北师大版高中数学必修一高一上学期第一次月考
高中数学 第一章 预备知识质量评估卷练测评(含解析)北师大版必修第一册-北师大版高一第一册数学试题
第一章 单元质量评估卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={1,2,3},B ={2,3},则( ) A .A =B B .A ∩B =∅ C .A B D .BA2.已知全集U =R ,集合M ={x |0<x ≤1},N ={x |x ≤0},则M ∩(∁U N )=( ) A .{x |0≤x <1} B .{x |0<x ≤1} C .{x |0≤x ≤1} D.{x |x <1}3.已知集合M ={1,a 2},P ={-1,-a },若M ∪P 有三个元素,则M ∩P =( ) A .{0,1} B .{0,-1} C .{0} D .{-1}4.命题“∀x ≥0,|x |+x 2≥0”的否定是( ) A .∃x <0,|x |+x 2<0 B .∃x ≥0,|x |+x 2≤0 C .∃x ≥0,|x |+x 2<0 D .∃x <0,|x |+x 2≥0 5.已知a <0,-1<b <0,则( ) A .-a <ab <0 B .-a >ab >0 C .a >ab >ab 2D .ab >a >ab 26.已知集合A ={x |x 2+x -2≤0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x +1x -2≥0,则A ∩(∁R B )=( ) A .(-1,2) B .(-1,1) C .(-1,2] D .(-1,1]7.“关于x 的不等式x 2-2ax +a >0的解集为R ”的一个必要不充分条件是( ) A .0<a <1 B .0<a <13C .0≤a ≤1 D.a <0或a >138.若正数a ,b 满足2a +1b =1,则2a+b 的最小值为( )A .4 2B .8 2C .8D .9二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对得5分,选对但不全的得3分,有选错的得0分)9.有下列命题中,真命题有( ) A .∃x ∈N *,使x 为29的约数 B .∀x ∈R ,x 2+x +2>0 C .存在锐角α,sin α=1.5D .已知A ={a |a =2n },B ={b |b =3m },则对于任意的n ,m ∈N *,都有A ∩B =∅ 10.已知1a <1b<0,下列结论中正确的是( )A .a <bB .a +b <abC .|a |>|b |D .ab <b 211.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A ,B 两点,与y 轴交于C 点,且对称轴为x =1,点B 坐标为(-1,0),则下面结论中正确的是( )A .2a +b =0B .4a -2b +c <0C .b 2-4ac >0 D .当y <0时,x <-1或x >412.设P 是一个数集,且至少含有两个元素.若对任意的a ,b ∈P ,都有a +b ,a -b ,ab ,ab∈P (除数b ≠0),则称P 是一个数域.则关于数域的理解正确的是( )A .有理数集Q 是一个数域B .整数集是数域C .若有理数集Q ⊆M ,则数集M 必为数域D .数域必为无限集第Ⅱ卷 (非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.不等式-x 2+6x -8>0的解集为________.14.设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正常数).公司决定从原有员工中分流x (0<x <100,x ∈N *)人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2x %.若要保证产品A 的年产值不减少,则最多能分流的人数是________.15.若1a +1b =12(a >0,b >0),则4a +b +1的最小值为________.16.已知非空集合A ,B 满足下列四个条件: ①A ∪B ={1,2,3,4,5,6,7}; ②A ∩B =∅;③A 中的元素个数不是A 中的元素; ④B 中的元素个数不是B 中的元素.(1)若集合A 中只有1个元素,则A =________;(2)若两个集合A 和B 按顺序组成的集合对(A ,B )叫作有序集合对,则有序集合对(A ,B )的个数是________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)已知全集为实数集R ,集合A ={x |1≤x ≤7},B ={x |-2m +1<x <m }.(1)若m =5,求A ∪B ,(∁R A )∩B ; (2)若A ∩B =A ,求m 的取值X 围.18.(本小题满分12分)已知不等式(1-a )x 2-4x +6>0的解集为{x |-3<x <1}. (1)求a 的值;(2)若不等式ax 2+mx +3≥0的解集为R ,某某数m 的取值X 围.19.(本小题满分12分)已知p :x 2-3x -4≤0;q :x 2-6x +9-m 2≤0,若p 是q 的充分条件,求m 的取值X 围.20.(本小题满分12分)为了保护环境,某工厂在政府部门的鼓励下进行技术改进:把二氧化碳转化为某种化工产品,经测算,该处理成本y (单位:万元)与处理量x (单位:吨)之间的函数关系可近似表示为y =x 2-40x +1 600,x ∈[30,50],已知每处理一吨二氧化碳可获得价值20万元的某种化工产品.(1)判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元该工厂才不会亏损?(2)当处理量为多少吨时,每吨的平均处理成本最少?21.(本小题满分12分)若集合A ={x |x 2+2x -8<0},B ={x ||x +2|>3},C ={x |x 2-2mx +m 2-1<0,m ∈R }.(1)若A ∩C =∅,某某数m 的取值X 围. (2)若(A ∩B )⊆C ,某某数m 的取值X 围.22.(本小题满分12分)已知正实数a ,b 满足a +b =1,求⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2的最小值.第二部分 阶段测试第一章 单元质量评估卷1.解析:由真子集的概念,知B A ,故选D. 答案:D2.解析:∵∁U N ={x |x >0},∴M ∩(∁U N )={x |0<x ≤1}.故选B. 答案:B3.解析:由题意知a 2=-a ,解得a =0或a =-1.①当a =0时,M ={1,0},P ={-1,0},M ∪P ={-1,0,1},满足条件,此时M ∩P ={0};②当a =-1时,a 2=1,与集合M 中元素的互异性矛盾,舍去,故选C.答案:C4.解析:“∀x ≥0,|x |+x 2≥0”的否定是“∃x ≥0,|x |+x 2<0”. 答案:C5.解析:∵a <0,-1<b <0,∴ab >0,a <ab 2<0,故A ,C ,D 都不正确,正确答案为B.答案:B6.解析:由x 2+x -2≤0,得-2≤x ≤1,∴A =[-2,1].由x +1x -2≥0,得x ≤-1或x >2,∴B =(-∞,-1]∪(2,+∞).则∁R B =(-1,2],∴A ∩(∁R B )=(-1,1].故选D.答案:D7.解析:因为关于x 的不等式x 2-2ax +a >0的解集为R ,所以函数f (x )=x 2-2ax +a 的图象始终落在x 轴的上方,即Δ=4a 2-4a <0,解得0<a <1,因为要找其必要不充分条件,从而得到(0,1)是对应集合的真子集,故选C.答案:C8.解析:∵a >0,b >0,且2a +1b =1,则2a+b =⎝ ⎛⎭⎪⎫2a +b ⎝ ⎛⎭⎪⎫2a +1b =5+2ab+2ab ≥5+4=9,当且仅当2ab =2ab 即a =13,b =3时取等号,故选D.答案:D9.解析:A 中命题为真命题.当x =1时,x 为29的约数成立;B 中命题是真命题.x2+x +2=⎝ ⎛⎭⎪⎫x +122+74>0恒成立;C 中命题为假命题.根据锐角三角函数的定义可知,对于锐角α,总有0<sin α<1;D 中命题为假命题.易知6∈A,6∈B ,故A ∩B ≠∅.答案:AB10.解析:因为1a <1b<0,所以b <a <0,故A 错误;因为b <a <0,所以a +b <0,ab>0,所以a +b <ab ,故B 正确;因为b <a <0,所以|a |>|b |不成立,故C 错误;ab -b 2=b (a -b ),因为b <a <0,所以a -b >0,即ab -b 2=b (a -b )<0,所以ab <b 2成立,故D 正确.故选BD.答案:BD11.解析:∵二次函数y =ax 2+bx +c (a ≠0)图象的对称轴为x =1,∴-b2a =1,得2a+b =0,故A 正确;当x =-2时,y =4a -2b +c <0,故B 正确;该函数图象与x 轴有两个交点,则b 2-4ac >0,故C 正确;∵二次函数y =ax 2+bx +c (a ≠0)的图象的对称轴为x =1,点B 的坐标为(-1,0),∴点A 的坐标为(3,0),∴当y <0时,x <-1或x >3,故D 错误,故选ABC.答案:ABC12.解析:若a ,b ∈Q ,则a +b ∈Q ,a -b ∈Q ,ab ∈Q ,a b∈Q (b ≠0),所以有理数Q 是一个数域,故A 正确;因为1∈Z,2∈Z ,12∉Z ,所以整数集不是数域,B 不正确;令数集M =Q ∪{2},则1∈M ,2∈M ,但1+2∉M ,所以C 不正确;根据定义,如果a ,b (b ≠0)在数域中,那么a +b ,a +2b ,…,a +kb (k 为整数),…都在数域中,故数域必为无限集,D 正确.故选AD.答案:AD13.解析:原不等式等价于x 2-6x +8<0, 即(x -2)(x -4)<0,得2<x <4. 答案:(2,4)(或写成{x |2<x <4})14.解析:由题意,分流前每年创造的产值为100t (万元),分流x 人后,每年创造的产值为(100-x )(1+1.2x %)t ,由⎩⎪⎨⎪⎧0<x <100100-x1+1.2x %t ≥100t ,解得0<x ≤503.因为x ∈N *,所以x 的最大值为16.答案:1615.解析:由1a +1b =12,得2a +2b=1,4a +b +1=(4a +b )⎝ ⎛⎭⎪⎫2a +2b +1=8+2+8a b +2b a +1≥11+28a b ·2ba=19.当且仅当8a b =2ba,即a =3,b =6时,4a +b +1取得最小值19.答案:1916.解析:(1)若集合A 中只有1个元素,则集合B 中有6个元素,所以6∉B ,故A ={6}. (2)当集合A 中有1个元素时,A ={6},B ={1,2,3,4,5,7},此时有序集合对(A ,B )有1个;当集合A 中有2个元素时,5∉B,2∉A ,此时有序集合对(A ,B )有5个;当集合A 中有3个元素时,4∉B,3∉A ,此时有序集合对(A ,B )有10个;当集合A 中有4个元素时,3∉B,4∉A ,此时有序集合对(A ,B )有10个;当集合A 中有5个元素时,2∉B,5∉A ,此时有序集合对(A ,B )有5个;当集合A 中有6个元素时,A ={1,2,3,4,5,7},B ={6},此时有序集合对(A ,B )有1个.综上,可知有序集合对(A ,B )的个数是1+5+10+10+5+1=32.答案:(1){6} (2)3217.解析:(1)∵m =5,∴B ={x |-9<x <5},又A ={x |1≤x ≤7}, ∴A ∪B ={x |-9<x ≤7}. 又∁R A ={x |x <1,或x >7}, ∴(∁R A )∩B ={x |-9<x <1}. (2)∵A ∩B =A ,∴A ⊆B ,∴⎩⎪⎨⎪⎧-2m +1<1m >7,即⎩⎪⎨⎪⎧m >0m >7,解得m >7.∴m 的取值X 围是{m |m >7}.18.解析:(1)由已知,1-a <0,且方程(1-a )x 2-4x +6=0的两根为-3,1, 有⎩⎪⎨⎪⎧41-a =-3+161-a =-3,解得a =3.(2)不等式3x 2+mx +3≥0的解集为R , 则Δ=m 2-4×3×3≤0,解得-6≤m ≤6, 实数m 的取值X 围为[-6,6].19.解析:由x 2-3x -4≤0,解得-1≤x ≤4, 由x 2-6x +9-m 2≤0,可得[x -(3+m )][x -(3-m )]≤0,① 当m =0时,①式的解集为{x |x =3};当m <0时,①式的解集为{x |3+m ≤x ≤3-m }; 当m >0时,①式的解集为{x |3-m ≤x ≤3+m };若p 是q 的充分条件,则集合{x |-1≤x ≤4}是①式解集的子集.可得⎩⎪⎨⎪⎧m <03+m ≤-13-m ≥4或⎩⎪⎨⎪⎧m >03-m ≤-13+m ≥4,解得m ≤-4或m ≥4.故m 的取值X 围是(-∞,-4]∪[4,+∞).20.解析:(1)当x ∈[30,50]时,设该工厂获利为S 万元,则S =20x -(x 2-40x +1 600)=-(x -30)2-700,所以当x ∈[30,50]时,S 的最大值为-700,因此该工厂不会获利,国家至少需要补贴700万元,该工厂才不会亏损.(2)由题知,二氧化碳的平均处理成本P =x y=x +1 600x-40,x ∈[30,50],当x ∈[30,50]时,P =x +1 600x-40≥2x ·1 600x-40=40,当且仅当x =1 600x,即x =40时等号成立,所以当处理量为40吨时,每吨的平均处理成本最少.21.解析:(1)由已知可得A ={x |-4<x <2},B ={x |x <-5或x >1},C ={x |m -1<x <m +1}.若A ∩C =∅,则m -1≥2或m +1≤-4, 解得m ≥3或m ≤-5.所以实数m 的取值X 围为{m |m ≤-5或m ≥3}. (2)结合(1)可得A ∩B ={x |1<x <2}.若(A ∩B )⊆C ,即{x |1<x <2}⊆{x |m -1<x <m +1},则⎩⎪⎨⎪⎧m -1≤1m +1≥2,解得1≤m ≤2.所以实数m 的取值X 围为{m |1≤m ≤2}.22.解析:⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2=a 2+b 2+1a 2+1b2+4=(a 2+b 2)⎝⎛⎭⎪⎫1+1a 2b 2+4=[(a +b )2-2ab ]⎝ ⎛⎭⎪⎫1+1a 2b 2+4=(1-2ab )·⎝⎛⎭⎪⎫1+1a 2b 2+4,由a +b =1,得ab ≤⎝⎛⎭⎪⎫a +b 22=14⎝ ⎛⎭⎪⎫当且仅当a =b =12时等号成立, 所以1-2ab ≥1-12=12,且1a 2b 2≥16,所以⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥12×(1+16)+4=252,所以⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2的最小值为252.。
高中数学必修一(全部)测试题(北师大版)教学资料
50
x 3000
50 (100
)
50
2
4050) 37050
150
………………… 8 分
当 x 4050 时 , y max 30705
……………………………………… 11 分
y
ax 2
1
bx 的顶点横坐标的取值范围是 ( ,0 ) …………………… 12 分
2
18.(本小题 12 分)每题 6 分
高一第一学期期中试题(数学)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分
. 共 120 分,考试时间 100 分钟 .
第Ⅰ卷(选择题,共 40 分)
一、选择题(本大题共 10 小题,每小题 5 分,共 50 分, 在每小题给出的四个选项中只有一个正确)
1.已知全集 U {1, 2 ,3, 4,5, 6.7}, A { 2,4 ,6}, B { 1,3,5 ,7 }. 则 A ( C U B )等于 (
x
不需证明)
x 为何值? (直接回答结果,
-3-
参考答案
一、选择题:每小题 4 分, 10 个小题共 40 分 .
1.A 2.C 3.B 4.A. 5.C 6.C 7.A 8.C 9.B 10.D
二、填空题:每小题 4 分,共 16 分.
11 . [ 4, 2) ( 2 , ) 12.2x- 1 或- 2x+1 13 .3 14 . 0, 1
4 函数 f ( x ) x ( x 0 ) 在区间( 0, 2)上递减;
x
4 函数 f ( x ) x ( x 0 ) 在区间
x
上递增 .
当x
时, y 最小
.
4 证明:函数 f ( x ) x ( x 0 ) 在区间( 0, 2)递减 .
