分式的乘除(1)
分式的乘除(第1课时)教案分析
分式的乘除(第1课时)教案分析今日,我说课的内容是义务教育人教版八班级数学上册第十五章第二节第1课时分式的乘除,依据新课程的理念,对于本节课,我将从说教材、说学情、说教学目标、说教法学法、说教学过程、说板书、说教学反思等七个方面呈现我的教学设计。
1.说教材教学内容有:分式的乘、除法法则和运用法则进行的化简运算。
地位和作用:本节课是在学习了分数的乘除法、分式的基本性质、分式的约分和因式分解的基础上,来学习分式的乘除法;同时,它又为学习分式的加减法和分式方程等知识奠定了基础,因此,本节课在中学数学的学习中起着承上启下的作用。
本节课在教材编排上很有特色,它以同学熟识的长方体容积问题及工程问题引入课题,意在表达分式的乘除运算是由实际需要产生的,使同学感受到数学与生活的联系,从而激发同学的求知欲。
2.在学情方面为了更好地了解同学的知识状况,课前我做了一个学情调查表,内容设置涉及最简分式、因式分解、约分等前置内容,及本节所要学习的部分知识点,通过学情调查并结合实际,发觉八班级同学新奇、简单激昂、好表现,对旧知识的积累,已具备肯定自主、互动、合作探究学习的技能和阅历,不足之处有:即兴构思技能、抽象思维技能有待提高。
3.在教学目标方面基于对八班级同学学情的分析及本节课在教材的地位和作用,特制定如下教学目标。
知识与技能目标:理解分式的乘除法法则,能进行简约的分式乘除法运算。
过程与方法目标:经受从分数的乘除法运算到分式的乘除法运算的过程,培育同学类比的探究技能,加深从非常到一般的思想认识。
情感立场与价值观目标:教学中让同学在主动探究,合作沟通中渗透,类比转化的思想;使同学在学知识的同时感受探究的乐趣和胜利的体验。
依据以上分析本节课的教学。
重点为:运用分式的乘除法则进行运算。
难点为:分子、分母为多项式的分式乘除法运算。
难点中的疑点:如何确定分子、分母的公因式。
4.说教法学法教法上我主要采纳启发式教学法、讲授法。
学法上我采纳自主探究、合作沟通探究的学习方法。
8.4分式的乘除(1)
初中数学八年级下册8.4分式的乘除(1)班级 姓名 学号学习目标:(一)知识与技能目标使学生理解并掌握分式的乘除法则,运用法则进行运算,能解决一些与分式有关的实际问题.(二)过程与方法目标经历探索分式的乘除运算法则的过程,并能结合具体情境说明其合理性(三)情感与价值目标渗透类比转化的思想,让学生在学知识的同时学到方法,受到思维训练. 学习重点:掌握分式的乘除运算。
学习难点:分子、分母为多项式的分式乘除法运算。
教学过程一、情境引入:你还记得分数的乘除法法则吗?你能用类似于分数的乘除法法则计算下面两题吗?(1)b ac 34·3229ac b = (2)b ac 34 3229acb = 二、探究学习:(1)你能说出前面两道题的计算结果吗?(2)你能验证分式乘.除运算法则是合理的.正确的吗?(3)类比分数的乘除法则,你能从计算中总结出怎样进行分式的乘除法运算吗? 归纳小结:(1)分式的乘法法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母。
即: a b ×c d =ac bd。
(2)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
即:a b ÷c d =a b ×d c =ad bc。
(3)分式的乘方法则:分式乘方是把分子、分母各自乘方。
即:( a b )n =a nb n三、典型例题:例1、计算:1. ba a 2284-.6312-a ab 2。
(c b a 4+)2 例2、计算、1.x y 62÷231x 2.2244196a a a a +++-÷12412+-a a 归纳小结:分式的乘法运算,先把分子、分母分别相乘,然后再进行约分;进行分式除法运算,需转化为乘法运算;根据乘法法则,应先把分子、分母分别相乘,化成一个分式后再进行约分,但在实际演算时,这样做显得较繁琐,因此,可根据情况先约分,再相乘,这样做有时简单易行,又不易出错.四、反馈练习:(1) xyz y x z 54232÷- (2) b a b a 22+-.2222b a b a -+ (3) (a-4).1681622+--a a a (4) 2222)1()1()1(--+x x x ÷1)1(22--x x 五、探究交流: (1)在夏季你是怎么挑选西瓜的呢?(2)你认为买大西瓜合算还是买小西瓜合算?七、课堂小结:1、分式的分子、分母都是几个因式的积的形式,约去分子、分母中相同因式的最低次幂,注意系数也要约分。
分式的乘除(1)
4ac 3b
9b 3 2 ac
a 2 ( ) b
2
你能说说分式乘除法法则吗?
