24.2.2(第2课时)学案设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十四章圆
24.2 点和圆、直线和圆的位置关系
24.2.2 直线和圆的位置关系(第2课时)
学习目标
1.掌握切线的判定定理的内容,并会运用它进行切线的证明.
2.能灵活选用切线的三种判定方法判定一条直线是圆的切线.
学习过程设计
一、设计问题,创设情境
1.圆的直径是15cm,如果直线与圆心的距离分别是(1)5.5cm,(2)7.5cm,(3)15cm,那么直线和圆的位置关系分别是(1),(2),(3);直线和圆的公共点的个数依次是,,.
2.你有哪几种方法判断一条直线是圆的切线?
二、信息交流,揭示规律
1.切线的判定定理的得出:
作图:在☉O中,经过半径OA的外端点A作直线l⊥OA,已知OA=r.那么,(1)圆心O到直线l的距离是;
(2)直线l和☉O的位置关系是.
归纳:切线的判定定理:
经过并且的直线是圆的切线.
请依据上图,用符号语言表达切线的判定定理:
判断:(1)过半径的外端的直线是圆的切线.()
(2)与半径垂直的直线是圆的切线.()
(3)过半径的端点与半径垂直的直线是圆的切线.()
2.总结:到此为止学习的切线的判定方法共有:
(1);
(2);
(3) .
三、运用规律,解决问题
1.已知一个圆和圆上的一点,如何过这个点画出圆的切线?
2.如图,直线AB经过☉O上的点C,并且OA=OB,CA=CB.求证:直线AB是☉O的切线.
3.已知点O为∠BAC平分线上一点,OD⊥AB于点D,以O为圆心,OD为半径作☉O.求证:☉O与AC相切.
课堂小结
若证直线是圆的切线,
1.当该直线过圆上一点时,则连接,再证;
2.当没有指明该直线过圆上一点时,则过作,再证.
四、变式训练,深化提高
1.如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AC于点E,以O为圆心,OE为半径作☉O.求证:AB是☉O的切线.
2.已知:△ABC内接于☉O,过点A作直线EF.
(1)如图1,AB为直径,要使EF为☉O的切线,还需添加的条件是(只需写出两种情况):①;②.
(2)如图2,AB是非直径的弦,∠CAE=∠B,求证:EF是☉O的切线.
五、反思小结,观点提炼
参考答案
一、设计问题,创设情境
1.相交相切相离210
2.(1)定义法:和圆有且只有一个公共点的直线是圆的切线.
(2)数量法(d=r):和圆心距离等于半径的直线是圆的切线.
二、信息交流,揭示规律
1.(1)r(2)相切半径的外端垂直于半径
∵OA是半径,l⊥OA于点A
∴l是☉O的切线.
判断:(1)×(2)×(3)×
2.总结:(1)定义法:和圆有且只有一个公共点的直线是圆的切线
(2)数量法(d=r):和圆心距离等于半径的直线是圆的切线
(3)判定定理:经过半径外端且垂直于这条半径的直线是圆的切线
三、运用规律,解决问题
1.略
2.证明:连接OC(图略).
∵在△OAB中,OA=OB,CA=CB,
∴AB⊥OC于C.
∵OC是☉O的半径,
∴AB是☉O的切线.
3.证明:过O作OE⊥AC于点E(图略).
∵AO平分∠BAC,OD⊥AB,
∴∠DAO=∠CAO,
∠ADO=∠AEO=90°,
又∵AO=AO,∴△ADO≌△AEO,
∴OE=OD,
即圆心O到AC的距离d=r,
∴AC是☉O的切线.
课堂小结:1.这点和圆心直线垂直于经过这点的半径2.圆心直线的垂线段这条线段的长等于圆的半径
四、变式训练,深化提高
1.证明:过点O作OF⊥AB于点F
∵AB=AC,AO⊥BC,
∴AO平分∠BAC,
又∵OE⊥AC,OF⊥AB,
∴OE=OF,
∴AB是☉O的切线.
2.(1)AB⊥EF∠CAE=∠B
(2)证明:过点O作直径AD,连接DC.∵AC=AC,
∴∠D=∠B.
∵AD是直径,
∴∠ACD=90°,
∴∠CAD+∠D=90°,
即∠CAD+∠B=90°.
又∵∠CAE=∠B,
∴∠CAD+∠CAE=90°,
∴OA⊥EF,
∴EF是☉O的切线.
五、反思小结,观点提炼
略