【世纪金榜】(教师用书)高中数学 综合质量评估 北师大版必修1
综合质量评估第一~四章(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2012·惠州高一检测)若A={x|1<x≤1},则A∪B=( )(A){x|x>0} (B){x|x(C){x|0≤x(D){x|0<x2.下列函数是幂函数的是( )(A)y=2x2(B)y=x3+x(C)y=3x(D)y=1 2 x3.已知a=log20.3,b=20.1,c=0.21.3,则a,b,c的大小关系是( ) (A)a<b<c (B)c<a<b(C)a<c<b (D)b<c<a4.(2012·莆田高一检测)函数f(x)=1x-x的图像关于( )(A)y轴对称(B)直线y=-x对称(C)坐标原点对称(D)直线y=x对称5.若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:那么方程x3+x2-2x-2=0的一个近似根可以为(精度为0.1)( )(A)1.2 (B)1.3 (C)1.43 (D)1.56.(2012·北京高一检测)下列各组函数中,表示同一个函数的是( )(A)y=2x1x1--与y=x+1(B)y=x与y=log a a x(a>0,a≠1)(C )与y=x-1 (D )y=lgx 与y=12lgx 27.已知函数y=e x的图像与函数y=f(x)的图像关于直线y=x 对称,则( ) (A )f(2x)=e 2x(x ∈R) (B )f(2x)=ln2·lnx(x >0) (C )f(2x)=2e x (x ∈R) (D )f(2x)=ln2+lnx(x >0)8.如图,与函数y=a x,y=log a x,y=log (a+1)x,y=(a-1)x 2依次对应的图像是( ) (A)①②③④ (B)①③②④ (C)②③①④ (D)①④③②9.(易错题)已知ab >0,下面四个等式中: ①lg(ab)=lga+lgb ;②lg ab =lga-lgb ; ③12lg(a b )2=lg a b; ④lg(ab)=ab 1log 10()其中正确命题的个数为( ) (A)0(B)1(C)2 (D)310.(2012·曲靖高一检测)设函数f(x)=x 3+bx+c 在[-1,1]上是增加的,且f(-12)·f(12)<0,则方程f(x)在[-1,1]内( ) (A )可能有3个实数根 (B )可能有2个实数根 (C )有唯一实数根(D )没有实数根11.下列函数中,是偶函数且在区间(0,+∞)上单调递减的是( ) (A )y=-3|x|(B )y=13x(C )y=log 3x 2 (D )y=x-x 212.(2012·杭州高一检测)衣柜里的樟脑丸随着时间会挥发而体积缩小,刚放进的新丸体积为a ,经过t天后体积与天数t 的关系式为:V=a ·e -kt.若新丸经过50天后,体积变为49a ,则一个新丸体积变为827a 需经过的天数为( ) (A)125天(B)100天(C)75天(D)50天二、填空题(本大题共4小题,每小题5分,共20分,请把正确的答案填在题中的横线上) 13.计算:(1)log 23·log 32=___________;14.(2012·陕西高考)设函数f(x)=xx 0,1(),x 0,2≥⎨⎪⎩< 则f(f(-4))=_________.14.设g(x)=x e ,x 0lnx,x 0⎧≤⎨⎩,>,则g(g(12))=__________.15.(2012·南安高一检测)已知函数f(x)=log a (2x-1)(a >0,a ≠1)的图像恒过定点P ,则P 点的坐标是________.16.(能力题)若f(a+b)=f(a)·f(b),且f(1)=2,则()()()()()()f 2f 3f 2 012f 1f 2f 2 011++⋯+=___________. 三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(10分)(2012·嘉峪关高一检测)设集合A={x|-5≤x ≤3},B={x|x <-2或x >4},求A ∩B ,(A)∪(B).18.(12分)(2012·福州八县联考)若函数f(x)为定义在R 上的奇函数,且 x ∈(0,+∞)时,f(x)=2x. (1)求f(x)的表达式;(2)在所给的坐标系中直接画出函数f(x)的图像.(不必列表) 19.(12分)已知函数f(x)=log 2(x-3). (1)求f(51)-f(6)的值; (2)求f(x)的定义域;(3)若f(x)≥0,求x 的取值范围.20.(12分)(能力题)已知函数f(x)=2x,g(x)=x 12+2.(1)求函数g(x)的值域;(2)求满足方程f(x)-g(x)=0的x的值.21.(12分)(2011·湖北高考)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(1)当0≤x≤200时,求函数v(x)的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出最大值.(精确到1辆/小时)22.(12分)(2012·晋江高一检测)已知函数f(x)=x m-4x,且f(4)=3.(1)求m的值;(2)判断f(x)的奇偶性;(3)判断f(x)在(0,+∞)上的单调性,并应用单调性的定义给予证明.答案解析1.【解析】选D.由题意A∪B={x|0<x2.【解析】选D.结合幂函数的形式y=xα可知,D选项正确.3.【解析】选C.a=log20.3<0,b=20.1>1,0<c=0.21.3<1,所以a<c<b.4.【解析】选C.因为函数f(x)=1x-x是奇函数,故其图像关于坐标原点对称.5.【解析】选C.∵1.438-1.406 5<0.1,结合选项可知1.43为方程的一个近似根,故选C.6.【解析】选B.∵y=2x 1x 1--与y=x+1的定义域不同,故A 不正确;∵y=x 与y=log a a x(a >0,a ≠1)的定义域及对应法则均相同,故B 正确; ∵与y=x-1的值域不同,故C 不正确; ∵y=lgx 与y=12lgx 2的定义域不同,故D 不正确. 7.【解析】选D.指数函数的反函数是对数函数,显然y=f(x)=lnx ,则f(2x)=ln2x=ln2+lnx . 8.【解析】选B.结合图像知0<a <1,故与函数y=a x,y=log a x,y=log (a+1)x, y=(a-1)x 2依次对应的图像是①③②④,故选B.9.【解析】选B.当a <0,b <0时,lga,lgb 无意义,故①②不正确;由于当ab=1时log (ab )10不存在,故④不正确;结合对数的运算性质可知③正确.故选B. 【误区警示】本题在求解过程中常常忽略lg(ab)=ab 1log 10()中ab ≠1而错选C .10.【解析】选C.∵f(x)在[-1,1]上是单调的, 且f(-12)·f(12)<0, ∴f(x)在[-1,1]上有唯一实数根.11.【解析】选A.是偶函数排除了B ,D ;在区间(0,+∞)上单调递减排除了C , 故选A .12.【解题指南】先利用“V=a ·e -kt”及“新丸经过50天后,体积变为49a ”求出e -k的值,然后借助指数幂的运算求一个新丸体积变为827a 需经过的天数. 【解析】选C.∵新丸经过50天后体积变为49a,∴由V=a ·e -kt得49=e -50k ,∴e -k=1504()9.∴由827=e -kt 得827=t504()9,∴t 3502=,∴t=75. 13.【解析】(1)log 23·log 32=lg3lg2·lg2lg3=1.π|=π-3.答案:(1)1(2)π-314.【解析】∵x=-4<0,∴f (-4)=(12)-4=16,因为x=16>0,所以f (16)答案:414.【解析】g(g(12))=g(ln 12)=1ln 2e =12.答案:1215.【解析】由题意可知,当2x-1=1,即x=1时,f(x)=0, ∴点P(1,0). 答案:(1,0)16.【解题指南】注意到分子分母间的变量相差1,故可先探索f(a+1)与f(a)·f(1)的关系. 【解析】令b=1,则f(a+1)=f(a)·f(1)=2f(a), 即()()f a 1f a +=2.∴()()f 2f 1=2,()()f 3f 2=2,…,()()f 2 012f 2 011 =2, 则()()()()()()f 2f 3f 2 012f 1f 2f 2 011++⋯+=4 022. 答案:4 02217.【解析】∵A={x|-5≤x ≤3},B={x|x <-2或x >4}, ∴A ∩B=[-5,-2),(A)∪(B)=(-∞,-5)∪[-2,+∞).18.【解析】(1)∵f(x)为定义在R 上的奇函数, ∴f(0)=0.当x ∈(-∞,0)时,-x ∈(0,+∞),则f(-x)=2-x. 又f(x)为定义在R 上的奇函数, ∴f(-x)=-f(x),则f(x)=-f(-x)=-2-x.∴f(x)=x x 2x (0,)0x 02x (,0)-⎧∈+∞⎪=⎨⎪-∈-∞⎩, ,, ,,.(2)【举一反三】已知函数f(x)=()22log x,x 1,4x 51,x (4,7∈⎧⎪⎨-+∈⎪⎩[],].(1)在给定的直角坐标系内画出f(x)的图像; (2)写出f(x)的单调递增区间(不需要证明); (3)写出f(x)的最大值和最小值(不需要证明). 【解析】(1)作图.(2)单调递增区间为[1,4]与[5,7]. (3)最大值是5;最小值是0.19.【解析】(1)f(51)-f(6)=log 2(51-3)-log 2(6-3)=log 2483=log 216=4. (2)由x-3>0得x >3. (3)∵f(x)≥0,即log 2(x-3)≥0, ∴x-3>0且x-3≥1,∴x ≥4, 即x 的取值范围是[4,+∞).【变式训练】已知函数f(x)=a x-2(x ≥0)的图像经过点(4,19), 其中a >0且a ≠1. (1)求a 的值;(2)求函数y =f(x)(x ≥0)的值域. 【解析】(1)函数图像过点(4,19), 所以a 4-2=a 2=19,∴a=13. (2)由(1)知f(x)=(13)x-2(x ≥0).由x ≥0,得x -2≥-2,∴0<(13)x-2≤(13)-2=9,∴函数y =f(x)(x ≥0)的值域为(0,9]. 20.【解析】(1)g(x)=x12+2=(12)|x|+2, 因为|x|≥0,所以0<(12)|x|≤1, 即2<g(x)≤3,故g(x)的值域是(2,3]. (2)由f(x)-g(x)=0,得2x-x 12-2=0, 当x ≤0时,显然不满足方程, 即只有x >0满足2x-x12-2=0, 整理得(2x )2-2·2x -1=0,(2x-1)2=2,故2x=1当x >0时,2x>1,故2x∴x=log 221.【解析】(1)由题意知当0≤x ≤20时,v(x)=60; 当20≤x ≤200时,设v(x)=ax +b (a ≠0),再由已知得200a b 020a b 60⎧⎨⎩+=,+=,解得1a .3200b 3⎧⎪⎪⎨⎪⎪⎩=-,=故函数v(x)的表达式为v(x)=600x 20.1(200x)20x 2003≤≤⎧⎪⎨≤⎪⎩, ,-, <(2)依题意并由(1)可得f(x)=60x 0x 201x(200x)20x 200.3≤≤⎧⎪⎨≤⎪⎩, ,-, <当0≤x ≤20时,f(x)为增加的,故当x =20时,其最大值为60×20=1 200;当20<x ≤200时, f(x)=13x(200-x)=-13(x-100)2+10 0003, 所以,当x =100时,f(x)在区间(20,200]上取得最大值10 0003. 综上,当x =100时,f(x)在区间[0,200]上取得最大值10 0003≈3 333,即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3 333辆/小时. 22.【解析】(1)∵f(4)=3,∴4m-44=3,∴m=1. (2)因为f(x)=x-4x ,定义域为{x|x ≠0},关于原点成对称区间,又f(-x)=-x-4x - =-(x-4x)=-f(x),所以f(x)是奇函数.(3)f(x)在(0,+∞)上单调递增,证明: 设x 1>x 2>0,则 f(x 1)-f(x 2)=x 1-14x -(x 2-24x )=(x 1-x 2)(1+124x x ). 因为x 1>x 2>0,所以x 1-x 2>0,1+124x x >0, 所以f(x 1)>f(x 2),因此f(x)在(0,+∞)上为单调递增的.。
2023_2024学年新教材高中数学第四单元作业课件北师大版必修第一册
多项选择题 答案
名师点津 名师教方法
解含参数的一元二次不等式时,需对参数进行分类讨论.一般有四种情况: (1)二次项系数不含参数,且二次三项式可分解时,根据两根大小分情况进行讨论. (2)二次项系数不含参数,且二次三项式不能分解时,对Δ的取值分三种情况进行讨论. (3)二次项系数含参数,且二次三项式可分解时,先考虑二次项系数是否为0,当二次项系数不为0时,再对二次项系数的 正负情况,结合两根的大小分类进行讨论. (4)二次项系数含参数,且二次三项式不可分解时,先考虑二次项系数是否为0,当二次项系数不为0时,再对二次项系数 的正负情况,结合Δ的取值分类进行讨论.
第四单元
单项选择题
1.[2023芜湖一中高一期末]不等式x(x+1)<2的解集是( )
A.{x|-1<x<2} C.{x|x<-1或x>2}
B.{x|-2<x<1} D.{x|x<-2或x>1}
答案
1.B 【解析】 由x(x+1)<2,解得-2<x<1,即原不等式的解集为{x|-2<x<1}.故选B.
答案
答案
(3)由题设,x2+2mx-2m+1>2即x2+2mx-2m-1=(x+2m+1)(x-1)>0, 当-(2m+1)>1,即m<-1时,解集为(-∞,1)∪(-2m-1,+∞);(9分) 当-(2m+1)=1,即m=-1时,解集为{x|x≠1};(11分) 当-(2m+1)<1,即m>-1时,解集为(-∞,-2m-1)∪(1,+∞). (12分)
Байду номын сангаас
2022版高中数学第二章函数的表示法映射提升训练含解析北师大版必修1
2022版高中数学北师大版必修1:函数的表示法映射基础过关练题组一函数的表示法1.(2020河北衡水冀州中学高一上第二次月考)已知函数f(x),g(x)由下列表格给出,则f[g(3)]= ()x 1 2 3 4f(x) 2 4 3 1g(x) 3 1 2 4A.4B.3C.2D.12.(2021山东烟台高一上期中)某高三学生于2020年9月第二个周末乘高铁赴济南参加全国高中数学联赛(山东赛区)的比赛活动.早上他乘出租车从家里出发,离开家不久,发现身份证忘在家里了,于是回到家取上身份证,然后乘出租车以更快的速度赶往高铁站,令x(单位:分钟)表示离开家的时间,y(单位:千米)表示离开家的距离,其中等待红绿灯及在家取身份证的时间忽略不计,下列图像中与上述事件吻合最好的是()3.如图,函数f(x)的图像是曲线OAB,其中点O、A、B的坐标分别为(0,0)、(1,2)、(3,1),则f[f(3)]的值等于.4.如图所示,有一块边长为a的正方形铁皮,将其四角各截去一个边长为x的小正方形,然后折成一个无盖的盒子,写出此盒子的体积V以x为自变量的函数解析式,并指明这个函数的定义域.题组二 函数解析式的求法5.(2021北京理工大学附中高一上期中)已知函数f (x )是一次函数,且f (x -1)=4x +3,则f (x )的解析式为( ) A.f (x )=4x -1 B.f (x )=4x +7 C.f (x )=4x +1 D.f (x )=4x +36.已知f (2x +1)=4x 2,则f (-3)= ( ) A.36 B.16 C.4D.-167.已知f (x )是一次函数,且2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )的解析式为 ( ) A.f (x )=2x +3 B.f (x )=3x +2 C.f (x )=3x -2 D.f (x )=2x -38.(2019河北辛集中学高一上第一次月考)已知f (x -1)=x 2,则f (x 2)= . 9.已知f (x -1x )=x 2+1x 2,则f (3)= .10.已知函数f (x )满足af (x )+f (-x )=bx ,其中a ≠±1,求函数f (x )的解析式. 题组三 分段函数问题的解法11.(2021四川成都实验外国语学校高一上第二次段考)已知f (x )={x (x +4),x ≥0,x (x -4),x <0,则f [f (-1)]的值为( )A.5B.15C.25D.4512.已知函数f (x )={x +1,x ∈[-1,0],x 2+1,x ∈(0,1],则下列函数图像正确的是( )13.已知函数f (x )={x 2(-1≤x ≤1),1(x >1或x <-1),则函数f (x )的值域为 .14.“水”这个曾经被人认为取之不尽用之不竭的资源,竟然到了严重制约我国经济发展,严重影响人民生活的程度.缺水每年给我国工业造成的损失达2000亿元,给我国农业造成的损失达1500亿元,严重缺水困扰全国三分之二的城市.为了节约用水,某市打算出台一项水费政策,规定当每季度每人用水量不超过5立方米时,每立方米水费1.2元;当超过5立方米而不超过6立方米时,超过部分的水费加收200%;当超过6立方米而不超过7立方米时,超过部分的水费加收400%.如果某人本季度实际用水量为x (x ≤7)立方米,那么本季度他应交的水费y (单位:元)与用水量x (单位:立方米)的函数关系式为 .15.已知函数f (x )=1+x -|x |4.(1)用分段函数的形式表示函数f (x ); (2)在平面直角坐标系中画出函数f (x )的图像;(3)在同一平面直角坐标系中,再画出函数g (x )=1x (x >0)的图像(不用列表),观察图像直接写出当x >0时,不等式f (x )>1x 的解集.16.(2021吉林榆树一中高一上期中)已知函数f (x )={x +1,x ≤-2,x 2+2x ,-2<x <2,2x -1,x ≥2.(1)求f (-5),f (-√3),f f -52的值;(2)若f (a )=3,求实数a 的值. 题组四 映射17.下列各个对应中,构成映射的是( )18.已知集合A ={1,2,3},B ={4,5,6},f :A →B 为集合A 到集合B 的一个函数,那么该函数的值域的不同情况的种数为 ( ) A.6B.7C.8D.2719.(2021江西南昌六校高一上期中联考)已知映射f :(x ,y )→(x +2y ,x -2y ),在映射f 下(1,-1)的原像是( ) A.0,12 B.(1,1) C.(-1,3) D.12,1能力提升练一、选择题1.(2019广东深圳中学高一上第一次段考,)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.某城市机动车最高限速80千米/时,相同条件下,在该市用丙车比用乙车更省油D.甲车以80千米/时的速度行驶1小时,消耗10升汽油 2.()如图所示的图像表示的函数解析式为 ( )A.y =32|x -1|(0≤x ≤2)B.y =32-32|x -1|(0≤x ≤2) C.y =32-|x -1|(0≤x ≤2) D.y =1-|x -1|(0≤x ≤2)3.(2021江西景德镇一中高一上期中,)若f (x )对任意实数x 恒有2f (x )-f (-x )=3x +1,则f (x )= ( )A.x -1B.x +1C.2x +1D.3x +34.(2021辽宁抚顺一中高一上期中,)已知函数f (x )={3x -1x +3(x ≠-3),x (x =-3)的定义域与值域相同,则常数a =( ) A.3 B.-3 C.13D.-135.(2019福建莆田一中高一上月考,)定义运算:a*b ={x ,x ≥x ,x ,x <x ,则f (x )=x 2*|x |的图像是 ( )二、填空题6.(2021重庆西南大学附中高一上第二次月考,)已知函数g (√x +1)=2x +3,则g (3)= .7.()已知函数f (2x -1)=4x +3,若f (t )=11,则t =.8.(2019山东泰安一中高一上十月检测,)设函数f (x )={23x -1,x ≥0,1x,x <0,若f (a )>a ,则实数a 的取值范围是 . 三、解答题9.(2021河南南阳一中高一上第一次月考,)根据下列条件,求f (x )的解析式.(1)f [f (x )]=4x -3,其中f (x )为一次函数; (2)2f 1x+f (x )=x (x ≠0).10.()已知A ={a ,b ,c },B ={-1,0,1},映射f :A →B 满足f (a )+f (b )=f (c ),求映射f :A →B 的个数.答案全解全析 第二章 函 数 §1 生活中的变量关系 §2 对函数的进一步认识 第2.2 函数的表示法 第2.3 映 射 基础过关练1.A2.C 5.B 6.B 7.C 11.D12.A17.D18.B19.A1.A 由题意,根据题表的对应关系,可得g (3)=2,所以f [g (3)]=f (2)=4,故选A .2.答案 C信息提取 ①y 表示离开家的距离,x 表示离开家的时间;②该学生先乘出租车,中途返回家,再乘出租车以更快的速度前行;③确定与上述事件吻合的图像.数学建模 本题为实际问题中的函数图像识别题,通过构建函数模型,分析两个变量间的变化情况,得出正确的函数图像.由题意可知,该高三学生行动的三个过程均为离开家的距离关于时间的一次函数,结合图像可得答案.解析 由题意,知该高三学生离开家,y 是x 的一次函数,且y 值均匀增加; 返回家的过程中,y 仍然是x 的一次函数,且y 值均匀减少;最后由家乘出租车以更快的速度赶往高铁站,y 仍然是x 的一次函数,且y 值增加的速度比刚开始快, 所以与事件吻合最好的图像为C,故选C . 3.答案 2解析 由题中图像知f (3)=1,∴f [f (3)]=f (1)=2.4.解析 由题意可知该盒子的底面是边长为(a -2x )的正方形,高为x , ∴此盒子的体积V =x (a -2x )2, 其中自变量x 应满足{x -2x >0,x >0,即0<x <x 2,∴此盒子的体积V 以x 为自变量的函数解析式为V =x (a -2x )2,定义域为(0,x2).5.B 因为f (x -1)=4x +3=4(x -1)+7,所以f (x )=4x +7.故选B .6.B 当2x +1=-3时,x =-2,因此f (-3)=4×(-2)2=16.故选B . 