分数与分式的乘除法法则类似
b d bd (1) ; a c ac b d b c bc (2) . a c a d ad
• 分数的乘除法法则: • 分式的乘除法法则: • 两个分数相乘,把分 • 两个分式相乘,把分子 子相乘的积作为积 相乘的积作为积的分 的分子,把分母相乘 子,把分母相乘的积作 的积作为积的分母; 为积的分母; • 两个分数相除,把除 • 两个分式相除,把除式 数的分子分母颠倒 的分子分母颠倒位置 位置后,再与被除式 后,再与被除式相乘. 相乘.
积也越大.
因此,买大西瓜更合算.
课堂小结
这节课你有哪些收获?说出来与大家 分享。 这节课你还有什么疑问吗?说出来我 们一起解决。
作业布置:
内:P49 EX 1
外:课课练
2
探究交流
• 在夏季大家都吃过西瓜,但你买过西瓜 吗?你认为买大西瓜合算还是买小西瓜 合算?你知道衡量的标准是什么?
你会挑西瓜吗?
通常购买同一品种的西瓜时, 西瓜的质量越大,花费的钱越多. 因此人们希望西瓜瓤占整个西瓜 的比例越大越好.假如我们把西瓜 都看成球形,并把西瓜瓤的密度看 成是均匀的,西瓜的皮厚都是d .
归纳小结
(1)分式的乘法法则:分式乘以分式, 用分子的积做积的分子,分母的积做积 的分母。 (2)分式的除法法则:分式除以分式, 把除式的分子、分母颠倒位置后,与被 除式相乘。 (3)分式的乘方法则:分式乘方,把分 子、分母各自乘方。
例1.计算:
a 4 12ab ; 1 2 8a b 3a 6
已知球的体积公式为 4 3 V R (其中R为球的半径), 3 那么 :
分式的乘除(一)
反思小结: (1)分式的乘除法运算的法则; (2)运用法则时要注意符号的变化; (3)注意因式分解在分式的乘除法中的运用; (4)步骤要完整,结果要化为最简分式或整式;
达标检测(时量:5 分钟 满分:10 分) 1.下列各式正确的是( )
1 ( a b) 1 A. ab a2 a 2 (a 1) a 1 C. a
学习目标 理解并掌握分式的乘除法 则,运用法则进行运算,能 解决一些与分式有关的实际 问题.
• 观察下列运算
2 4 2 4 5 2 5 2 ,........... , 3 5 3 5 7 9 79 2 4 2 5 25 5 2 5 9 5 9 ,.... 3 5 3 4 3 4 7 9 7 2 72 b d b d 猜一猜 ? ....... ? a c a c 你能总结出分式乘除法的法则吗?与同伴交流。
4 4 3 3 答:)西瓜瓤的体积V1 (R d ) , 整个西瓜的体积V R (1 3 3 V1 d 3 (2) (1 ) V R
合作探究
•
◆ 探究任务三:
3a 3b 25a 2 b 3 2 (1) 10 ab a b2
x2 4y2 x 2y 2 2 2 (2) x 2 xy y 2 x 2 xy
分式运算的结果通常要化成最简分式或整式.
• 做一做
通常购买同一品种的西瓜时,西瓜的质量越大,花费的 钱越多,因此人们希望西瓜瓤占整个西瓜的比例越大 越好.假如我们把西瓜都看成球形,并把西瓜瓤的密 度看成是均匀的,西瓜的皮厚都是d,已知球的体积公 4 V R 3 (其中R为球的半径),那么 式为 3 • (1)西瓜瓤与整个西瓜的体积各是多少? (2)西瓜瓤与整个西瓜的体积的比是多少? (3)你认为买大西瓜合算还是买小西瓜合算?与同伴交 流.
10.4分式的乘除(1)爱国精品个性2013年12月26日
2
2
再提醒 1、分式的分子、分母都是几个 因式的积的形式,约去分子、分 母中相同因式的最低次幂,注意 系数也要约分. 2、当分式的分子、分母为多项 式时,先要进行因式分解,才能 够依据分式的基本性质进行约分.
