线性规划专题

合集下载

八种 经典线性规划例题(超实用)

八种 经典线性规划例题(超实用)

线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。

一、求线性目标函数的取值范围例1、若x、y满足约束条件222xyx y≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y的取值范围是()A、[2,6]B、[2,5]C、[3,6]D、(3,5]解:如图,作出可行域,作直线l:x+2y=0,将【l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选A二、求可行域的面积例2、不等式组260302x yx yy+-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为()A、4B、1C、5D、无穷大解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC 的面积减去梯形OMAC的面积即可,选B'三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()A、9个B、10个C、13个D、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0) x y x yx y x yx y x yx y x y+≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选D四、求线性目标函数中参数的取值范围例4、已知x、y满足以下约束条件5503x yx yx+≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a的值为()A、-3B、3C、-1D、1解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选D~五、求非线性目标函数的最值例5、已知x、y满足以下约束条件220240330x yx yx y+-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x2+y2的最大值和最小值分别是()A、13,1B、13,2 .C、13,45D、5解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方,即为45,选C六、求约束条件中参数的取值范围例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是()"A、(-3,6)B、(0,6)C、(0,3)D、(-3,3)解:|2x-y+m|<3等价于230 230x y mx y m-++>⎧⎨-+-<⎩由右图可知3330m m +>⎧⎨-<⎩,故0<m <3,选C七·比值问题当目标函数形如y az x b-=-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述我们考虑一个典型的线性规划问题,假设有一个工厂需要生产两种产品:产品A和产品B。

工厂有两个生产车间:车间1和车间2。

生产产品A需要在车间1和车间2进行加工,而生产产品B只需要在车间2进行加工。

每一个车间的加工时间和加工费用都是不同的。

我们的目标是找到最佳的生产计划,使得总的加工时间和加工费用最小。

二、问题分析1. 定义变量:- x1:在车间1生产产品A的数量- x2:在车间2生产产品A的数量- y:在车间2生产产品B的数量2. 定义目标函数:目标函数是最小化总的加工时间和加工费用。

假设车间1生产产品A的加工时间为t1,车间2生产产品A的加工时间为t2,车间2生产产品B的加工时间为t3,车间1生产产品A的加工费用为c1,车间2生产产品A的加工费用为c2,车间2生产产品B的加工费用为c3,则目标函数可以表示为:Z = t1 * x1 + t2 * x2 + t3 * y + c1 * x1 + c2 * x2 + c3 * y3. 约束条件:- 车间1生产产品A的数量不能超过车间1的生产能力:x1 <= capacity1- 车间2生产产品A的数量不能超过车间2的生产能力:x2 <= capacity2- 车间2生产产品B的数量不能超过车间2的生产能力:y <= capacity2 - 产品A的总需求量必须满足:x1 + x2 >= demandA- 产品B的总需求量必须满足:y >= demandB4. 线性规划模型:综上所述,我们可以建立如下的线性规划模型:最小化 Z = t1 * x1 + t2 * x2 + t3 * y + c1 * x1 + c2 * x2 + c3 * y满足约束条件:- x1 <= capacity1- x2 <= capacity2- y <= capacity2- x1 + x2 >= demandA- y >= demandB- x1, x2, y >= 0三、数据和解决方案为了展示如何求解该线性规划问题,我们假设以下数据:- 车间1的生产能力为100个产品A- 车间2的生产能力为150个产品A和100个产品B- 产品A的总需求量为200个- 产品B的总需求量为80个- 车间1生产产品A的加工时间为2小时,加工费用为10元/个- 车间2生产产品A的加工时间为1小时,加工费用为8元/个- 车间2生产产品B的加工时间为3小时,加工费用为15元/个根据以上数据,我们可以得到线性规划模型如下:最小化 Z = 2 * x1 + 1 * x2 + 3 * y + 10 * x1 + 8 * x2 + 15 * y满足约束条件:- x1 <= 100- x2 <= 150- y <= 100- x1 + x2 >= 200- y >= 80- x1, x2, y >= 0接下来,我们可以使用线性规划求解器来求解该问题。

八种经典线性规划例题(超实用)

八种经典线性规划例题(超实用)

线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。

一、求线性目标函数的取值范围例1、 若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y 的取值范围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5]解:如图,作出可行域,作直线l :x+2y =0,将l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选 A二、求可行域的面积例2、不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为 ( )A 、4B 、1C 、5D 、无穷大解:如图,作出可行域,△ABC 的面积即为所求,由梯形OMBC的面积减去梯形OMAC 的面积即可,选 B三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0)x y x y x y x y x y x y x y x y +≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D四、求线性目标函数中参数的取值范围例4、已知x 、y 满足以下约束条件5503x y x y x +≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a 的值为 ( ) A 、-3 B 、3 C 、-1 D 、1解:如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay (a>0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选 D五、求非线性目标函数的最值例5、已知x 、y 满足以下约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x 2+y 2的最大值和最小值分别是( )A 、13,1B 、13,2C 、13,45D 、5解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为45,选 C 六、求约束条件中参数的取值范围例6、已知|2x -y +m|<3表示的平面区域包含点(0,0)和(-1,1),则m 的取值范围是 ( ) A 、(-3,6) B 、(0,6) C 、(0,3) D 、(-3,3)解:|2x -y +m|<3等价于230230x y m x y m -++>⎧⎨-+-<⎩由右图可知3330m m +>⎧⎨-<⎩ ,故0<m <3,选 C七·比值问题当目标函数形如y az x b-=-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。

线性规划经典例题

线性规划经典例题

线性规划经典例题引言概述:线性规划是一种数学优化方法,被广泛应用于经济、管理、工程等领域。

本文将介绍几个经典的线性规划例题,通过这些例题的详细阐述,匡助读者更好地理解线性规划的原理和应用。

一、背包问题1.1 背包问题的定义和目标1.2 线性规划模型的建立1.3 求解背包问题的方法二、产销平衡问题2.1 产销平衡问题的背景和目标2.2 线性规划模型的建立2.3 求解产销平衡问题的方法三、投资组合问题3.1 投资组合问题的定义和目标3.2 线性规划模型的建立3.3 求解投资组合问题的方法四、生产计划问题4.1 生产计划问题的背景和目标4.2 线性规划模型的建立4.3 求解生产计划问题的方法五、运输问题5.1 运输问题的定义和目标5.2 线性规划模型的建立5.3 求解运输问题的方法正文内容:一、背包问题1.1 背包问题是指在给定的一组物品中,选择一些物品放入背包中,使得背包的总分量不超过限定值,同时使得背包中物品的总价值最大化。