7.C 设f (x )=kx +b (k ≠0),由2f (2)-3f (1)=5,2f (0)-f (-1)=1, 得{2(2x +x )-3(x +x )=5,2(0+x )-(-x +x )=1, 解得{x =3,x =-2,所以f (x )=3x -2.故选C .8.答案 (x 2+1)2解析 令t =x -1得x =t +1,由f (x -1)=x 2得f (t )=(t +1)2,即f (x )=(x +1)2,于是f (x 2)=(x 2+1)2. 9.答案 11解析 令t =x -1x ,则x 2+1x 2=(x -1x )2+2=t 2+2,因此f (t )=t 2+2,从而f (3)=32+2=11. 10.解析 在原式中以-x 替换x ,得af (-x )+f (x )=-bx , 于是有{xx (x )+x (-x )=xx ,xx (-x )+x (x )=-xx ,消去f (-x ),得f (x )=xxx -1. 故f (x )的解析式为f (x )=xx -1x. 11.D f (-1)=-(-1-4)=5>0,所以f [f (-1)]=f (5)=5×(5+4)=45,故选D .12.A 当x =-1时,f (x )=0,即图像过点(-1,0),故D 错误;当x =0时,f (x )=1,即图像过点(0,1),故C 错误;当x =1时,f (x )=2,即图像过点(1,2),故B 错误.故选A.13.答案 [0,1]解析 由已知得函数f (x )的定义域为R,大致图像如图所示,由图像知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1];当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1]. 14.答案 y ={1.2x ,x ∈[0,5]3.6x -12,x ∈(5,6]6x -26.4,x ∈(6,7]解析 由题意可知: ①当x ∈[0,5]时,y =1.2x ;②当x ∈(5,6]时,y =1.2×5+(x -5)×1.2×(1+200%)=3.6x -12; ③当x ∈(6,7]时,y =1.2×5+1×1.2×(1+200%)+(x -6)×1.2×(1+400%) =6x -26.4.∴y ={1.2x ,x ∈[0,5],3.6x -12,x ∈(5,6],6x -26.4,x ∈(6,7].15.解析 (1)当x ≥0时,f (x )=1+x -x 4=1;当x <0时,f (x )=1+x +x 4=12x +1.所以f (x )={1,x ≥0,12x +1,x <0.(2)函数f (x )的图像如图所示.(3)函数g (x )=1x (x >0)的图像如图所示,当f (x )>1x 时,f (x )的图像在g (x )的图像的上方,所以由图像可知f (x )>1x 的解集是{x |x >1}.16.解析 (1)因为f (x )={x +1,x ≤-2,x 2+2x ,-2<x <2,2x -1,x ≥2,所以f (-5)=-5+1=-4,f (-√3)=(-√3)2+2×(-√3)=3-2√3,f -52=-52+1=-32,f [x (-52)]=f -32=(-32)2+2×-32=94-3=-34.(2)当a ≤-2时,f (a )=a +1=3,解得a =2,不符合题意,舍去; 当-2<a <2时,f (a )=a 2+2a =3, 即(a -1)(a +3)=0,解得a =1或a =-3(舍去),此时a =1; 当a ≥2时,f (a )=2a -1=3,即a =2. 综上所述,a =1或a =2. 思想方法对于分段函数的求值或求参问题,常常需要针对自变量的取值分类进行求解,即分段函数分段求,这体现了分类讨论思想.17.D 选项A 中,元素2没有像,不构成映射;选项B 中,元素2没有像,不构成映射;选项C 中,元素1有两个像,不构成映射;选项D 中,满足映射的定义,构成映射.18.B 由函数的定义知,此函数可以分为三类来进行研究:若函数是三对一的对应,则值域有{4},{5},{6}三种情况;若函数是二对一的对应,则值域有{4,5},{5,6},{4,6}三种情况;若函数是一对一的对应,则值域有{4,5,6}一种情况.综上可知,函数的值域的不同情况有7种.19.A 由{x +2x =1,x -2x =-1,解得{x =0,x =12,所以在映射f 下(1,-1)的原像是0,12.故选A . 能力提升练1.C2.B3.B4.A5.B一、选择题1.C 对于A 选项,由题图可知,当乙车速度大于40千米/时时,乙车每消耗1升汽油,行驶里程都超过5千米,故A 错误;对于B 选项,由题意可知,以相同速度行驶相同路程,燃油效率越高,耗油越少,故三辆车中甲车耗油最少,故B 错误;对于C 选项,当行驶速度不超过80千米/时时,在相同条件下,丙车的燃油效率高于乙车,则在该市用丙车比用乙车更省油,故C 正确;对于D 选项,甲车以80千米/时的速度行驶时,燃油效率为10千米/升,则行驶1小时,消耗了汽油80×1÷10=8(升),故D 错误. 故选C .2.B 当0≤x ≤1时,y =32x ,当1<x ≤2时,y =3-32x ,所以y =32-32|x -1|(0≤x ≤2). 3.B ∵f (x )对任意实数x 恒有2f (x )-f (-x )=3x +1①,∴2f (-x )-f (x )=-3x +1②, 由①②得,f (x )=x +1.故选B .4.A 显然f (x )={3x -1x +3(x ≠-3),x (x =-3)的定义域为R,故值域为R,y =3x -1x +3=3-10x +3的值域为{y ∈R|y ≠3},∴a =3,故选A .5.B 依题意得f (x )={x 2,x 2≥|x |,|x |,x 2<|x |.在同一平面直角坐标系中作出y =x 2与y =|x |的图像,如图所示.由图像知,当x ≤-1时,x 2≥|x |,f (x )=x 2; 当-1<x <1,且x ≠0时,x 2<|x |,f (x )=|x |; 当x =0时,x 2=|x |,f (x )=0; 当x ≥1时,x 2≥|x |,f (x )=x 2.因此,当x ≤-1或x ≥1时,图像为抛物线的一部分,当-1<x <1时,图像为折线段,故选B .二、填空题 6.答案 11解析 令√x +1=t ≥1,则x =(t -1)2,所以g (t )=2(t -1)2+3=2t 2-4t +5(t ≥1),所以g (x )=2x 2-4x +5(x ≥1),所以g (3)=2×32-4×3+5=11.7.答案 3解析 设2x -1=t ,则x =x +12,∴f (t )=2(t +1)+3=2t +5.∵f (t )=11,∴2t +5=11,解得t =3.8.答案 (-∞,-1)解析 当a ≥0时,由f (a )>a ,得f (a )=23a -1>a ,解得a <-3,与a ≥0矛盾,舍去;当a <0时,由f (a )>a ,得f (a )=1x >a ,由a <0去分母、移项,得a 2-1>0,即(a +1)(a -1)>0,解得a >1或a <-1,又因为a <0,所以a <-1.综上所述,实数a 的取值范围是(-∞,-1).三、解答题9.解析 (1)由题意,设f (x )=ax +b (a ≠0), 则f [f (x )]=af (x )+b =a (ax +b )+b =a 2x +ab +b =4x -3,由恒等式性质,得{x 2=4,xx +x =-3,解得{x =2,x =-1或{x =-2,x =3,∴函数f (x )的解析式为f (x )=2x -1或f (x )=-2x +3. (2)f (x )+2f1x=x ,将上式中的x 与1x互换,得f1x+2f (x )=1x ,于是得关于f (x )的方程组{x (x )+2x (1x )=x ,x (1x )+2x (x )=1x ,∴f (x )=23x -x3(x ≠0).10.解析 当A 中的三个元素都对应0时,f (a )+f (b )=0+0=0=f (c ),有1个映射;当A 中的三个元素对应B 中的两个元素时,满足f (a )+f (b )=f (c )的映射有4个,分别为1+0=1,0+1=1,(-1)+0=-1,0+(-1)=-1;当A 中的三个元素对应B 中的三个元素时,满足f (a )+f (b )=f (c )的映射有2个,分别是(-1)+1=0,1+(-1)=0.因此满足题设条件的映射有7个.。
北师大版高中数学必修第一册课后习题 第一章 1.3 第1课时 交集和并集
第一章预备知识§1集合1.3 集合的基本运算第1课时交集和并集课后篇巩固提升必备知识基础练1.设集合A={0,2,4,6,8,10},B={x|2x-3<4},则A∩B=()A.{4,8}B.{0,2,6}C.{0,2}D.{2,4,6}又A={0,2,4,6,8,10},∴A∩B={0,2}.2.(重庆高一期末)已知集合A={x|x2-2x-3=0},B={1,y},若A∩B={3},则A ∪B=( )A.{1,3}B.{-1,3}C.{-1,1,3}D.{-3,-1,3},A={x|x2-2x-3=0}={-1,3}.因为A∩B={3},所以y=3,B={1,3},所以A∪B={-1,1,3}.故选C.3.(多选题)(山东泰安高一质检)满足{1,3}∪A={1,3,5}的集合A可能是( )A.{5}B.{1,5}C.{3}D.{1,3,5}{1,3}∪A={1,3,5},知A⊆{1,3,5},且A中至少有1个元素5.所以A={5}或A={1,5}或A={3,5}或A={1,3,5}.故选ABD.4.设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=()A.{-1,1}B.{0,1}C.{-1,0,1}D.{2,3,4}5.已知集合A={x|3x-4<0},B={-4,1,3,5},则A∩B=()A.{-4,1}B.{1,5}C.{3,5}D.{1,3},故A∩B={-4,1}.3x-4<0,解得x<436.(广东珠海高一期末)已知集合A={-2,0,2},B={y|y=x 2,x ∈A},则A ∪B=( ) A.{-4,4,-2,2,0} B.{-2,2,0,4}C.{-4,4,0,2}D.{0,2,4}B={y|y=x 2,x ∈A}={0,4},A={-2,0,2},所以A ∪B={-2,0,2,4}.7.已知集合A={x|x<1,或x>5},B={x|a≤x≤b},且A ∪B=R,A∩B={x|5<x≤6},则2a-b= .,可知a=1,b=6,∴2a-b=-4.8.已知关于x 的方程3x 2+px-7=0的解集为A,方程3x 2-7x+q=0的解集为B,若A∩B={-13}.求A ∪B.{-13},∴-13∈A,且-13∈B.由-13∈A,设3=-73,解得m=7.∴A={-13,7},同理B={-13,83}, ∴A ∪B={-13,83,7}.9.(安徽合肥高一期末)已知集合A={的取值范围.当m=-1时,B={x|-1<x<2},∴A ∪B={x|-1<x<3}. (2)∵A∩B=A,∴A ⊆B, ∴{1-m ≥3,m ≤1,m <1-m ,解得m≤-2, 故实数m 的取值范围为(-∞,-2].关键能力提升练10.(山东,1)设集合A={x|1≤x≤3},B={x|2<x<4},则A ∪B=( ) A.{x|2<x≤3} B.{x|2≤x≤3} C.{x|1≤x<4} D.{x|1<x<4}数形结合)由数轴可知所以A ∪B={x|1≤x<4},故选C.11.(全国1,理2)设集合A={x|x 2-4≤0},B={x|2x+a≤0},且A∩B={x|-2≤x≤1},则a=( )A.-4B.-2C.2D.4A={x|-2≤x≤2},B={x|x≤-a2}.因为A∩B={x|-2≤x≤1},所以有-a2=1,解得a=-2.12.(湖北荆州中学高一期末)定义集合的商集运算为AB=x∈A,n∈B,已知集合S={2,4,6},T=x x=k2-1,k∈S,则集合TS∪T中的元素个数为( )A.5B.6C.7D.8解析∵集合的商集运算为AB=x∈A,n∈B,集合S={2,4,6},∴T=xx=k2-1,k∈S={0,1,2},∴TS=0,12,13,14,16,1,∴TS∪T=0,12,13,14,16,1,2.∴集合ST∪T元素的个数为7.13.(江西南康中学高一月考)已知方程x2+px+q=0的两个不相等实根为α,β.若集合A={α,β},B={2,4,5,6},C={1,2,3,4},A∩C=A,A∩B=⌀,求p,q的值.A∩C=A知A⊆C,又A={α,β},则α∈C,β∈C.而A∩B=⌀,故α∉B,β∉B.显然既属于C又不属于B的元素只有1和3.令α=1,β=3.对于方程x 2+px+q=0的两根α,β, 根据根与系数的关系可得p=-4,q=3. 14.已知集合A={的取值范围.∪B=B,∴A ⊆B,∴{m ≤-2,m +9≥3,解得-6≤m≤-2,∴实数m 的取值范围是[-6,-2]. (2)当A∩B=⌀时,3≤m,或m+9≤-2, 解得m≥3,或m≤-11, ∴当A∩B≠⌀时,-11<m<3, ∴实数m 的取值范围是(-11,3).学科素养拔高练15.(上海育才中学高一月考)设集合A={x|0≤x+a≤1},B={x|a -1≤x≤0},其中a ∈R,求A∩B.a-1>0,即a>1时,B=⌀时,A∩B=⌀;当a-1=0,即a=1时,A={x|-1≤x≤0},B={0},则A∩B={0};当a-1<0,即a<1时,1-a>0.若-a>0,即a<0时,如右图所示,A∩B=⌀.若-a=0,即a=0时,如下图所示,A={x|0≤x≤1},B={x|-1≤x≤0},则A∩B={0}.若a-1<-a<0,即0<a<1时,2如下图所示,A∩B={x|-a≤x≤0}.若-a≤a-1,即1≤a<1时,如右图所示,A∩B={x|a-1≤x≤0}.2综上所述,当a<0或a>1时,A∩B=⌀;当a=0或a=1时,A∩B={0};时,A∩B={x|-a≤x≤0};当0<a<121≤a<1时,A∩B={x|a-1≤x≤0}.2。
2023-2024学年九年级上学期数学(北师大版)第一次月考试卷附详细答案精选全文
可编辑修改精选全文完整版2023-2024学年九年级上学期数学(北师大版)第一次月考试卷▼(上册1.1~2.4) ▼说明:共有六个大题,23个小题,满分120分,作答时间120分钟. 一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填入题后括号内.错选、多选或未选均不得分. 1.下列方程是一元二次方程的是( )A.3x −1=0B.a x 2+b x +c=0(a ,b ,c 为常数)C.x ²+x =3D.3x 2−2x y −5y 2=0 2.菱形具有而平行四边形不一定具有的性质是( )A.对角线互相垂直B.对边相等C.对角相等D.是中心对称图形 3.一元二次方程x 2=4的解为( )A.x =2B.x =4C.x 1=−2,x 2=2D.x 1=−4,x 2=4 4.如图,若四边形ABCD 是平行四边形,则下列结论中错误的是( ) A.当AC ⊥BD 时,它是菱形 B.当AC=BD 时,它是矩形 C.当∠ABC=90°时,它是矩形 D.当AB=BC 时,它是正方形5.已知关于x 的一元二次方程x 2+b x +c=0有一个非零实数根c ,则b+c 的值为( )ADCBOA.1B.−1C.0D.26.如图,把一张矩形纸片ABCD 按如下方法进行两次折叠:第一次将DA 边折叠到DC 边上得到DA ´,折痕为DM ,连接A ´M ,CM ,第二次将△MBC 沿着MC 折叠,MB 边恰好落在MD 边上.若AD=1,则AB 的长为( )A.32 B.√2 C.√3 D.√2−1 二、填空题(本大题共6小题,每小题3分,共18分)7.把一元二次方程x (x −3)=4化成a x 2+b x +c=0的一般形式,其中a=1,则常数项c=______.8.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,如果∠ADB=25°,那么∠AOB 的度数为______.9.若关于x 的方程x 2−2x +1−k=0有两个相等的实数根,则k 的值为______. 10.若关于x 的一元二次方程a x 2=b(ab >0)的两个根分别为m 与2m −6,则m 的值为______.11.如图,在平面直角坐标系x Oy 中,四边形ABCO 是正方形,已知点A 的坐标为(2,1),则点C 的坐标为______.12.如图,在菱形ABCD 中,AB=20,∠A=45°,点E 在边AB 上,AE=13,点P 从点A第8题图ADCBO第12题图A D BCPE第11题图ACDB出发,沿着A →D →C →B 的路线向终点B 运动,连接PE ,若△APE 是以AE 为腰的等腰三角形,则AP 的长可以是______.三、解答题(本大题共5小题,每小题6分,共30分) 13.(1)解方程:x 2−2x −1=0.(2)如图,在Rt △ABC 中,∠ACB=90°,D 为AB 的中点,∠A=30°,BC=2,求CD 的长.14.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点C 作BD 的平行线交AB 的延长线于点E.求证:AC=CE.15.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,过点A 作AE ⊥BC 于点E ,若OB=2,S 菱形ABCD =4,求AE 的长.16.如图,△ACB 和△CED 都是等腰直角三角形,点B ,C ,E 在同一直线上,且E 是BC 的中点,请仅用无刻度的直尺......按要求完成以下作图(保留作图痕迹). (1)在图1中,作□ABMC. (2)在图2中,作正方形ACBN.ADBEO ABCDEOADBC17.如图,矩形绿地的长为12m ,宽为9m ,将此绿地的长、宽各增加相同的长度后,绿地面积增加了72m 2,求绿地的长、宽增加的长度.四、解答题(本大题共3小题,每小题8分,共24分)18.设关于x 的一元二次方程为x 2+b x +c=0.在下面的四组条件中选择其中一组b ,c 的值,使这个方程有两个不相等的实数根,并解这个方程. ①b=2,c=1;②b=1,c=2;③b=3,c=−1;④b=−3,c=2. 注:如果选择多组条件分别作答,按第一个解答计分.19.定义:如果关于x 的一元二次方程a x 2+b x +c=0(a ≠0)满足b=a+c ,那么我们称这个方程为“完美方程”.(1)下面方程是“完美方程”的是______.(填序号) ①x 2−4x +3=0;②2x 2+x +3=0;③2x 2−x −3=0.(2)已知3x 2+m x +n=0是关于x 的“完美方程”,若m 是此“完美方程”的一个根,求m 的值.20.如图,在□ABCD 中,E ,F 分别是边CD ,BC 上的点,连接BE ,DF ,BE 与DF 交于点P ,BE=DF.添加下列条件之一使□ABCD 成为菱形:①CE=CF ;②BE ⊥CD ,DF ⊥BC. (1)你添加的条件是_______(填序号),并证明.图1ADCBEA图2CDE B(2)在(1)的条件下,若∠A=45°,△BFP 的周长为4,求菱形的边长.五、解答题(本大题共2小题,每小题9分,共18分) 21.【阅读】解方程:(x −1)2−5(x −1)+4=0.解:设x −1=y ,则原方程可化为y 2−5y+4=0,解得y 1=1,y 2=4. 当y=1时,即x −1=1,解得x =2;当y=4时,即x −1=4,解得x =5. 所以原方程的解为x 1=2,x 2=5. 上述解法称为“整体换元法”. 【应用】 (1)若在方程x−1x−3xx−1=0中,设y=x−1x,则原方程可化为整式方程:________.(2)请运用“整体换元法”解方程:(2x −3)2−(2x −3)−2=0.22.如图1,在□ABCD 中,点E ,F 在对角线AC 上,AE=CF ,DE ⊥AC ,过点D 作DG ∥AC 交BF 的延长线于点G. (1)求证:四边形DEFG 是矩形.(2)如图2,连接DF ,BE ,当∠DFG=∠BEF 时,判断四边形 DEFG 的形状,并说明理由.图1E F ABCDG图2ABDGCFE AFCDE P B六、解答题(本大题共12分) 23.【课本再现】(1)如图1,在正方形ABCD 中,F 为对角线AC 上一点,连接BF ,DF.你能找出图中的全等三角形吗?结论猜想:图中的全等三角形有__________ (不必证明). 【知识应用】(2)如图2,P 为DF 延长线上一点,且BP ⊥BF ,DP 交BC 于点E.判断△BPE 的形状,并说明理由. 【拓展提升】(3)如图3,过点F 作HF ⊥BF 交DC 的延长线于点H. ①求证:HF=DF.②若AB=√3+1,∠CBF=30°,请直接写出CH 的长.2023-2024学年九年级上学期数学(北师大版)第一次月考试卷参考答案▼(上册1.1~2.4) ▼说明:共有六个大题,23个小题,满分120分,作答时间120分钟. 一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填入题后图1AB CDFA图2B PDC EF图3ABDHCF括号内.错选、多选或未选均不得分. 1.下列方程是一元二次方程的是( )A.3x −1=0B.a x 2+b x +c=0(a ,b ,c 为常数)C.x ²+x =3D.3x 2−2x y −5y 2=01.解:A 是一元一次方程,B 当a ≠0时是一元二次方程,C 是一元二次方程,D 是二元二次方程,故选C 。
08-第三节 不等式-课时1 不等式的性质高中数学必修一北师大版
6.新情境手机屏幕面积与手机前面板面积的比值叫手机的“屏占比”,它是手
机外观设计中一个重要参数,其值通常在0 ∼ 1之间.现某款手机的屏占比小
于1,设计师将该款手机的屏幕面积和手机前面板面积同时增加相同的数量,
升级为一款新手机,则该新手机的“屏占比”和升级前相比( C )
A.不变
【解析】
+
+
9.(多选)已知1 ≤ ≤ 2,3 ≤ ≤ 5,则( AC
A.4 ≤ + ≤ 7
B.2 ≤ − ≤ 3
)
C.3 ≤ ≤ 10
【解析】
因为1 ≤ ≤ 2,3 ≤ ≤ 5,所以4 ≤ + ≤ 7.
A
√
B
× 因为−2 ≤ − ≤ −1,所以1 ≤ − ≤ 4.
<
.
−
【答案】 因为 < < ,且 + + = 0,
所以 < 0,且 − < − < 0,
−
−
所以 − − > 0,所以
<
− −
− −
1
1
即
<
,所以
>
,即
<
.
−
−
−
−
−
−
,
第三节 不等式
所以
1
+1+
<
1
,+ −1来自即 + 1 − < − − 1.
