高中数学竞赛培优——不等式

合集下载

高中竞赛不等式公式大全

高中竞赛不等式公式大全

高中竞赛不等式公式大全摘要:一、前言二、高中竞赛不等式公式简介1.基本不等式2.柯西不等式3.排序不等式4.切比雪夫不等式5.赫尔德不等式6.闵可夫斯基不等式7.伯努利不等式8.拉格朗日不等式9.詹森不等式10.其他不等式三、高中竞赛不等式公式应用举例1.基本不等式应用2.柯西不等式应用3.排序不等式应用4.切比雪夫不等式应用5.赫尔德不等式应用6.闵可夫斯基不等式应用7.伯努利不等式应用8.拉格朗日不等式应用9.詹森不等式应用10.其他不等式应用四、结论正文:一、前言在高中数学竞赛中,不等式问题常常出现在各个章节中,解决不等式问题需要掌握一定的技巧和方法。

为了更好地应对这类问题,我们整理了高中竞赛中常见的不等式公式大全,希望能为同学们提供帮助。

二、高中竞赛不等式公式简介1.基本不等式基本不等式(Fundamental Inequality)是最常见的不等式之一,形式为:(a^2 + b^2) / 2 >= ab。

当且仅当a = b 时,等号成立。

2.柯西不等式柯西不等式(Cauchy Inequality)是一种特殊的平方和不等式,形式为:(a_1^2 + a_2^2 + ...+ a_n^2) * (b_1^2 + b_2^2 + ...+ b_n^2) >=(a_1b_1 + a_2b_2 + ...+ a_nb_n)^2。

当且仅当存在一个标量k 使得a_i = kb_i 时,等号成立。

3.排序不等式排序不等式(Sorting Inequality)是一种关于排序的数学不等式,形式为:对于任意的实数a_1, a_2, ..., a_n,有(a_1 + a_n) * n / 2 >= (a_2 +a_(n-1)) * n / 2 >= ...>= (a_n + a_1) * n / 2。

4.切比雪夫不等式切比雪夫不等式(Chebyshev"s Inequality)是一种概率论中的不等式,形式为:对于任意的实数k > 0,有P(|X - μ| >= k) <= 1 / k^2。