1.2 线性规划模型可以通过引入决策变量和约束条件来描述背包问题。

决策变量表示选择放入背包的物品,约束条件包括背包总分量不超过限定值以及每一个物品的数量限制。

1.3 求解背包问题可以使用线性规划的求解算法,如单纯形法或者内点法。

通过对目标函数和约束条件进行线性化处理,可以将背包问题转化为标准的线性规划问题进行求解。

二、产销平衡问题2.1 产销平衡问题是指在给定的一组产品和市场需求的情况下,确定各个产品的生产量和销售量,使得总利润最大化。

2.2 线性规划模型可以通过引入决策变量和约束条件来描述产销平衡问题。

决策变量表示各个产品的生产量和销售量,约束条件包括生产能力限制和市场需求限制。

条件进行线性化处理,可以将产销平衡问题转化为标准的线性规划问题进行求解。

三、投资组合问题3.1 投资组合问题是指在给定的一组投资标的中,确定各个标的的投资金额,使得投资组合的风险最小或者收益最大。

3.2 线性规划模型可以通过引入决策变量和约束条件来描述投资组合问题。

高考线性规划必考题型非常全)

高考线性规划必考题型非常全)

线性规划专题一、命题规律讲解1、 求线性(非线性)目标函数最值题2、 求可行域的面积题3、 求目标函数中参数取值范围题4、 求约束条件中参数取值范围题5、 利用线性规划解答应用题一、线性约束条件下线性函数的最值问题线性约束条件下线性函数的最值问题即简单线性规划问题,它的线性约束条件是一个二元一次不等式组,目标函数是一个二元一次函数,可行域就是线性约束条件中不等式所对应的方程所表示的直线所围成的区域,区域内的各点的点坐标(),x y 即简单线性规划的可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即简单线性规划的最优解。

例1 已知4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,2z x y =+,求z 的最大值和最小值例2已知,x y 满足124126x y x y x y +=⎧⎪+≥⎨⎪-≥-⎩,求z=5x y -的最大值和最小值二、非线性约束条件下线性函数的最值问题高中数学中的最值问题很多可以转化为非线性约束条件下线性函数的最值问题。

它们的约束条件是一个二元不等式组,目标函数是一个二元一次函数,可行域是直线或曲线所围成的图形(或一条曲线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优解。

例3 已知,x y 满足,224x y +=,求32x y +的最大值和最小值例4 求函数4y x x=+[]()1,5x ∈的最大值和最小值。

三、线性约束条件下非线性函数的最值问题这类问题也是高中数学中常见的问题,它也可以用线性规划的思想来进行解决。

它的约束条件是一个二元一次不等式组,目标函数是一个二元函数,可行域是直线所围成的图形(或一条线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优解。

例5 已知实数,x y 满足不等式组10101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩,求22448x y x y +--+的最小值。

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述某公司生产两种产品A和B,每个产品的生产需要消耗不同的资源。

现在公司希望通过线性规划来确定每种产品的生产数量,以最大化利润。

已知产品A每个单位的利润为10元,产品B每个单位的利润为15元。

同时,产品A每个单位需要消耗2个资源X和3个资源Y,产品B每个单位需要消耗4个资源X和1个资源Y。

公司总共有40个资源X和30个资源Y可供使用。

二、数学建模1. 假设产品A的生产数量为x,产品B的生产数量为y。

2. 目标函数:最大化利润。

利润可以表示为10x + 15y。

3. 约束条件:a) 资源X的约束条件:2x + 4y ≤ 40b) 资源Y的约束条件:3x + y ≤ 30c) 非负约束条件:x ≥ 0,y ≥ 0三、求解过程1. 根据数学建模中的目标函数和约束条件,可以得到如下线性规划模型:最大化:10x + 15y约束条件:2x + 4y ≤ 403x + y ≤ 30x ≥ 0,y ≥ 02. 使用线性规划求解方法,可以得到最优解。

通过计算,得到最优解为x = 6,y = 6,利润最大化为180元。

四、结果分析根据最优解,可以得知最大利润为180元,其中产品A的生产数量为6个,产品B的生产数量为6个。

同时,资源X还剩余28个,资源Y还剩余24个。

五、灵敏度分析对于线性规划问题,灵敏度分析可以帮助我们了解目标函数系数和约束条件右端项的变化对最优解的影响。

1. 目标函数系数的变化:a) 如果产品A的利润提高到12元,产品B的利润保持不变,重新求解线性规划模型可以得到新的最优解。

新的最优解为x = 8,y = 4,利润最大化为168元。

b) 如果产品A的利润保持不变,产品B的利润提高到20元,重新求解线性规划模型可以得到新的最优解。

新的最优解为x = 4,y = 7,利润最大化为190元。

2. 约束条件右端项的变化:a) 如果资源X的数量增加到50个,资源Y的数量保持不变,重新求解线性规划模型可以得到新的最优解。

线性规划经典例题

线性规划经典例题

线性规划经典例题引言概述:线性规划是一种数学优化方法,用于求解线性约束条件下的最优解。

它在实际问题中有着广泛的应用,如生产计划、资源分配、运输问题等。

本文将介绍几个经典的线性规划例题,并详细阐述每个例题的解题思路和步骤。

一、最大化利润问题1.1 目标函数的建立首先,我们需要确定目标函数。

假设有两种产品A和B,每个单位的利润分别为x和y。

令x表示产品A的产量,y表示产品B的产量,我们的目标是最大化总利润。

1.2 约束条件的建立其次,我们需要确定约束条件。

假设产品A和B的生产所需的资源有限,分别为资源1和资源2。

我们需要考虑资源的限制以及产品的需求量。

1.3 求解最优解根据目标函数和约束条件,我们可以建立线性规划模型。

通过线性规划求解器,我们可以得到最优解,即产量x和y的数值,以及最大化的利润。

二、最小化成本问题2.1 目标函数的建立假设有n种原材料,每种原材料的价格为c1、c2、...、cn。

我们需要确定购买每种原材料的数量,以最小化总成本。

2.2 约束条件的建立每种原材料的数量要满足一定的约束条件,如总量限制、质量要求等。

此外,我们还需要考虑生产过程中的限制条件,如生产能力、工时等。

2.3 求解最优解根据目标函数和约束条件,我们可以建立线性规划模型。

通过线性规划求解器,我们可以得到最优解,即每种原材料的购买数量,以及最小化的成本。

三、资源分配问题3.1 目标函数的建立假设有m个任务需要分配给n个人员,每个人员的效率不同。

我们需要确定每个任务分配给哪个人员,以最大化总效率。

3.2 约束条件的建立每个任务只能由一个人员完成,每个人员只能执行一个任务。

此外,我们还需要考虑人员的可用时间、技能匹配等约束条件。

3.3 求解最优解根据目标函数和约束条件,我们可以建立线性规划模型。

通过线性规划求解器,我们可以得到最优解,即每个任务分配给哪个人员,以及最大化的总效率。

四、运输问题4.1 目标函数的建立假设有m个供应地和n个需求地,每个供应地的供应量和每个需求地的需求量已知。

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述某工厂生产两种产品A和B,每天可用的原料有限,而每种产品的制造需要不同数量的原料。

产品A每单位利润为10元,产品B每单位利润为8元。

产品A每天的制造时间为6小时,产品B每天的制造时间为4小时。

已知制造一个单位的产品A需要2小时,而制造一个单位的产品B需要1小时。

工厂的目标是最大化每天的利润。

二、数学建模1. 定义变量:- x1: 每天制造的产品A的单位数量- x2: 每天制造的产品B的单位数量2. 建立目标函数:目标函数为最大化每天的利润,即:Maximize Z = 10x1 + 8x23. 建立约束条件:- 原料的限制:每天可用的原料有限,产品A每单位需要2单位原料,产品B每单位需要3单位原料。