(2)2
++
1
1与 2
,其中
−+1
新教材北师大版高中数学必修第一册练习-换底公式答案含解析
第四章 对数运算与对数函数§2 对数的运算2.2 换底公式知识点 对数的换底公式1.☉%8#65¥@7¥%☉(2020·银川一中月考)log 29·log 34=( )。
A.14 B.12C.2D.4 答案:D解析:原式=log 232·log 322=4log 23·log 32=4·lg3lg2·lg2lg3=4。
故选D 。
2.☉%11##*4#3%☉(2020·菏泽高一检测)log 849log 27的值是( )。
A.2B.32C.1D.23答案:D 解析:log 849log 27=log 272log 223÷log 27=23。
故选D 。
3.☉%0#90#¥0*%☉(2020·江西赣州十三县市高一期中考试)若log 2x ·log 34·log 59=8,则x 等于( )。
A.8 B.25 C.16 D.4 答案:B解析:因为log 2x ·log 34·log 59=lgxlg2·lg4lg3·lg9lg5=lgx lg2·2lg2lg3·2lg3lg5=8,所以lg x =2lg 5=lg 25,所以x =25。
故选B 。
4.☉%#*#29#62%☉(2020·白城一中月考)化简:log 212+log 223+log 234+…+log 21516等于( )。
A.5 B.4 C.-5 D.-4 答案:D解析:原式=log 2(12×23×34×…×1516)=log 2116=-4。
故选D 。
5.☉%¥7@@74#3%☉(2020·闽侯八中高一月考)若log 34·log 8m =log 416,则m 等于( )。
A.3 B.9 C.18 D.27 答案:D解析:原式可化为log 8m =2log 34,所以13log 2m =2log 43,所以m 13=3,m =27。
课堂新坐标高中数学北师大必修一学业分层测评:第一章 集合2 含解析
学业分层测评(二)(建议用时:45分钟)[学业达标]一、选择题1.(2016·德州市高一期中)已知集合A ={x |x -2≤1,x ∈N *},则集合A 的真子集的个数为( )A .3个B .6个C .7个D .8个【解析】 因为集合A ={x |x -2≤1,x ∈N *}={1,2,3},所以其真子集个数为23-1=7,故选C.【答案】 C2.(2016·石家庄高一期末)已知{1,2}⊆X ⊆{1,2,3,4,5},满足这个关系式的集合X 的个数为( )A .2个B .6个C .4个D .8个【解析】 由题意知,集合X 中的元素一定含有1,2,另外可从3,4,5中可取0个,取1个,取2个,取3个,∴集合X ={1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5},共8个.故选D.【答案】 D3.(2016·北京高一月考)设集合A ={x ,y },B ={0,x 2},若A =B ,则2x +y 等于( )A .0B .1C .2D .-1【解析】 因为A ={x ,y },B ={0,x 2},若A =B ,则⎩⎪⎨⎪⎧ x =0,y =x 2或⎩⎪⎨⎪⎧x =x 2,y =0,解得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧x =1,y =0.x =0时,B ={0,0}不成立.当x =1,y =0时,A ={1,0},B ={0,1},满足条件. 所以2x +y =2.故选C. 【答案】 C4.(2016·洛阳高一检测)已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x =k3,k ∈Z,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k6,k =Z,则( )A .A ⊆B B .B ⊆AC .A =BD .A 与B 关系不确定【解析】 集合A 中x =k 3=2k 6,B 中x =k6,2k 为偶数,k 为整数,故A 中的元素都是B 中的元素,即A ⊆B ,故选A.【答案】 A5.已知集合A ={x |x 是平行四边形},B ={x |x 是矩形},C ={x |x 是正方形},D ={x |x 是菱形},则( )A .A ⊆B B .C ⊆B C .D ⊆CD .A ⊆D【解析】 选项A 错,应当是B ⊆A .选项B 对,正方形一定是矩形,但矩形不一定是正方形.选项C 错,正方形一定菱形,但菱形不一定是正方形.选项D 错,应当是D ⊆A .【答案】 B 二、填空题6.已知集合A ={x |-1<x <4},B ={x |x <a },若A B ,则实数a 的取值范围是________.【解析】 用数轴表示集合A ,B ,AB ,如图所示:则a≥4.【答案】a≥47.设集合A={x,y},B={4,x2},若A=B,则x+y=__________.【解析】因为A=B,当x=4时,B={4,16},A={4,16},即x=4,y=16;x=0时,B={4,0},A={0,4},即x=0,y=4;x=1时,B={4,1},A={1,4},x=1,y=4.【答案】20或4或58.设集合P={(x,y)|x+y<4,x,y∈N+},则集合P的非空子集的个数是________.【解析】∵x+y<4,x,y∈N+,∴x=1,y=3;x=2,y=2;x=3,y=1.故P={(1,3),(2,2),(3,1)},共有8个子集,其中非空子集有7个.【答案】7三、解答题9.判断下列各组中两集合之间的关系:(1)P={x∈R|x2-4=0},Q={x∈R|x2=0};(2)P={y∈R|y=t2+1,t∈R},Q={t∈R|t=y2-2y+2,y∈R};(3)P={x|x=2k,k∈Z},Q={x|x=4k+2,k∈Z};(4)P={y|y=x2-1,x∈R},Q={(x,y)|y=x2-1,x,y∈R}.【解】(1)集合P={x∈R|x2-4=0}={2,-2},集合Q={x∈R|x2=0}={0},所以P与Q不存在包含关系.(2)集合P={y∈R|y=t2+1,t∈R}={y∈R|y≥1},集合Q={t∈R|t=(y-1)2+1,y ∈R }={t ∈R |t ≥1},所以P =Q .(3)集合P ={x |x =2k ,k ∈Z }是偶数集,集合Q ={x |x =4k +2,k ∈Z }={x |x =2(2k +1),k ∈Z }={…,-6,-2,2,6,…},显然Q P .(4)集合P 是数集,且P ={y |y ≥-1},集合Q ={(x ,y )|y =x 2-1,x ,y ∈R }中的代表元素是点(x ,y ),所以Q 是点集,所以P 与Q 不存在包含关系.10.已知集合A ={x |1<ax <2},B ={x |-1<x <1},求满足A ⊆B 的实数a 取值的范围.【解】 (1)当a =0时,A =∅,满足A ⊆B . (2)当a >0时,A =⎩⎨⎧⎭⎬⎫x |1a <x <2a , 又B ={x |-1<x <1},A ⊆B , ∴⎩⎪⎨⎪⎧1a ≥-1,2a ≤1,∴a ≥2.(3)当a <0时,A =⎩⎨⎧⎭⎬⎫x 2a <x <1a .∵A ⊆B ,∴⎩⎪⎨⎪⎧2a ≥-1,1a ≤1,∴a ≤-2.综上所述,实数a 的取值范围是:a =0或a ≥2或a ≤-2.[能力提升]1.设集合A ={x |x =2k +1,k ∈Z },B ={x |x =2k -1,k ∈Z },C ={x |x =4k +1,k ∈Z },则集合A 、B 、C 之间关系完全正确的是( )A .A ≠B ,AC ,BCB .A =B ,AC ,B CC .A =B ,C A ,C BD .A ≠B ,C A ,C B【解析】 集合A 中元素所具有的特征:x =2k +1=2(k +1)-1,∵k ∈Z ,∴k +1∈Z 与集合B 中元素所具有的特征完全相同,∴A =B ;当k =2n 时,x =2k +1=4n +1 当k =2n +1时,x =2k +1=4n +3.即C 是由集合A 中的部分元素所组成的集合.∴CA ,CB .【答案】 C2.(2016·宣城市高一月考)已知集合A ={x |x 2-4=0},集合B ={x |ax =1},若B ⊆A ,则实数a 的值是( ) 【导学号:04100005】A .0B .±12 C .0或±12D .0或12【解析】 ∵集合A ={x |x 2-4=0}={-2,2},且B A ,∴B 有两种情况: (1)a =0,B =∅,满足B ⊆A ;(2)a ≠0,由1a =±2,得a =±12.综上a =0或±12. 【答案】 C3.设集合A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0,a ∈R },若B ⊆A ,求实数a 的取值范围.【解】 因为A ={x |x 2+4x =0}={0,-4},B ⊆A , 所以B 可能为∅,{0},{-4},{0,-4}. ①当B =∅时,方程x 2+2(a +1)x +a 2-1=0无解. 所以Δ=4(a +1)2-4(a 2-1)<0, 所以a <-1.②当B ={0}时,方程x 2+2(a +1)x +a 2-1=0有两个相等的实数根0, 由根与系数的关系,得⎩⎪⎨⎪⎧0+0=-2(a +1),0×0=a 2-1,解得a =-1.③当B ={-4}时,方程x 2+2(a +1)x +a 2-1=0有两个相等的实数根-4, 由根与系数的关系,得⎩⎪⎨⎪⎧-4+(-4)=-2(a +1),-4×(-4)=a 2-1,该方程组无解.④当B ={0,-4}时,方程x 2+2(a +1)x +a 2-1=0有两个不相等的实数根0与-4,由根与系数的关系,得⎩⎪⎨⎪⎧0+(-4)=-2(a +1),0×(-4)=a 2-1,解得a =1.综上可得a ≤-1或a =1.。
2022-2023学年北师大版高一上数学月考试卷(含解析)
2022-2023学年高中高一上数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:110 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 已知集合,,则( )A.B.C.D.2. 已知集合,,,则的真子集共有A. 个B.个C.个D.个3. 命题,,则命题的否定形式是( )A.,B.,C.,D.,4. “”是“双曲线的离心率为”的( )A.充要条件B.必要不充分条件C.充分不必要条件A ={x|−8>0}2x B ={x|x −1>6}A ∪B =(3,+∞)(7,+∞)(3,7)(−∞,7)S ={0,1,2}T ={0,3}P =S ∩T P ()0123p :∀x >0>12x p ∀x >0≤12x ∀x ≤0>12x ∃>0x 02≤1∃≤0x 02>1m =1−=1x 2m y 232D.既不充分也不必要条件5. 设集合,,若,则的最大值为( )A.B.C.D.6. 已知集合,,则 A. B. C. D.7. 使不等式成立的的取值范围是( )A.B.C.D.以上答案都不对8. 当时,不等式恒成立,则实数的取值范围是()A.B.)C.)D.二、 多选题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 下列结论不正确的是( )A.A ={x|(x +2)(x −3)≤0}B ={a}A ∪B =A a −2234<|x |x 2x x >1x <−1−1<x <1x >2x +≥a 1x −2a (−∞,2][2,+∞[4,+∞(−∞,4]1∈N∈Q –√B.C.D.10. 下列关于命题的结论正确的是( )A.命题“,或”的否定是“,或”B.若命题“,”是真命题,则实数C.若命题“,”是真命题,则实数D.命题“中,若,则”是假命题11. 已知一元二次方程有两个实数根,,且,则的值为( )A.B.C.D.12. 设,,且,则下列说法正确的有( )A.有最大值为B.有最小值为C.有最小值为D.有最大值为卷II (非选择题)三、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )13. 已知全集,集合,则________.14. 已知关于的不等式的解集是,则所有满足条件的实数组成的集合是________.∈Q2–√0∈N ∗−3∈Z∀x ∈R >0x 2x ≤0∃x ∈R ≤0x 2x >0∀x ∈R+x +≥4k xk ∈[4,+∞)∃x ∈R 2sin x +3cos x =m m ∈[−,]13−−√13−−√△ABC A >B sin A >sin B x 1x 20<<1<<3x 1x 2m −2−3−4−5x >0y >0x +y =4xy 4+1x 1y1+x 2y 28+x −√y √2U =R A ={x |<1}1x A =∁U15. 已知函数若对任意实数,总存在实数,使得,则实数的取值范围是________.16. 若,则的最小值是________.四、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )17. 已知函数的定义域为集合,函数=的定义域为集合.Ⅰ当=时,求;Ⅱ若=,求的值. 18. 已知函数.若,在上恒成立,求实数的取值范围;若成立,求实数的取值范围. 19. 命题:实数满足,命题:实数满足,是的充分不必要条件,求实数的取值范围.20. 已知集合,.若,,求实数的取值范围;若,且,求实数的取值范围.21. 如图,矩形草坪中,点在对角线上.垂直于于点,垂直于于点,米,米,设米,米.求这块矩形草坪面积的最小值.22. 近年来大气污染防治工作得到各级部门的重视,某企业现有设备下每日生产总成本(单位:万元)与日产量(单位:吨)之间的函数关系式为,现为了配合环境卫生综合整治,该企业引进了除尘设备,每吨产品除尘费用为万元,除尘后当日产量时,总成本.求的值;若每吨产品出厂价为万元,试求除尘后日产量为多少时,每吨产品的利润最大,最大利润为多少?f(x)={x +4,x <a ,−2x,x ≥a ,x 2b x 0f()=x 0b a x ∈(0,+∞)x +4xf(x)=+lg(x +1)5−x−−−−−√A g(x)lg(−2x +a)x 2B ()a −8A ∩B ()A ∩B ∁R {x |−1<x ≤3}a f(x)=−x +1x 2a 2(1)f(x)≥0R a (2)∃x ∈[1,2],f(x)≥2a p x <02x −3x −1q x −4ax +3<0(a >0)x 2a 2p q a A ={x|(x −7)(x +2)≤0}B ={y|−3≤y ≤5}(1)C ={x|m +1≤x ≤2m −1}C ⊆(A ∩B)m (2)D ={x|x >6m +1}(A ∪B)∩D =∅m AMPN C MN CD AN D CB AM B |CD |=|AB |=3|AD |=|BC |=2|DN |=x |BM |=y AMPN y x y =2+(15−4k )x +120k +8x 2k x =1y =142(1)k (2)48参考答案与试题解析2022-2023学年高中高一上数学月考试卷一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】A【考点】并集及其运算【解析】无【解答】解:因为,,所以.故选.2.【答案】B【考点】子集与真子集【解析】此题暂无解析【解答】解:由题可知,,所以的真子集只有一个.故选.3.【答案】C【考点】A ={x|x >3}B ={x|x >7}A ∪B =(3,+∞)A P =S ∩T ={0}P B命题的否定【解析】直接利用含有量词的命题的否定方法进行求解即可.【解答】命题,,则命题的否定形式是,.4.【答案】A【考点】必要条件、充分条件与充要条件的判断【解析】此题暂无解析【解答】此题暂无解答5.【答案】C【考点】并集及其运算集合关系中的参数取值问题【解析】可以求出,根据可得出,从而可以得出的最大值.【解答】解:∵ ,,且,∴ ,∴ 的最大值为.故选.6.【答案】p :∀x >0>72x p ∃>0x 05≤1A ={x|−2≤x ≤3}A ∪B =A B ⊆A a A ={x|−2≤x ≤3}B ={a}A ∪B =A B ⊆A a 3CB【考点】分式不等式的解法【解析】解对数不等式求得集合,解分式不等式求得集合,由此求得两个集合的交集和并集,进而判断出正确选项.【】则故选.【解答】此题暂无解答7.【答案】D【考点】二元一次不等式组【解析】由已知可以判断出与的大小关系,从而确定的范围.【解答】∵不等式成立,而和都是正数,∴,∴,∴且,∴或.8.【答案】D【考点】不等式恒成立问题【解析】此题暂无解析A B 加加A ={x |x <1}={x |0<x <3}B ={x |≤0}={x |−1<x <2}log 3x +1x −2A ∩B ={x |0<x ≤2}A ∪B ={x |−1≤x <3}B <|x |x 2|x |1x <|x |x 2x 2|x |||<|x |x 2|x |×|x |<|x ||x |<1x ≠0−1<x <00<x <1【解答】设,因为,所以,则,所以,因此要使不等式恒成立,则,所以实数的取值范围是,故选.二、 多选题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】B,C【考点】元素与集合关系的判断【解析】无【解答】解:由集合的概念可知,,是自然数,故正确;,是无理数,而表示有理数,故错误;,是自然数,但不是正整数,故错误;,是整数,故正确.故选.10.【答案】B,C【考点】命题的真假判断与应用命题的否定全称命题与特称命题【解析】利用命题的否定以及量词的否定,依次写出命题,判断选项求出范围,即可得到答案.【解答】f (x)=x +1x −2x >2x −2>0f (x)=x −2++2≥2+2=41x −2(x −2)×1x −2−−−−−−−−−−−−−√f =4(x)min x +≥a 1x −2a ≤4a (−∞,4]D A 1A B 2–√Q B C 0C D −3D BC >02≤02解:选项,命题“,或”的否定是“,且”,故错误 ;选项,命题“,”是真命题, 若 则存在 使得 ,则命题不成立,,,,,, ,故正确;选项,命题“,”是真命题, , ,, 故正确;选项,若,,由正弦定理,(为外接圆半径),,故为真命题,故错误.故选.11.【答案】B,C【考点】一元二次方程的根的分布与系数的关系【解析】此题暂无解析【解答】此题暂无解答12.【答案】A,B,C【考点】基本不等式在最值问题中的应用【解析】直接利用基本不等式的常规模型判断即可,利用特殊值排除.A ∀x ∈R >0x 2x ≤0∃x ∈R ≤0x 2x >0AB ∀x ∈R+x +≥4k x k ≤0=x 0−k −−−√+=0x 0k x 0∴k >0∴x >0>0k x ∴x +≥2=2k x x ×k x −−−−−√k −√∴2≥4k −√∴≥2k −√∴k ≥4BC ∃x ∈R 2sin x +3cos x =m 2sin x +3cos x =sin(x +φ)4+9−−−−√∵sin(x +φ)∈[−,]13−−√13−−√13−−√∴m ∈[−,]13−−√13−−√C D A >B ∴a >b a =2R sinA b =2R sinB R ∴sin A >sin B D BC ABC D【解答】解:由题意得,,,,,,当且仅当时,等号成立,则的最大值为,故正确;,,当且仅当时,等号成立,故的最小值为,故正确;,,当且仅当时,等号成立,故的最小值为,故正确;,当时,,故错误.故选.三、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )13.【答案】【考点】补集及其运算【解析】根据的正负求出中不等式的解集确定出,由全集,求出的补集即可.【解答】解:中不等式,当时,解得:;当时,解得:,此时,综上,的范围为或,即,则,故答案为:14.【答案】【考点】一元二次不等式与一元二次方程【解析】x >0y >0x +y =4A xy ≤=4()x +y 22x =y =2xy 4A B +=(+)(x +y)=(2++)≥11x 1y 141x 1y 14x y y xx =y =2+1x 1y1B C ≥=8+x 2y 22()x +y 22x =y =2+x 2y 28C D x =y =2+=+>2x −√y √2–√2–√D ABC [0,1]x A A U =R A A <11x x >0x >1x <0x <1x <0x x <0x >1A =(−∞,0)∪(1,+∞)A =[0,1]∁U [0,1]{2}−1)x (x +)<02a +2变换得到,化简得到,根据解集得,解得答案【解答】,则,即化简得到,不等式解集是故且,解得或(舍去).故答案为:15.【答案】【考点】函数恒成立问题二次函数的性质【解析】根据二次函数的最小值分类讨论,从而解得.【解答】解:①当时,∵对任意实数,总存在实数,使得,∴,解得,;②当时,,解得,,综上所述,实数的取值范围是.故答案为:.16.【答案】【考点】基本不等式在最值问题中的应用【解析】直接利用基本不等式求最值即可.||<1ax +1x −1(−1)x (x +)<0a 22a +2−1a 2−=−22a +2−1a 2−1<<1ax +1x −1||−1ax +1x −1<(ax +1)2(x −1)2(−1)x(x +)<0a 22a +2−1a 2{x |−2<x <0}−1>0a 2−=−22a +2−1a 2a =2a =−1{2}[−5,4]−2x x 2a ≤1b x 0f()=x 0b a +4≥1−2a ≥−5a >1a +4≥−2a a 2−1≤a ≤4a [−5,4][−5,4]4【解答】解:∵,∴,当且仅当,即时取等号,∴的最小值为.故答案为:.四、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )17.【答案】函数有意义,则有,解得,-----------当=时,=,所以,解得或,-----------所以=;------------==,--------------由=,可得,=,-------------将=带入方程,解得=,=,满足题意,所以=.--------------【考点】交集及其运算交、并、补集的混合运算【解析】求出函数、的定义域,再根据交集的定义写出;根据补集与交集的定义,结合一元二次不等式与方程的知识,即可求出的值.【解答】函数有意义,则有,解得,-----------当=时,=,所以,解得或,-----------所以=;------------==,--------------由=,x ∈(0,+∞)x +≥2=44x x ⋅4x −−−−√x =4x x =2x +4x 44(I)f(x)=+lg(x +1)5−x−−−−−√{ 5−x ≥0x +1>0−1<x ≤5a −8g(x)lg(−2x −8)x 2−2x −8>0x 2x >4x <−2A ∩B {x |4<x ≤5}(II)B ∁R {x |−2x +a ≤0}x 2{x |≤x ≤}x 1x 2A ∩(B)∁R {x |−1<x ≤3}≤−1x 1x 23x 23a −3x 1−1a −3(I)f(x)g(x)A ∩B (II)a (I)f(x)=+lg(x +1)5−x−−−−−√{ 5−x ≥0x +1>0−1<x ≤5a −8g(x)lg(−2x −8)x 2−2x −8>0x 2x >4x <−2A ∩B {x |4<x ≤5}(II)B ∁R {x |−2x +a ≤0}x 2{x |≤x ≤}x 1x 2A ∩(B)∁R {x |−1<x ≤3}可得,=,-------------将=带入方程,解得=,=,满足题意,所以=.--------------18.【答案】解:由题意得在上恒成立,,解得,∴实数的取值范围为 .由题意得 成立, ,成立.