高中数学竞赛与强基计划试题专题:不等式

高中数学竞赛与强基计划试题专题:不等式

高中数学竞赛与强基计划试题专题:不等式一、单选题1.(2020·北京·高三强基计划)若正实数x ,y ,z ,w 满足x y w ≥≥和2()x y z w +≤+,则w zx y+的最小值等于()A .34B .78C .1D .前三个答案都不对2.(2021·北京·高三强基计划)已知,,a b c +∈R ,且111()3a b c a b c ⎛⎫+-+-= ⎪⎝⎭,则()444444111a b c a b c ⎛⎫++++ ⎪⎝⎭的最小值是()A.417+B.417-C .417D .以上答案都不对3.(2021·北京·高三强基计划)若a ,b ,c 为非负实数,且22225a b c ab bc ca ++---=,则a b c ++的最小值为()A .3B .5C .7D .以上答案都不对二、填空题4.(2021·北京·高三强基计划)在锐角ABC 中,tan tan 2tan tan 3tan tan A B B C C A ++的最小值是_________.5.(2021·全国·高三竞赛)已知正实数122020,,,a a a 满足1220201a a a +++= ,则222202012122320201a a a a a a a a a ++++++ 的最小值为________.6.(2022·浙江·高二竞赛)设a ,b ,c ,d +∈R ,1abcd =,则21914a a+∑∑的最小值为______.7.(2021·全国·高三竞赛)设正实数122020,,,a a a 满足202011i i a ==∑,则120201min1i ii kk a a ≤≤=+∑最大值为_________.8.(2021秋·天津河北·高三天津外国语大学附属外国语学校校考阶段练习)设0,0,25y x y x >>+=,则当=x _______时,12y y x +取到最大值.三、解答题9.(2023·全国·高三专题练习)设0()R[]nii i f x a x x ==∈∑,满足00,1,2,,.i a a i n ≤≤= 又设()0,1,,2i b i n = 满足22[()]nii i f x b x ==∑,证明:()2111.2n b f +⎡⎤≤⎣⎦10.(2023·全国·高三专题练习)设0()n ii i f x a x ==∑,1()n ii i g x c x +==∑是两个实系数非零多项式,且存在实数r 使得()()().g x x r f x =-记{}{}001max ,max i i i n i n a a c c ≤≤≤≤+==,证明:()1.a n c ≤+11.(2021·全国·高三竞赛)已知:a ,b ,0,2c a b c ≥++=,求证:11()1()1()bc ca ababc a b abc b c abc c a ++≤++++++.12.(2021·全国·高三竞赛)求所有的正实数a ,使得存在实数x 满足22sin cos 22x x a a +≥.13.(2022·新疆·高二竞赛)(1)若实数x ,y ,z 满足2221++=x y z ,证明:||||||-+-+-≤x y y z z x ;(2)若2023个实数122023,,, x x x 满足2221220231+++= x x x ,求12232022202320231-+-++-+- x x x x x x x x 的最大值.14.(2021·全国·高三竞赛)设m 为正整数,且21n m =+,求所有的实数组12,,,n x x x ,使得22221221i i nmx x x x x =++++ ,对所有1,2,,i n = 成立.15.(2021·全国·高三竞赛)求最大的正实数λ,使得对任意正整数n 及正实数01,,,n x x x ,均有010111.nn k k k k x x x x λ==≥+++∑∑ .16.(2021·全国·高三竞赛)已知01({0,1,,10})i x i <<∈ 证明:存在,{0,1,2,,10}i j ∈ ,使得()1030i j j i x x x x <-<.17.(2021·全国·高三专题练习)已知:0a >,0b >,1a b +=.2<.18.(2021·全国·高三专题练习)已知a ,b 为正数,且a b ¹2112a b a b+>>>+.19.(2022·湖北武汉·高三统考强基计划)设()1,,2n x x n ⋅⋅⋅≥皆为正数,且满足1211112022202220222022n x x x ++⋅⋅⋅+=+++2022≥20.(2023·全国·高三专题练习)实数,,a b c 和正数λ使得()32f x x ax bx c =+++有三个实数根123,,x x x .且满足:(1)21x x λ-=;(2)()31212x x x >+,求332279a c ab λ+-的最大值.21.(2021·全国·高三竞赛)设,1,2,,i a i n +∈=R ,记:121kk kn i i i kD C aa a =+++∑ ,其中求和是对1,2,…,n 的所有kn C 个k 元组合12,,,k i i i 进行的,求证:1.(1,2,,1)k k D D k n +≥=- .22.(2021·全国·高三竞赛)已知12,,,n a a a R ∈L ,且满足222121n a a a +++= ,求122311n n n a a a a a a a a --+-++-+-L 的最大值.23.(2021·全国·高三竞赛)已知正实数12,,,(2)n a a a n > 满足121n a a a +++= .证明:23131212121222(1)n n n n a a a a a a a a a a n a n a n n -+++≤+-+-+-- .24.(2021·浙江金华·高三浙江金华第一中学校考竞赛)数列{}n a 定义为11a =,()11111n n k k a a n n +==+≥∑.证明,存在正整数n ,使得2020n a >.25.(2021·全国·高三竞赛)给定正整数3n ≥.求最大的实数M .使得211nk k k k a M a a =+⎛⎫≥ ⎪+⎝⎭∑对任意正实数12,,,n a a a 恒成立,其中11n a a +=.26.(2019·河南·高二校联考竞赛)锐角三角形ABC 中,求证:cos()cos()cos()8cos cos cos B C C A A B A B C --- .27.(2022·贵州·高二统考竞赛)正数a ,b 满足+=1a b ,求证:2332211318a b a b ⎛⎫⎛⎫⎛⎫-- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.28.(2022·江苏南京·高三强基计划)已知整数1n >,证明:11!32nnn n n ++⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭.29.(2022·浙江杭州·高三学军中学校考竞赛)设实数12,,,n a a a 满足11(1)(1)n n i i i i a a ==+=-∏∏,求1ni i a =∑的最小值.30.(2021·浙江·高二竞赛)设x ,y ,0z >1=,证明4224224225552221()()()x y z y z x z y x x y z y z x z y x +++++≥+++.高中数学竞赛与强基计划试题专题:不等式一、单选题1.(2020·北京·高三强基计划)若正实数x ,y ,z ,w 满足x y w ≥≥和2()x y z w +≤+,则w zx y+的最小值等于()A .34B .78C .1D .前三个答案都不对【答案】D【分析】利用基本不等式可求最小值,从而可得正确的选项.【详解】根据题意,有2111122222w z w x y w w x w x y x y x y y +-+≥+=++-≥+-≥-,等号当1::::12x y z w =12-.2.(2021·北京·高三强基计划)已知,,a b c +∈R ,且111()3a b c a b c ⎛⎫+-+-= ⎪⎝⎭,则()444444111a b c a b c ⎛⎫++++ ⎪⎝⎭的最小值是()A .417+B .417-C .417D .以上答案都不对【答案】A【分析】根据题设条件可设1ab =,利用柯西不等式可求最小值.【详解】由111()3a b c a b c ⎛⎫+-+-= ⎪⎝⎭可得22111a b c ab a b ab c +⨯=⨯++,由对称性可设1ab =,则条件即1()3a b c a b c ⎛⎫+-+-= ⎪⎝⎭即221a b c c a b ++=+,从而2221a b a b a b+≥⇒+≥++根据柯西不等式()()24444444411a b c a b a b c ⎛⎫++++≥++ ⎪⎝⎭242()4()3a b a b ⎡⎤=+-++⎣⎦417≥+等号当1,1c a b =+=417+3.(2021·北京·高三强基计划)若a ,b ,c 为非负实数,且22225a b c ab bc ca ++---=,则a b c ++的最小值为()A .3B .5C .7D .以上答案都不对【答案】B【分析】利用非负性可求最小值.【详解】根据题意,有5a b c ++=≥=,等号当cyc (,,)(5,0,0)a b c =时可以取得,因此所求最小值为5.二、填空题4.(2021·北京·高三强基计划)在锐角ABC 中,tan tan 2tan tan 3tan tan A B B C C A ++的最小值是_________.【答案】6+++【分析】利用柯西不等式及三角形的恒等式可取最小值.【详解】记题中代数式为M ,我们熟知三角形中的三角恒等式:cot cot cot cot cot cot 1A B B C C A ++=,于是tan tan 2tan tan 3tan tan M A B B C C A=++2(1cot cot cot cot cot cot A B B C C A ≥++2(16=+=+,等号当tan tan tan tan tan :tan :tan A B B C C A A B C ==⇒=时取得,因此所求最小值为6+++5.(2021·全国·高三竞赛)已知正实数122020,,,a a a 满足1220201a a a +++= ,则222202012122320201a a a a a a a a a ++++++ 的最小值为________.【详解】由柯西不等式知()()()22220201212232220112232021a a a a a a a a a a a a a a a ⎛⎫+++++++++⎡⎤ ⎪⎣⎦+++⎝⎭ ()2122201a a a ≥+++= ,且()()()1223202012a a a a a a ++++++= ,所以2222201212232020112a a a a a a a a a +++≥+++ ,且当12202012020a a a ==== 时取到等号.故答案为:12.6.(2022·浙江·高二竞赛)设a ,b ,c ,d +∈R ,1abcd =,则21914a a+∑∑的最小值为______.【答案】7316【详解】由题意可得1abc d=,且a b c d ,则()222222911141f a a b c a b c a b c abc=+++++++,原问题等价于求函数()f a 的最小值.322291()2214()d f a a a b c a b c d a '-⎛⎫=-+⋅-⋅- ⎪+++⎝⎭322221924()a da a a d a abcd --=+⋅-⋅+++()22223232229()4()a d a d a d a d a a b c d d --=-+++()()222222328()9()4()a d a b c d a d a d a a b c d d -+++--=+++()2223228()()94()a d a d a b c d a d a a b c d d -=⋅++++-+++,3a b c d a d ++++ ,22()(3)12a b c d a d ad ∴++++ ,2228()()9a d a b c d a d ∴++++-[]228()129332()3a d ad a d ad a d ad +⋅-=+- ,令()32()3g a a d ad =+-,则()323g a d '=-,由a b c d可得1d ≤,则()()'0,g a g a >单调递增,2()()643(643)0g a g d d d d d ∴=-=-> ,则()()'0,f a f a >单调递增,()()f a f d ≥,此时1a b c d ====,73()(1)16f a f =.7.(2021·全国·高三竞赛)设正实数122020,,,a a a 满足202011i i a ==∑,则120201min1i ii kk a a ≤≤=+∑最大值为_________.【答案】1【详解】解析:最大值为1记01202011min,1,11ii i k ii k kk a S x a x a ≤≤====+=+∑∑,则1i i i a x x -=-,故111i i i i i x x xS x x ---≤=-,即11i ix S x --≥,对1,2,3,,2020i = ,求和,并结合算术-几何平均不等式,有120202020101202020202020(1)202020202i i i x x S x x -=⎛⎫-≥≥⨯=⎪⎝⎭∑,故1S ≤1(((1,2,3,,2020)i i i a i -=-= 时取到.所以原式的最大值为18.(2021秋·天津河北·高三天津外国语大学附属外国语学校校考阶段练习)设0,0,25y x y x >>+=,则当=x _______时,12y y x +取到最大值.【答案】52或2.5【分析】巧妙利用换元2log z x =得到111022z y ++=+,将12y y M x +=取对数运算得到2log (1)(1)1M y z =++-,将所求问题转化为求(1)(1)y z ++的最大值问题,由111022z y ++=+使用两次基本不等式可求出(1)(1)y z ++的最大值,考查等号取得条件即可.【详解】设12y y M x +=,则22log (1)log M y y x =++,设2log z x =,则2z x =,可知225z y +=,2log (1)(1)(1)1M y y z y z =++=++-.1111210222222z y z y +++++=+≥⋅≥⋅,(当且仅当z y =,即522yx ==时取等号.)所以5≥,故(1)(1)y z ++有最大值22(log 5),所以2log M 就有最大值,即12y y M x +=有最大值.【点睛】使用基本不等式求最值关键是要有定值才能求最值,没有明显的定值要进行变形拼凑.在此题中拼凑的定值有:①225z y +=及111022z y ++=+,为求(1)(1)z y +++最大值做准备;②通过提取公因式实现因式分解拼凑乘积,(1)(1)(1)1y y z y z ++=++-,产生了(1)(1)y z ++与上面(1)(1)z y +++遥相呼应,可以使用基本不等式.三、解答题9.(2023·全国·高三专题练习)设0()R[]nii i f x a x x ==∈∑,满足00,1,2,,.i a a i n ≤≤= 又设()0,1,,2i b i n = 满足22[()]nii i f x b x ==∑,证明:()2111.2n b f +⎡⎤≤⎣⎦【分析】根据给定条件,利用多项式平方运算求出2[()]f x ,再利用赋值法结合已知及进行不等式的放缩,推理判断作答.【详解】22200[()]()()nni si i ji s i j sf x a x a a x==+===∑∑∑,于是s iji j sb a a+==∑,222000001111[(1)]()(2)(2)2222n n i i i j i j i j i i i j n i j n i j n f a a a a a a a a ==≤<≤≤<≤≤<≤==+≥=∑∑∑∑∑001ni j j i j n j a a a a =<≤=≥=∑∑,因为00,1,2,,i a a i n ≤≤= ,则211211001010111[(1)]2nn i j n n n n n ji j n j b a a a a a a a a a a a a a a a a f +--+=+===+++≤+++=≤∑∑ ,所以211[(1)]2n b f +≤.10.(2023·全国·高三专题练习)设0()nii i f x a x ==∑,1()n ii i g x c x +==∑是两个实系数非零多项式,且存在实数r 使得()()().g x x r f x =-记{}{}001max ,max i i i n i n a a c c ≤≤≤≤+==,证明:()1.a n c ≤+【分析】根据给定条件,利用多项式恒等定理求出多项式(),()f x g x 的对应项系数的关系,再按||1r ≤和||1r >讨论,并结合含绝对值不等式的性质推理作答.