因此,原料的约束条件为:2x1 + 3x2 ≤ 原料数量- 时间的限制:每天的制造时间有限,产品A每单位需要2小时制造,产品B每单位需要1小时制造。

因此,时间的约束条件为:2x1 + x2 ≤ 制造时间- 非负约束:每天制造的产品数量不能为负数,因此,非负约束条件为:x1 ≥ 0x2 ≥ 0三、求解线性规划问题利用线性规划的求解方法,可以求解出最优解。

1. 图形法:通过绘制约束条件的直线或曲线,找到目标函数的最大值所在的区域。

2. 单纯形法:单纯形法是一种常用的求解线性规划问题的方法。

通过迭代计算,找到目标函数的最大值所在的点。

四、数值计算为了方便计算,我们假设原料数量为20单位,制造时间为10小时。

1. 图形法:绘制约束条件的直线或曲线,找到目标函数的最大值所在的区域。

在本例中,约束条件的直线为:2x1 + 3x2 ≤ 202x1 + x2 ≤ 10绘制直线后,找到目标函数的最大值所在的区域。

2. 单纯形法:利用单纯形法,可以求解出最优解。

根据约束条件和目标函数,可以构建如下的单纯形表格:| 基变量 | x1 | x2 | 原料数量 | 制造时间 | 目标函数 ||--------|----|----|----------|----------|---------|| x3 | 0 | 0 | 20 | 10 | 0 || x1 | 1 | 0 | 2 | 2 | 10 || x2 | 0 | 1 | 3 | 1 | 8 |通过迭代计算,可以得到最优解为:x1 = 5x2 = 0最大利润为:50元五、结果分析根据数值计算的结果,最优解为每天制造5个单位的产品A,不制造产品B,可以获得最大利润为50元。

线性规划经典例题

线性规划经典例题

线性规划经典例题引言概述:线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。

本文将介绍几个经典的线性规划例题,以帮助读者更好地理解和应用线性规划的原理和方法。

一、问题一:生产计划问题1.1 生产目标:某公司希望最大化其利润。

1.2 生产约束:公司有两种产品A和B,每周生产时间有限,每个产品的生产时间和利润有限制。

1.3 数学建模:设产品A和B的生产时间分别为x和y,利润分别为p和q,则目标函数为Maximize p*x + q*y,约束条件为x + y ≤ 40,3x + 2y ≤ 120,x ≥ 0,y ≥0。

二、问题二:资源分配问题2.1 目标:某公司希望最大化其销售额。

2.2 约束:公司有三个部门,每个部门需要的资源不同,且资源有限。

2.3 建模:设三个部门分别为A、B和C,资源分别为x、y和z,销售额为p、q和r,则目标函数为Maximize p*x + q*y + r*z,约束条件为x + y + z ≤ 100,2x + y + 3z ≤ 240,x ≥ 0,y ≥ 0,z ≥ 0。

三、问题三:投资组合问题3.1 目标:某投资者希望最大化其投资组合的收益。

3.2 约束:投资者有多个可选的投资项目,每个项目的收益和风险不同,且投资金额有限。

3.3 建模:设投资项目分别为A、B和C,收益分别为p、q和r,风险分别为a 、b和c,投资金额为x、y和z,则目标函数为Maximize p*x + q*y + r*z,约束条件为x + y + z ≤ 100,a*x + b*y + c*z ≤ 50,x ≥ 0,y ≥ 0,z ≥ 0。

四、问题四:运输问题4.1 目标:某物流公司希望最小化运输成本。

4.2 约束:公司有多个供应地和多个销售地,每个供应地和销售地之间的运输成本和需求量不同,且供应量和销售量有限。

4.3 建模:设供应地和销售地分别为A、B和C,运输成本为p、q和r,需求量为x、y和z,供应量为a、b和c,则目标函数为Minimize p*x + q*y + r*z,约束条件为x + y + z ≤ a + b + c,x ≤ a,y ≤ b,z ≤ c,x ≥ 0,y ≥ 0,z ≥ 0。