课堂小结
这节课你有哪些收获?说 出来与大家分享.
这节课你还有什么疑问吗? 说出来我们一起解决.
初中数学八年级下册 (苏科版)
10.4分式的乘法(1)
聚焦导学案:
请你归纳: (一)分式把分 母相乘的积作为积的分母.
聚焦导学案:
你能用字母表示分式的乘 法运算法则吗?
(二)字母表示分式的乘 法运算法则:
b d bd a c ac
2 2
x 1 x 3x 2 (8) 2 ( x 1) x 4x 4 x 1
【拓展延伸】小组展示 ☆☆4.先化简,再求值:
2a 6 2 9 6a a (9) 2 4 4a a a 3 3 a 其中a 4
2
(10)变式题:化简求值:
ab 2题、 4c
2
典型例题
例2 :
y 1 1. 2 6 x 3x
2
2
a 6a 9 12 - 4a 2. 2 1 4a 4a 2a 1
例题讲解
y 1 1. 2 6 x 3x
2
2
y 2 解:原式 3x 6x 2 xy 2
聚焦导学案:
聚焦导学案:
请你归纳: (三)分式的除法法则:
▲分式除以分式,把除式的 分子、分母颠倒位置后,与 被除式相乘.
聚焦导学案:
思考:你能用字母表示上述 运算法则吗?
(四)用字母表示除法运算法则:
16.2.1分式的乘除(第1课时)
16.2.1分式的乘除(第1课时)【三维目标】1、知识目标:1)理解并掌握分式的乘除法法则2)运用法则进行运算,能解决一些与分式有关的实际问题。
2、能力目标:经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识。
3、情感目标:教学中让学生在自主探究,合作交流中渗透类比转化的思想,使学生感受探索的乐趣和成功的体验。
【教学重点难点】重点:运用分式的乘除法法则进行运算。
难点:分子、分母为多项式的分式乘除运算【教学课时】 2课时【教学过程】一、创设问题情境,引入新课问 题:大拖拉机m 天耕地a 公顷,小拖拉机n 天耕地b 公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?答:大拖拉机的工作效率是小拖拉机的⎪⎭⎫ ⎝⎛÷n b m a 倍引 入:从上面的问题可知,解决生活中的问题有时需要进行分式的乘除运算,那么分式的乘除是怎样运算的呢?这是我们这节课要学习的内容二、类比联想,探究新知问题1:分数的乘除(1)24248353515⨯⨯==⨯ (2)2725251035373721⨯÷=⨯==⨯(3) 24248353515x y x y xy⨯⨯==⨯ (4)2725251035373721y y y x y x x x ⨯÷=⨯==⨯ 问题2:类比分数的乘除法则猜想分式的乘除法则 乘法法则 除法法则分 数 两个分数相乘,把分子相乘的积作为分子,把分母相乘的积作为分母 两个分数相除,把除式的分子分母颠倒位置后,再与被除式相乘分 式两个分式相乘,把分子相乘的积作为分子,把分母相乘的积作为分母 两个分式相除,把除式的分子分母颠倒位置后,再与被除式相乘 符号表示 a b ·c d =ac bd ; a b ÷c d =a b ·d c =ad bc三、例题分析,应用新知例1 计算(1)3234xy y x ∙ (2)mm m 7149122-÷- 解: 2333264234)1(xy x xy x y y x ==∙ m m m m m m m m m mm m +-=+---=-∙-=-÷-7)7)(7()7()7(49171491)2(2222 例2 回顾开课时的问题并解决四、随堂测试,培养能力yx y x y x y x xy xy y x a xy ab b a +-∙-+÷-÷∙)4(32)3)(3(8512)2(916431222)( 五、课堂小结,知识归纳(1)分式的乘法法则和除法法则;(2)分式或分母是多项式的分式乘除法的解题步骤: ①把各分式中分子或分母里的多项式分解因式; ②应用分式乘除法法则进行运算;(注意:结果为最简分式或整式)六、作业课后习题1、2。
8.4分式的乘除(1)
你还记得分数的乘除法法则吗? 你能用类似于分数的乘除法法 则计算下面两题吗?
• 。
4 ac 3b
4ac 3b
9b 2 ac 3
2
2
9b 3 2 ac
探究学习
• (1)你能说出前面两道题的计算结果吗? • (2)你能验证分式乘、除运算法则是合 理的正确的吗? • (3)类比分数的乘除法则,你能从计算 中总结出怎样进行分式的乘除法运算吗?