【详解】因为()()()g x x r f x =-,即1110101()()n n nn niii ii n i i i i i i n i i i i i c x x r a x a xra x ra a ra x a x +++-======-=-=-+-+∑∑∑∑∑,则有()0011,1,2,,,i i i n n c ra c a ra i n c a -+=-=-== ,于是2211121101231,,,,nn n n n n n n n n n a c a c rc a c rc r c a c rc r c r c +-+--++==+=++=++++ ,若1r ≤,则1111,||2n n n n n n n a c c a c rc c r c c +-++=≤=+=+⋅≤,2221111||3,n n n n n n n a c rc r c c r c r c c --+-+=++≤+⋅+≤ ,()22012311231||||||||||||||||1n n n n a c rc r c r c c r c r c r c n c ++=++++≤+⋅+⋅++⋅≤+ ,所以()1i a n c ≤+,于是()1a n c ≤+,若1r >,则11,r<由()0011,1,2,,,i i i n n c ra c a ra i n c a -+=-=-== ,得()0011111,1,2,,,i i i n n a c a a c i n a c r r r-+=-=-== ,于是00101012120122321111111111,,,,a c a a c c c a a c c c c r r r r r r r r r r =-=-=--=-=--- 101111111,n n n n n n a c c c a c r r r--+-=----= ,于是0001010122111111,2a c c c a c c c c c r r r r r r =-=<=--≤+<,201201232321111113,,a c c c c c c c r r r r r r=---≤++< 1011011111111111,n n n n n n n n n a c c c c c c nc a c c r r r r r r---+--=----≤+++<=≤ ,所以i a nc <,于是()1a n c <+,综上得:()1a n c ≤+.11.(2021·全国·高三竞赛)已知:a ,b ,0,2c a b c ≥++=,求证:11()1()1()bc ca ababc a b abc b c abc c a ++≤++++++.【详解】()()()()111abc a b ab bc ca c a b ab ⎡⎤⎣⎦++-++=-+⨯-,因为a ,b ,0,2c a b c ≥++=,所以()1,1c a b ab +≤≤.于是()1abc a b ab bc ca ++≥++,同理()1abc b c ab bc ca ++≥++,()1abc c a ab bc ca ++≥++.则:1()1()1()bc ca ababc a b abc b c abc c a ++++++++1bc ca abab bc ca ab bc ca ab bc ca≤++=++++++.故题中的不等式成立.12.(2021·全国·高三竞赛)求所有的正实数a ,使得存在实数x 满足22sin cos 22x x a a +≥.【详解】设22sin x t a =,则不等式化为20at t+-≥.当01a <<时,2[,1]t a ∈;当1a =时,1t =;当1a >时,2[1,]t a ∈.因此不等式可化为220t t a +≥-.设2()2f t t t a =-+,考虑()f t 在1和2a 之间恒小于零,则2(1)0,()0,0f f a a <<>,故()()21110a a a a <⎧⎪⎨-+-<⎪⎩,1a <<.所以a的取值范围是10,[1,)2⎛⎤⋃+∞ ⎥ ⎝⎦.13.(2022·新疆·高二竞赛)(1)若实数x ,y ,z 满足2221++=x y z ,证明:||||||-+-+-≤x y y z z x ;(2)若2023个实数122023,,, x x x 满足2221220231+++= x x x ,求12232022202320231-+-++-+- x x x x x x x x 的最大值.【详解】(1)不妨设x y z ≤≤,则||||||-+-+-=-+-+-x y y z z x y x z y zx2()=-=≤≤=z x .(2)因为2023为奇数,则1220231,, i x x x x x 中必存在1,i i x x +(令20241=x x )同号,不妨设12,x x 同号,则:20233232023112112211232++===-=-+-≤-+++=∑∑∑ii i i i i i i xx x x x x x x x x x S .不妨设210≥≥x x ,则122122-++=x x x x x,所以:20232322=⎫⎫=+≤≤=⎪⎪⎪⎪⎭⎭∑i i S x x当且仅当124130,,====== x x x xx或124130,,====== x x x x x 因此12232022202320231-+-++-+- x x x x x x xx 的最大值为14.(2021·全国·高三竞赛)设m 为正整数,且21n m =+,求所有的实数组12,,,n x x x ,使得22221221i i nmx x x x x =++++ ,对所有1,2,,i n = 成立.【分析】第一步化简原式,第二步利用AM GM -不等式即可得到1k =或2m ,这两种情况是对称的,不妨证明1k =的时候成立,所以原式成立.【详解】由已知22121,1,2,,i i njj mx x i nx==+=⋅⋅⋅∑,得22121ni jj i mx x x ==-∑,故221i i mx x -全相等.注意到若实数a b ¹满足2211a b a b =--,则ab a b =+,即1b a b =-.因此,1i b x b b ⎧⎫∈⎨⎬-⎩⎭,0,1,2,,b i n ≠= .设i x 中有1bb -,21n k m k -=+-个b ,则有201k m ≤≤+,且()2222221(1)1b mb k m k b b b ⋅++-=--,即()21(1)21km k b m b ++--=-.由AM GM -不等式,若201k m <<+,()21(1)21km k b m b ++--≥≥-,因此必取等,即1k =或2m ,这两种情况是对称的,不妨1k =,则21(1)21m b m b +-=-,知11b m -=,则1,1m b a m m+==+.若0k =,则()21(1)2m b m +-=,即222(1)(1),12m m b a m m++==+.若21k m =+,则2121m m b +=-,即222(1)(1),21m m b a m m ++==+.综上可知,12,,,n x x x 要么1个21,+m m 个1m m +;要么全是22(1)1m m ++.15.(2021·全国·高三竞赛)求最大的正实数λ,使得对任意正整数n 及正实数01,,,n x x x ,均有010111.nnk k k k x x x x λ==≥+++∑∑ .【分析】先取101231,2,4,,2n n x x x x x -===== ,通过对其求和可得λ的范围,再利用放缩法可得010101201111333n nx x x x x x x x x x x +++≥+++++++++ ,最后求出最大的正实数λ的值.【详解】一方面,取101231,2,4,,2n n x x x x x -===== ,得1111322nn kk λ-=-≥∑即1113122n n λ-⎛⎫-≥- ⎪⎝⎭.令n →∞,得3λ≤.另一方面对正实数x ,y 有114x y x y+≥+,故0101114x x x x +≥+,012012114x x x x x x +≥+++,01230123114x x x x x x x x +≥+++++,……01101114n n nx x x x x x x -+≥++++++ .以上各式相加,得010101201111333n nx x x x x x x x x x x +++≥+++++++++ .故3λ=时,原不等式恒成立.综上,λ的最大值为3.16.(2021·全国·高三竞赛)已知01({0,1,,10})i x i <<∈ 证明:存在,{0,1,2,,10}i j ∈ ,使得()1030i j j i x x x x <-<.【详解】不妨1210x x x ≤≤≤ ,设()(,)i j j i f i j x x x x =-,当010i j ≤≤≤时,因为()()()22333i j j i i i j j j i j i x x x x x x x x x x x x -≤++-=-,即333(,)j i f i j x x ≤-,当且仅当i j =时,等号成立.故()()10103311131,1i i i i f i i x x -==-<-<∑∑,所以存在{1,2,,10}i ∈ ,使得13(1,)10f i i -<,即1(1,)30f i i -<.所以存在,{0,1,2,,10}i j ∈ ,使得()1030i j j i x x x x <-<.17.(2021·全国·高三专题练习)已知:0a >,0b >,1a b +=.2<.【分析】构造一个直角三角形,,<cos )2αα+≤,即得证.【详解】证明:为了使得条件1a b +=与待证式的中间部分在形式上接近一些,我们将该条件作如下变形:11222a b ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,进而有222⎫+=⎪⎪⎭.①(如图所示).显然,这个直角三角形的三边长之间的关系是符合①的,从而满足条件1a b +=.由图所示,根据定理“三角形任意两边之和大于第三边”<.α=,α=.cos )24πααα⎛⎫+=+≤ ⎪⎝⎭∴2<成立.18.(2021·全国·高三专题练习)已知a ,b 为正数,且a b ¹2112a b a b+>>>+.【分析】如图所示,可先构造Rt ABC △,再构造Rt BCD ,最后,作Rt Rt BC D BCD '△≌△,由图形直观得AB BC BD BE >>>,即得证.=可先构造Rt ABC △,使得2a b BC +=,2a bAC -=,如图所示.此时,AB =.再以2a bBC +=为斜边,2a b CD -=为直角边构造Rt BCD,则BD =最后,作Rt Rt BC D BCD '△≌△,过点D 作DE BC ⊥'交BC '于点E ,由2BD BE BC =⋅'得22112BD BE a b BC a b=='+,由图形直观得AB BC BD BE >>>,2112a b a b+>>>+.19.(2022·湖北武汉·高三统考强基计划)设()1,,2n x x n ⋅⋅⋅≥皆为正数,且满足1211112022202220222022n x x x ++⋅⋅⋅+=+++2022≥【详解】证法一:由AM-GM 不等式有:()=120222022ni i i x x +∏=11=2022nk i i k x ≠+∑∏()11i n n =⎛≥- ⎝∏()()=11=2022nn i i n x -+∏,2022≥.证法二:不妨设12022i i y x =+,则12022,1iix i n y =-≤≤.从而原题转化为:已知111=,0<<20222022ni i i y y =∑,求证()=11ln 2022ln 20221ni i n n y ⎛⎫-≥-⎡⎤ ⎪⎣⎦⎝⎭∑.令()11ln 20222022i f y y y ⎛⎫=-<< ⎪⎝⎭,则()()2214044=2022''y f y y y --.不失一般性,我们设12n y y y ≤≤≤ ,则:(1)若1214044n y y y ≤≤≤≤,由Jesen 不等式有:()()1111ln 202212022nn i i i f y nf y nf n n n n ==⎛⎫⎛⎫≥==-⎡⎤ ⎪ ⎪⎣⎦⎝⎭⎝⎭∑∑.(2)若12114044n n y y y y -≤≤≤≤≤ .容易得到()1ni i f y =∑取得最小值当且仅当121n y y y -=== .20.(2023·全国·高三专题练习)实数,,a b c 和正数λ使得()32f x x ax bx c =+++有三个实数根123,,x x x .且满足:(1)21x x λ-=;(2)()31212x x x >+,求332279a c ab λ+-的最大值.【分析】解法一:设12x m λ=-,22x m λ=+,()30x m t t =+>,利用韦达定理可化简所求式子为解法二:由()()()32311321232279222a c ab x x x x x x x x x +-=+-+-+-可令21x x λ=+,()3102x x n n λ=++>,由此可化简所求式子为3922n n λλ⎛⎫⋅- ⎪⎝⎭,令0n t λ=>,()()39202g t t t t =->,利用导数可求得()max g t ,即为所求式子的最大值.【详解】解法一:由题意可设:12x m λ=-,22x m λ=+,()31212x x x m >+= ,∴可令()30x m t t =+>,由韦达定理得:()()123221223312232123332444a x x x m t b x x x x x x m mt c x x x m m t m t λλλ⎧⎪=-++=-+⎪⎪=++=+-⎨⎪⎪=-=--++⎪⎩,则()323222327929292727244a ab a a b m m t m t t λλ-=-=+---,3222272727272744c m m t m t λλ=--++,则323332279942a c abt t λλλ+--=要取得最大值,则23940t t λ->,()3223322791942a c abt t λλλ+-=-2=(当且仅当222948t t λ-=,即t=时取等号),又t =满足23940t t λ->,∴取0m =,2λ=,则t =,此时11x =-,21x =,3x =a =1b =-,c =时,3322792a c ab λ+-=,332279a c abλ+-∴解法二:323227927273333a a a a a c ab a b c f⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+-=-+-+-+=-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦()()()12312327333333a a a x x x a x a x a x ⎛⎫⎛⎫⎛⎫=------=------ ⎪⎪⎪⎝⎭⎝⎭⎝⎭,又123a x x x -=++,()()()32311321232279222a c ab x x x x x x x x x ∴+-=+-+-+-,令21x x λ=+,()3102x x n n λ=++>,322339227922224a c ab n n n n n λλλ⎛⎫⎛⎫⎛⎫∴+-=+-=- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,2233339222799422n n a c ab n n λλλλλ⎛⎫- ⎪+-⎛⎫⎝⎭∴==⋅- ⎪⎝⎭;令0nt λ=>,则3332279922a c abt t λ+-=-,令()()39202g t t t t =->,则()2962g t t '=-,令()0g t '=,解得:t =,∴当0,2t ⎛∈ ⎝⎭时,()0g t '>;当,2t ⎛⎫∈+∞ ⎪ ⎪⎝⎭时,()0g t '<;()g t ∴在2⎛⎫⎪ ⎪⎝⎭上单调递增,在2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递减,()max22482g t g ⎛⎫∴==-⨯= ⎪ ⎪⎝⎭;∴当2λ=,n =11x =-,21x =,3x =a =1b =-,c =332279a c ab λ+-=332279a c abλ+-∴21.(2021·全国·高三竞赛)设,1,2,,i a i n +∈=R ,记:121kk k ni i i k D C aa a =+++∑ ,其中求和是对1,2,…,n 的所有kn C 个k 元组合12,,,k i i i 进行的,求证:1.(1,2,,1)k k D D k n +≥=- .