线性规划经典例题

线性规划经典例题

线性规划经典例题引言概述:线性规划是一种数学优化方法,广泛应用于工程、经济、管理等领域。

本文将介绍一些经典的线性规划例题,通过分析这些例题,可以更好地理解线性规划的原理和应用。

正文内容:1. 线性规划的基本概念1.1 目标函数:线性规划的目标是找到使目标函数取得最大(或最小)值的变量取值。

1.2 约束条件:线性规划问题存在一系列约束条件,这些条件限制了变量的取值范围。

2. 线性规划的经典例题2.1 生产计划问题2.1.1 生产成本最小化:在一定的资源限制下,如何安排生产计划以使得总成本最小。

2.1.2 制造产品组合:如何确定生产不同产品的数量,以最大化利润。

2.2 运输问题2.2.1 最优运输问题:如何确定不同供应地和需求地之间的最佳运输方案,以最小化总运输成本。

2.2.2 配送问题:如何合理安排不同配送中心的货物配送路线,以最小化总运输距离。

2.3 投资组合问题2.3.1 资产组合优化:如何在给定的风险和收益要求下,选择最佳的资产组合,以最大化投资回报。

2.3.2 资金分配问题:如何合理分配有限资金到不同投资项目,以最大化总收益。

2.4 人力资源调配问题2.4.1 人员调度问题:如何合理安排员工的工作时间和任务分配,以最大化工作效率。

2.4.2 人员招聘问题:如何确定最佳的招聘策略,以满足组织的人力资源需求。

2.5 能源优化问题2.5.1 能源供应问题:如何确定不同能源供应商的购买量,以最小化总能源成本。

2.5.2 能源分配问题:如何合理分配能源到不同生产设备,以最大化生产效率。

总结:通过上述经典例题的分析,我们可以看到线性规划在各个领域的广泛应用。

线性规划能够帮助我们在资源有限的情况下做出最优决策,以达到特定的目标。

在实际应用中,我们需要根据具体问题的特点来建立数学模型,并运用线性规划算法求解最优解。

通过不断学习和实践,我们可以更好地应用线性规划方法解决实际问题,提高工作效率和经济效益。

线性规划经典例题

线性规划经典例题

线性规划经典例题引言概述:线性规划是一种运筹学方法,用于解决线性约束条件下的最优化问题。

它在各个领域都有广泛的应用,包括生产计划、资源分配、运输问题等。

本文将介绍几个经典的线性规划例题,以帮助读者更好地理解和应用线性规划方法。

一、生产计划问题1.1 最大利润问题在生产计划中,一个常见的线性规划问题是最大利润问题。

假设一个公司有多个产品,每个产品的生产和销售都有一定的成本和利润。

我们需要确定每个产品的生产数量,以最大化整体利润。

1.2 生产能力限制另一个常见的问题是生产能力限制。

公司的生产能力可能受到设备、人力资源或原材料等方面的限制。

我们需要在这些限制下,确定每个产品的生产数量,以实现最大化的利润。

1.3 市场需求满足除了考虑利润和生产能力,还需要考虑市场需求。

公司需要根据市场需求确定每个产品的生产数量,以满足市场需求,并在此基础上最大化利润。

二、资源分配问题2.1 资金分配问题在资源分配中,一个常见的线性规划问题是资金分配问题。

假设一个公司有多个项目,每个项目需要一定的资金投入,并有相应的回报。

我们需要确定每个项目的资金分配比例,以最大化整体回报。

2.2 人力资源分配另一个常见的问题是人力资源分配。

公司的人力资源可能有限,而各个项目对人力资源的需求也不同。

我们需要在人力资源有限的情况下,确定每个项目的人力资源分配比例,以实现最大化的效益。

2.3 时间分配除了资金和人力资源,时间也是一种有限资源。

在资源分配中,我们需要合理安排时间,以满足各个项目的需求,并在此基础上实现最大化的效益。

三、运输问题3.1 最小成本运输问题在运输领域,线性规划可以用于解决最小成本运输问题。

假设有多个供应地和多个需求地,每个供应地和需求地之间的运输成本不同。

我们需要确定每个供应地和需求地之间的货物运输量,以实现最小化的总运输成本。

3.2 运输能力限制另一个常见的问题是运输能力限制。

运输公司的运输能力可能受到车辆数量、运输距离或运输时间等方面的限制。

线性规划(通用16篇)

线性规划(通用16篇)

线性规划(通用16篇)线性规划篇1【考试要求】1.了解二元一次不等式(组)表示的平面区域;了解与线性规划相关的基本概念2. 了解线性规划问题的图象法,并能用线性规划的方法解决一些简单的实际问题。

【教学重点】1. 二元一次不等式(组)表示的平面区域;2.应用线性规划的方法解决一些简单的实际问题。

【教学难点】线性规划在实际问题的应用【高考展望】1. 线性规划是教材的新增内容,高考中对这方面的知识涉及的还比较少,但今后将会成为新高考的热点之一;2. 在高考中一般不会单独出现,往往都是隐含在其他数学内容的问题之中,就是说常结合其他数学内容考查,往往都是容易题【知识整合】1. 二元一次不等式(组)表示平面区域:一般地,二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的__________。

我们把直线画成虚线以表示区域_________边界直线。

当我们在坐标系中画不等式所表示的平面区域时,此区域应___________边界直线,则把边界直线画成____________.2. 由于对在直线同一侧的所有点,把它的坐标代入,所得到实数的符号都__________,所以只需在此直线的某一侧取一个特殊点,从的_________即可判断 >0表示直线哪一侧的平面区域3. 二元一次不等式组是一组对变量x,y的__________,这组约束条件都是关于x,y的一次不等式,所以又称为_____________;4. (a,b是实常数)是欲达到最大值或_________所涉及的变量x,y的解析式,叫做______________。

由于又是x,y的一次解析式,所以又叫做_________;5. 求线性目标函数在_______下的最大值或____________的问题,统称为_________问题。

满足线性约束条件的解叫做_________,由所有可行解组成的集合叫做_________。

分别使目标函数取得____________和最小值的可行解叫做这个问题的___________.【典型例题】例1.(课本题)画出下列不等式(组)表示的平面区域,1) 2) 3)4) 5) 6)例2.1)画出表示的区域,并求所有的正整数解2)画出以a(3,-1)、b(-1,1)、c(1,3)为顶点的的区域(包括各边),写出该区域所表示的二元一次不等式组,并求以该区域为可行域的目标函数的最大值和最小值。

求线性规划问题中目标函数最值专题

求线性规划问题中目标函数最值专题
来表示,还有的可以用两点连线的斜率、两点间的 距离或点到直线的距离来表示。 • 目标函数通常具有相应的几何意义,如截距、斜率、 距离等.

• 3. 线性目标函数的最值一般在可行域的顶点或边界 上取得,特别地对最优整数解可视情况而定.
利用线性规划求最值(名师,考点二)
x+2y≥2, 例 1 设变量 x,y 满足约束条件2x+y≤4,
• 2项必须防范
• 1. 画出平面区域,避免失误的重要方法就是 首先使二元不等式标准化.
• 2. 注意不等式中不等号有无等号,含等号时, 直线画为实线;不含等号时,画为虚线.
• 3点必知关键 • 1. 线性规划问题中,正确画出不等式组表示的平面
区域是解题的基础. • 2. 目标函数的意义,有的可以用直线在y轴上的截距
离最小.又即ຫໍສະໝຸດ OM 13, ON 9 ,
2
∴z的9最大x值2 为y12 3,最13小,值9为 x2 y2 13.
2
2
9
.
2
(3)由图可得,原点与可行域内的点A的连线的斜率值最大,与点B
的连线的斜率值最小,

k OA
2, kOB
1 , 1 22
y 2. x
∴z的最大值为2,最小值为 1 .
(1)形如 z=ax+by 的截距型; (2)形如 z=yx- -ab的斜率型; (3)形如 z=(x-a)2+(y-b)2 的距离型.
x≥0
[变式探究] 设变量 x,y 满足约束条件y≥0

4x+3y≤12
则 z=yx+ +11的取值范围是(
)
A.[0,4]
B.[14,5]
C.[54,6]
• 答案:B
x y 3 0

专题7 线性规划与基本不等式(培优)

专题7 线性规划与基本不等式(培优)

专题7-1线性规划归类【题型一】三大基础题型:截距,斜率与距离(圆系)【典例分析】若实数x ,y 满足{x ≤4y ≤33x +4y ≥12,则x 2+y 2的取值范围是___【提分秘籍】基本规律1.线性,注意Z 与截距之间的正反比例关系,如变式22.斜率型,要写层标准的斜率公式形式,如变式13.距离型,注意圆与直线(线段)的位置关系:点到线的垂直关系还是点到点的关系,如典例分析【变式演练】1.设,x y 满足约束条件20{230 0x y x y x y --≤-+≥+≤,则46y x ++的取值范围是 ( ) A. []4,1- B. 33,7⎡⎤-⎢⎥⎣⎦C. (][),31,-∞-⋃+∞D. []3,1-2.若实数x ,y 满足约束条件{x ≥2,x +y ≤6,x −y ≤0,则目标函数z =2x −3y 的最大值是__________.3.设点(),Px y 是平面区域0{10 220x x y x y ≤++≤++≥内的任意一点,则224x y x +-的最小值为 A. 12 B. 1 C. 92D. 5【题型二】 由参数确定图像形状【典例分析】若不等式组0220x y x y y x y a -≥⎧⎪+≤⎪⎨≥⎪⎪+≤⎩,表示的平面区域是一个三角形区域,则a 的取值范围是( )A.43a ≥B.01a <≤C.413a ≤≤ D.01a <≤或43a ≥【提分秘籍】基本规律分类讨论,动图研究【变式演练】1.设不等式组4,0,10,x y y x x +≤⎧⎪-≥⎨⎪-≥⎩表示的平面区域为D ,若圆222:(1)(1)(0)C x y r r +++=>不经过区域D 上的点,则r 的取值范围是A .22,25⎡⎣B .(22,32]C .(22,25]D .(0,22)(25,)+∞2.不等式组表示的是一个对称四边形围成的区域,则 .3.已知圆的方程为224x y +=,P 是圆O 上的一个动点,若OP 的垂直平分线总是被平面区域||||x y a +≥覆盖,则实数a 的取值范围是( ) A .1a ≥B .1a ≤C .01a <≤D .0a ≤【题型三】 含参线性规划【典例分析】给出平面区域如图所示,其中A (1,1),B (2,5),C (4,3),若使目标函数(0)Z ax y a =->取得最大值的最优解有无穷多个,则a 的值是A .B .1C .4D .【提分秘籍】基本规律含参型,注意区分参数所在位置而采取的不同处理方法。

