米的正方形,求这个组合图形的面积.【考点】几何中的重叠问题 【难度】1星 【题型】解答图3468【解析】 两个图形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为4厘米的正方形,如果利用长方形和正方形面积之和来计算被覆盖桌面的面积,那么重叠部分在长方形和正方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,组合图形的面积=长方形面积+正方形面积-重叠部分.于是,组合图形的面积:86664468⨯+⨯-⨯=(平方厘米).【答案】68平方厘米【巩固】 一个长方形长12厘米,宽8厘米,另一个长方形长10厘米,宽6厘米,它们中间重叠的部分是一个边长4厘米的正方形,求这个组合图形的面积.【考点】几何中的重叠问题 【难度】1星 【题型】解答例题精讲12【解析】 两个长方形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为4厘米的正方形,如果利用两个长方形面积之和来计算被覆盖桌面的面积,那么重叠部分在两个长方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,组合图形的面积=长方形面积之和-重叠部分.于是,组合图形的面积12810644140=⨯+⨯-⨯=(平方厘米).【答案】140平方厘米【例 3】 三个面积均为50平方厘米的圆纸片放在桌面上(如图),三个纸片共同重叠的面积是10平方厘米.三个纸片盖住桌面的总面积是100厘米.问:图中阴影部分面积之和是多少?【考点】几何中的重叠问题 【难度】2星 【题型】解答CBA10 【解析】 将图中的三个圆标上A 、B 、C .根据包含排除法,三个纸片盖住桌面的总面积=(A 圆面积B +圆面积C +圆面积-)(A 与B 重合部分面积A +与C 重合部分面积B +与C 重合部分面积+)三个纸片共同重叠的面积,得:100505050A =++-()(与B 重合部分面积A +与C 重合部分面积B +与C 重合部分面积10+),得到A 、B 、C 三个圆两两重合面积之和为:16010060-=平方厘米,而这个面积对应于圆上的那三个纸片共同重叠的面积的三倍与阴影部分面积的和,即:60103=⨯+阴影部分面积,则阴影部分面积为:603030-=(平方厘米).【答案】30平方厘米【巩固】 如图,已知甲、乙、丙3个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6,8,5,而3个圆覆盖的总面积为73.求阴影部分的面积.【考点】几何中的重叠问题 【难度】2星 【题型】解答【解析】 设甲圆组成集合A ,乙圆组成集合B ,丙圆组成集合C . A B C ===30,A B =6,B C =8,A C =5,A B C =73,而A B C =A B C +--A B B C A C A B C --+.有73=30×3-6-8-5+AB C ,即A B C =2,即甲、乙、丙三者的公共面积(⑧部分面积)为2.那么只是甲与乙(④),乙与丙(⑥),甲与丙(⑤)的公共的面积依次为6-2=4,8-2=6,5-2=3,所以有阴影部分(①、②、③部分之和)的面积为73-4-6-3-2=58.【答案】58【例 4】 如图,三角形纸板、正方形纸板、圆形纸板的面积相等,都等于60平方厘米.阴影部分的面积总和是40平方厘米,3张板盖住的总面积是100平方厘米,3张纸板重叠部分的面积是多少平方厘米?【考点】几何中的重叠问题 【难度】3星【题型】解答【解析】 阴部分的面积60310040220=⨯--÷=()(平方厘米).【答案】20平方厘米【巩固】如图所示,A、B、C分别是面积为12、28、16的三张不同形状的纸片,它们重叠在一起,露在外面的总面积为38.若A与B、B与C的公共部分的面积分别为8、7,A、B、C这三张纸片的公共部分为3.求A与C公共部分的面积是多少?【考点】几何中的重叠问题【难度】3星【题型】解答【解析】设A与C公共部分的面积为x,由包含与排除原理可得:⑴先“包含”:把图形A、B、C的面积相加:12281656++=,那么每两个图形的公共部分的面积都重复计算了1次,因此要排除掉.⑵再“排除”:5687x---,这样一来,三个图形的公共部分被全部减掉,因此还要再补回.⑶再“包含”:56873---+,这就是三张纸片覆盖的面积.x根据上面的分析得:5687338x=.x---+=,解得:6【答案】6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数专题-重叠问