【详解】任取121,,,k i i i a a a + ,由柯西不等式,有:()()1211211212111(1)(1)k j k k k j i i i i i i i i i i k a a a a k a a a a a a ++++=+≥+++-++++-+++∑ 1212(1)1k i i i k k a a a ++=⋅+++ .所以()1211212111(1)1k k jk j i i i i i i i k k aa a aa a a +++=+++++++-∑∑∑.其中求和对1,2,…,n 的所有1k n C +个1k +元组合进行.上式左边实际上是一些k 元组合的求和,因对任意k 元组合12,,,k i i i a a a ,选这k 个数的1k +元组合有n k -个(余下的n k -个数中任意一个数都与其构成一个1k +元组合),故121121111()k j kk j i i i i i i i n k a a a a a a a ++==-+++-+++∑∑∑ .这样便有1212121(1)1()k k i i i i i i k n k a a a k aa a ++-≥++++++∑∑ ,所以1212121(1)1C ()C k k kkni i i ni i i kk a a a n k aa a ++≥+++-+++∑∑ .再注意到1()(1)k k n n n k C k C +-=+,即得:121211111C C k k k k ni i i n i i i k k aa a a a a +++≥++++++∑∑.这就证明了1k k D D +≥,其中1,2,,1k n =- .即有121k k n D D D D D +≥≥⋅⋅⋅≥≥≥⋅⋅⋅≥.22.(2021·全国·高三竞赛)已知12,,,n a a a R ∈L ,且满足222121n a a a +++= ,求122311n n n a a a a a a a a --+-++-+-L 的最大值.【答案】当n为偶数时,最大值为n为奇数时,最大值为【详解】i j i j a a a a -≤+当且仅当·0i j a a ≤时等号成立.(1)当n 为偶数时,122311n n n a a a a a a a a --+-++-+-L 最大时,显然需满足10i i a a +⋅≤,否则用1i a +-替换1i a +依然满足条件,且值增大.设11n a a +=,所以()111112nn nii i i i i i i a aa a a ++===-≤+=≤=∑∑∑当且仅当i j a a ==i 为奇数,j 为偶数或i 为偶数,j 为奇数)时等号成立.(2)当n 为奇数时,122311,,,,n n n a a a a a a a a ----- 必存在()111,i i n a a a a ++=同号,不妨设12,a a 同号,则:112112211232A nn nii i i i i i i a aa a a a a a a a a ++===-=-+-≤-+++=∑∑∑.不妨设210a a ≥≥,则122122a a a a a -++=,所以:23A 2222ni i a a ==+≤≤=⎝∑当且仅当124130,a a a a a =======L L124130,,a a a a a ======L L .23.(2021·全国·高三竞赛)已知正实数12,,,(2)n a a a n > 满足121n a a a +++= .证明:23131212121222(1)n n n n a a a a a a a a a a n a n a n n -+++≤+-+-+-- .【详解】当4n ≥时,由平均值不等式知1111111n nn j i nj i j j j ia a a a n n --==≠⎛⎫- ⎪-⎛⎫ ⎪= ⎪ ⎪--⎝⎭⎪⎝⎭∑∏ .又111i a n -<-,则131111n i i a a n n ---⎛⎫⎛⎫≤ ⎪ ⎪--⎝⎭⎝⎭,所以231312112222n n n n a a a a a a a a a a n a n a n -++++-+-+- ()()3311(1)2ni i i a n a n =-≤-+-∑33321(10)1(1)(02)(1)(2)(1)ni n n n n n n =-<=≤-+----∑.当3n =时,即证312311(1)4=≤+∑i i i a a a a a .由于()()()()11123121311111111411a a a a a a a a a ⎛⎫=≤+ ⎪+-+---⎝⎭,所以3112131111((1)4(1)(1)=≤++--∑∑i i i a a a a a a ()()2131111411a a a a ⎛⎫=+ ⎪--⎝⎭∑()2323123111414a a a a a a a +==-∑∑,所以31231111(1)44=≤=+∑∑i i i a a a a a a .命题得证.24.(2021·浙江金华·高三浙江金华第一中学校考竞赛)数列{}n a 定义为11a =,()11111nn k k a a n n +==+≥∑.证明,存在正整数n ,使得2020n a >.【详解】由题意2112a a =+=.对2n ≥,我们有:11nn k k na n a +==+∑;()1111n n k k n a n a -=-=-+∑.两式相减,得:11n n na na +-=,即()111n n a a n n+=+≥.对2n ≥有1111n n k a k-==+∑.取403621n =+,则114035220211122i i n n k i k a k k +-===+⎛⎫=+=+ ⎪⎝⎭∑∑∑1403521021122i i i i k ++==+⎛⎫>+ ⎪⎝⎭∑∑403501220202i ==+=∑,从而403621n =+满足要求.25.(2021·全国·高三竞赛)给定正整数3n ≥.求最大的实数M .使得211nk k k k a M a a =+⎛⎫≥ ⎪+⎝⎭∑对任意正实数12,,,n a a a 恒成立,其中11n a a +=.【答案】3,3,41, 4.n M n ⎧=⎪=⎨⎪≥⎩【详解】当4n ≥时,令1(1,2,,1)k k a xa k n +==- ,则2221111(1)11nk n k k k a x n a a x x -=+⎛⎫⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭∑.当0x →时,2211(1)111n x n x x -⎛⎫⎛⎫-+→ ⎪ ⎪++⎝⎭⎝⎭.令1k k k a x a +=,则问题化为:121n x x x = ,证明:21111n k k x =⎛⎫≥ ⎪+⎝⎭∑.当4n =时,首先证明:22111111x y xy⎛⎫⎛⎫+≥⎪ ⎪+++⎝⎭⎝⎭.①①式332212x y xy x y xy ⇔++≥+,由均值不等式知成立.由①式知2412341123412341234211111111k k x x x x x x x x x x x x x x x x x =⎛⎫++≥+== ⎪++++++⎝⎭∑.假设n k =时,对任意正实数12,,,k x x x 结论成立.则1n k =+时,由对称性不妨设121,,,,k k x x x x + 中1k x +最大,则11k x +≥,所以22211111111k k k k x x x x ++⎛⎫⎛⎫⎛⎫+≥ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭,由归纳假设知,此时结论成立.由数学归纳法知,2111nk k k k a a a =+⎛⎫≥ ⎪+⎝⎭∑.故1M =.当1233,n a a a ===时,231134k k k k a a a =+⎛⎫= ⎪+⎝⎭∑.由于24111k k k k a a a =+⎛⎫≥ ⎪+⎝⎭∑,令34a a =,则231134k k k k a a a =+⎛⎫≥⎪+⎝⎭∑,所以34M =.综上所述,3,3,41, 4.n M n ⎧=⎪=⎨⎪≥⎩26.(2019·河南·高二校联考竞赛)锐角三角形ABC 中,求证:cos()cos()cos()8cos cos cos B C C A A B A B C --- .【详解】原不等式等价于cos()cos()cos()8cos cos cos B C C A A B A B C--- .在三角形ABC 中,tan tan tan tan tan tan A B C A B C ++=,cos()sin sin cos cos cos sin sin cos cos B C B C B C A B C B C -+=-tan tan 1tan tan 1B C B C +=-tan (tan tan 1)tan tan A B C B C +=+2tan tan tan tan tan A B CB C++=+.令tan tan tan tan tan tan A B xB C y C A z+=⎧⎪+=⎨⎪+=⎩,则原不等式等价于()()()8z x y z x y yxz +++ .而上式左边8=,故原不等式得证27.(2022·贵州·高二统考竞赛)正数a ,b 满足+=1a b ,求证:2332211318a b a b ⎛⎫⎛⎫⎛⎫-- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ .【详解】332211a b a b ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭()()()()55234234222211(1)(1)11a b a b a aa ab b b b a b a b ----++++++++==()()23423411a aa ab b b b ab++++++++=23231111a a a b b b a b ⎛⎫⎛⎫=++++++++ ⎪⎪⎝⎭⎝⎭231ab ⎫≥++++⎪⎭(柯西不等式),122a b +=,令t =231()1g t t t t t=++++,其中102t <≤,则2213()12341104g t t t t =-+++≤-+++<',所以131()28g t g ⎛⎫≥= ⎪⎝⎭.所以2332211318a b a b ⎛⎫⎛⎫⎛⎫--≥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.28.(2022·江苏南京·高三强基计划)已知整数1n >,证明:11!32nnn n n ++⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭.【详解】解同除!n :()()11111!3!2nnn nn n n n ++⋅<<,设()1!nnn a n +=,原题即证:23n nn a <<,而()2211111111C C 2nn nn n n n n n n aa n n n n -+⎛⎫⎛⎫⎛⎫==+=++⋅+⋅⋅⋅+> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以112121···2n n n n n a a a a a a ----⋅⋅⋅>,即1122n nn a a ->⋅=,1n >,又2211111C C nn n n n n a a n n -⎛⎫⎛⎫=++⋅++ ⎪ ⎝⎭⎝⎭ 11122!3!!n <+++⋅⋅⋅+211112222n -<+++⋅⋅⋅+11332n -=-<,所以112121···<3n n n n n a a aa a a ----⋅⋅⋅,即1133n nn a a -<⋅<,1n >,综上可得:1n >时,23nnn a <<,即11!32n nn n n ++⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭.29.(2022·浙江杭州·高三学军中学校考竞赛)设实数12,,,n a a a 满足11(1)(1)n n i i i i a a ==+=-∏∏,求1ni i a =∑的最小值.【分析】由特例可得当n 为偶数时,1||ni i a =∑的最小值为0,当n 为奇数时,问题可转化为“给定正奇数n ,设11,,n x x +⋯满足1(1,2,)i i x x i n +≠=,111n n i i i i x x +===∏∏,则111||2ni i i i i x x x x +=++≥-∑恒成立.”,利用逐步调整法可证后者.【详解】当n 为偶数时,取10n a a =⋯==,故1||ni i a =∑的最小值为0;当n 为奇数时,也可只取121,1a a =-=,其余为0,此时1||2ni i a ==∑,下证当n 为奇数时,12ni i a =≥∑恒成立.(利用换元可以得到更直观的形式如问题2).问题2:给定正奇数n ,设11,,n x x +⋯满足1(1,2,)i i x x i n +≠=,111n n i i i i x x +===∏∏,则111||2ni i i i i x x x x +=++≥-∑恒成立.证明:注意到若10i i x x +⋅≥同号,即有111i i i i x x x x +++≥-,因为n 为正奇数,则必定存在一组0010i i x x +⋅≥同号,否则若1,i i x x +均异号,则111,nni i i i x x +==∏∏的符号必定相异.若还存在其他组10i i x x +≥,则可得111||2ni i i i i x x x x +=++≥-∑成立,若无其他组10,i i x x +≥同号,不妨10n n x x +≥,可设10,0n n x x +>>,(若等于0的可以进行小范围微调,只要不影响绝对值内数值的符号即可).因为无其他组10,i i x x +≥同号,故122221221110,0,,0,0,0,0,,0,0,0k k k k n n n x x x x x x x x x --+-+><<>><<>> ,此时11,n x x +同号.记1i i i x d x +=,则11ni i d ==∏且对1i n ≤≤,11111.1i i i ii i i i i i x x d x x x x x x d ++++--+==-++设1121|1|1(,,,)11n i n n i i nd d f d d d d d -=-+=++-∑ ,下面将在11n i i d ==∏条件下进行调整.①若存在1,1k d k n >≤-.令()1,,,,n n k n i k i d d d d d d d i k n '==>='≠'则()()()()()'''1212211,,,,,,0.111n k k n n k n n k d d d f d d d f d d d d d d d --⋯-⋯=+>+--②若存在,1,1k l d d k l n <<≤-.令()'''1,,,,k l k l i i d d d d d d i k l ===≠则()()1212111,,,,,,111k l k l n n k l k l d d d d f d d d f d d d d d d d '''---⋯-⋯=+-+++()()()()()()1110111k l k l k l k l d d d d d d d d ---=>+++由上述讨论知,经过有限次调整可得:对1i n ≤-,除至多一个1i d ≠(设为)1d 外,其余1i d =.因此就有11n d d =,不妨设1n d >,则101d <<,故1121|1|1(,,,)11n i n n i i n d d f d d d d d -=-+⋯=++-∑111111n n n nd d d d -+≥+-+1111n n n n d d d d -+=++-2≥,原不等式得证.至此我们完成了问题2在奇数情况下的解答,即所求()max 2n λλ==.综上,当n 为偶数时,1||ni i a =∑的最小值为0;当n 为奇数时,1||ni i a =∑的最小值为2.30.(2021·浙江·高二竞赛)设x ,y ,0z >1=,证明4224224225552221()()()x y z y z x z y x x y z y z x z y x +++++≥+++.【详解】等价于已知x ,y ,0z >,1x y z ++=,证:()8445221x y z x y z +≥+∑,由三元均值不等式有()844522x y z x y z +≥+∑由柯西不等式有()84444622()x y z x y xyz yx ∏+⎛⎫=≥∏+ ⎪⎝⎭,所以有()()8446653()()xy z x y xyz xyz ++≥∏∏,则可知()844522x y z x y z +≥+∑由柯西不等式有()()()866444444322()893xyx y x xyxyz xxy ++≥≥≥+∏∏∑∑∑∏,则有()844522x y z x y z+≥+∑1x y z =++≥13≥,所以()8445221x y z x y z +≥+∑,所以原不等式成立.。