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述某公司生产两种产品A和B,每个单位产品A的利润为100元,每个单位产品B的利润为150元。

公司有两个车间可用于生产这两种产品,每个车间每天的工作时间为8小时。

产品A在车间1生产需要1小时,产品B在车间1生产需要2小时;产品A在车间2生产需要2小时,产品B在车间2生产需要1小时。

每天车间1的生产能力为400个单位产品A或200个单位产品B,车间2的生产能力为300个单位产品A或150个单位产品B。

公司的目标是在满足车间生产能力的前提下,最大化利润。

二、数学建模设x1为在车间1生产的产品A的数量,x2为在车间1生产的产品B的数量,x3为在车间2生产的产品A的数量,x4为在车间2生产的产品B的数量。

目标函数:max Z = 100x1 + 150x2 + 100x3 + 150x4约束条件:车间1的生产能力:x1 + x2 ≤ 4002x1 + x2 ≤ 800车间2的生产能力:x3 + x4 ≤ 300x3 + 2x4 ≤ 300非负约束:x1, x2, x3, x4 ≥ 0三、求解过程使用线性规划的求解方法,可以得到最优解。

1. 将目标函数和约束条件转化为标准形式:目标函数:max Z = 100x1 + 150x2 + 100x3 + 150x4约束条件:x1 + x2 + 0x3 + 0x4 ≤ 4002x1 + x2 + 0x3 + 0x4 ≤ 8000x1 + 0x2 + x3 + x4 ≤ 3000x1 + 0x2 + x3 + 2x4 ≤ 300x1, x2, x3, x4 ≥ 02. 使用线性规划求解器求解得到最优解:最优解为:x1 = 200, x2 = 200, x3 = 0, x4 = 100最大利润为:Z = 100(200) + 150(200) + 100(0) + 150(100) = 50000元四、结果分析根据求解结果,最优解是在车间1生产200个单位产品A,200个单位产品B,在车间2生产100个单位产品B,不需要在车间2生产产品A。