令,则在区间上单调递增,解得∴实数的取值范围为.【考点】全称命题与特称命题函数恒成立问题一元二次不等式与二次函数【解析】此题暂无解析【解答】解:由题意得在上恒成立,,解得,∴实数的取值范围为 .由题意得 成立, ,成立.令,则在区间上单调递增,R≤−1x 1x 23x 23a −3x 1−1a −3(1)f (x)=−x +1≥0x 2a 2R ∴Δ=−4≤0a 24−4≤a ≤4a [−4,4](2)∃x ∈[1,2],−x +1≥2x 2a 2∴∃x ∈[1,2]≤x −a 21x g(x)=x −,x ∈[1,2]1x g(x)[1,2]∴g =g(2)=,(x)max 32∴≤,a 232a ≤3,a (−∞,3](1)f (x)=−x +1≥0x 2a 2R ∴Δ=−4≤0a 24−4≤a ≤4a [−4,4](2)∃x ∈[1,2],−x +1≥2x 2a 2∴∃x ∈[1,2]≤x −a 21x g(x)=x −,x ∈[1,2]1x g(x)[1,2]∴g =g(2)=,(x)max 32≤,3解得∴实数的取值范围为.19.【答案】解:由,得,即,记.由得 ,记.∵是的充分不必要条件,,有即【考点】必要条件、充分条件与充要条件的判断一元二次不等式的解法集合的包含关系判断及应用【解析】此题暂无解析【解答】解:由,得,即,记.由得 ,记.∵是的充分不必要条件,,有即20.【答案】解:,∴.∴≤,a 232a ≤3,a (−∞,3]<02x −3x −1(2x −3)(x −1)<01<x <32A ={x|1<x <}32−4ax +3<0(a >0)x 2a 2a <x <3a B ={x|a <x <3a}p q ∴A B {a ≤1,3a ≥,32≤a ≤1.12<02x −3x −1(2x −3)(x −1)<01<x <32A ={x|1<x <}32−4ax +3<0(a >0)x 2a 2a <x <3a B ={x|a <x <3a}p q ∴A B {a ≤1,3a ≥,32≤a ≤1.12(1)A ={x|(x −7)(x +2)≤0}={x|−2≤x ≤7}A ∩B ={x|−2≤x ≤5}C ={x|m +1≤x ≤2m −1}C ⊆(A ∩B)若,,当时,,解得;当时,则解得:,∴,∴实数的取值范围为..若,且,则,∴,∴实数的取值范围为.【考点】交集及其运算集合关系中的参数取值问题并集及其运算【解析】分两种情况讨论求解即可;若,且,则,求解即可.【解答】解:,∴.若,,当时,,解得;当时,则解得:,∴,∴实数的取值范围为..若,且,则,∴,∴实数的取值范围为.21.【答案】解:由题意….C ={x|m +1≤x ≤2m −1}C ⊆(A ∩B)C =∅2m −1<m +1m <2C ≠∅ m +1≥−2,2m −1≤5,m +1≤2m −1,2≤m ≤3m ≤3m (−∞,3](2)A ∪B ={x|−3≤x ≤7}D ={x|x >6m +1}(A ∪B)∩D =∅6m +1≥7m ≥1m [1,+∞)(1)(2)D ={x|x >6m +1}(A ∪B)∩D =∅6m +1≥7(1)A ={x|(x −7)(x +2)≤0}={x|−2≤x ≤7}A ∩B ={x|−2≤x ≤5}C ={x|m +1≤x ≤2m −1}C ⊆(A ∩B)C =∅2m −1<m +1m <2C ≠∅ m +1≥−2,2m −1≤5,m +1≤2m −1,2≤m ≤3m ≤3m (−∞,3](2)A ∪B ={x|−3≤x ≤7}D ={x|x >6m +1}(A ∪B)∩D =∅6m +1≥7m ≥1m [1,+∞)∠NCD =∠CMB ⇒=⇒xy =6x 32y =(x +2)(y +3)=xy +3x +2y +6=12+3x +2yS MPN….….当且仅当,即,时取得等号.….面积的最小值为平方米. ….【考点】基本不等式在最值问题中的应用【解析】由题意,表示出矩形的面积,利用基本不等式,即可求得结论.【解答】解:由题意….….….当且仅当,即,时取得等号.….面积的最小值为平方米. ….22.【答案】解:由题意,除尘后,当日产量时,总成本,代入计算得;由,总利润,每吨产品的利润,当且仅当,即时取等号,∴除尘后日产量为吨时,每吨产品的利润最大,最大利润为万元.【考点】二次函数的应用基本不等式在最值问题中的应用函数模型的选择与应用【解析】此题暂无解析【解答】=(x +2)(y +3)=xy +3x +2y +6=12+3x +2y S AMPN ≥12+2=243x ⋅2y −−−−−√3x =2y x =2y =324∠NCD =∠CMB ⇒=⇒xy =6x 32y ∠NCD =∠CMB ⇒=⇒xy =6x 32y =(x +2)(y +3)=xy +3x +2y +6=12+3x +2y S AMPN ≥12+2=243x ⋅2y −−−−−√3x =2y x =2y =324(1)y =2+(15−4k)x +120k +8+kx x 2=2+(15−3k)x +120k +8x 2∵x =1y =142k =1(2)(1)y =2+12x +128x 2L =48x −(2+12x +128)=36x −2−128,(x >0)x 2x 2==36−2(x +) 36−4=4L x 64x x ⋅64x −−−−−√x =64x x =884(1)解:由题意,除尘后,当日产量时,总成本,代入计算得;由,总利润,每吨产品的利润,当且仅当,即时取等号,∴除尘后日产量为吨时,每吨产品的利润最大,最大利润为万元.(1)y =2+(15−4k)x +120k +8+kx x 2=2+(15−3k)x +120k +8x 2∵x =1y =142k =1(2)(1)y =2+12x +128x 2L =48x −(2+12x +128)=36x −2−128,(x >0)x 2x 2==36−2(x +) 36−4=4L x 64x x ⋅64x −−−−−√x =64x x =884。
2024-2025学年初中九年级上学期数学第一次月考卷及答案(北师大版)
2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第1章~第3章(北师版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.单项选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列方程中,是一元二次方程的是()A.xx2−3xx−5=−5B.2xx2−yy−1=0C.xx2−xx(xx+2.5)=0D.aaxx2+bbxx+cc=02.下列命题为真命题的是()A.有两边相等的平行四边形是菱形B.有一个角是直角的平行四边形是菱形C.对角线互相垂直的平行四边形是矩形D.有三个角是直角的四边形是矩形3.若关于xx的方程xx2+mmxx−6=2.则mm为()A.−2B.1 C.4 D.−34.a是方程xx2+2xx−1=0的一个根,则代数式aa2+2aa+2020的值是()A.2018 B.2019 C.2020 D.20215.如图,在正方形AAAAAAAA中,EE为AAAA上一点,连接AAEE,AAEE交对角线AAAA于点FF,连接AAFF,若∠AAAAEE=35°,则∠AAFFAA的度数为()A.80°B.70°C.75°D.45°6.有一块长40m,宽32m的矩形种植地,修如图等宽的小路,使种植面积为1140m2,求小路的宽.设小路的宽为x,则可列方程为()A.(40﹣2x)(32﹣x)=1140 B.(40﹣x)(32﹣x)=1140C.(40﹣x)(32﹣2x)=1140 D.(40﹣2x)(32﹣2x)=11407.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2 B.12 C.18 D.248.如图,在菱形AAAAAAAA中,对角线AAAA,AAAA相交于点OO,EE是AAAA的中点,若菱形的周长为20,则OOEE的长为()A.10 B.5 C.2.5D.19.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为xx人,则根据题意可列方程为()A.xx(xx−1)=110B.xx(xx+1)=110C.(xx+1)2=110D.(xx−1)2=11010.关于xx的一元二次方程kkxx2−2xx−1=0有两个不相等的实数根,则kk的取值范围是()A.kk>−1B.kk>−1且kk≠0C.kk<1D.kk<1且kk≠011.如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为()A.74B.95C.1910D.76�312.如图,在正方形AAAAAAAA中,AAAA=4,E为对角线AAAA上与点A,C不重合的一个动点,过点E作EEFF⊥AAAA于点F,EEEE⊥AAAA与点G,连接AAEE,FFEE,有下列结论:①AAEE=FFEE.②AAEE⊥FFEE.③∠AAFFEE=∠AAAAEE.④FFEE的最小值为3,其中正确结论的序号为()A.①②B.②③C.①②③D.①③④第Ⅱ卷二.填空题(本题共6小题,每小题3分,共18分.)13.一元二次方程5xx2+2xx−1=0的一次项系数二次项系数常数项.14.xx1,xx2为一元二次方程xx2−2xx−10=0的两根,则1xx1+1xx2=.15.如图,矩形ABCD中,对角线AC、BD相交于点O,若OB=2,∠ACB=30°,则AB的长度为.16.如图所示,菱形AAAAAAAA的对角线AAAA、AAAA相交于点OO.若AAAA=6,AAAA=8,AAEE⊥AAAA,垂足为EE,则AAEE的长为.17.如图,将一张长方形纸片AAAAAAAA沿AAAA折起,重叠部分为ΔΔAAAAEE,若AAAA=6,AAAA=4,则重叠部分ΔΔAAAAEE的面积为.18.如图,在正方形AAAAAAAA中,AAAA=6,点E,F分别在边AAAA,AAAA上,AAEE=AAFF=2,点M在对角线AAAA上运动,连接EEEE和EEFF,则EEEE+EEFF的最小值等于.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)解下列方程:(1)3xx2−4xx−1=0;(2)2�xx−3�2=xx2−920.(8分)已知方程xx2+�kk+1−6=0是关于xx的一元二次方程.(1)求证:对于任意实数kk方程中有两个不相等的实数根.(2)若xx1,xx2是方程的两根,kk=6,求1xx1+1xx2的值.21.(8分)如图,在菱形AAAAAAAA中,对角线AAAA,AAAA交于点OO,AAEE⊥AAAA交AAAA延长线于EE,AAFF∥AAEE交AAAA延长线于点FF.(1)求证:四边形AAEEAAFF是矩形;(2)若AAEE=4,AAAA=5,求AAAA的长.22.(10分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品公司为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图.请根据以上信息回答:(1)参加本次调查的有______人,若该居民区有8000人,估计整个居民区爱吃D粽的有______人.(2)请将条形统计图补充完整;(3)食品公司推出一种端午礼盒,内有外形完全相同的A、B、C、D粽各一个,小王购买了一个礼盒,并从中任意取出两个食用,请用列表或画树状图的方法,求他恰好能吃到C粽的概率.23.(8分)阅读材料,回答问题.材料1:为了解方程�xx2�2−13xx2+36=0,如果我们把xx2看作一个整体,然后设yy=xx2,则原方程可化为yy2−13yy+36=0,经过运算,原方程的解为xx1,2=±2,xx3,4=±3,我们把以上这种解决问题的方法通常叫做换元法.材料2:已知实数mm,nn满足mm2−mm−1=0,nn2−nn−1=0,且mm≠nn,显然mm,nn是方程xx2−xx−1=0的两个不相等的实数根,由韦达定理可知mm+nn=1,mmnn=−1.根据上述材料,解决以下问题:(1)为解方程xx4−xx2−6=0,可设yy=____,原方程可化为____.经过运算,原方程的解是____.(2)应用:若实数aa,bb满足:2aa4−7aa2+1=0,2bb4−7bb2+1=0且aa≠bb,求aa4+bb4的值;24.(10分)中秋期间,某商场以每盒140元的价格购进一批月饼,当每盒月饼售价为180元时,每天可售出60盒.为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每盒月饼降价2元,那么商场每天就可以多售出5盒.(1)设售价每盒下降xx元,则每天能售出______盒(用含xx的代数式表示);(2)当月饼每盒售价为多少元时,每天的销售利润恰好能达到2550元;(3)该商场每天所获得的利润是否能达到2700元?请说明理由.25.(12分)在数学实验课上,老师让学生以“折叠筝形”为主题开展数学实践探究活动.定义:两组邻边分别相等的四边形叫做“筝形”.(1)概念理解:如图1,将一张纸对折压平,以折痕为边折出一个三角形,然后把纸展平,折痕为四边形AAAAAAAA.判断四边形AAAAAAAA的形状:筝形(填“是”或“不是”);(2)性质探究:如图2,已知四边形AAAAAAAA纸片是筝形,请用测量、折叠等方法猜想筝形的角、对角线有什么几何特征,然后写出一条性质并进行证明;(3)拓展应用:如图3,AAAA是锐角△AAAAAA的高,将△AAAAAA沿边AAAA翻折后得到△AAAAEE,将△AAAAAA沿边AAAA翻折后得到△AAAAFF,延长EEAA,FFAA交于点G.①若∠AAAAAA=50°,当△AAAAEE是等腰三角形时,请直接写出∠AAAAAA的度数;②若∠AAAAAA=45°,AAAA=2,AAAA=5,AAEE=EEEE=FFEE,求AAAA的长.26.(12分)探究式学习是新课程倡导的重要学习方式,某兴趣小组学习正方形以后做了以下探究:在正方形AAAAAAAA中,E,F为平面内两点.【初步感知】(1)如图1,当点E在边AAAA上时,AAEE⊥AAFF,且B,C,F三点共线.请写出AAEE与FFAA的数量关系______;【深入探究】(2)如图2,当点E在正方形AAAAAAAA外部时,AAEE⊥AAFF,AAEE⊥EEFF,E,C,F三点共线.若AAEE=2,AAEE=4,求AAEE的长;【拓展运用】(3)如图3,当点E在正方形AAAAAAAA外部时,AAEE⊥EEAA,AAEE⊥AAFF,AAEE⊥AAEE,且D,F,E三点共线,猜想并证明AAEE,AAEE,AAFF之间的数量关系.2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
10-易错疑难集训(二)高中数学必修一北师大版
[1,2), 2, +∞
_____________.
【解析】 当 − 1 ≥ 0且 − 1 ≠ 1,即 ≥ 1且 ≠ 2
时, = −;当 − 1 < 0且 − 1 ≠ −1,即 < 1且
≠ 0时, = − 2.所以函数
−, ≥ 1且 ≠ 2,
=ቊ
必须先求出函数的定义域.
易错点2 混淆“单调区间”与“在区间上单调”
5.已知函数 = 2 + 2 − 1 + 2.
(1)若 的单调递减区间为(−∞, 4],求实数的值;
【解析】 由题意知 >
1−
0,
= 4,解得 =
1
.
5
(2)若 在区间(−∞, 4]上单调递减,求实数的取值范围.
应单调区间的子区间.
已知函数的单调性,求函数中参数的取值范围有两种方法:一是将参数看
成已知数,求函数的单调区间,再与已知的单调区间比较,求出参数的取值范
围;二是运用函数的单调性的定义建立关于参数的不等式(组)或方程
(组),解不等式(组)或方程(组),进而求解.
易错疑难集训(二)
过疑难 常考疑难问题突破
作出函数 的图象,如
− 2, < 1且 ≠ 0.
图所示,所以 的单调递增区间为 −∞, 0 , 0,1 ;单调递减区间为
[1,2), 2, +∞ .
【错因分析】确定定义域之前不要化简函数式,否则可能导致定义域发生
变化.函数的单调区间是函数定义域的子集,所以求解函数的单调区间时,
C. −5,1
D. −∞, −1 ∪ 1, +∞
【解析】 令 = ,因为 是定义在上的奇函数,所以
高中数学 第一章 集合测试题 北师大版必修1-北师大版高一必修1数学试题
第一章测试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2015·新课标Ⅱ)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B =( )A.{-1,0} B.{0,1}C.{-1,0,1} D.{0,1,2}[答案] A[解析]由已知得B={x|-2<x<1},故A∩B={-1,0},故选A.2.下列集合中表示同一集合的是( )A.M={(3,2)},N={(2,3)}B.M={3,2},N={2,3}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={1,2},N={(1,2)}[答案] B[解析]A选项中,元素为点,且不是同一点,C,D选项中的元素,一个为点,一个为数,都不可能为同一集合,故B正确.3.有下列结论:①由1,2,3,4,5构成的集合含有6个元素;②大于5的自然数构成的集合是无限集;③边长等于1的菱形构成的集合是有限集合;④某校高一入学成绩最好的学生构成的集合是有限集.其中正确的个数是( )A.0 B.1C.2 D.3[答案] B[解析]②正确,①中集合的元素有5个,③中边长等于1的菱形,夹角不定,④不对,故①③④不正确.4.已知集合A={x|x2-2x>0},B={x|-5<x<5},则( )A.A∩B=∅B.A∪B=RC.B⊆A D.A⊆B[答案] B[解析]本题考查集合的关系与运算.A={x|x2-2x>0}={x|x<0或x>2}∴A ∪B =R ,故选B.5.已知集合P ={x |x 2≤1},M ={a },若P ∪M =P ,则a 的X 围是( ) A .a ≤-1 B .a ≥1C .-1≤a ≤1D .a ≥1或a ≤-1[答案] C[解析]∵P ={x |-1≤x ≤1},P ∪M =P ,∴a ∈P . 即:-1≤a ≤1.6.设集合A ={x |x ≤13},a =11,那么( ) A .a A B .a ∉A C .{a }∉A D .{a }A[答案] D[解析]A 是集合,a 是元素,两者的关系应是属于与不属于的关系.{a }与A 是包含与否的关系,据此,A 、C 显然不对.而11<13,所以a 是A 的一个元素,{a }是A 的一个子集.故选D.7.(2014·某某高考)设全集U ={x ∈N |x ≥2},集合A ={x ∈N |x 2≥5},则∁U A =( ) A .∅ B .{2} C .{5} D .{2,5}[答案] B[解析] 本题考查集合的运算.A ={x ∈N |x 2≥5}={x ∈N |x ≥5},故∁U A ={x ∈N |2≤x <5}={2}.选B.8.用列举法表示集合{x |x 2-3x +2=0}为( ) A .{(1,2)} B .{(2,1)} C .{1,2} D .{x 2-3x +2=0}[答案] C[解析] 该集合为数集,所以A 、B 都不对,D 是用列举法表示,但元素为方程x 2-3x +2=0.9.设S =R ,M ={x |-1<x <13},N ={x |x ≤-1},P ={x |x ≥13},则P 等于( )A .M ∩NB .M ∪NC .∁S (M ∪N )D .∁S (M ∩N )[答案] C[解析]∵M ∪N ={x |-1<x <13}∪{x |x ≤-1}={x |x <13},∴∁S (M ∪N )={x |x ≥13}=P .10.设U 是全集,M 、P 、S 是U 的三个子集,则如图所示阴影部分所表示的集合为( )A .(M ∩P )∩SB .(M ∩P )∪(∁U S )C .(M ∩P )∪SD .(M ∩P )∩(∁U S )[答案] D[解析] 阴影部分不属于S ,属于P ,属于M ,故选D.11.下列四个命题:①{0}是空集;②若a ∈N ,则-a ∉N ;③集合{x ∈R |x 2-2x +1=0}有两个元素;④集合{x ∈Q |6x∈N }是有限集.其中正确命题的个数是( )A .1B .2C .3D .0[答案] D[解析]①{0}是含有一个元素0的集合,不是空集,∴①不正确. ②当a =0时,0∈N ,∴②不正确. ③∵x 2-2x +1=0,x 1=x 2=1, ∴{x ∈R |x 2-2x +1=0}={1}, ∴③不正确.④当x 为正整数的倒数时6x∈N ,∴{x ∈Q |6x∈N }是无限集,∴④不正确.12.设集合M ={x |x ≤23},a =11+b ,其中b ∈(0,1),则下列关系中正确的是( ) A .a M B .a ∉M C .{a }∈M D .{a }M[答案] D[解析] 由集合与集合及元素与集合之间的关系知,显然A 、C 不正确.又因为23=12,所以当b =0时,a =11,可知11<12,而当b =1时,a =12,可知D 正确.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中横线上) 13.已知集合U ={2,3,6,8},A ={2,3},B ={2,6,8},则(∁U A )∩B =________. [答案] {6,8}[解析]本题考查的是集合的运算.由条件知∁U A={6,8},B={2,6,8},∴(∁U A)∩B={6,8}.14.设全集是实数集R,M={x|-2≤x≤2},N={x|x<1},则(∁R M)∩N=________.[答案]{x|x<-2}[解析]∵M={x|-2≤x≤2},∴∁R M={x|x<-2或x>2}.又N={x|x<1},∴(∁R M)∩N={x|x<-2}.15.设全集U=R,A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},则图中阴影表示的集合为________.[答案]{-3}[解析]如图阴影部分为(∁U A)∩B.∵A={x∈N|1≤x≤10}={1,2,3,4,…,9,10},B={x|x2+x-6=0}={2,-3},∴(∁U A)∩B={-3}.16.集合M={x|x=3k-2,k∈Z},P={y|y=3l+1,l∈Z},S={z|z=6m+1,m∈Z}之间的关系是________.[答案]S P=M[解析]M、P是被3除余1的数构成的集合,则P=M,S是被6除余1的数,则S P.三、解答题(本大题共6个小题,满分70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知M={1,2,a2-3a-1},N={-1,a,3},M∩N={3},某某数a的值.[解析]∵M∩N={3},∴3∈M;∴a2-3a-1=3,即a2-3a-4=0,解得a=-1或4.但当a=-1时,与集合中元素的互异性矛盾;当a=4时,M={1,2,3},N={-1,3,4},符合题意.∴a=4.18.(本小题满分12分)已知A={x|x2-3x+2=0},B={x|mx-2=0}且A∪B=A,某某数m组成的集合C.[解析]由A∪B=A得B⊆A,因此B有可能等于空集.①当B =∅时,此时方程mx -2=0无解, 即m =0符合题意.②当B ≠∅时,即m ≠0,此时A ={1,2},B ={2m},∵B ⊆A .∴2m =1或2m=2,∴m =2或m =1.因此,实数m 组成的集合C 为{0,1,2}.19.(本小题满分12分)设数集A ={a 2,2},B ={1,2,3,2a -4},C ={6a -a 2-6},如果C ⊆A ,C ⊆B ,求a 的取值的集合.[解析]∵C ⊆A ,C ⊆B ,∴C ⊆(A ∩B ). 又C 中只有一个元素,∴6a -a 2-6=2,解得a =2或a =4. 当a =2时,a 2=4,2a -4=0满足条件; 当a =4时,a 2=16,2a -4=4也满足条件. 故a 的取值集合为{2,4}.20.(本小题满分12分)已知M ={x |x 2-5x +6=0},N ={x |ax =12},若N ⊆M ,某某数a 所构成的集合A ,并写出A 的所有非空真子集.[解析]∵M ={x |x 2-5x +6=0},解x 2-5x +6=0得x =2或x =3,∴M ={2,3}. ∵N ⊆M ,∴N 为∅或{2}或{3}.当N =∅时,即ax =12无解,此时a =0; 当N ={2}时,则2a =12,a =6; 当N ={3}时,则3a =12,a =4.所以A ={0,4,6},从而A 的所有非空真子集为{0},{4},{6},{0,4},{0,6},{4,6}. 21.(本小题满分12分)已知A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0}.(1)若A ∩B =A ∪B ,求a 的值;(2)若∅(A ∩B ),且A ∩C =∅,求a 的值; (3)若A ∩B =A ∩C ≠∅,求a 的值. [解析] (1)∵A ∩B =A ∪B ,∴A =B ,即x 2-ax +a 2-19=x 2-5x +6, ∴a =5.(2)由已知有B ={2,3},C ={-4,2}. ∵∅(A ∩B ),A ∩C =∅,∴3∈A ,而-4,2∉A .由32-3a+a2-19=0,解得a=-2或a=5.当a=-2时,A={3,-5},符合题意,当a=5时,A={3,2},与A∩C=∅矛盾,∴a=-2.(3)若A∩B=A∩C≠∅,则有2∈A.由22-2a+a2-19=0,得a=5或a=-3.当a=5时,A={3,2},不符合条件,当a=-3时,A={-5,2},符合条件.∴a=-3.22.(本小题满分12分)设非空集合S具有如下性质:①元素都是正整数;②若x∈S,则10-x∈S.(1)请你写出符合条件,且分别含有1个、2个、3个元素的集合S各一个.(2)是否存在恰有6个元素的集合S?若存在,写出所有的集合S;若不存在,请说明理由.(3)由(1)、(2)的解答过程启发我们,可以得出哪些关于集合S的一般性结论(要求至少写出两个结论)?[解析](1)由题意可知,若集合S中含有一个元素,则应满足10-x=x,即x=5,故S={5}.若集合S中含有两个元素,设S={a,b},则a,b∈N+,且a+b=10,故S可以是下列集合中的一个:{1,9},{2,8},{3,7},{4,6},若集合S中含有3个元素,由集合S满足的性质可知5∈S,故S是{1,5,9}或{2,5,8}或{3,5,7}或{4,5,6}中的一个.(2)存在含有6个元素的非空集合S如下所示:S={1,2,3,7,8,9}或S={1,2,4,6,8,9}或S={1,3,4,6,7,9}或S={2,3,4,6,7,8}共4个.(3)答案不唯一,如:①S⊆{1,2,3,4,5,6,7,8,9};②若5∈S,则S中元素个数为奇数个,若5∉S,则S中元素个数为偶数个.。