高中数学竞赛之重要不等式汇总(相关练习答案)

高中数学竞赛之重要不等式汇总(相关练习答案)

(一)不等式1. (排序不等式)设,...21n a a a ≤≤≤ n b b b ≤≤≤...21 n j j j ,...,,21是n ,...,2,1的一个排列,则..........221121112121n n j n j j n n n b a b a b a b a b a b a b a b a b a n +++≤+++≤+++-2.(均值不等式) 设n a a a ,......,,21是n 个正数,则na a a n +++...21....21nn a a a ≥3.(柯西不等式)设),...2,1(,n i R b a i i =∈则.)())((211212i ni i ni ini i b a ba ∑∑∑===≥等号成立当且仅当存在R ∈λ,使得),...,2,1(n i a b i i ==λ.从历史角度看,柯西不等式又可称柯西--布理可夫斯基-席瓦兹不等式变形:(1)设+∈∈R b R a i i ,则.)()(11212∑∑∑===≥ni i ni i ni ii b a b a (2)设i i b a ,同号,且 ,0,≠i i b a 则.)()(1121∑∑∑===≥ni i i ni i ni iib a a b a4.(J e n se n 不等式)若)(xf 是),(b a 上的凸函数,则对任意),(,...,,21b a x x x n ∈)].(...)()([1)...(2121n n x f x f x f nn x x x f +++≤+++5.(幂均值不等式)设α)(0+∈>>R a i β 则 .)...()...(121121βββββαααααM na a a n a a a M nn =+++≥+++=证: 作变换 令i i x a =β,则β1i i x a = 则.)...()...(12121βαβαβαβαβαnx x x x x x n M M n n +++≥+++⇔≥ 因 0>>βα 所以 ,1>βα则函数βαx x f =)(是),0(+∞上的凸函数,应用Jensen 不等式即得。

高中数学奥林匹克竞赛知识讲座-不等式

高中数学奥林匹克竞赛知识讲座-不等式
. . . A B
n n
B
1 + i
aibi1
i 1
n
nk 2 (n 2) sec 2 ,其中约定 bn 1 b1 。 4 2n
A
A
1 + i
n
B
1
B
证明 如图 1,作边长为 k 的正 n 边形 A1 A2 ... An ,易证
i
A
A
. . .
i
2
sn边形A1 A2 ... An
2
此外,阿贝尔恒等式也是许多有关和式的不等式的导出恒等式:
aibi bn ai ( ai ) bk bk 1 .
i 1 i 1 k 1 i 1
n
n 1
k
2.3
一些著名不等式的应用 例5. 设 a, b, c 为正数且各不相等,求证:
2 2 2 9 . ab bc ca abc

x(
=
x 1 1 4 y 1 1 4 z 1 1 4 ( ) ( ) ( )6 6 , 2 y z yz 2 z x zx 2 x y x y
当且仅当 x y z ,即 a b c 时,等号成立. 评注 换元法常用来去分母、去根号,从而化简数式,对于条件 abc 1 ,常用代换
n
a1a2 ...an 作 代 换
xi
ai ,1 i n ,则 x1 x2 ...xn 1 . G
以下证明:一定存在正整数 p ,对任意的 s ,均有 x p 1 x p 2 ...x p 3 1 。鉴于 x1 x2 ...xn 1 。 那么可取 p n .若它 只需对 s n 进行证明。 如果 x1 , x1 x2 ..., x1 x2 ...xn 这 n 个乘积值均不大于 1, 们 之 中 至 少 有 一 个 大 于 1 , 则 不 妨 设 x1 x2 ...x p 是 其 中 的 最 大 值 , 有

高中数学竞赛holder不等式

高中数学竞赛holder不等式

高中数学竞赛holder不等式摘要:1.介绍高中数学竞赛的holder 不等式2.holder 不等式的基本原理3.holder 不等式的应用实例4.结论正文:一、介绍高中数学竞赛的holder 不等式在高中数学竞赛中,holder 不等式是一个非常重要的知识点,它是解决许多数学问题的关键思想。

holder 不等式是一种不等式,它的本质是关于p 和q 指数的不等式,可以广泛应用于各种数学问题中。

二、holder 不等式的基本原理holder 不等式的基本形式为:$|a_1b_1+a_2b_2+...+a_nb_n|leqprod_{i=1}^{n}|a_ib_i|$。

其中,$a_i$和$b_i$是实数或复数,$n$是正整数,$p$和$q$是正实数,满足$1<p<q$。

holder 不等式的证明比较复杂,需要涉及到一些高级的数学知识,比如Hlder 不等式和Minkowski 不等式。

在理解holder 不等式的基本原理之前,需要先理解它的前提条件和结论。

三、holder 不等式的应用实例holder 不等式在实际应用中非常广泛,它可以用于解决各种数学问题,比如不等式问题、最大值最小值问题、积分问题等。

例如,考虑以下不等式问题:$|x^2-4y^2+z^2|leq 1$,如何求解$x,y,z$的取值范围?这就是一个典型的holder 不等式问题,可以通过holder 不等式来解决。

具体来说,我们可以把$x^2-4y^2+z^2$看作是一个三元数的平方,然后应用holder 不等式,得到:$|x^2-4y^2+z^2|leq 1$$Leftrightarrow |x|leq 1, |2y|leq 1, |z|leq 1$$Leftrightarrow -1leq xleq 1, -1/2leq yleq 1/2, -1leq zleq 1$因此,$x,y,z$的取值范围为$[-1,1]times [-1/2,1/2]times [-1,1]$。

高中数学竞赛教案讲义(9)不等式

高中数学竞赛教案讲义(9)不等式

第九章 不等式一、基础知识不等式的基本性质:(1)a>b ⇔a-b>0; (2)a>b, b>c ⇒a>c ; (3)a>b ⇒a+c>b+c ; (4)a>b, c>0⇒ac>bc ;(5)a>b, c<0⇒ac<bc; (6)a>b>0, c>d>0⇒ac>bd;(7)a>b>0, n ∈N +⇒a n>b n; (8)a>b>0, n ∈N +⇒nn b a >;(9)a>0, |x|<a ⇔-a<x<a, |x|>a ⇔x>a 或x<-a; (10)a, b ∈R ,则|a|-|b|≤|a+b|≤|a|+|b|;(11)a, b ∈R ,则(a-b)2≥0⇔a 2+b 2≥2ab;(12)x, y, z ∈R +,则x+y ≥2xy , x+y+z .33xyz ≥ 前五条是显然的,以下从第六条开始给出证明。

(6)因为a>b>0, c>d>0,所以ac>bc, bc>bd ,所以ac>bd ;重复利用性质(6),可得性质(7);再证性质(8),用反证法,若nn b a ≤,由性质(7)得n n n n b a )()(≤,即a ≤b ,与a>b 矛盾,所以假设不成立,所以n n b a >;由绝对值的意义知(9)成立;-|a|≤a ≤|a|,-|b|≤b ≤|b|,所以-(|a|+|b|)≤a+b ≤|a|+|b|,所以|a+b|≤|a|+|b|;下面再证(10)的左边,因为|a|=|a+b-b|≤|a+b|+|b|,所以|a|-|b|≤|a+b|,所以(10)成立;(11)显然成立;下证(12),因为x+y-22)(y x xy -=≥0,所以x+y ≥xy 2,当且仅当x=y 时,等号成立,再证另一不等式,令c z b y a x ===333,,,因为x 3+b 3+c 3-3abc=(a+b)3+c 3-3a 2b-3ab 2-3abc=(a+b)3+c 3-3ab(a+b+c)=(a+b+c)[(a+b)2-(a+b)c+c 2]-3ab(a+b+c)=(a+b+c)(a 2+b 2+c 2-ab-bc-ca)=21(a+b+c)[(a-b)2+(b-c)2+(c-a)2] ≥0,所以a 3+b 3+c 3≥3abc ,即x+y+z ≥33xyz ,等号当且仅当x=y=z 时成立。