线性规划的常见题型及其解法学生版题型全面归纳好

线性规划的常见题型及其解法学生版题型全面归纳好

课题 线性规划旳常见题型及其解法题目线性规划问题是高考旳重点,而线性规划问题具有代数和几何旳双重形式,多与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透,自然地融合在一起,使数学问题旳解答变得愈加新奇别致.归纳起来常见旳命题探究角度有: 1.求线性目旳函数旳最值. 2.求非线性目旳函数旳最值. 3.求线性规划中旳参数. 4.线性规划旳实际应用.本节重要讲解线性规划旳常见基础类题型.【母题一】已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目旳函数z =2x +3y 旳取值范围为( )A .[7,23]B .[8,23]C .[7,8]D .[7,25]【母题二】变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,(1)设z =y2x -1,求z 旳最小值;(2)设z =x 2+y 2,求z 旳取值范围;(3)设z =x 2+y 2+6x -4y +13,求z 旳取值范围.角度一:求线性目旳函数旳最值1.(·新课标全国Ⅱ卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 旳最大值为( )A .10B .8C .3D .22.(·高考天津卷)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2≥0,x -y +3≥0,2x +y -3≤0,则目旳函数z =x +6y 旳最大值为( )A .3B .4C .18D .403.(·高考陕西卷)若点(x ,y )位于曲线y =|x |与y =2所围成旳封闭区域,则2x -y 旳最小值为( ) A .-6 B .-2 C .0D .2角度二:求非线性目旳旳最值4.(·高考山东卷)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所示旳区域上一动点,则直线OM 斜率旳最小值为( )A .2B .1C .-13D .-125.已知实数x ,y 满足⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y ,则z =2x +y -1x -1旳取值范围 . 6.(·郑州质检)设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≤2y -x ≤2,y ≥1,则x 2+y 2旳取值范围是( )A .[1,2]B .[1,4]C .[2,2]D .[2,4]7.(·高考北京卷)设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0所示旳平面区域,区域D 上旳点与点(1,0)之间旳距离旳最小值为________.8.设不等式组⎩⎪⎨⎪⎧x ≥1,x -2y +3≥0,y ≥x所示旳平面区域是Ω1,平面区域Ω2与Ω1有关直线3x -4y -9=0对称.对于Ω1中旳任意点A 与Ω2中旳任意点B ,|AB |旳最小值等于( )A .285B .4C .125D .2角度三:求线性规划中旳参数 9.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所示旳平面区域被直线y =kx +43分为面积相等旳两部分,则k 旳值是( )A .73B .37C .43D .3410.(·高考北京卷)若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 旳最小值为-4,则k 旳值为( )A .2B .-2C .12D .-1211.(·高考安徽卷)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 获得最大值旳最优解不唯一,则实数a 旳值为( )A .12或-1B .2或12C .2或1D .2或-112.在约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤s ,y +2x ≤4.下,当3≤s ≤5时,目旳函数z =3x +2y 旳最大值旳取值范围是( )A .[6,15]B .[7,15]C .[6,8]D .[7,8] 13.(·通化一模)设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x 3a +y 4a ≤1,若z =x +2y +3x +1旳最小值为32,则a 旳值为________.角度四:线性规划旳实际应用14.A ,B 两种规格旳产品需要在甲、乙两台机器上各自加工一道工序才能成为成品.已知A 产品需要在甲机器上加工3小时,在乙机器上加工1小时;B 产品需要在甲机器上加工1小时,在乙机器上加工3小时.在一种工作日内,甲机器至多只能使用11小时,乙机器至多只能使用9小时.A 产品每件利润300元,B 产品每件利润400元,则这两台机器在一种工作日内发明旳最大利润是________元.15.某玩具生产企业每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一种卫兵需5分钟,生产一种骑兵需7分钟,生产一种伞兵需4分钟,已知总生产时间不超过10小时.若生产一种卫兵可获利润5元,生产一种骑兵可获利润6元,生产一种伞兵可获利润3元.(1)试用每天生产旳卫兵个数x与骑兵个数y表达每天旳利润w(元);(2)怎样分派生产任务才能使每天旳利润最大,最大利润是多少?一、选择题1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0旳两侧,则a 旳取值范围为( ) A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)2.(·临沂检测)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3,则z =x -y 旳最小值是( )A .-3B .0C .32D .33.(·泉州质检)已知O 为坐标原点,A (1,2),点P 旳坐标(x ,y )满足约束条件⎩⎪⎨⎪⎧x +|y |≤1,x ≥0,则z =OA →·OP→旳最大值为( )A .-2B .-1C .1D .24.已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1旳取值范围是( )A .⎣⎡⎦⎤53,5B .[0,5]C .⎣⎡⎭⎫53,5 D .⎣⎡⎭⎫-53,5 5.假如点(1,b )在两条平行直线6x -8y +1=0和3x -4y +5=0之间,则b 应取旳整数值为( )A .2B .1C .3D .06.(·郑州模拟)已知正三角形ABC 旳顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x +y 旳取值范围是( )A .(1-3,2)B .(0,2)C .(3-1,2)D .(0,1+3)7.(·成都二诊)在平面直角坐标系xOy 中,P 为不等式组⎩⎪⎨⎪⎧y ≤1,x +y -2≥0,x -y -1≤0,所示旳平面区域上一动点,则直线OP 斜率旳最大值为( )A .2B .13C .12D .18.在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }旳面积为( )A .2B .1C .12D .149.设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -2≤0,x -y ≥0,x ≥0,y ≥0,若目旳函数z =ax +by (a >0,b >0)旳最大值为4,则ab旳取值范围是( )A .(0,4)B .(0,4]C .[4,+∞)D .(4,+∞)10.设动点P (x ,y )在区域Ω:⎩⎪⎨⎪⎧x ≥0,y ≥x ,x +y ≤4上,过点P 任作直线l ,设直线l 与区域Ω旳公共部分为线段AB ,则以AB 为直径旳圆旳面积旳最大值为( )A .πB .2πC .3πD .4π11.(·东北三校联考)变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥-1,x -y ≥2,3x +y ≤14,若使z =ax +y 获得最大值旳最优解有无穷多种,则实数a 旳取值集合是( )A .{-3,0}B .{3,-1}C .{0,1}D .{-3,0,1}12.(·新课标全国Ⅰ卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 旳最小值为7,则a =( )A .-5B .3C .-5或3D .5或-313.若a ≥0,b ≥0,且当⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1时,恒有ax +by ≤1,则由点P (a ,b )所确定旳平面区域旳面积是( )A .12B .π4C .1D .π214.(·高考北京卷)设有关x ,y 旳不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表达旳平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2.求得m 旳取值范围是( )A .⎝⎛⎭⎫-∞,43 B .⎝⎛⎭⎫-∞,13 C .⎝⎛⎭⎫-∞,-23D .⎝⎛⎭⎫-∞,-53 15.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表达旳平面区域为D .若指数函数y =a x 旳图象上存在区域D 上旳点,则a 旳取值范围是 ( )A .(1,3]B .[2,3]C .(1,2]D .[3,+∞)16.(·高考福建卷)已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2旳最大值为( )A .5B .29C .37D .4917.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧y ≥0,y ≤x ,y ≤k (x -1)-1表达一种三角形区域,则实数k 旳取值范围是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)18.(·武邑中学期中)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则z =2x +y 旳最大值为( )A .4B .6C .8D .1019.(·衡水中学期末)当变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥x x +3y ≤4x ≥m 时,z =x -3y 旳最大值为8,则实数m 旳值是( )A .-4B .-3C .-2D .-120.(·湖州质检)已知O 为坐标原点,A ,B 两点旳坐标均满足不等式组⎩⎪⎨⎪⎧x -3y +1≤0,x +y -3≤0,x -1≥0,则tan ∠AOB旳最大值等于( )A .94B .47二、填空题21.(·高考安徽卷)不等式组 ⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表达旳平面区域旳面积为________.23.(·重庆一诊)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目旳函数z =3x -y 旳最大值为____.24.已知实数x ,y 满足⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,则w =x 2+y 2-4x -4y +8旳最小值为________.25.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x +3y -6≤0,x +y -2≥0,y ≥0所示旳区域上一动点,则|OM |旳最小值是________.26.(·汉中二模)某企业生产甲、乙两种产品,已知生产每吨甲产品要用水3吨、煤2吨;生产每吨乙产品要用水1吨、煤3吨.销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元,若该企业在一种生产周期内消耗水不超过13吨,煤不超过18吨,则该企业可获得旳最大利润是______万元.27.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜旳产量、成本和售价如下表:________亩.28.(·日照调研)若A 为不等式组⎩⎪⎨⎪⎧ x ≤0,y ≥0,y -x ≤2表达旳平面区域,则当a 从-2持续变化到1时,动直线x +y =a 扫过A 中旳那部分区域旳面积为________.29.(·高考浙江卷)当实数x ,y 满足⎩⎪⎨⎪⎧ x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 旳取值范围是________.30.(·石家庄二检)已知动点P (x ,y )在正六边形旳阴影部分(含边界)内运动,如图,正六边形旳边长为2,若使目旳函数z =kx +y (k >0)获得最大值旳最优解有无穷多种,则k 旳值为________.31.设m >1,在约束条件⎩⎪⎨⎪⎧ y ≥x ,y ≤mx ,x +y ≤1下,目旳函数z =x +my 旳最大值不不小于2,则m 旳取值范围 .32.已知实数x ,y 满足⎩⎪⎨⎪⎧ y ≥1,y ≤2x -1,x +y ≤m ,若目旳函数z =x -y 旳最小值旳取值范围是[-2,-1],则目旳函数旳最大值旳取值范围是________.33.(·高考广东卷)给定区域D :⎩⎪⎨⎪⎧ x +4y ≥4,x +y ≤4,x ≥0.令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y在D 上获得最大值或最小值旳点},则T 中旳点共确定________条不一样旳直线.34.(·湖北改编)已知向量a =(x +z,3),b =(2,y -z ),且a ⊥b .若x ,y 满足不等式|x |+|y |≤1,则z 旳取值范围为__________.35.(·衡水中学模拟)已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧ x +4y -13≤02y -x +1≥0x +y -4≥0且有无穷多种点(x ,y )使目旳函数z=x+my获得最小值,则m=________.。