反馈练习
2z z 1. 2 4 x y 5 xy
2 3
a-b a b 2. 2 2 2a 2b a b
2 2 2
2
16 - a (x 1) (1 x) ( x 1) 3. (a - 4) 2 4. 2 2 2 a 8a 16 ( x 1) x 1
ቤተ መጻሕፍቲ ባይዱ
2
例题讲解
y 2 ( a 3) 2 2a 1 解:原式 1. 3 x 2. 原式 2 6x ( 2a 1) 4(3 a ) xy 2 (a - 3)2 ( 2a 1) 4(3 - a)(2a 1)2 2
3-a 4(2a 1)
2
归纳小结:
• 分式的乘法运算,先把分子、分母分别 相乘,然后再进行约分;进行分式除法 运算,需转化为乘法运算;根据乘法法 则,应先把分子、分母分别相乘,化成 一个分式后再进行约分,但在实际演算 时,这样做显得较繁琐,因此,可根据 情况先约分,再相乘,这样做有时简单 易行,又不易出错.
归纳小结
• (1)分式的乘法法则:分式乘以分式, 用分子的积做积的分子,分母的积做积 的分母。 • (2)分式的除法法则:分式除以分式, 把除式的分子、分母颠倒位置后,与被 除式相乘。 • (3)分式的乘方法则:分式乘方,把分 子、分母各自乘方。
分式的乘除(1)课件
先算乘方,再算乘法
例题3: • 计算:
(4).(2a2bc)3 ( a3b )2
•
c
先 算 乘
8a 6b 3c 3
a6b2 c2
,
方 再 算
8a6b3c3
•
c2 a6b2
除 法
8a 6b 3c 5 a6b2
8bc3
例题3: • 计算:
• (5).( y x )2 (x y)3 x y yx
a b
a3 b3;
a
4
b
猜想
a b
a b
a n
b
a b
a b
an bn.
a4 b 4 ;
例•题2: • 计算:
(1).
( 3x )2 2y
(3x)2 (2 y)2
32 x2 22 y2
9x2 4y2
(2).
(
ab)3 2c
(ab)3
2c
(ab)3 (2c)3
a 3b 3 8c3
(x y)2 (x y)3 (x y)2 x y
(x y)2 • x y (x y)2 (x y)3
1
(x y)( x y)
1 x2 y2
例题4: • 计算:
(1) . ( x2 )2 • ( y2 )3 ( y )4
y
x
x
•
( x2 y
)2
•(
y2 x
)3
(
y x
回顾与思考
1、观察下列运算,你想到了什么?说出
来与同学们分享.
1
2 4 35
2 4 3 5
8 15
;
2
5 7
2 9
5 2 79
15.2.1_分式的乘除(1)(最新)
【例题】
【例1】 计算:
4x y ab3 5a 2 b 2 . (1) 3 (2) 2 2c 4cd 3y 2x
6x y 3x
【解析】 (1) 4 x y = 4 xy 2 . 3 3 2
3y 2x
2
ab 5a b ab 4cd 2bd 2 2 2 2 2c 4cd 2c 5a b 5ac
所有因式的最高次幂的积作为公分母,也叫最简公分母.
问题1
一个长方体容器的容积为V,底面的长为a,宽为
m b,当容器内的水占容积的 时,水面的高度是多少? n
V 长方体容器的高为 , ab
V m 水面的高度为 · . ab n
问题2
大拖拉机m天耕地a公顷,小拖拉机n天耕地b公顷,大
拖拉机的工作效率是小拖拉机的工作效率的多少倍? 大拖拉机的工作效率是
人教版数学教材八年级上
第15章 分式
15.2.1 分式的乘除
1.掌握分式的乘除运算法则,
2.能应用分式的乘除法法则进行运算 .