全国高中数学竞赛专题:不等式

全国高中数学竞赛专题:不等式

全国高中数学竞赛专题-不等式证明不等式就是对不等式的左右两边或条件与结论进行代数变形和化归,而变形的依据是不等式的性质,不等式的性质分类罗列如下:不等式的性质:.0,0<-⇔<>-⇔≥b a b a b a b a 这是不等式的定义,也是比较法的依据. 对一个不等式进行变形的性质: (1)a b b a <⇔>(对称性)(2)c b c a b a +>+⇔>(加法保序性)(3).0,;0,bc ac c b a bc ac c b a <⇒<>>⇒>>(4)*).(,0N n b a b a b a nn nn ∈>>⇒>>对两个以上不等式进行运算的性质.(1)c a c b b a >⇒>>,(传递性).这是放缩法的依据. (2).,d b c a d c b a +>+⇒>> (3).,d b c a d c b a ->-⇒<> (4).,,0,0bc ad dbc a cd b a >>⇒>>>> 含绝对值不等式的性质:(1).)0(||22a x a a x a a x ≤≤-⇔≤⇔>≤ (2).)0(||22a x a x a x a a x -≤≥⇔≥⇔>≥或 (3)||||||||||||b a b a b a +≤±≤-(三角不等式). (4).||||||||2121n n a a a a a a +++≤+++证明不等式的常用方法有:比较法、放缩法、变量代换法、反证法、数学归纳法、构造函数方法等.当然在证题过程中,常可“由因导果”或“执果索因”.前者我们称之为综合法;后者称为分析法.综合法和分析法是解决一切数学问题的常用策略,分析问题时,我们往往用分析法,而整理结果时多用综合法,这两者并非证明不等式的特有方法,只是在不等式证明中使用得更为突出而已.此外,具体地证明一个不等式时,可能交替使用多种方法.因此,要熟练掌握不等式的证明技巧,必须从学习这些基本的常用方法开始。

高中数学竞赛 不等式

高中数学竞赛 不等式

高 中 数 学 竞 赛 不等式 有答案1.不等式的概念与性质 【一】知识要点1.理解不等式的概念,掌握不等式的性质,能运用性质正确、迅速地对不等式进行转换。

2.在利用不等式的性质时,应特别注意条件的限制。

【二】解题指导 例1: 若610≤≤a ,122a b a ≤≤,c a b =-,求c 的取值范围。

例2:设c d R ,∈+,且c d a +≤,c d b +≤,证明:ca db ab +≤例3:已知函数f x ax c ()=-2满足-≤≤-411f (),-≤≤125f () 求证:-≤≤1320f ()【三】巩固练习 一、选择题1、下列四个命题:(1)若ax b >,则x b a>;(2)若a x a y 22>,则x y >;(3)若()()a x a y 2211+>+,则x y >; (4)若xa y a 22>,则x y >。

其中正确的命题的个数是(A )1个 (B )2个 (C )3个 (D )4个2、若a b ,是任意实数,且a b >,则(A )a b 22> (B )b a>1 (C )lg()a b ->0 (D )b a )21()21(< 3、若a b >+1,下列各式中正确的是 (A )a b 22> (B )ab>1 (C )lg()a b ->0 (D )lg lg a b > 4、已知a b <-<<010,,则下列不等式成立的是(A )a ab ab >>2 (B )ab ab a 2>> (C )ab a ab >>2 (D )ab ab a >>2 5、若x y z ,,均为大于-1的负数,则一定有 (A )x y z 2220--< (B )xyz >-1(C )x y z ++<-3 (D )()xyz 21> 6、当a b c >>时,下列不等式成立的是(A )ab ac > (B )a c b c ||||> (C )||||ab bc > (D )()||a b c b -->0 二、填空题1、已知a b c R ,,∈,且a c b <<,则c ab 2+ ()a b c +(用不等号连结)。

高中数学竞赛解题方法篇(不等式)

高中数学竞赛解题方法篇(不等式)

高中数学竞赛中不等式的解法摘要:本文给出了竞赛数学中常用的排序不等式,平均值不等式,柯西不等式和切比雪夫不等式的证明过程,并挑选了一些与这几类不等式相关的一些竞赛题进行了分析和讲解。

希望对广大喜爱竞赛数学的师生有所帮助。

不等式在数学中占有重要的地位,由于其证明的困难性和方法的多样性,而成为竞赛数学中的热门题型.在解决竞赛数学中的不等式问题的过程中,常常要用到几个著名的代数不等式:排序不等式、平均值不等式、柯西不等式、切比雪夫不等式.本文就将探讨这几个不等式的证明和它们的一些应用.1.排序不等式 定理1设1212...,...n n a a a b b b ≤≤≤≤≤≤,则有1211...n n n a b a b a b -+++ (倒序积和)1212...n r r n r a b a b a b ≤+++(乱序积和) 1122 ...n n a b a b a b ≤+++(顺序积和)其中1,2,...,n r r r 是实数组1,2,...,n b b b 一个排列,等式当且仅当12...n a a a ===或12...n b b b ===时成立.(说明: 本不等式称排序不等式,俗称倒序积和乱序积和顺序积和.)证明:考察右边不等式,并记1212...n r r n r S a b a b a b =+++。

不等式1212...nr r n r S a b a b a b ≤+++的意义:当121,2,...,n r r r n===时,S 达到最大值1122 ...n n a b a b a b +++.因此,首先证明n a 必须和n b 搭配,才能使S 达到最大值.也即,设n r n <且n b 和某个()k a k n <搭配时有.n n k n n r k r n n a b a b a b a b +≤+ (1-1)事实上, ()()()0n n n n nk r k n n r n r n k a b a b a b a b b b a a +-+=--≥不等式(1-1)告诉我们当nr n <时,调换n b 和n r b 的位置(其余n-2项不变),会使和S 增加.同理,调整好n a 和n b 后,再调整1n a -和1n b -会使和增加.经过n 次调整后,和S 达到最大值1122 ...n n a b a b a b +++,这就证明了1212...n r r n r a b a b a b +++1122 ...n n a b a b a b ≤+++.再证不等式左端,由1211...,...n n n a a a b b b -≤≤≤-≤-≤≤-及已证明的不等式右端,得1211(...)nn n a b a b a b --+++1212(...)n r r n r a b a b a b ≥-+++即 1211...n n n a b a b a b -+++1212...n r r n r a b a b a b ≤+++ .例1 (美国第3届中学生数学竞赛题)设a,b,c 是正数,求证:3()a b c a b ca b c abc ++≥.思路分析:考虑两边取常用对数,再利用排序不等式证明. 证明:不妨设ab c ≥≥,则有lg lg lg a b c ≥≥根据排序不等式有:lg lg lg lg lg lg a a b b c c a b b c c a ++≥++lg lg lg lg lg lg a a b b c c a c b a c b ++≥++ 以上两式相加,两边再分别加上 lg lg lg a a b b c c ++有 3(lg lg lg )()(lg lg lg )a a b b c c a b c c a b ++≥++++ 即 lg lg 3a b ca b cab c abc ++≥故 3()a b c a b cab c abc ++≥ .例2 设a,b,c R +∈,求证:222222333222a b b c c a a b c a b c c a b bc ca ab+++++≤++≤++. 思路分析:中间式子每项都是两个式子之和,将它们拆开,再用排序不等式证明. 证明:不妨设ab c ≥≥,则 222a b c ≥≥且111c b a≥≥根据排序不等式,有222222111a b c a b c c a b a b c++≥++222222111a b c a b c b c a a b c++≥++ 两式相加除以2,得222222222a b b c c a a b c c a b+++++≤++再考虑333ab c ≥≥,并且111bc ca ab≥≥ 利用排序不等式,333333111 a b c a b c bc ca ab ca ab bc++≥++333333111 a b c a b c bc ca ab ab bc ac++≥++ 两式相加并除以2,即得222222333222a b b c c a a b c c a b bc ca ab+++++≤++ 综上所述,原不等式得证.例3 设12120...,0...n n a a a b b b ≤≤≤≤≤≤≤≤,而1,2,...,n i i i 与1,2,...,n j j j 是1,2,...,n 的两个排列. 求证:1111r snnnni j r sr s r s a b a b r sr s ====≥++∑∑∑∑. (1-2) 思路分析:已知条件中有两组有序实数,而式(1-2)具有“积和”形式,考虑使用排序不等式.证明:令 1s nj rs b d r s==+∑(r=1,2,...,n )显然 12...n d d d ≥≥≥ 因为 12...n b b b ≤≤≤ , 且111...(1)1r n r n r ≤≤≤++-+ 由排序不等式1nsr s b d r s =≤+∑ 又因为 12...n a a a ≤≤≤所以 11rnnr r i r r r a d a d ==≤∑∑且111nnnsr r r r s r b a a d r s ===≤+∑∑∑(注意到r a ≥0)故11111r ssrn nn nni j j iri rr s r s r a b b a a dr s r s =======++∑∑∑∑∑11111nn nn ns r s r r r r r s r s b a ba d a r s r s=====≥≥=++∑∑∑∑∑ 故 原式得证.2.均值不等式定理2 设12,,...,n a a a 是n 个正数,则()()()()H n G n A n Q n ≤≤≤称为均值不等式.其中,121()111...nH n a a a =+++,()G n =12...()na a a A n n+++=,()Q n =分别称为12,,...,n a a a 的调和平均数,几何平均数,算术平均数,均方根平均数. 证明: 先证 ()()G n A n ≤.记c= i ia b c=,则 原不等式12...n b b b n ⇔+++≥其中 12121...( (1)n n b b b a a a c == 取 12,,...,n x x x 使 11212123,,...,,n n n x x xb b b x x x --=== 则 1.n n x b x = 由排序不等式,易证111221......n n n n x x x b b b n x x x -+++=+++≥下证()()A n Q n ≤因为 222212121...[(...)n n a a a a a a n+++=+++22212131()()...()n a a a a a a +-+-++-2222232421()()...()...()n n n a a a a a a a a -+-+-++-++-]2121(...)n a a a n≥+++ 所以12...n a a a n +++≤从上述证明知道,当且仅当12...n a a a ===时,不等式取等号.下面证明 ()()H n G n ≤对n 个正数12111,,...,na a a ,应用 ()()G n H n ≤,得12111...n a a a n +++≥即 ()()H n G n ≤(等号成立的条件是显然的).例4已知2201,0a x y <<+=,求证:1log ()log 28x y a a a a +≤+. 证明:由于 01a <<,0,0x y a a >>,有xy aa +≥=从而log ()log log 22xy a a a x ya a ++≤=+下证128x y +≤ , 即 14x y +≤。