史蒂文:二元一次方程组与简单的线性规划专题

史蒂文:二元一次方程组与简单的线性规划专题

二元一次方程组及简单的线性规划专题1.“截距”型考题1.(2015•广东)若变量x,y满足约束条件,则z=3x+2y 的最小值为()A.4 B. C.6 D.(2015•北京)若x,y满足,则z=x+2y的最大值为()2.A.0 B.1 C.D.23.(2015•湖南)若变量x,y满足约束条件,则z=2x﹣y 的最小值为()A.﹣1 B.0 C.1 D.24.(2015•福建)若变量x,y满足约束条件则z=2x﹣y的最小值等于()A.B.﹣2 C.D.25.(2011•山东)设变量x,y满足约束条件,则目标函数z=2x+3y+1的最大值为()A.11 B.10 C.9 D.8.52.距离型考题6.(2012•北京)设不等式组,表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是()A. B. C. D.7.(2015•浙江)已知实数x,y满足x2+y2≤1,则|2x+y﹣4|+|6﹣x﹣3y|的最大值是.8.(2013•北京)设D为不等式组表示的平面区域,区域D上的点及点(1,0)之间的距离的最小值为.9.(2013•山东)在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则直线|OM|的最小值为.3.“斜率”型考题10.(2013•山东)在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则直线OM斜率的最小值为()A.2 B.1 C.D.11.(2015•河北)若x,y满足约束条件.则的最大值为.4.“平面区域的面积”型考题12.(2012•重庆)设平面点集,则A∩B所表示的平面图形的面积为()A.B.C.D.13.(2014•安徽)不等式组表示的平面区域的面积为.14.(2008•浙江)若a≥0,b≥0,且当时,恒有ax+by≤1,则以a、b为坐标的点P(a,b)所形成的平面区域的面积等于.15.(2008•安徽)若A为不等式组表示的平面区域,则当a从﹣2连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为.5. “求约束条件中的参数”型考题16.(2014•北京)若x,y满足且z=y﹣x的最小值为﹣4,则k的值为()A.2 B.﹣2 C.D.﹣17.(2011•湖南)设m>1,在约束条件下,目标函数z=x+5y的最大值为4,则m的值为.18.(2015•重庆)若不等式组,表示的平面区域为三角形,且其面积等于,则m的值为()A.﹣3 B.1 C.D.319.(2015•福建)变量x,y满足约束条件,若z=2x﹣y的最大值为2,则实数m等于()A.﹣2 B.﹣1 C.1 D.220.(2014•北京)若x,y满足且z=y﹣x的最小值为﹣4,则k的值为()A.2 B.﹣2 C.D.﹣21.(2013•北京)设关于x,y的不等式组表示的平面区域内存在点P(x0,y0),满足x0﹣2y0=2,求得m的取值范围是()A.B.C.D.22.(2012•福建)若函数y=2x图象上存在点(x,y)满足约束条件,则实数m的最大值为()A.B.1 C.D.26. “求目标函数中的参数”型考题23.(2014•安徽)x、y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1 B.2或 C.2或1 D.2或﹣124.(2014•山东)已知x,y满足约束条件,当目标函数z=ax+by(a>0,b>0)在该约束条件下取到最小值2时,a2+b2的最小值为()A.5 B.4 C.D.225.(2014•福建)已知圆C:(x﹣a)2+(y﹣b)2=1,设平面区域Ω=,若圆心C∈Ω,且圆C及x轴相切,则a2+b2的最大值为()A.5 B.29 C.37 D.4926.(2015•山东)已知x,y满足约束条件,若z=ax+y的最大值为4,则a=()A.3 B.2 C.﹣2 D.﹣327.(2013•四川)若变量x,y满足约束条件且z=5y﹣x的最大值为a,最小值为b,则a﹣b的值是()A.48 B.30 C.24 D.1628.(2011•湖南)设m>1,在约束条件下,目标函数z=x+my的最大值小于2,则m的取值范围为()A.(1,) B.(,+∞)C.(1,3) D.(3,+∞)29.(2010•北京)设不等式组表示的平面区域为D,若指数函数y=a x的图象上存在区域D上的点,则a的取值范围是()A.(1,3] B.[2,3] C.(1,2] D.[3,+∞]30.(2014•浙江)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是.其他问题31.(2015•陕西)某企业生产甲、乙两种产品均需用A、B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为()甲乙原料限额A(吨) 3 212B(吨) 12 8A.12万元B.16万元C.17万元D.18万元32.(2013•湖南)已知事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的概率为,则=()A.B.C.D.33.(2013•湖北)某旅行社租用A、B两种型号的客车安排900名客人旅行,A、B两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B型车不多于A型车7辆.则租金最少为()A.31200元B.36000元C.36800元D.38400元34.(2011•广东)已知平面直角坐标系xOy上的区域D由不等式组给定.若M(x,y)为D上的动点,点A的坐标为(,1),则z=•的最大值为()A.4B.3C.4 D.335.(2011•湖北)直线2x+y﹣10=0及不等式组表示的平面区域的公共点有()A.0个B.1个C.2个D.无数个36.(2011•安徽)设变量x,y满足|x|+|y|≤1,则x+2y的最大值和最小值分别为()A.1,﹣1 B.2,﹣2 C.1,﹣2 D.2,﹣1 37.(2011•四川)某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车,某天需送往A地至少72吨的货物,派用的每辆车需载满且只能送一次,派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡需配1名工人;每送一次可得利润350元,该公司合理计划当天派用甲乙卡车的车辆数,可得最大利润z=()A.4650元B.4700元C.4900元D.5000元38.(2011•福建)已知O是坐标原点,点A(﹣1,1),若点M (x,y)为平面区域,上的一个动点,则•的取值范围是()A.[﹣1,0] B.[0,1] C.[0,2] D.[﹣1,2] 39.(2015•北京)如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x+3y的最大值为.40.(2013•广东)给定区域D:.令点集T={(x0,y0)∈D|x0,y0∈Z,(x0,y0)是z=x+y在D上取得最大值或最小值的点},则T中的点共确定条不同的直线.41.(2012•上海)满足约束条件|x|+2|y|≤2的目标函数z=y﹣x 的最小值是.42.(2010•北京)若点p(m,3)到直线4x﹣3y+1=0的距离为4,且点p在不等式2x+y<3表示的平面区域内,则m= .13.(2010•陕西)铁矿石A和B的含铁率a,冶炼每万吨铁矿石的CO2排放量b及每万吨铁矿石的价格c如下表a b(万吨)c(百万元)A50%13B70%0.56某冶炼厂至少要生产1.9(万吨)铁,若要求CO2的排放量不超过2(万吨)则购买铁矿石的最少费用为(百万元)43.(2010•福建)设不等式组所表示的平面区域是Ω1,平面区域是Ω2及Ω1关于直线3x﹣4y﹣9=0对称,对于Ω1中的任意一点A及Ω2中的任意一点B,|AB|的最小值等于()A. B.4 C. D.244.(2009•湖南)已知D是由不等式组,所确定的平面区域,则圆x2+y2=4在区域D内的弧长为()A. B. C.D.(2008•湖北)在平面直角坐标系xOy中,满足不等式组45.的点(x,y)的集合用阴影表示为下列图中的()A .B .C .D .46.(2012年高考·江苏卷 14)已知正数满足:则的取值范围是 . a b c ,,4ln 53ln b c a a c c c a c b -+-≤≤≥,,ba。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.简单的线性规划问题应注意取点是否取得到例1:已知实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是( )A .4B .5C .6D .7【答案】C【解析】不等式组对应的可行域如图所示:过()2,0时,z 取最小值为6,故选C .2.