高中数学 第1章 集合滚动训练 北师大版必修1-北师大版高一必修1数学试题
第1章集合滚动训练(一)一、选择题1.若集合A={x|x>-1},则下列关系式中成立的为( )A.0⊆A B.{0}∈A C.∅∈A D.{0}⊆A考点元素与集合的关系题点判断元素与集合的关系答案 D解析元素与集合之间为“∈”与“∉”关系,集合与集合之间是“⊆”与“⊈”关系,只有选项D符合.2.已知集合M={x∈N|4-x∈N},则集合M中元素个数是( )A.3 B.4 C.5 D.6考点集合的表示综合题点集合的表示综合问题答案 C解析当x取0,1,2,3,4时,4-x的值分别为4,3,2,1,0,都是自然数,符合题意,故选C. 3.设U=R,A={x|x>0},B={x|x>1},则A∩(∁R B)等于( )A.{x|0≤x<1} B.{x|0<x≤1}C.{x|x<0} D.{x|x>1}考点交并补集的综合问题题点无限集合的交并补运算答案 B解析∵∁R B={x|x≤1},∴A∩(∁R B)={x|0<x≤1}.4.设集合U={1,2,3,4,5},A={1,2,3},B={2,4},则图中阴影部分所表示的集合是( )A.{4} B.{2,4} C.{4,5} D.{1,3,4}考点交并补集的综合问题题点有限集合的交并补运算答案 A解析阴影部分表示的是集合(∁U A)∩B={4,5}∩{2,4}={4}.5.若集合A={x|x<a},B={x|2<x<4},且A∪(∁R B)=R,则实数a的取值X围是( ) A.a≤4 B.a<2 C.a>4 D.a≥4考点交并补集的综合问题题点无限集合的交并补运算答案 D解析因为∁R B={x|x≤2或x≥4},而A∪(∁R B)=R,所以借助数轴可知a≥4.6.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)等于( )A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}考点交并补集的综合问题题点无限集合的交并补运算答案 D解析由题意可知,A∪B={x|x≤0或x≥1},所以∁U(A∪B)={x|0<x<1}.7.设集合A={-2,0,1,3},集合B={x|-x∈A,1-x∉A},则集合B中元素的个数为( ) A.1 B.2 C.3 D.4考点集合的表示综合题点集合的表示综合问题答案 C解析若只考虑-x∈A,则x可以为2,0,-1,-3,但1-x∉A,所以x可以为2,-1,-3,故集合B中有3个元素.二、填空题8.设集合M={x|-1≤x≤2},N={x|x-2k≤0},若M⊆N,则k的取值X围是________.考点子集及其运算题点根据子集关系求参数的取值X围答案{k|k≥1}解析由题意知2≤2k,解得k≥1.9.用描述法表示由图中阴影部分的点(含边界上的点)组成的集合M是________.考点 用描述法表示集合题点 用描述法表示集合答案 {(x ,y )|-1≤x ≤0,0≤y ≤1}解析 阴影部分点的横坐标的X 围为-1≤x ≤0,纵坐标的X 围为0≤y ≤1,所以表示的集合为{(x ,y )|-1≤x ≤0,0≤y ≤1}.10.设全集为U ,若M ∩(∁U N )={0},M ∩N ={1},则集合M 中含有________个元素. 考点 Venn 图表达的集合关系及运用题点 Venn 图表达的集合关系答案 2解析 借助于Venn 图求解,如图①所示,阴影部分为M ∩(∁U N ),如图②所示,阴影部分为M ∩N ,所以M ={0,1},即集合M 中有2个元素.11.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,1,2,3的所有非空子集中,是伙伴关系集合的个数为________.考点 元素与集合的关系题点 伴随元素问题答案 7解析 伙伴关系集合有{1},{-1},{1,-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫1,12,2,⎩⎨⎧⎭⎬⎫-1,12,2,⎩⎨⎧⎭⎬⎫1,-1,12,2,共7个. 三、解答题12.设集合P ={x -y ,x +y ,xy },Q ={x 2+y 2,x 2-y 2,0},若P =Q ,求x ,y 的值及集合P ,Q .考点 集合的关系题点 由集合的关系求参数的值解 ∵P =Q ,∴0∈P .当x -y =0时,x =y ,x 2-y 2=0,舍去;当x +y =0时,x =-y ,x 2-y 2=0,舍去;当xy =0时,若x =0,y ≠0,则P ={-y ,y,0},Q ={y 2,-y 2,0},∴y =±1,若y =0,x -y =x +y ,舍去.∴x =0,y =±1,P =Q ={1,-1,0}.13.设全集U ={x |x ≤4},A ={x |-2<x <3},B ={x |-3<x ≤3},求∁U A ,∁U B ,A ∩B ,∁U (A ∩B ),(∁U A )∩B .考点 交并补集的综合问题题点 无限集合的交并补运算解 ∁U A ={x |x ≤-2或3≤x ≤4},∁U B ={x |x ≤-3或3<x ≤4},A ∩B ={x |-2<x <3},∁U (A ∩B )={x |x ≤-2或3≤x ≤4},(∁U A )∩B ={x |-3<x ≤-2或x =3}.四、探究与拓展14.已知集合A ={}0,2a -1,a 2,B ={}a -5,1-a ,9,且9∈(A ∩B ),则a 的值为________. 考点 交集的概念及运算题点 由交集的运算结果求参数的值答案 5或-3解 因为9∈(A ∩B ),所以9∈A ,且9∈B ,即2a -1=9或a 2=9,解得a =5或a =±3. 当a =5时,A ={}0,9,25,B ={}0,-4,9,A ∩B ={}0,9,9∈(A ∩B ),符合题意; 当a =3时,A ={}0,5,9,B ={}-2,-2,9,B 中有元素重复,不符合题意,舍去;当a =-3时,A ={}0,-7,9,B ={}-8,4,9,A ∩B ={}9,9∈(A ∩B ),符合题意, 综上所述,a =5或a =-3.15.已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }.(1)当m =-1时,求A ∪B ;(2)若A ⊆B ,某某数m 的取值X 围;(3)若A ∩B =∅,某某数m 的取值X 围.考点题点解 (1)当m =-1时,B ={x |-2<x <2},则A ∪B ={x |-2<x <3}.(2)由A ⊆B 知,⎩⎪⎨⎪⎧ 1-m >2m ,2m ≤1,1-m ≥3,得m ≤-2,即实数m 的取值X 围为{m |m ≤-2}.(3)由A ∩B =∅,得①当2m ≥1-m 即m ≥13时,B =∅,符合题意; ②当2m <1-m 即m <13时,需⎩⎪⎨⎪⎧ m <13,1-m ≤1或⎩⎪⎨⎪⎧ m <13,2m ≥3.得0≤m <13或∅,即0≤m <13.综上知m ≥0,即实数m 的取值X 围为{m |m ≥0}.。
2022-2023学年北师大版高一上数学月考试卷(含解析)
2022-2023学年高中高一上数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:95 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. ,,若,则的值为( )A.B.或C.D.2. 某中学的学生积极参加体育锻炼,其中有名学生喜欢篮球或足球,名学生喜欢篮球,名学生喜欢足球,则该中学既喜欢篮球又喜欢足球的学生数是( )A.B.C.D.3. 已知,,若,则 A.B.C.D.4. 已知集合,,则( )A.A ={a,a +b,a +2b}B ={a,ac,a }c 2A =B c −1−1−12−12185766346485254A ={1,x,y}B ={1,,2y}x 2A =B x −y =()1211432A ={x|−8>0}2x B ={x|x −1>6}A ∪B =(3,+∞)(7,+∞)B.C.D.5. 已知“”是“”的充分不必要条件,则的取值范围为( )A.B.C.D.6. 已知集合,,若,则实数的取值范围为( )A.B.C.D.7. 已知命题:实数满足,命题:实数满足.若是的充分不必要条件,则实数的取值范围为( )A.B.C.D.8. 正数,满足=,且恒成立,则实数的取值范围是( )A.B.C.D.(7,+∞)(3,7)(−∞,7)x >k <13x +1k (−∞,−1][1,+∞)[2,+∞)(2,+∞)A ={x|−2≤x ≤−1}B ={y|y =−2x +a,x ∈A}A ⊆B a [−5,−4][4.5][−3,−6][3,6]p x −+6x −8>0x 2q x −(m +1)x +m <0(m >1)x 2p q m 1<m <41<m ≤4m >4m ≥4a b 2a +b 12−4−≤t −ab −−√a 2b 212t (−∞,]2–√2[,+∞)2–√2[−,]2–√22–√2[,+∞)12二、 多选题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 下列关于空集的说法中,正确的有( )A.B.C.D.10. 若集合=恰有两个子集,则的值可能是( )A.B.C.D.或11. 下列结论中正确的是( )A.“”是“”的充要条件B.函数的最小值为C.命题“”的否定是“”D.若函数有负值,则实数的取值范围是或12. 下列命题中正确的是( )A.的最小值是B.的最大值是C.的最大值是D.有最大值卷II (非选择题)三、 填空题 (本题共计 1 小题 ,共计5分 )∅∈∅∅⊆∅∅∈{∅}∅⊆{∅}A {x |a −2x −1=0}x 2a 0−1101ab >0>0ab y =++2x 2−−−−−√1+2x 2−−−−−√2∀x >1,−x >0x 2∃≤1,−≤0x 0x 20x 0y =−ax +1x 2a a >2a <−2y =+3x 2+2x 2−−−−−√2y =x +(x <0)1x −2y =2−3x −(x >0)4x 2−43–√y =+3x 2+2x 2−−−−−√13. (5分) 若命题“ ,”为假命题,则的取值范围是________.四、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )14. 已知集合,,若,求实数的值.15. 已知椭圆,,分别为椭圆的左顶点和右焦点,过的直线交椭圆于点,.若,且当直线轴时,.求椭圆的方程;设直线,的斜率分别为,,问是否为定值?并证明你的结论;记的面积为,求的最大值.16. 已知函数的最小值等于.(1)求的值;(2)若正数,,满足,求的最大值. 17. 解不等式. 18. 设命题:对任意,不等式恒成立,命题:存在,使得不等式成立.若为真命题,求实数的取值范围;若为假命题,为真命题,求实数的取值范围. 19. 已知函数.求关于的不等式的解集;若不等式 对任意恒成立,求实数的取值范围.∃x ∈R +2mx +m +2<0x 2m A ={x|−3x +2=0}x 2B ={x|−ax +a −1=0}x 2A ∪B =A a C :+=1(a >b >0)x 2a 2y 2b 2A F C F l C P Q AF =3l ⊥x PQ =3(1)C (2)AP AQ k 1k 2k 1k 2(3)△APQ S S f(x)=|x +m|−|2x −4|(m >0)3m a b c a +b +c =3m ++a −√b √c √<0x −3x +7p x ∈[0,1]2x −2≥−3m m 2q x ∈[−1,1]−x +m −1≤0x 2(1)p m (2)p ∧qp ∨q m f (x)=−4x +5(x ∈R)x 2(1)x f (x)<2(2)f (x)>m −3x ∈R m参考答案与试题解析2022-2023学年高中高一上数学月考试卷一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】C【考点】集合的相等【解析】根据集合相等确定元素关系即可得到结论.【解答】解:∵,,∴若,则①或②,由①消去得,当时,集合,不成立,由②消去得,当或时,当时,此时,满足条件.故选:.2.【答案】D【考点】Venn 图表达集合的关系及运算【解析】记“该中学学生喜欢篮球”为事件,“该中学学生喜欢足球”为事件,则“该中学学生喜欢篮球或足球”为事件,“该中学学生既喜欢篮球又喜欢足球”为事件·,然后根据积事件的概率公式可得结果.【解答】解:记“该中学喜欢篮球的学生”为集合,“该中学喜欢足球的学生”为集合,A ={a,a +b,a +2b}B ={a,ac,a }c 2A =B {a +b =ac a +2b =ac 2{a +b =ac 2a +2b =acb c =1c =1B =B ={a,a,a}b c =1c =1c =−12c =−12b =−a 34C A B A +B A B P (A ⋅B)=P (A)+P (B)−P (A +B)A B A ∪B则“该中学喜欢篮球或足球的学生”为集合,如图,所以该中学既喜欢篮球又喜欢足球的学生数为人.故选.3.【答案】C【考点】集合的无序性集合的相等【解析】化简,,利用,即可得出结论.【解答】解:,假设,解得或(舍去),(舍去),该假设不合题意;假设,解得,,该假设满足题意;.故选.4.【答案】A【考点】并集及其运算【解析】A ∪B =85A ∩B =63+76−85=54D A B A =B ∵A =B {x =,x 2y =2y ,∴x =0x =1y =0∴{=y ,x 2x =2y ,∴(2y =y )2y =14x =12∴∴x −y =−=121414C无【解答】解:因为,,所以.故选.5.【答案】C【考点】必要条件、充分条件与充要条件的判断【解析】求出的等价条件,然后利用充分条件和必要条件的定义进行判断求解.【解答】解:由得,解得或.要使“”是“”的充分不必要条件,则.故选.6.【答案】A【考点】集合的包含关系判断及应用集合关系中的参数取值问题【解析】由已知先求出集合,然后结合集合的包含关系即可直接求解.【解答】解:因为,,若 ,则解得:.故选.7.A ={x|x >3}B ={x|x >7}A ∪B =(3,+∞)A <13x +1<13x +1−1=<03x +1−x +2x +1x <−1x >2x >k <13x +1k ≥2C B A ={x|−2≤x ≤−1}B ={y|y =−2x +a,x ∈A}={y|2+a ≤y ≤4+a}A ⊆B {4+a ≥−1,2+a ≤−2,−5≤a ≤−4A【答案】D【考点】根据充分必要条件求参数取值问题【解析】先求出,为真时的值,再利用充分必要条件求解即可.【解答】解:由,可得,由,可得.∵是的充分不必要条件,∴,∴.故选.8.【答案】B【考点】不等式恒成立问题基本不等式在最值问题中的应用【解析】由,,=得,=,于是问题转化为:恒成立,令=,求得的最大值,只需即可.【解答】∵,,=,∴=,∴恒成立,转化为恒成立,令==,又由,,=得:=,∴(当且仅当,时取“=”);∴=.p q x −+6x −8>0x 22<x <4−(m +1)x +m <0x 21<x <m p q {x|2<x <4} {x|1<x <m}m ≥4D a >0b >02a +b 14+a 2b 21−4ab t ≥2+4ab −ab −−√12f(a,b)2+4ab −ab −−√12f(a,b)t ≥f(a,b)max a >0b >02a +b 14+a 2b 21−4ab 2−4−≤t −ab −−√a 2b 212t ≥2+4ab −ab −−√12f(a,b)2+4ab −=4(ab +−)ab −−√1212ab −−√184−(+)ab −−√14234a >0b >02a +b 112a +b ≥22ab −−−√ab ≤18a =14b =12f(a,b)max 4−=(+)18−−√142342–√2≥–√.二、 多选题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】B,C,D【考点】集合的包含关系判断及应用【解析】此题暂无解析【解答】略10.【答案】A,B【考点】子集与真子集【解析】恰有两个子集的集合只有一个元素,进而求解.【解答】集合恰有两个子集,则集合中只有一个元素,当=时,,满足题意;当时,==,即=,此时=,满足题意;故的值为,.11.【答案】A,D【考点】命题的真假判断与应用t ≥2–√2A A a 0a ≠0△4+4a 0a −1A {−1}a 0−1必要条件、充分条件与充要条件的判断命题的否定【解析】此题暂无解析【解答】解:对于,由,能得到,反之也成立,故正确.对于,由基本不等式可知 当且仅当,解得 ,无解,所以等号不成立,所以取不到最小值,错误;对于,命题""的否定是“”,故错误.对于,函数有负值,则,解得或,故正确.故选.12.【答案】B,C【考点】命题的真假判断与应用基本不等式基本不等式在最值问题中的应用【解析】结合基本不等式以及基本不等式取得最值的条件对每个选项进行分析即可求解.【解答】解:对于,,当且仅当时取等号,解得无解,即式子最小值取不到,故错误;对于,时,,当且仅当时取等号成立,故正确;A ab >0>0a b AB +≥2,+2x 2−−−−−√1+2x 2−−−−−√=+2x 2−−−−−√1+2x 2−−−−−√=−1x 2B C ∀x >1,−x >0x 2∃>1,−≤0x 0x 20x 0C D y =−ax +1x 2Δ=−4>0(−a)2a >2a <−2D AD A y ==++3x 2+2x 2−−−−−√+2x 2−−−−−√1+2x 2−−−−−√≥2=2⋅+2x 2−−−−−√1+2x 2−−−−−√−−−−−−−−−−−−−−−−√=+2x 2−−−−−√1+2x 2−−−−−√x 2A B x <0y =x +=−[(−x)+(−)]1x 1x ≤−2=−2(−x)⋅(−)1x−−−−−−−−−−√x =−1B =2−3x −≤2−2=2−4−−−−−对于,时,,当且仅当时取等号,即式子的最大值是,故正确;对于,由中结论可知,无最大值,故错误.故选.三、 填空题 (本题共计 1 小题 ,共计5分 )13.【答案】【考点】全称命题与特称命题命题的否定【解析】由于命题:“,使得”为假命题,可得命题的否定是:“,”为真命题,因此,解出即可.【解答】解:∵命题:“,使得”为假命题,∴命题的否定是:“,”为真命题,∴,即,解得,∴实数的取值范围是.故答案为:.四、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )14.【答案】解:由题得,∵,∴,∴或或或.当时,,无解;当时,得;当时,C x >0y =2−3x −≤2−2=2−44x 3x ⋅4x −−−−−√3–√3x =4x 2−43–√CD A y =+3x 2+2x 2−−−−−√D BC [−1,2]∃x ∈R +2mx +m +2<0x 2∀x ∈R +2mx +m +2≥0x 2Δ≤0∃x ∈R +2mx +m +2<0x 2∀x ∈R +2mx +m +2≥0x 2Δ≤04−4(m +2)≤0m 2−1≤m ≤2m [−1,2][−1,2]A ={1,2}A ∪B =A B ⊆A B =∅{1}{2}{1,2}B =∅Δ=−4(a −1)<0a 2B ={1}{1+1=a,1×1=a −1,a =2B ={2}{2+2=a,2×2=a −1,无解;当时,得.综上可知,或.【考点】集合关系中的参数取值问题根与系数的关系【解析】【解答】解:由题得,∵,∴,∴或或或.当时,,无解;当时,得;当时,无解;当时,得.综上可知,或.15.【答案】解:设椭圆的右焦点为,,则,①由,得,②又当直线轴时,,的横坐标为,将代入中,得,则,③联立①②③,解得,,,所以椭圆的方程为.为定值.证明如下:显然,直线不与轴垂直,可设的方程为,B ={1,2}{1+2=a,1×2=a −1,a =3a =2a =3A ={1,2}A ∪B =A B ⊆A B =∅{1}{2}{1,2}B =∅Δ=−4(a −1)<0a 2B ={1}{1+1=a,1×1=a −1,a =2B ={2}{2+2=a,2×2=a −1,B ={1,2}{1+2=a,1×2=a −1,a =3a =2a =3(1)F(c,0)c >0=+a 2b 2c 2AF =3a +c =3l ⊥x P Q c x =c +=1x 2a 2y 2b 2y =±b 2a PQ ==32b 2a =4a 2=3b 2=1c 2C +=1x 24y 23(2)k 1k 2−14PQ y PQ x =my +1=122联立椭圆方程,消去并整理得,又设,,由韦达定理得从而,,所以,即,故得证. 由知,所以.