1、分式的概念:
一般地,如果A、B表示两个整式,并且B中含有字母,
A 那么式子 叫做分式,(其中B≠0) B
2、分式的基本性质:
分式的分子与分母乘(或除以)同一个不等于0的整式 ,
a c b d
a c bd
2 4 2 5 25 (3) = = 3 5 3 4 3 4
a c ? b d
分式的除法法则:分式除以分式,把除式的分子、分母 颠倒位置后,与被除式相乘. 用符号语言表达:a c a d a d .
b d b c bc
2 2
【试一试】
根据已知条件求分式的值
x y z x yz 1 已知 ,试求 的 。 值 2 3 4 x yz
分式的乘方和乘方法则
分式的乘方和乘方法则一、分式的乘方和乘方法则1、分式的乘除(1)乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
用式子表示为$\fracab·\fraccd=\fraca·cb·d。
(2)除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
用式子表示为$\fracab÷\fraccd=\fracab·\fracdc=\fraca·db·c$。
(3)乘方法则:一般地,当$n$是正整数时,$\left\displaystyle\fracab\right^n=$$\beginmatrix\underbrace\displaystyle\fracab·\fracab·\cdots·\fracab \\n个\endmatrix=$$\beginmatrixn个\\ \overbrace\beginmatrix\underbrace\displaystyle\fraca·a·\cdots·ab·b·\cdots·b \\n个\\ \\ \endmatrix \endmatrix=$$\displaystyle\fraca^nb^n$,即$\left\fracab\right^n=\fraca^nb^n$。
即分式乘方要把分子、分母分别乘方。
2、分式的加减类似分数的加减,分式的加减法则是(1)同分母分式相加减,分母不变,把分子相加减。
即:$\fracac±\fracbc=\fr aca±bc$。
(2)异分母分式相加减,先通分,变为同分母的分式,再加减。
即:$\fracab±\fraccd=\fracadbd±\fracbcbd=\fracad±bcbd$。
二、分式的乘方的相关例题$\fracx^2-1x+1·\fracx^2__^2-2x+1=$___A.$x$ B.$2x$ C.$x^2$ D.$2x^2$答案:A解析:原式$=\fracx+1__1x+1·\frac__1__1^2=x$。
八年级数学16.2.1分式的乘除(1)
八年级数学16.2.1分式的乘除(1)
下列代表网格技术的是A、WWWB、PCC、GGGD、IT 病毒感染细胞的主要形态为()A.核增大,大小不等B.核染色质粗糙且深染C.核仁增大,数目增多D.核畸形E.核内可见嗜酸性包涵体 STM-4等级同步传输系统的传输容量是。A.34Mbit/sB.155Mbit/sC.622Mbit/sD.120Mbit/s 下列哪个组织中不能合成雌激素A.卵巢B.子宫C.胎盘D.黄体E.肾上腺皮质 反刍动物前胃迟缓的发病机理主要A.与饲养有关B.与管理有关C.与迷走神经末梢突出内的神经递质乙酰胆碱有关D.与瘤胃液的表面张力有关E.与饲料中所含的氰苷与脱氢黄体酮化合物有关 简述中国古代商业发展的特征中国古代商业发展。 29岁,男,因发热、头痛、全身酸痛、软弱无力6天入院。当天起出现心慌、气促,体温39.6℃。体检:面色苍白,腓肠肌压痛,心率130次/分,呼吸36次/分。肺部散在湿性啰音。血象:血白细胞计数9.2×109/L,中性粒细胞0.76,淋巴细胞0.24。X线摄片示:两肺纹理增多,有散在性点状阴 车辆在道路上行驶时,要求道路及道路两旁提供一定的视距空间以保证行车安全,称为视距限界。限界主要有等种类。A.横向视距限界B.平面弯道视距限界C.纵向视距限界D.交叉口视距限界E.会车视距限界 王先生以0.2元每股的价格买入1张行权价格为20元的甲股票认购期权C1(合约单位为10000股),买入1张行权价格为24元的甲股票认购期权C2,股票在到期日价格为22元,则王先生买入的认购期权。A、C1行权,C2不行权B、C1行权,C2行权C、C1不行权,C2不行权D、C1不行权,C2行权 因镁过量而引起的火灾,不能使用干粉灭火剂扑救.A.正确B.错误 下面有关管周牙本质的描述,不正确的为A.管周牙本质构成牙本质小管的壁B.管周牙本质矿化程度高C.管周牙本质含胶原纤维多D.在脱矿切片中,呈成牙本
16.2.1 分式的乘除(一)