题(精华版)
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
小学奥数重叠问题专题
日常生活或数学问题中,在把一些数据按照某个标准分类时,常常出现其中的一部分数据同时属于两种或两种以上不同的类别,这样在计算总数时就会出现重复计算的情况,这类问题就叫做重叠问题。
重叠问题中涉及到的容斥原理是奥数的四大原理之一,是奥数重要知识点。
学生学习奥数,一定要掌握容斥原理。
下面小编给大家分享解决重叠的方法。
1. 解答重叠问题要用到数学中一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
2. 解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次。
明确需要要求的是哪一部分,从而找出解答方法。
3. 在数学中,我们经常用平面上封闭曲线的内部代表集合和集合之间的关系。
这种图称为韦恩图(也叫文氏图)。
4. 解答重叠问题的常用方法是:先不考虑重叠的情况,把有重复包含的几
个计数部分加起来,再从它们的和中排除重复部分元素的个数,使得计算的结
果既无遗漏又不重复。
这个原理叫做包含与排斥原理,也叫容斥原理。
5. 容斥原理1:如果被计数的对象,被分为A、B两大类,则:被计数对象
的总个数=A类元素的个数+B类元素的个数-同时属于A类和B类的元素个数。
容斥原理2:如果被计数的对象,被分为A、B、C三大类,则:被计数对象的总个数=A类元素的个数+B类元素的个数+C类元素的个数-同时属于A类和B类元素的个数-同时属于A类和C类元素个数-同时属于B类和C类元素个数+同时属于A类、B类、C类元素个数。
一、重叠问题之长度:
(1)拼接(对接)
(2)搭接
(3)打结
题目1:(搭接正问题:求总长度)
把两段同样是20厘米长的纸条粘合在一起,形成一段更长的纸条。
中间重叠的部分是6厘米,粘好的纸条长多少厘米?
题目2:(搭接反问题一:等长搭接,求原来长度)
把两段一样长的纸条粘合在一起,形成一段更长的纸条。
这段更长的纸条长30厘米,中间重叠的部分是6厘米,原来两条纸条各长多少厘米?
题目3:(搭接反问题一:不等长搭接,求原来长度)
两根木棍放在一起,从头到尾共长66厘米,其中一根木棍长48厘米,中间重叠部分长12厘米。
另一根木棍长是多少厘米?
题目4:(搭接反问题二:求粘合长度,或重叠长度)
把两段同样是15厘米长的纸条粘合在一起,形成一段24厘米长的纸条,请问中间粘合的长度是多少厘米?
题目5:(打结正问题:求总长)
用3根9米的短绳子打结连接成一根长绳子,打结时两端的绳子各用去的1米,请问打结后的长绳子长度是多少米
题目6:(打结反问题:求原绳长)
用3根打结连接成一根12米的长绳子,打结时两端的绳子各用去的1米,请问原来每根绳子的长度是多少米
题目7:(打结反问题:求打结长度)
用3根8米长的绳子打结成一根16米的长绳子,打结时两端绳子用去的长度相同,请问用去了多少米
二、重叠问题之排队:
题目8:
三(2)班同学排队做操,每行人数同样多,亮亮的位置从左数起是第5个,从右数是第4个,从前数是第2个,从后数是第4个。
三(2)班共有多少个人?
三、重叠问题之重复统计:
题目9:(正问题)
三(4)班有学生48人,写完语文作业的有23人,写完数学作业的有29人,每天至少写完一项作业,问语文和数学作业都写完的有几人?
题目10:(正问题)
一(5)班有48人,其中订《少年报》的有32人,订《数学报》的有38人,有25人两份报都订,那么:
(1)只订《少年报》而没有订《数学报》的有多少人?
(2)只订《数学报》而没有订《少年报》的有多少人?
(3)有多少人两种报都没订?
题目11:(反问题)
某班同学参加运动会,每人限报两项。
其中40人参加了长跑,32人参加了跳高,既参加长跑又参加跳高的有18人,这两项都没有参加的有20人。
这个班共有学生多少人?
题目12:(理解:韦恩图)
一次老师给全班同学做两道智力趣题,结果全班10人两题都对,8人两题都错,第二道题有15人错,问第一道对而第二道错的同学有多少人?
题目13:(正问题)
100位旅游者中,70人懂中文,52人懂英语,还有10人两种语言都不懂。
(1)懂中文和英语的一共有多少人?
(2)既懂英语又懂中文的有多少人?
(3)只懂中文不懂英语的有多少人?
(4)只懂英文不懂中文的有多少人?。