令,,则,设函数,由知,在上为增函数,得,即时,,此时取得最大值为.【考点】圆锥曲线中的定点与定值问题利用导数研究函数的最值根与系数的关系直线与椭圆结合的最值问题+=1x 24y 23x (3+4)+6my −9=0m 2y 2P(,)x 1y 1Q(,)x 2y 2 +=−y 1y 26m 3+4m 2=y 1y 2−93+4m 2+=(m +1)+(m +1)=x 1x 2y 1y 283+4m 2=(m +1)(m +1)=x 1x 2y 1y 2−12+4m 23+4m 2==k 1k 2y 1y 2(+2)(+2)x 1x 2y 1y 2+2(+)+4x 1x 2x 1x 2===−−93+4m 2++4−12+4m 23+4m 2163+4m 2−93614=−k 1k 214(3)(2) +=−,y 1y 26m 3+4m 2=,y 1y 2−93+4m 2S =AF ⋅|−|=|−|=12y 1y 232y 1y 232(+−4y 1y 2)2y 1y 2−−−−−−−−−−−−−−√==1832(−+6m 3+4m 2)2363+4m 2−−−−−−−−−−−−−−−−−−−−√+1m 2(3+4m 2)2−−−−−−−−−−√=18+1m 29(+1+6(+1)+1m 2)2m 2−−−−−−−−−−−−−−−−−−−−−−√=1819(+1)++6m 21+1m 2−−−−−−−−−−−−−−−−−−−− t =+1m 2t ≥1S =(t ≥1)189t ++61t −−−−−−−−−√g(t)=9t +(t ≥1)1t (9t +)'=9−=>01t 1t 29−1t 2t 2g(t)[1,+∞)t =1m =0[g(t)=9×1+=10]min 11S =1810+6−−−−−√92椭圆的标准方程【解析】对第(1)问,由,,及可求得,;对第(2)问,可先设直线的方程与,的坐标,联立直线与椭圆的方程,由韦达定理建立交点坐标的关系,将用坐标表示,再探求定值的存在性;对第(3)问,根据,将用参数表示,从而得到面积关于函数,根据此函数的形式特点,可求得面积的最大值.【解答】解:设椭圆的右焦点为,,则,①由,得,②又当直线轴时,,的横坐标为,将代入中,得,则,③联立①②③,解得,,,所以椭圆的方程为. 为定值.证明如下:显然,直线不与轴垂直,可设的方程为,联立椭圆方程,消去并整理得,又设,,由韦达定理得从而,,所以,即,故得证. 由知,所以AF =3PQ =3=+a 2b 2c 2a 2b 2PQ P Q k 1k 2=AF ⋅|−|S △APQ 12y 1y 2|−|y 1y 2m m (1)F(c,0)c >0=+a 2b 2c 2AF =3a +c =3l ⊥x P Q c x =c +=1x 2a 2y 2b 2y =±b 2a PQ ==32b 2a =4a 2=3b 2=1c 2C +=1x 24y 23(2)k 1k 2−14PQ y PQ x =my +1+=1x 24y 23x (3+4)+6my −9=0m 2y 2P(,)x 1y 1Q(,)x 2y 2 +=−y 1y 26m 3+4m 2=y 1y 2−93+4m 2+=(m +1)+(m +1)=x 1x 2y 1y 283+4m 2=(m +1)(m +1)=x 1x 2y 1y 2−12+4m 23+4m 2==k 1k 2y 1y 2(+2)(+2)x 1x 2y 1y 2+2(+)+4x 1x 2x 1x 2===−−93+4m 2++4−12+4m 23+4m 2163+4m 2−93614=−k 1k 214(3)(2) +=−,y 1y 26m 3+4m 2=,y 1y 2−93+4m 2S =AF ⋅|−|=|−|=12y 1y 232y 1y 232(+−4y 1y 2)2y 1y 2−−−−−−−−−−−−−−√=18−−−−−−−−−−.令,,则,设函数,由知,在上为增函数,得,即时,,此时取得最大值为.16.【答案】【考点】基本不等式基本不等式在最值问题中的应用【解析】此题暂无解析【解答】此题暂无解答17.【答案】解:∵.∴可得:∴解得:.∴不等式的解集为.【考点】分式不等式的解法一元二次不等式的解法==1832(−+6m 3+4m 2)2363+4m 2−−−−−−−−−−−−−−−−−−−−√+1m 2(3+4m 2)2−−−−−−−−−−√=18+1m 29(+1+6(+1)+1m 2)2m 2−−−−−−−−−−−−−−−−−−−−−−√=1819(+1)++6m 21+1m 2−−−−−−−−−−−−−−−−−−−− t =+1m 2t ≥1S =(t ≥1)189t ++61t −−−−−−−−−√g(t)=9t +(t ≥1)1t (9t +)'=9−=>01t 1t 29−1t 2t 2g(t)[1,+∞)t =1m =0[g(t)=9×1+=10]min 11S =1810+6−−−−−√92<0x −3x +7{(x −3)(x +7)<0,x +7≠0,−7<x <3{x |−7<x <3}【解析】(1)由题意可得:,或,进而即可得解.【解答】解:∵.∴可得:∴解得:.∴不等式的解集为.18.【答案】解:∵命题:对任意,不等式恒成立,而,有,,解得,∴为真命题时,实数的取值范围是.命题:存在,使得不等式成立,只需,∵,,,解得,即命题为真时,实数的取值范围是.由题意,命题,一真一假,若为假命题,为真命题,则 解得;若为假命题,为真命题,则解得.综上所述,实数的取值范围为或.【考点】一元二次不等式的解法复合命题及其真假判断逻辑联结词“或”“且”“非”【解析】{x −3>0x +7<0{x −3<0x +7>0<0x −3x +7{(x −3)(x +7)<0,x +7≠0,−7<x <3{x |−7<x <3}(1)p x ∈[0,1]2x −2≥−3m m 2x ∈[0,1]=−2(2x −2)min ∴−2≥−3m m 21≤m ≤2p m 1≤m ≤2(2)q x ∈[−1,1]−x +m −1≤0x 2≤0(−x +m −1)x 2min −x +m −1=+m −x 2(x −)12254∴=−+m (−x +m −1)x 2min 54∴−+m ≤054m ≤54q m m ≤54p q p q m <1或m >2,m ≤,54m <1q p 1≤m ≤2,m >,54<m ≤254m m <1<m ≤254x ∈[0,1],≥−3m(2x −2)2命题为真,只需,根据一次函数的单调性,转化为求关于的一元二次不等式;(2)命题为真,只需,根据二次函数的性质,求出的范围,依题意求出真假,和假真时,实数的取值范围.【解答】解:∵命题:对任意,不等式恒成立,而,有,,解得,∴为真命题时,实数的取值范围是.命题:存在,使得不等式成立,只需,∵,,,解得,即命题为真时,实数的取值范围是.由题意,命题,一真一假,若为假命题,为真命题,则 解得;若为假命题,为真命题,则解得.综上所述,实数的取值范围为或.19.【答案】解:∵,∴,,∴,故不等式的解集为.∵不等式 对任意恒成立,∴恒成立.∵,∴,∴即,故的取值范围为.【考点】不等式恒成立问题二次函数的性质P x ∈[0,1],≥−3m (2x −2)min m 2m 4x ∈[−1,1],≤0(−x +m −1)x 2min m P 4P 4m (1)p x ∈[0,1]2x −2≥−3m m 2x ∈[0,1]=−2(2x −2)min ∴−2≥−3m m 21≤m ≤2p m 1≤m ≤2(2)q x ∈[−1,1]−x +m −1≤0x 2≤0(−x +m −1)x 2min −x +m −1=+m −x 2(x −)12254∴=−+m (−x +m −1)x 2min 54∴−+m ≤054m ≤54q m m ≤54p q p q m <1或m >2,m ≤,54m <1q p 1≤m ≤2,m >,54<m ≤254m m <1<m ≤254(1)−4x +5<2x 2−4x +3<0x 2(x −3)(x −1)<01<x <3(1,3)(2)f (x)>m −3x ∈R f(x >m −3)min f(x)=(x −2+1)2f(x =1)min m −3<1m <4m (−∞,4)一元二次不等式的解法【解析】此题暂无解析【解答】解:∵,∴,,∴,故不等式的解集为.∵不等式 对任意恒成立,∴恒成立.∵,∴,∴即,故的取值范围为.(1)−4x +5<2x 2−4x +3<0x 2(x −3)(x −1)<01<x <3(1,3)(2)f (x)>m −3x ∈R f(x >m −3)min f(x)=(x −2+1)2f(x =1)min m −3<1m <4m (−∞,4)。
【世纪金榜】(教师用书)2021高中数学 集合单元质量评估 北师大版必修1(1)
【世纪金榜】(教师用书)2021高中数学集合单元质量评估北师大版必修1(120分钟150分)一、选择题(本大题共12小题,每题5分,共60分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的)1.(2021·滁州高一检测)已知集合M={1,2,3},N={2,3,4},那么( )(A)M⊆N (B)N⊆M(C)M∩N={2,3} (D)M∪N={1,4}2.(2021·邯郸高一检测)用列举法表示集合{x|x2-2x+1=0}为( )(A){1,1} (B){1}(C){x=1} (D){x2-2x+1=0}3.以下四个集合中,是空集的是( )(A){x|x+3=3}(B){(x,y)|y2=-x2,x,y∈R}(C){x|x2≤0}(D){x|x2-x+1=0,x∈R}4.(2021·长安高一检测)已知全集U=R,那么正确表示集合M={0,1,2}和N={x|x2-x=0}关系的韦恩(Venn)图是( )5.假设集合M={-1,0,1,2},N={x|x(x-1)=0},那么M∪N=( )(A){-1,0,1,2} (B){0,1,2}(C){-1,0,1} (D){0,1}6.集合A={x|-1<x<2},B={x|1<x<3},那么A∩B=( )(A) (B){x|-1<x<1}(C){x|1<x<2} (D){x|2<x<3}7.(2021·红河州高一检测)设集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},那么图中阴影部份表示的集合是( )(A){1,2,4} (B){4}(C){3,5} (D)8.设集合A={x∈Z|-10≤x≤-1},B={x∈Z|-5≤x≤5},那么A∪B中元素的个数是( )(A)11 (B)10 (C)16 (D)159.已知全集U={1,2,3,4,5,6,7},M={3,4,5},N={1,3,6},那么集合{2,7}等于( )(A)M∩N (B)(U M)∩(UN)(C)(U M)∪(UN)(D)M∪N10.设全集是实数集R,M={x|-2≤x≤2},N={x|x<1},那么(RM)∩N等于( )(A){x|x<-2} (B){x|-2<x<1}(C){x|x<1} (D){x|-2≤x<1}11.(2021·新课标全国高考)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},那么B中所含元素的个数为( )(A)3 (B)6 (C)8 (D)1011.(2021·焦作高一检测)设○+是R上的一个运算,A是R的非空子集,假设对任意a,b∈A,有a○+b∈A,那么称A对运算○+封锁,以下数集对加法,减法,乘法和除法(除数不等于零)四那么运算都封锁的是( )(A)自然数集(B)整数集(C)有理数集(D)无理数集12.(能力题)设[x]表示不大于x的最大整数,例如:[]=-3,[]=3.集合A={x|x2-2[x]=3},集合B={x|0<x+2<5},那么A∩B等于( )(A){1,7} }(C){1, ,} (D){1,-1,二、填空题(本大题共4小题,每题5分,共20分,请把正确的答案填在题中的横线上)13.已知集合A={2,3},那么集合A的子集的个数为____________.14.假设集合S={y|y=2x,x∈R},T={y|y=x2+1,x∈R},那么S∩T=___________.15.(2021·浏阳高一检测)假设集合A={x|x≤2},B={x|x≥a}知足A∩B={2},那么实数a=____________.16.(2020·上海高考)假设全集U=R,集合A={x|x≥1}∪{x|x≤0},那么UA=_______.三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明进程或演算步骤)17.(10分)假设-3∈{a-3,2a-1,a2+1},求实数a的值.18.(12分)设全集为R,A={x|x<-4或x>1},B={x|-2<x<3},求:(1)A∩B;(2)(R A)∩B;(3)A∪(RB).19.(12分)集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0},知足A∩B≠∅,A∩C=∅,求实数a的值.20.(12分)(易错题)设全集U={2,4,-(a-3)2},集合A={2,a2-a+2},假设UA={-1},求实数a 的值.21.(12分)已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<a},全集为实数集R.(1)求A∪B,(RA)∩B;(2)若是A∩C≠∅,求a的取值范围.22.(12分)(能力题)集合P={x|a+1≤x≤2a+1},Q={x|-2≤x≤5}.(1)假设a=3,求集合(RP)∩Q;(2)假设P⊆Q,求实数a的取值范围.答案解析1.【解析】选C.∵M={1,2,3},N={2,3,4},∴M N,且N M,但M∩N={2,3},应选C.2.【解析】选B.方程x2-2x+1=0有两等根1,因此集合用列举法表示为{1}.3.【解析】选项与C项中的集合为{0},B项中的集合为{(0,0)},D项中方程x2-x+1=0无实数解,故D项中的集合是空集.4.【解析】选={0,1},因此N M,选项中只有B项符合题意.5.【解析】选A.由x(x-1)=0可得,x=0或x=1,因此N={0,1},因此M∪N={-1,0,1,2}.6.【解析】选C.如图在数轴上画出集合A和B,可得A∩B={x|1<x<2}.7.【解析】选A.图中阴影部份表示的集合是U(A∩B),又A∩B={3,5},∴U(A∩B)={1,2,4}.8.【解题指南】先求出A∪B,注意x的属性.【解析】选∪B={x∈Z|-10≤x≤5},故A∪B为从-10到5的整数,共16个元素.9.【解析】选U ={1,2,6,7},UN={2,4,5,7},因此(UM)∩(UN)={2,7}.10.【解析】选={x|x>2或x<-2},因此(RM)∩N={x|x<-2}.11.【解析】选D.由x∈A,y∈A得x-y=0或x-y=±1或x-y=±2或x-y=±3或x-y=±4,故集合B中所含元素的个数为10个.11.【解析】选中1-2=-1不是自然数,即自然数集不知足条件;B中1÷2=不是整数,即整数集不知足条件;C 中有理数集知足条件;D22不是无理数,即无理数集不知足条件,应选C.12.【解题指南】先确信集合B,由B中元素再确信[x]的所有可能取值,然后再一一代入验证.【解析】选B.解不等式0<x+2<5得-2<x<3,因此B={x|-2<x<3}.假设x∈A∩B,那么2x2x3, 2x3,⎧-=⎨-⎩[]<<因此[x]只可能取值-2,-1,0,1,2.假设[x]=-2,那么x2=3+2[x]<0,没有实数解;假设[x]=-1,那么x2=1,解得x=-1;假设[x]=0,那么x2=3,没有符合条件的解;假设[x]=1,那么x2=5,没有符合条件的解;假设[x]=2,那么x2=7,有一个符合条件的解x=7.因此,A∩B={-1,7}.13.【解析】A的子集有∅,{2},{3},{2,3},共4个.答案:414.【解析】S=R,T={y|y≥1},因此S∩T={y|y≥1}.答案:{y|y≥1}15.【解析】由A∩B={2},可知集合A与B只有一个公共元素为2,只有在a=2时知足题意,因此a=2.答案:216.【解题指南】借助数轴先表示出集合A,再求UA.【解析】如图,∵A={x|x≥1}∪{x|x≤0},∴UA={x|0<x<1}.答案:{x|0<x<1}17.【解析】∵-3∈{a-3,2a-1,a2+1} ,∴a-3=-3或2a-1=-3,∴a=0或a=-1.当a=0时,a-3=-3,2a-1=-1,a2+1=1,适合条件;当a=-1时,a-3=-4,2a-1=-3,a2+1=2,适合条件.从而,a=0或a=-1.18.【解析】(1)A∩B={x|1<x<3}.(2)∵RA={x|-4≤x≤1},∴(RA)∩B={x|-2<x≤1}.(3)∵RB={x|x≤-2或x≥3},∴A∪(RB)={x|x≤-2或x>1}.19.【解析】B={2,3},C={-4,2},而A∩B≠∅,那么2,3至少有一个元素在A中.又A∩C=∅,∴2∉A,3∈A,即9-3a+a2-19=0,得a=5或-2,而a=5时,A=B,与A∩C=∅矛盾,∴a=-2.20.【解析】由U A={-1},可得1U,1A,-∈⎧⎨-∉⎩因此()22a31,a a21,⎧--=-⎪⎨-+≠-⎪⎩解得a=4或a=2.当a=2时,A={2,4},知足A⊆U,符合题意.当a=4时,A={2,14},不知足A⊆U,故舍去.综上a的值为2.21.【解析】(1)∵A={x|3≤x<7},B={x|2<x<10},∴A∪B={x|2<x<10}.∵A={x|3≤x<7},∴RA={x|x<3或x≥7},∴(RA)∩B={x|x<3或x≥7}∩{x|2<x<10}={x|2<x<3或7≤x<10}.(2)如图,∴当a>3时,A∩C≠∅.22.【解析】(1)∵a=3,P={x|4≤x≤7},RP={x|x<4或x>7},Q={x|-2≤x≤5},∴(RP)∩Q={x|-2≤x<4}.(2)∵P⊆Q,∴对P分情形进行讨论.①当P≠∅时,a12,2a15,0a2; 2a1a1,+≥-⎧⎪+≤∴≤≤⎨⎪+≥+⎩②当P=∅时,2a+1<a+1,∴a<0.综上实数a的取值范围为(-∞,2].【方式技术】分类讨论思想的本质解答此题时用到了分类讨论思想,分类讨论思想是将整体问题化为部份问题来解决,在每部份问题中相当于在原先题干的基础上又附加了一个条件.运用分类讨论思想来解题时,必需要统一分类标准,保证分类时不重、不漏,并力求最简.。
高中数学 第二章 函数测试题 北师大版必修1-北师大版高一必修1数学试题
第二章测试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列函数中,在(-∞,0)上为递增的是( ) A .f (x )=-2x +1 B .g (x )=|x -1| C .y =1xD .y =-1x[答案] D[解析] 熟悉简单函数的图像,并结合图像判断函数单调性,易知选D. 2.下列四个图像中,表示的不是函数图像的是( )[答案] B[解析] 选项B 中,当x 取某一个值时,y 可能有2个值与之对应,不符合函数的定义,它不是函数的图像.3.函数f (x )=x -2+1x -3的定义域是( ) A .[2,3)B .(3,+∞)C .[2,3)∪(3,+∞)D .(2,3)∪(3,+∞)[答案] C[解析] 要使函数有意义,x 需满足⎩⎪⎨⎪⎧x -2≥0x -3≠0解得x ≥2且x ≠3.故选C.4.二次函数y =-2(x +1)2+8的最值情况是( ) A .最小值是8,无最大值 B .最大值是-2,无最小值 C .最大值是8,无最小值 D .最小值是-2,无最大值 [答案] C[解析] 因为二次函数开口向下,所以当x =-1时,函数有最大值8,无最小值. 5.已知A =B =R ,x ∈A ,y ∈B ,f :x →y =ax +b 是从A 到B 的映射,若1和8的原像分别是3和10,则5在f 作用下的像是( )A .3B .4C .5D .6[答案] A[解析] 由已知可得⎩⎪⎨⎪⎧3a +b =1,10a +b =8,解得⎩⎪⎨⎪⎧a =1b =-2.于是y =x -2,因此5在f 下的像是5-2=3.6.若函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,f x +2,x <0,那么f (-3)的值为( ) A .-2 B .2 C .0 D .1[答案] B[解析] 依题意有f (-3)=f (-3+2)=f (-1)=f (-1+2)=f (1)=1+1=2,即f (-3)=2.7.不论m 取何值,二次函数y =x 2+(2-m )x +m 的图像总过的点是( ) A .(1,3) B .(1,0) C .(-1,3) D .(-1,0)[答案] A[解析] 由题意知x 2+2x -y +m (1-x )=0恒成立,∴⎩⎪⎨⎪⎧x 2+2x -y =01-x =0,解得⎩⎪⎨⎪⎧x =1y =3,∴图像总过点(1,3).8.定义在R 上的偶函数f (x )在区间[-2,-1]上是增函数,将f (x )的图像沿x 轴向右平移2个单位,得到函数g (x )的图像,则g (x )在下列区间上一定是减函数的是( )A .[3,4]B .[1,2]C .[2,3]D .[-1,0][答案] A[解析] 偶函数f (x )在[-2,-1]上为增函数,则在[1,2]上为减函数,f (x )向右平移2个单位后在[3,4]上是减函数.9.若函数f (x )是定义在[-6,6]上的偶函数,且在[-6,0]上单调递减,则( ) A .f (3)+f (4)<0 B .f (-3)-f (-2)<0 C .f (-2)+f (-5)<0 D .f (4)-f (-1)>0 [答案] D[解析] 由题意知函数f (x )在[0,6]上递增.A 中f (3)+f (4)与0的大小不定,A 错;B 中f (-3)-f (-2)=f (3)-f (2)>0,B 错;C 中f (-2)+f (-5)=f (2)+f (5)与0的大小不定,C 错;D 中f (4)-f (-1)=f (4)-f (1)>0,D 正确. 10.若函数y =kx +5kx 2+4kx +3的定义域为R ,则实数k 的取值X 围为( )A .(0,34)B .(34,+∞)C .(-∞,0)D .[0,34)[答案] D[解析]∵函数的定义域为R ,∴kx 2+4kx +3恒不为零,则k =0时,成立;k ≠0时,Δ<0,也成立.∴0≤k <34.11.函数y =ax 2-bx +c (a ≠0)的图像过点(-1,0),则ab +c +ba +c -ca +b的值是( )A .-1B .1 C.12 D .-12[答案] A[解析]∵函数y =ax 2-bx +c (a ≠0)的图像过(-1,0)点,则有a +b +c =0,即a +b =-c ,b +c =-a ,a +c =-b . ∴ab +c +ba +c -ca +b=-1.12.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值X 围是( )A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23D.⎣⎢⎡⎭⎪⎫12,23[答案] A[解析]由题意得|2x-1|<13⇒-13<2x-1<13⇒23<2x<43⇒13<x<23,∴选A. 第Ⅱ卷(非选择题共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中横线上)13.将二次函数y=x2+1的图像向左平移2个单位,再向下平移3个单位,所得二次函数的解析式是________.[答案]y=x2+4x+2[解析]y=(x+2)2+1-3=(x+2)2-2=x2+4x+2.14.若函数f(x)=x2-|x+a|为偶函数,则实数a=________.[答案]0[解析]本题考查偶函数的定义等基础知识.