目标函数为二次式例2:若变量x ,y 满足120x x y x y ≤⎧⎪≥⎨⎪++≥⎩,则22z x y =+的最大值为( )A B .7C .9D .10【答案】D【解析】目标函数22z x y =+可视为点到原点距离的平方, 所以只需求出可行域里距离原点最远的点即可,作出可行域,线性规划专题观察可得最远的点为()1,3B -,所以2max 10z OB ==.3.目标函数为分式例3:设变量x ,y 满足约束条件22022010x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩,则11y s x +=+的取值范围是( )A .31,2⎡⎤⎢⎥⎣⎦B .1,12⎡⎤⎢⎥⎣⎦C .[]1,2D .1,22⎡⎤⎢⎥⎣⎦【答案】D 【解析】所求11y s x +=+可视为点(),x y 与定点()1,1--连线的斜率. 从而在可行域中寻找斜率的取值范围即可, 可得在()1,0处的斜率最小,即()()min 011112k --==--, 在()0,1处的斜率最大,为()()max 11201k --==--,结合图像可得11y s x +=+的范围为1,22⎡⎤⎢⎥⎣⎦.故选D .4.面积问题例4:若不等式组03434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域被直线4y kx =+分成面积相等的两部分,则k 的值为( )A .73B .37C .173-D .317-【答案】C【解析】在坐标系中作出可行域,如图所示为一个三角形,动直线4y kx =+为绕定点()0,4的一条动直线, 设直线交AC 于M ,若将三角形分为面积相等的两部分,则ABM BCM S S =△△, 观察可得两个三角形高相等,所以AM MC =,即M 为AC 中点,联立直线方程可求得40,3A ⎛⎫⎪⎝⎭,()1,1C ,则17,26M ⎛⎫ ⎪⎝⎭,代入直线方程可解得173k =-.一、单选题1.若实数x ,y 满足0010x y x y ≥⎧⎪≥⎨⎪+-≤⎩,则z x y =-的最大值为( )A .2B .1C .0D .1-【答案】B【解析】由图可知,可行域为封闭的三角区域,由z x y =-在y 轴上的截距越小,目标函数值越大, 所以最优解为()1,0,所以z 的最大值为1,故选B .2.已知实数x ,y 满足线性约束条件3023004x y x y x +-≤⎧⎪--≤⎨⎪≤≤⎩,则其表示的平面区域的面积为( )对点增分集训A .94B .274C .9D .272【答案】B【解析】满足约束条件3023004x y x y x +-≤⎧⎪--≤⎨⎪≤≤⎩,如图所示:可知14x ≤≤范围扩大,实际只有03x ≤≤,其平面区域表示阴影部分一个三角形,其面积为132733224S ⎛⎫=+⨯= ⎪⎝⎭.故选B .3.已知实数x ,y 满足122022x y x y x y -≤⎧⎪-+≥⎨⎪+≥⎩,若z x a y =-只在点()43,处取得最大值,则a 的取值范围是( ) A .()1-∞-, B .()2-+∞, C .()1-∞,D .12⎛⎫+∞ ⎪⎝⎭,【答案】C【解析】由不等式组122022x y x y x y -≤⎧⎪-+≥⎨⎪+≥⎩作可行域如图,联立221x y x y -=-⎧⎨-=⎩,解得()43C ,,当0a =时,目标函数化为z x =, 由图可知,可行解()43,使z x ay =-取得最大值,符合题意; 当0a >时,由z x ay =-,得1zy x a a=-,此直线斜率大于0,当在y 轴上截距最大时z 最大,可行解()43,为使目标函数z x ay =-的最优解,1a <符合题意; 当0a <时,由z x ay =-,得1zy x a a=-,此直线斜率为负值, 要使可行解()43,为使目标函数z x ay =-取得最大值的唯一的最优解, 则10a<,即0a <. 综上,实数a 的取值范围是()1-∞,.故选C . 4.已知实数x ,y 满足约束条件222020x x y x y ≤⎧⎪-+≥⎨⎪++≥⎩,则5x z y -=的取值范围为( )A .2433⎡⎤-⎢⎥⎣⎦,B .4233⎡⎤-⎢⎥⎣⎦,C .3324⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭U ,,D .3342⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭U ,,【答案】C【解析】画出不等式表示的可行域,如图阴影三角形所示, 由题意得()22A ,,()24B -,.由5x z y -=得105y z x -=-, 所以1z可看作点()x y ,和()50P ,连线的斜率,记为k , 由图形可得PA PB k k k ≤≤,又202253PA k -==--,404253PB k --==-,所以2433k -≤≤, 因此32z ≤-或34z ≥,所以5x z y -=的取值范围为3324⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭U ,,.故选C .5.若实数x ,y 满足约束条件22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则22z x y =+的最大值是( )AB .4C .9D .10【答案】D【解析】由实数x ,y 满足约束条件22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩作出可行域,如图:∵()03A -,,()02C ,,∴OA OC >, 联立2239x y x y +=⎧⎨-=⎩,解得()31B -,, 22x y +的几何意义为可行域内动点与原点距离的平方,其最大值()2223110OB =+-=.故选D .6.已知点()12A ,,若动点()P x y ,的坐标满足02x y x x y ≥⎧⎪≥⎨⎪+≤⎩,则AP 的最小值为( )AB .1CD【答案】C【解析】作出可行域如图:观察图象可知,AP 最小距离为点A 到直线20x y +-=的距离,即max AP =C . 7.x ,y 满足约束条件20220220x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩,若z y ax =-取得最大值的最优解不唯一,则实数a的值为( ) A .12或1- B .2或12C .2或1D .2或1-【答案】D【解析】由题意作出约束条件20220220x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩,平面区域,将z y ax =-化为y ax z =+,z 相当于直线y ax z =+的纵截距, 由题意可得,y ax z =+与22y x =+或与2y x =-平行, 故2a =或1-;故选D .8.若x ,y 满足不等式组40240 4x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩,则215y x ≤+成立的概率为( ) A .1556B .1116 C .58D .38【答案】A【解析】作出不等式组40240 4x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩表示的平面区域,如图所示:因为()011y y x x -=+--表示点(),P x y 与定点()1,0-连线的斜率, 所以215y x ≤+成立的点(),P x y 只能在图中ADE △的内部(含边界), 所以由几何概型得:215y x ≤+成立的概率为ADE ABC S S △△,由104x y x +-=⎧⎨=⎩,得()40A ,,由2104x y x -+=⎧⎨=⎩,得()44B ,, 由40240x y x y +-=⎧⎨-+=⎩,得4833C ⎛⎫ ⎪⎝⎭,,由()21510y x x y ⎧=+⎪⎨⎪+-=⎩,解得181077D ⎛⎫ ⎪⎝⎭,, 由()2154y x x ⎧=+⎪⎨⎪=⎩,解得()42E ,,所以141644233ABC S =-⨯=△,1181042277ADE S =⨯-⨯=△, 所以215y x ≤+成立的概率为10157563ADEABC S S ==△△,故选A . 9.若x ,y 满足不等式组20510080x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩,则32z x y =-+的最小值为( )A .7B .6C .265D .4【答案】C【解析】画出可行城如图所示,目标函数可化为1322zy x =--+,共图象是对称轴为3x =的两条射线,。

相关文档
最新文档