高中数学竞赛不等式的证明方法 (比较法)

高中数学竞赛不等式的证明方法 (比较法)

证明不等式的基本方法现实世界中的量,相等是相对的、局部的,而不等的绝对的、普遍的。

不等式的本质是研究“数量关系”中的“不等关系”。

对于两个量,我们常要比较它们之间的大小,或者证明一个量大于另一个,这就是不等式的证明。

不等式的证明因题而异,灵活多变,常常要用到一些基本的不等式,如柯西不等式、平均值不等式等等,其中还需要用一些技巧性高的代数变形。

在这一部分我们主要来学习一些证明不等式的基本方法。

一.比较法一般而言,比较法有两种形式:(1)差值比较法:欲证B A ≥,只需证0≥-B A 即可; (2)商值比较法:若0>B ,欲证B A ≥,只需证1≥BA即可。

注意在利用比较法证明不等式时,常需要对所要证明的不等式进行恰当的变形,如因式分解、拆项、合并项等。

一.差值比较法要证明b a >,最基本的方法就是证明0>-b a ,即把不等式的两边相减,转化为比较差与0的大小问题。

这种方法称为差值比较法,有时也叫做比差法。

差值比较法证明不等式的步骤:“作差――变形――判断符号”,为了便于判断符号,往往把差式变形为积的形式或完全平方形式。

例1.已知b a ,都是正数,且b a ≠,求证:2233ab b a b a +>+。

分析:可以把不等式两边相减,通过适当的变形,转化为一个能明确确定正负的代数式。

证明:)()()()()()(b a b b a a b ab b a a ab b a b a ---=---=+-+2232232233=222))(())((b a b a b a b a -+=-- 因为b a ,都是正数,所以0>+b a , 又因为b a ≠,所以0)(2>-b a 从而0))((2>-+b a b a , 即0)()(2233>+-+ab b a b a 所以2233ab b a b a +>+。

评注:此题是不等式证明的典型题目,其拆项是有一定的技巧的,需要有较强的观察能力。

高中竞赛不等式公式大全

高中竞赛不等式公式大全

高中竞赛不等式公式大全
高中数学竞赛中涉及到不等式的公式大全包括但不限于以下内容:
1. 平均值不等式(AM-GM不等式),对于非负实数a1,
a2, ..., an,有(a1+a2+...+an)/n ≥ (a1a2...an)^(1/n)。

这个
公式在解决求最值问题时非常常用。

2. 柯西-施瓦茨不等式,对于实数a1, a2, ..., an和b1,
b2, ..., bn,有|(a1b1 + a2b2 + ... + anbn)| ≤ √(a1^2 +
a2^2 + ... + an^2) √(b1^2 + b2^2 + ... + bn^2)。

这个不等
式在向量和内积的相关问题中经常被应用。

3. 阿贝尔不等式,对于实数序列a1, a2, ..., an和b1,
b2, ..., bn,若a1 ≥ a2 ≥ ... ≥ an且b1 ≤ b2 ≤ ... ≤ bn,则有a1b1 + a2b2 + ... + anbn ≤ (a1 + a2 + ... + an) (b1 + b2 + ... + bn)。

这个不等式在求和问题中有着重要的应用。

4. 杨辉不等式,对于非负实数a, b, c,有(a+b)^n ≥ a^n + b^n,其中n为自然数。

这个不等式在代数不等式证明中经常被使用。

5. 三角不等式,对于任意实数a, b,有|a + b| ≤ |a| + |b|。

这个不等式在解析几何和向量的运算中常常被用到。

以上是高中数学竞赛中常见的不等式公式,当然还有其他一些不等式公式和定理,但这些是比较基础和常见的。

希望这些内容能够对你有所帮助。

全国高中数学竞赛专题-不等式

全国高中数学竞赛专题-不等式

全国高中数学竞赛专题-不等式(2)商值比较法(原理:若>1,且B>0,则A>B 。

)例2 若a<x<1,比较大小:|log a (1-x)|与|log a (1+x)|. 解:因为1-x ≠1,所以log a (1-x)≠0,|)1(log ||)1(log |x x aa -+=|log (1-x)(1+x)|=-log (1-x)(1+x)=log (1-x)x +11>log (1-x)(1-x)=1(因为0<1-x 2<1,所以x+11>1-x>0, 0<1-x<1). 所以|log a (1+x)|>|log a (1-x)|.2.分析法(即从欲证不等式出发,层层推出使之成立的充分条件,直到已知为止,叙述方式为:要证……,只需证……。

)例3 已知a, b, c ∈R +,求证:a+b+c-33abc ≥a+b .2ab - 证明:要证a+b+c 33b a c ⋅⋅-≥a+b .2ab -只需证332abc ab c ≥+,因为33332abc b a c ab ab c ab c =⋅⋅≥++=+, 所以原不等式成立。

例 4 已知实数a, b, c 满足0<a ≤b ≤c ≤21,求证:.)1(1)1(1)1(2a b b a c c -+-≤-证明:因为0<a ≤b ≤c ≤21,由二次函数性质可证a(1-a) ≤b(1-b) ≤c(1-c),所以)1(1)1(1)1(1c c b b a a -≥-≥-, 所以)1(2)1(2)1(1)1(1c c b b b b a a -≥-≥-+-, 所以只需证明)1(1)1(1)1(1)1(1a b b a b b a a -+-≤-+-, 也就是证)1)(1()1)(1(b a b b a b a a b a ---≤---,只需证b(a-b) ≤a(a-b),即(a-b)2≥0,显然成立。

高中数学竞赛holder不等式

高中数学竞赛holder不等式

高中数学竞赛所使用的不等式是holder不等式,其形式为:$$\sum a_i b_i \leq \left( \sum a_i^p \right)^{1/p} \cdot \left( \sum b_i^q \right)^{1/q}$$1.概述holder不等式是数学分析中的一种常见不等式,广泛应用于数学竞赛和实际问题中。

它可以用于证明其他数学不等式和定理,也有着重要的理论和实际意义。

2.起源holder不等式最早由德国数学家奥托·霍尔德(Otto Hölder)于1889年提出。

霍尔德不等式最初是为了研究勒让德多项式的正性而引入的,随后得到了广泛的推广和应用。

霍尔德不等式实际上是一类不等式的统称,其中包括了多种形式和变种。

3.一般形式holder不等式的一般形式为:$$\sum a_i b_i \leq \left( \sum a_i^p \right)^{1/p} \cdot \left( \sum b_i^q \right)^{1/q}$$其中,$$a_i$$和$$b_i$$为实数,$$p$$和$$q$$为正实数,满足$$\frac{1}{p} + \frac{1}{q} = 1$$。

4.特殊情况当$$p=q=2$$时,holder不等式退化为柯西-施瓦茨不等式。

当$$p=q=1$$时,holder不等式变为积分柯西不等式。

当$$p=\infty$$,$$q=1$$时,holder不等式为min-max不等式。

5.证明(1)利用幂平均不等式证明我们可以利用幂平均不等式来证明霍尔德不等式。

根据幂平均不等式,对于任意非负实数$$x_1, x_2, ..., x_n$$和正实数$$p$$,有$$\left( \frac{1}{n} \sum x_i^p \right)^{1/p} \geq \frac{1}{n} \sumx_i$$对于任意非负实数$$y_1, y_2, ..., y_n$$和正实数$$q$$,同样有$$\left( \frac{1}{n} \sum y_i^q \right)^{1/q} \geq \frac{1}{n} \sumy_i$$将$$x_i=\lambda a_i^p$$和$$y_i=\frac{1}{\lambda} b_i^q$$代入上述不等式,得到$$\left( \frac{1}{n} \sum (\lambda a_i^p)^{p} \right)^{1/p} \geq \frac{1}{n} \sum \lambda a_i^p$$$$\left( \frac{1}{n} \sum \left(\frac{1}{\lambda} b_i^q\right)^q\right)^{1/q} \geq \frac{1}{n} \sum \frac{1}{\lambda} b_i^q $$整理得$$\left( \left( \frac{1}{n} \sum a_i^p \right)^{p} \right)^{1/p} \geq \frac{1}{n} \sum \lambda a_i$$$$\left( \left( \frac{1}{n} \sum b_i^q \right)^{q} \right)^{1/q} \geq \frac{1}{n} \sum \frac{1}{\lambda} b_i$$将上述两式相乘,并取$$\lambda^{1/p}$$次方和$$\frac{1}{\lambda^{1/q}}$$次方可得霍尔德不等式,证毕。

高中数学奥赛讲义竞赛中常用的重要不等式

高中数学奥赛讲义竞赛中常用的重要不等式

不等式是数学竞赛的热点之一。

由于不等式的证明难度大,灵活性强,要求很高的技巧,常常使它成为各类数学竞赛中的“高档”试题。

而且,不论是几何、数论、函数或组合数学中的许多问题,都可能与不等式有关,这就使得不等式的问题(特别是有关不等式的证明)在数学竞赛中显得尤为重要。

证明不等式同大多数高难度的数学竞赛问题一样,没有固定的模式,证法因题而异,灵活多变,技巧性强。

但它也有一些基本的常用方法,要熟练掌握不等式的证明技巧,必须从学习这些基本的常用方法开始。

竞赛中常用的重要不等式【内容综述】本讲重点介绍柯西不等式、排序不等式、切比雪夫不等式的证明与应用【要点讲解】目录§1 柯西不等式§2 排序不等式§3 切比雪夫不等式★ ★ ★§1。