∵f(x)为偶函数,∴f(-x)=f(x),即x2-|-x+a|=x2-|x+a|,∴|x-a|=|x+a|,平方,整理得:ax=0,要使x∈R时恒成立,则a=0.15.已知函数f(x),g(x)分别由下表给出则f[g(1)]的值为当g[f(x)]=2时,x=________.[答案] 1 1[解析]f[g(1)]=f(3)=1,∵g[f(x)]=2,∴f(x)=2,∴x=1.16.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,例如:解析式为y=2x2+1,值域为{9}的“孪生函数”有三个:①y=2x2+1,x∈{-2};②y=2x2+1,x∈{2};③y=2x2+1,x∈{-2,2}.那么函数解析式为y=2x2+1,值域为{1,5}的“孪生函数”有________个.[答案] 3[解析] 根据定义,满足函数解析式为y =2x 2+1,值域为{1,5}的“孪生函数”有:y =2x 2+1,x ∈{0,2};y =2x 2+1,x ∈{0,-2},y =2x 2+1,x ∈{-2,0,2}共3个.三、解答题(本大题共6个小题,满分70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知f (x )=⎩⎪⎨⎪⎧x 2|x |≤11 |x |>1,(1)画出f (x )的图像; (2)求f (x )的定义域和值域.[分析] 解答本题可分段画出图像,再结合图像求函数值域. [解析] (1)利用描点法,作出f (x )的图像,如图所示.(2)由条件知,函数f (x )的定义域为R .由图像知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1], 当x >1或x <-1时,f (x )=1, 所以f (x )的值域为[0,1].18.(本小题满分12分)已知函数f (x )=x 2-2ax +2,x ∈[-3,3]. (1)当a =-5时,求f (x )的最大值和最小值;(2)某某数a 的取值X 围,使y =f (x )在区间[-3,3]上是单调函数. [解析] (1)当a =-5时,f (x )=x 2+10x +2=(x +5)2-23,x ∈[-3,3], 又因为二次函数开口向上,且对称轴为x =-5, 所以当x =-3时,f (x )min =-19, 当x =3时,f (x )max =41.(2)函数f (x )=(x -a )2+2-a 2的图像的对称轴为x =a ,因为f (x )在[-3,3]上是单调函数,所以a ≤-3或a ≥3.19.(本小题满分12分)已知函数f (x )=1a -1x(a >0,x >0).(1)求证:f (x )在(0,+∞)上是增加的;(2)若f (x )在[12,2]上的值域是[12,2],求a 的值.[解析] (1)设x 1,x 2是(0,+∞)上的任意两个实数,且x 1<x 2.则f (x 1)-f (x 2)=(1a -1x 1)-(1a -1x 2)=1x 2-1x 1=x 1-x 2x 1x 2.∵0<x 1<x 2,∴x 1-x 2<0,x 1x 2>0. ∴x 1-x 2x 1x 2<0.∴f (x 1)<f (x 2). ∴函数f (x )在(0,+∞)上是增加的. (2)∵f (x )在[12,2]上的值域是[12,2],又∵f (x )在[12,2]上是增加的,∴⎩⎪⎨⎪⎧f 12=12,f 2=2,即⎩⎪⎨⎪⎧1a -2=121a -12=2.∴a =25.20.(本小题满分12分)已知幂函数y =f (x )=x -2m 2-m +3,其中m ∈{x |-2<x <2,x ∈Z },满足:(1)是区间(0,+∞)上的增函数; (2)对任意的x ∈R ,都有f (-x )+f (x )=0.求同时满足(1),(2)的幂函数f (x )的解析式,并求x ∈[0,3]时f (x )的值域. [解析] 由{x |-2<x <2,x ∈Z }={-1,0,1}. (1)由-2m 2-m +3>0,∴2m 2+m -3<0,∴-32<m <1,∴m =-1或0.由(2)知f (x )是奇函数.当m =-1时,f (x )=x 2为偶函数,舍去. 当m =0时,f (x )=x 3为奇函数. ∴f (x )=x 3.当x ∈[0,3]时,f (x )在[0,3]上为增函数, ∴f (x )的值域为[0,27].21.(本小题满分12分)设函数f (x )=x 2-2|x |-1(-3≤x ≤3). (1)证明:f (x )是偶函数;(2)指出函数f (x )的单调区间,并说明在各个单调区间上f (x )是增函数还是减函数;(3)求函数的值域.[解析] (1)证明:∵定义域关于原点对称,f (-x )=(-x )2-2|-x |-1=x 2-2|x |-1=f (x ),即f (-x )=f (x ),∴f (x )是偶函数.(2)当x ≥0时,f (x )=x 2-2x -1=(x -1)2-2, 当x <0时,f (x )=x 2+2x -1=(x +1)2-2,即f (x )=⎩⎪⎨⎪⎧x -12-2,x ≥0,x +12-2,x <0.根据二次函数的作图方法,可得函数图像,如图函数f (x )的单调区间为[-3,-1),[-1,0),[0,1),[1,3].f (x )在区间[-3,-1),[0,1]上为减函数,在[-1,0),[1,3]上为增函数.(3)当x ≥0时,函数f (x )=(x -1)2-2的最小值为-2,最大值为f (3)=2. 当x <0时,函数f (x )=(x +1)2-2的最小值为-2,最大值为f (-3)=2. 故函数f (x )的值域为[-2,2].22.(本小题满分12分)已知函数f (x )=x +x 3,x ∈R . (1)判断函数f (x )的单调性,并证明你的结论;(2)若a ,b ∈R ,且a +b >0,试比较f (a )+f (b )与0的大小. [解析] (1)函数f (x )=x +x 3,x ∈R 是增函数, 证明如下:任取x 1,x 2∈R ,且x 1<x 2,则f (x 1)-f (x 2)=(x 1+x 31)-(x 2+x 32)=(x 1-x 2)+(x 31-x 32)=(x 1-x 2)(x 21+x 1x 2+x 22+1)=(x 1-x 2)[(x 1+12x 2)2+34x 22+1].因为x 1<x 2,所以x 1-x 2<0,(x 1+12x 2)2+34x 22+1>0.所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )=x +x 3,x ∈R 是增函数. (2)由a +b >0,得a >-b ,由(1)知f (a )>f (-b ), 因为f (x )的定义域为R ,定义域关于坐标原点对称, 又f (-x )=(-x )+(-x )3=-x -x 3=-(x +x 3)=-f (x ), 所以函数f (x )为奇函数.于是有f(-b)=-f(b),所以f(a)>-f(b),从而f(a)+f(b)>0.。
(北师大版2019课标)高中数学必修第一册 第一章综合测试(含答案)
第一章综合测试一、单选题(每小题5分,共40分)1.已知集合{}{}31A x x x Z B x x x Z =∈=∈<,,>,,则A B =( )A .∅B .){3223--,,,C .{}202-,,D .{}22-,2.命题“()01x x e x ∀∈+∞+,,≥”的否定是( ) A .()01x x e x ∃∈+∞+,,≥B .()01x x e x ∀∈+∞+,,< C .()01x x e x ∃∈+∞+,,<D .()01x x e x ∀∈-∞+,,≥ 3.若集合{}0A x x =<,且B A ⊆,则集合B 可能是( ) A .{}1x x ->B .RC .{}23--,D .{}3101--,,, 4.若a b c R ∈,,且a b >,则下列不等式成立的是( ) A .22a b >B .11a b<C .a c b c >D .2211a bc c ++>5.已知a b R ∈,,则“20a b +=”是“2ab=-”成立的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.某市原来居民用电价为0.52元/kW h ,换装分时电表后,峰时段(早上八点到晚上九点)的电价为0.55元/kW h ,谷时段(晚上九点到次日早上八点)的电价为0.35元/kW h .对于一个平均每月用电量为200kW h 的家庭,换装分时电表后,每月节省的电费不少于原来电费的10%,则这个家庭每月在峰时段的平均用电量至多为( ) A .110kW hB .114kW hC .118kW hD .120kW h7.已知210a +<,则关于x 的不等式22450x ax a -->的解集是( ) A .{5x x a <或}x a -> B .{5x x a >或}x a -< C .{}5x a x a -<<D .{}5x a x a -<<8.若102x <<,则函数y = )A .1B .12C .14D .18二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分)9.已知集合[)()25A B a ==+∞,,,.若A B ⊆,则实数a 的值可能是( ) A .3-B .1C .2D .510.下列不等式不一定正确的是( )A .12x x+≥B .222x y xy+≥C .222x y xy +>D .2x y+≥ 11.已知2323x y <<,<<,则( )A .2x y +的取值范围为()69,B .2x y -的取值范围为()23,C .x y -的取值范围为()11-,D .xy 的取值范围为()49,12.23520x x +->的充分不必要条件是( )A .132x -<<B .102x -<<C .12x <<D .16x -<<三、填空题(每小题5分,共20分)13.已知集合{}2114M m m =++,,,如果5M ∈,那么m =________.14.二次函数()2y ax bx c x R =++∈的部分对应值如表:则a =________;不等式20ax bx c ++>的解集为________.15.已知{}{}2212210A x x B x x ax a ==-+-<<,<,若A B ⊆,则a 的取值范围是________. 16.若正数a b ,满足1a b +=,则113232a b +++的最小值为________. 四、解答题(共70分)17.(10分)判断下列命题是全称量词命题还是存在量词命题. (1)任何一个实数除以1,仍等于这个数;(2)至少有一个整数,它既能被11整除,又能被9整除;(3)()210x R x ∀∈+,≥;(4)22x R x ∃∈,<.18.(12分)已知集合{3512A x x B x x ⎧⎫=-=⎨⎬⎩⎭<≤,<或}2x U R =>,.(1)求()UA B AB ,;(2)若{}2131C x m x m =-+<≤,且B C U =,求m 的取值范围.19.(12分)(1)已知集合{}{2124A a B ==,,,,,且A B B =,求实数a 的取值范围;(2)已知:20:40P x q ax -->,>,其中a R ∈,若p 是q 的必要不充分条件,求实数a 的取值范围.20.(12分)“绿水青山就是金山银山”.随着经济的发展,我国更加重视对生态环境的保护,2018年起,政府对环保不达标的养鸡场进行限期整改或勒令关闭.一段时间内,鸡蛋的价格起伏较大(不同周价格不同).假设第一周、第二周鸡蛋的价格分别为x 元、y 元(单位:kg );甲、乙两人的购买方式不同:甲每周购买3kg 鸡蛋,乙每周购买10元钱鸡蛋.(1)若810x y ==,,求甲、乙两周购买鸡蛋的平均价格.(2)判断甲、乙两人谁的购买方式更实惠(平均价格低视为实惠),并说明理由.21.(12分)解关于x 的不等式()22340x ax a a R +-∈<.22.(12分)为了缓解市民吃肉难的生活问题,某生猪养殖公司欲将一批猪肉用冷藏汽车从甲地运往相距120千米的乙地,运费为每小时60元,装卸费为1 000元,猪肉在运输途中的损耗费(单位:元)是汽车速度(km /h )值的2倍.(说明:运输的总费用=运费+装卸费+损耗费) (1)若汽车的速度为每小时50千米,试求运输的总费用.(2)为使运输的总费用不超过1 260元,求汽车行驶速度的范围.(3)若要使运输的总费用最小,汽车应以每小时多少千米的速度行驶?第一章综合测试答案解析一、 1.【答案】D【解析】选D .因为{}{}321012A x x x Z =∈=--<,,,,,,{}{11B x x x Z x x =∈=>,>或}1x x Z -∈<,,所以{}22AB =-,.2.【答案】C【解析】选C .命题为全称量词命题,则命题“()01x x e x ∀∈+∞+,,≥”的否定是“()01xx e x ∃∈+∞+,,<”. 3.【答案】C【解析】选C .因为23A A -∈-∈,,所以{}23A --⊆,. 4.【答案】D【解析】选D .选项A :01a b ==-,,符合a b >,但不等式22a b >不成立,故本选项是错误的;选项B :当01a b ==-,符合已知条件,但零没有倒数,故11a b<不成立,故本选项是错误的;选项C :当0c =时,a c b c >不成立,故本选项是错误的; 选项D :因为210c +>,所以根据不等式的性质,由a b >能推出2211a bc c ++>. 5.【答案】B【解析】选B .220aa b b=-⇒+=,反之不成立. 所以“20a b +=”是“2ab=-”成立的必要不充分条件.6.【答案】C【解析】选C .设每月峰时段的平均用电量为kW h x , 则谷时段的用电量为()200kW h x -;根据题意,得:()()()0.520.550.520.352002000.5210%x x -+--⨯⨯≥,解得118x ≤. 所以这个家庭每月峰时段的平均用电量至多为118kW h . 7.【答案】A【解析】选A .方程22450x ax a --=的两根为5a a -,. 因为210a +<,所以12a -<, 所以5a a ->.结合二次函数2245y x ax a =--的图象,得原不等式的解集为{5x x a <或}x a ->,故选A . 8.【答案】C【解析】选C .因为102x <<,所以2140x ->,所以2211414122224x x +-⨯⨯=≤,当且仅当2x =4x =. 二、9.【答案】AB【解析】选AB .因为A B ⊆,所以2a <,结合选项可知,实数a 的值可能是3-和1. 10.【答案】BCD 【解析】选BCD .因为x 与1x同号, 所以112x x x x+=+≥,A 正确; 当x y ,异号时,B 不正确;当x y =时,222x y xy +=,C 不正确;当11x y ==-,时,D 不正确.11.【答案】ACD【解析】选ACD .因为2323x y <<,<<, 所以49426xy x <<,<<, 所以629x y +<<,而32y ---<<,所以12411x y x y ---<<,<<. 12.【答案】BC【解析】选BC .由不等式23520x x +->,可得22530x x --<,解得132x -<<,由此可得:选项A ,132x -<<是不等式23520x x +->成立的充要条件;选项B ,102x -<<是不等式23520x x +->成立的充分不必要条件;选项C ,12x <<是不等式23520x x +->成立的充分不必要条件; 选项D ,16x -<<是不等式23520x x +->成立的必要不充分条件. 三、13.【答案】4或1或1-【解析】①当15m +=时,4m =,此时集合{}1520M =,,,符合题意, ②当245m +=时,1m =或1-,若1m =,集合{}125M =,,,符合题意,若1m =-,集合{}105M =,,,符合题意, 综上所求,m 的值为4或1或1-. 14.【答案】1 {2x x -<或}3x >【解析】由表知2x =-时03y x ==,时,0y =, 所以二次函数2y ax bx c =++可化为()()23y a x x =+-.又因为1x =时,6y =-,所以1a =,图象开口向上,结合二次函数的图象可得不等式20ax bx c ++>的解集为{2x x -<或}3x >. 15.【答案】12a ≤≤【解析】方程22210x ax a -+-=的两根为11a a +-,,且11a a +->, 所以{}11B x a x a =-+<<.因为A B ⊆,所以1112a a -⎧⎨+⎩≤≥,解得12a ≤≤.16.【答案】47【解析】由1a b +=,知()()113232732323232910b a a b a b ab ++++==+++++, 又2124a b ab +⎫⎛= ⎪⎝⎭≤(当且仅当12a b ==时等号成立), 所以499104ab +≤,所以749107ab +≥. 四、17.【答案】(1)命题中含有全称量词“任何一个”,故是全称量词命题. (2)命题中含有存在量词“至少有一个”,是存在量词命题. (3)命题中含有全称量词“∀”,是全称量词命题. (4)命题中含有存在量词“∃”,是存在量词命题.18.【答案】(1)因为集合{3512A x x B x x ⎧⎫=-=⎨⎬⎩⎭<≤,<或}2x >,所以32AB x x ⎧⎫=⎨⎬⎩⎭≤或}2x >,因为{1U R B x x ==,<或}2x >,所以{}U12B x x =≤≤.所以()U 312AB x x ⎧⎫=⎨⎬⎩⎭≤≤.(2)依题意得:2131211312m m m m -+⎧⎪-⎨⎪+⎩<,<,≥,即2113m m m ⎧⎪-⎪⎨⎪⎪⎩>,<,≥,所以113m ≤<.19.【答案】(1)由题知BA ⊆.2=时,4a =,检验当4a =时,{}{}1241612A B ==,,,,,符合题意. 4=时,16a =,检验当16a =时,{}{}12425614A B ==,,,,,符合题意. 2a 时,0a =或1,检验当0a =时,{}{}124010A B ==,,,,,符合题意. 当1a =时,{}1241A =,,,,由于元素的互异性,所以舍去. 综上:4a =或16a =或0a =.(2)设{}{}240A x x B x ax ==->,>, 因为p 是q 的必要不充分条件,所以BA .①当0a >时,42a>,所以02a <<.②当0a <时,不满足题意.③当0a =时,:40q ->,即B ≠∅,符合题意. 综上:02a ≤<.20.【答案】(1)因为810x y ==,,所以甲两周购买鸡蛋的平均价格为()3831096⨯+⨯=元,乙两周购买鸡蛋的平均价格为()208010109810=+元. (2)甲两周购买鸡蛋的平均价格为3362x y x y++=, 乙两周购买鸡蛋的平均价格为2021010xyx y x y=++, 由(1)知,当810x y ==,时,乙两周购买鸡蛋的平均价格比甲两周购买鸡蛋的平均价格低,猜测乙的购买方式更实惠.证法一(比较法):依题意0x y ,>,且x y ≠,因为()()()()22420222x y xy x y x y xy x y x y x y +--+-==+++>, 所以22x y xyx y++>, 所以乙两周购买鸡蛋的平均价格比甲两周购买鸡蛋的平均价格低,即乙的购买方式更实惠. 证法二(分析法):依题意0x y ,>,且x y ≠, 要证:22x y xyx y++>, 只需证:()24x y xy +>只需证:222x y xy +>, 只需证:x y ≠(已知).所以乙两周购买鸡蛋的平均价格比甲两周购买鸡蛋的平均价格低,即乙的购买方式更实惠. 21.【答案】由于()22340x ax a a R +-∈<可化为()()40x a x a -+<,且方程()()40x a x a -+=的两个根分别是a 和4a -.当4a a =-,即0a =时,不等式的解集为∅; 当4a a ->,即0a >时,解不等式得4a x a -<<; 当4a a -<,即0a <时,解不等式得4a x a -<<.综上所述,当0a =时,不等式的解集为∅;当0a >时,不等式的解集为{}4x a x a -<<;当0a <时,不等式的解集为{}4x a x a -<<.22.【答案】(1)当汽车的速度为每小时50千米时,运输的总费用为:()120601000250124450⨯++⨯=元. (2)设汽车行驶的速度为km /h x , 由题意可得:12060100021260x x⨯++≤, 化简得213036000x x -+≤, 解得4090x ≤≤,故为使运输的总费用不超过1260元,汽车行驶速度不低于40km /h 时,不高于90km /h . (3)设汽车行驶的速度为km /h x ,则运输的总费用为12072006010002100010001240x x x ⨯++++=≥, 当72002x x=,即60x =时取得等号, 故若要使运输的总费用最小,汽车应以每小时60千米的速度行驶.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新钢中学2011-2012学年度高一上学期第一次月考
数学答题卷
一、选择题(10×5=50分)
题号
1
2
3
4
5
6
7
8
9
10
答案
C
C
D
C
B
A
A
A
C
D
二、填空题(5×5=25分)
11、112、 13、12
14、 15、
三.解答题(本大题共6小题,共75分,解答应写出文字说明证明过程或推演步骤.)
16.(本小题满分12分)(1)写出集合B={x|0<x<4,x∈N}的所有真子集.
(2)已知A={1,3,a},B={1,a2},且A∪B={1,3,a},求a.
17.(本小题满分12分)证明:函数 在 上是增加的。
18.(本小题满分12分)已知全集 ,集合 ,集合 ,求
19.(本小题满分12分)已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B= ,求a的取值范围.
7.函数 的值域为()
A、 B、 C、 D、
8.如果函数 在区间 上是减少的,那么实数 的取值范围是()
A B C D
9.已知集合A={x|x<a},B={x|1<x<2},且A∪( RB)=R,则实数a的取值范围()
A. a≤2 B. a<1 C. a≥2 D. a>2
10.函数f(x)=︱x+3︱的图象是( )
二.填空题(本大题共5小题,每小题5分,共25分)
11.已知集合A={-1,3,2m-1},集合B={3,m2},若B A,则实数m=.
12.已知A={x|x≤1或x>3},B={x|x>2},则( RA)∪B=.
13、已知 则
14、将二次函数 的顶点移到 后,得到的函数的解析式为。
15.设 是映射,且 。
新钢中学2011-2012学年度高一上学期第一次月考
数学试题
1.选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知集合 , , ,则 ( )
A. B. D.以上都不对
2.集合 ,那么 ()
A、 B、 C、 D、
3.二次函数 的对称轴为 ,则 ()
A B 1 C 17 D 25
4.满足条件 的集合 的个数是()
A、4 B、3 C、2 D、1
5.已知 ,则 等于( )
A. B. C. D.
6.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B=()
A.{x|x≥-1} B.{x|x≤2} C.{x|0<x≤2} D.{x|-1≤x≤2}
20.(本小题满分13分)求下列函数的定义域:
(1)
(2)若函数 的定义域为 ,求函数 的定义域。
21.(本小题满分14分)已知函数 的定义域为 ,且 为增函数,
(1)证明:
(2)已知 ,且 求 的取值范围。