柯西不等式定理1 对任意实数组恒有不等式“积和方不大于方和积”,即等式当且仅当时成立。

本不等式称为柯西不等式。

思路一证不等式最基本的方法是作差比较法,柯西不等式的证明也可首选此法。

证明1∴右-左=当且仅当定值时,等式成立。

思路2 注意到时不等式显然成立,当时,不等式左、右皆正,因此可考虑作商比较法。

证明2当时等式成立;当时,注意到=1故当且仅当且(两次放缩等式成立条件要一致)即同号且常数,亦即思路3 根据柯西不等式结构,也可利用构造二次函数来证明。

证明3 构造函数。

由于恒非负,故其判别式即有等式当且仅当常数时成立。

若柯西不等式显然成立。

例1 证明均值不等式链:调和平均数≤算术平均数≤均方平均数。

证设本题即是欲证:本题证法很多,现在我们介绍一种主要利用柯西不等式平证明的方法(1)先证①注意到欲证①,即需证②此即由柯西不等式,易知②成立,从而①真(11)再证, ③欲证③,只需证④而④即要证⑤(注意)由柯西不等式,知⑤成立.(Ⅰ)(Ⅱ)中等式成立的条件都是即各正数彼此相等.说明:若再利用熟知的关系(★)(其中,结合代换,即当且仅当时,等式成立,说明★的证明参见下节排序不证式或数学归纳法,这样就得到一个更完美的均值不等式链其中等式成产条件都是.§2.排序不等式定理2设有两组实数,满足则(例序积和)(乱序积和)(须序积和)其中是实数组一个排列,等式当且仅当或时成立。

高中数学竞赛专题---几个重要不等式及其应用

高中数学竞赛专题---几个重要不等式及其应用

几个重要不等式及其应用一、几个重要不等式以下四个不等式在数学竞赛中使用频率是最高的,应用极为广泛。

1、算术-几何平均值(AM-GM )不等式设12,,,n a a a是非负实数,则12na a a n+++≥2、柯西(Cauchy )不等式设,(1,2,)i i a b R i n ∈=,则222111.n n n i i i i i i i a b a b ===⎛⎫⎛⎫⎛⎫≥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑等号成立当且仅当存在R λ∈,使,1,2,,.i i b a i n λ== 变形(Ⅰ):设+∈∈R b R a i i ,,则∑∑∑===⎪⎭⎫⎝⎛≥ni in i i ni ii b a b a 12112;等号成立当且仅当存在R λ∈, 使,1,2,,.i i b a i n λ==变形(Ⅱ)设i i b a ,同号,且0,≠i i b a ,则∑∑∑===⎪⎭⎫ ⎝⎛≥n i ii n i i ni ii b a a b a 1211。

等号成立当且仅当n b b b === 21 3.排序不等式设n n n j j j b b b a a a ,,,,,212121⋯≤⋯≤≤≤⋯≤≤是n ,,2,1⋯的一个排列,则n n j j j n n n b a b a b a b a b a b a b a b a b a n ++≤+++≤+++-2211321112121. 等号成立当且仅当n a a a === 21或n b b b === 21。

(用调整法证明).4.琴生(Jensen )不等式若()x f 是区间()b a ,上的凸函数,则对任意的点()b a x x x n ,,,,21∈ *()n N ∈有()()()12121().nn x x x f f x f x f x nn +++≤+++⎡⎤⎣⎦等号当且仅当n x x x === 21时取得。

(用归纳法证明)二、进一步的结论运用以上四个不等式可得以下更一般的不等式和一些有用的结论,有时用这些结论也会起到意想不到的效果。

高中竞赛不等式公式大全

高中竞赛不等式公式大全

高中竞赛不等式公式大全(实用版)目录1.竞赛不等式的基本概念2.高中竞赛不等式的分类3.高中竞赛不等式的解题技巧4.高中竞赛不等式的应用实例正文【高中竞赛不等式公式大全】一、竞赛不等式的基本概念竞赛不等式是高中数学竞赛中经常出现的一类题型,它涉及到较深的数学知识,需要运用较高的数学技巧来解决。

竞赛不等式主要考察学生的逻辑思维能力、分析问题和解决问题的能力。

二、高中竞赛不等式的分类高中竞赛不等式主要分为以下几类:1.一元一次不等式:涉及一个未知数,未知数的次数是一次的。

2.一元二次不等式:涉及一个未知数,未知数的次数是二次的。

3.多元不等式:涉及多个未知数。

4.绝对值不等式:包含绝对值符号的不等式。

5.复合不等式:包含多个不等式的不等式。

三、高中竞赛不等式的解题技巧1.符号法则:根据不等式的符号,确定未知数的取值范围。

2.同向相乘,反向相加:将不等式中的乘法项同向相乘,加法项反向相加,使不等式变形,便于求解。

3.移项:将不等式中的项移到同一侧,使未知数的系数为 1。

4.分类讨论:根据不等式的特点,对未知数的取值范围进行分类讨论,求解不等式。

5.利用基本不等式:运用基本不等式求解复杂的不等式。

四、高中竞赛不等式的应用实例1.求解一元一次不等式:根据符号法则,同向相乘,反向相加,移项等技巧,求解一元一次不等式。

2.求解一元二次不等式:运用符号法则,同向相乘,反向相加,移项,分类讨论等技巧,求解一元二次不等式。

3.求解多元不等式:根据不等式的特点,运用分类讨论,符号法则等技巧,求解多元不等式。

4.求解绝对值不等式:利用绝对值不等式的性质,运用符号法则,同向相乘,反向相加等技巧,求解绝对值不等式。

5.求解复合不等式:根据不等式的特点,运用符号法则,同向相乘,反向相加,移项,分类讨论等技巧,求解复合不等式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式
例1. 已知122016,,,x x x ⋅⋅⋅ 均为正实数,则
3201621112122015122016
4x x x x x x x x x x x x x +
++⋅⋅⋅++⋅⋅⋅⋅⋅⋅ 的最小值__________ 例2. 已知二次函数()20y ax bx c a b =++≥< ,则24a b c
M b a
++=
- 的最小值为
____________
例3. 记223
(,)()(),03x F x y x y y y
=-++≠ ,则(),F x y 的最小值是________
例4. 已知[],1,3,4,a b a b ∈+= 求证:1146103
a b a b ≤+
++<
例5. 设0,1,2,,,i x i n ≥=⋅⋅⋅约定11,n x x += 证明:()
()
2
12
2
1
11
.2
11n
k k k k x n
x x +=++

++∑
证明:因0,1,2,,,i x i n ≥=⋅⋅⋅令2tan ,0,,1,2,,2k k k x k n πθθ⎡⎫
=∈=⋅⋅⋅⎪⎢⎣⎭
约定
11,
n θθ+=
()
()
2
44
112
2
11
=cos sin 11k k k k k x x x θθ++++
+++()
2
222211
cos sin cos sin 2
2
k k k k θθθθ++++≥
=
所以()
()
2
22112
2
11
1cos sin 1
=.2211n
n
k k k k k k k x n
x x θθ++==+++
≥++∑

例6. 设2,,n n N +≥∈ 求证:ln 2ln 3ln 1
.23n n n
⋅⋅⋅⋅⋅< ()ln 1n n <- 例7. 已知*
,,n N
x n ∈≤求证:2(1)n x x
n n e x n
--≤.
【证明】原不等式等价于2
((1))x
n n x n x n e n
-≤-⋅.
当2x n ≥,上述不等式左边非正,不等式成立;
当2x n <时,由1(0)y e y y ≥+≥及贝努力不等式(1)1(1,1)n y ny n y +≥+≥>-,
从而22222((1))((1)(1))(1)(1)x
n
n n n x x x x x n e n n n n n x n n n n n
-⋅≥-⋅+=-≥-⋅=-,即证
例8. 212
(),(1)1,()23
x f x f f ax b =
==+,数列{}n x 满足1()n n x f x +=,且112x =。

(1)求n x 的通项; (2)求证:121
2n x x x e
>。

►分析与解答:
(1)2112(1)1,()1232f f a b a b ====++,2
23a b a b +=⎧⎨
+=⎩,所以11a b =⎧⎨=⎩,2()1x f x x =+,所以121
n
n n x x x +=
+ 1111(1)2n n x x +=+。

令1111()2n n x x λλ++=+,11,122
λλ-==-。

1111111111(1),1(1)()22n n n n x x x x -+-=--=-⨯,11
11()2
n n x -=+。

(2

011121111
(1())(1())(1())22222n n x x x e
e ->⇔+++<1111
(1)(1)(1)242n e -⇔+++<。

1n >时由均值不等式
11)
(1)2n -+<1111
(1)
2
2(1)11111111242211
n n n n n ----+++++++-=-- 111
111n n n -+<=+--。

所以
1
111
11(1)(1)(1)(1)2421n n n --+++
<+-。

注意到1(1)n n ⎧⎫+⎨⎬

⎭单调递增,且
1lim(1)n n e n →∞+=。

所以111
1
(1)(1)(1)24
2
n e -+++
<。

例9. 已知:224 1.ab c d =+= 求证:()()22
2.5
a c
b d -+-≥
例10.已知实数]106[,
-∈i x ,5010
1=∑=i i x ,10321、、、、 =i ,当∑=10
1
2i i x 取到最大值时,
有多少个-6? ►分析与解答: 设
6
i i a x =+,则
[0,16]
i a ∈,且
10
1
110i
i a
==∑,
10
10
10
10
2
2
21
1
1
1
12360960i
i i i i i i i a
x x x =====++=+∑∑∑∑。

于是原问题转化为当10
21
i i a =∑取最大值时,有几个0i a =。

当i a 中有不少于两个数,且同时不等于0,不等于16时,设为,p q 。


16
p q +≥时,则
22222216(16)()21632322216p q p q p q pq ++--+=⨯--+=⨯+
22(16)322162(16)1632q p q q q -->⨯+-⨯-(看作一个关于p 的一次函数,
160q -<,单调递减)0=。

即222216(16)p q p q ++->+,故不改变其他数字,用16代替p ,16p q +-代替q ,10
21i i a =∑增大;
②16p q +<时,则22220()()20p q p q pq ++-+=>。

故用0代替p ,p q +代替q ,10
21i i a =∑增大。

综上,当10
21
i i a =∑取最大值时,至多只有一个0i a ≠,且16i a ≠。

而11016614=⨯+,故i a 中应取6个16,1个14,3个0,即有3个-6.。

相关文档
最新文档