16.2.1 分式的乘除(一)学习目标:1. 使学生理解并掌握分式的乘除法则,运用法则进行运算.2. 经历探索分式的乘除运算法则的过程,并能结合具体情境说明其合理性. 学习过程:一. 情景创设,课题引入:观察下列运算:,43524532543297259275,53425432⨯⨯=⨯=÷⨯⨯=⨯⨯⨯=⨯, .279529759275⨯⨯=⨯=÷ 猜一猜??=÷=⨯cd a b c d b a 与同伴交流。
二. 导入新课:根据上述运算,在小组内说出分数的乘除法则.类比分数的乘除法法则,你能说出分式的乘除饭法则吗?类似于分数,分式有:乘法法则:分式乘分式,用分子的积作为积的_______,分母的积作为积的________. 除法法则:分式除以分式,把除式的分子、分母____________后,与被除式_______. 用式子表示为:a cb d⋅=_______________________________ a c b d÷=_______________________________. 例1 计算:(1)3432x y y x⋅ (2)3222524ab a b c cd -÷ 解:(1)3432x y y x ⋅=346xy x y =223x(2)3222524ab a b c cd-÷=______________________________________________.例2 计算:(1)222441214a a a a a a -+-⋅-+- (2)2211497m m m÷-- 解:(1)222441214a a a a a a -+-⋅-+- (2)2211497m m m ÷-- =22(2)(1)a a -⋅-________________ =_________________________ =__________________. =_______________________. 巩固练习:(1)231649abb a ⋅ (2)21285xyx y a ÷(3)22(3)3y xy x -÷(4)x y x y x y x y +-⋅-+ (5)2322332510a b a b ab a b -⋅-(6)2222242222x y x y x xy y x xy -+÷+++三. 拓展应用:若2005x =,2006y =,求2244()x y x y x y ++⋅-的值.。
八年级数学16.2.1分式的乘除(1)
yy娱乐
[单选]关于闭塞性周围动脉粥样硬化,叙述不正确的是()A.好发于男性B.好发于青年人C.好发于下肢动脉D.与冠心病的危险因素相同E.行走疼痛-休息-缓解是其病程中一个典型的临床表现 [多选]金属分类开关设备按主开关与柜体的配合方式可分为()。A.铠装式B.固定式C.间隔式D.移动式 [单选]某汽车公司10月挂车完成货物周转量为26450吨公里,汽车完成货物周转量为42456吨公里,则该公司10月的拖挂率为()。A.36.7%B.37.4%C.38.4%D.38.9% [单选]一事一议筹资筹劳属于()负担。A.间接B.直接C.国家D.集体 [单选]数字出版产品制作的一般流程不包括()。A.内容整合B.产品规范化C.建立数据库D.产品测试 [问答题,案例分析题]背景: [单选]呼出气体带有刺激性蒜味多见于()A.支气管扩张B.肺脓肿C.尿毒症D.酮症酸中毒E.有机磷农药中毒 [单选]女,52岁,左颈部无痛性包块渐进性增大,MRI检查如图,最可能的诊断是()A.左侧颈部神经鞘瘤B.左侧颈部神经纤维瘤C.左侧颈部动脉瘤D.左侧颈部转移瘤E.左侧颈部脂肪瘤 [单选,A2型题,A1/A2型题]有关标准姿势的叙述,错误的是()A.人体直立B.掌心向前C.两眼向前方平视D.双上肢下垂置躯干两侧E.两下肢并拢,足尖外展 [问答题,简答题]当阴床先失效或阳床先失效时,阴床出口水质的变化情况如何? [判断题]储蓄机构受理挂失后,必须冻结该项储蓄存款。()A.正确B.错误 [单选]光盘的读取速度一般利用倍速来表示,CD的1倍速一般是指(1),DVD的1倍速是指(2)。空白(2)处应选择()A.150KB/sB.450KB/sC.750KB/sD.1350KB/s [单选,A1型题]早期乳腺癌首选的治疗手段是()A.化学治疗B.激素治疗C.放射治疗D.早期手术E.免疫疗法 [单选]环境污染物对人体健康产生慢性危害的根本原因是A.低浓度的环境污染物对机体损害的逐渐积累B.环境污染物的毒性高C.环境污染物之间的联合作用D.低浓度的环境污染物可经口吸收E.低浓度的环境污染物可经呼吸道吸收 [单选,A2型题,A1/A2型题]关于颅脑MRI技术叙述错误的是()A.增强检查,注射对比剂后行T2WI成像B.增强扫描常用对比剂为顺磁性对比剂Gd-DTPAC.常规颅脑扫描横断位成像应在正中矢状位像上定位D.层厚4~8mm,层间距取层厚的10%~50%E.血管性病变常做平扫加血管成像 [问答题,简答题]货运检查作业基本程序检查作业有何规定? [问答题,简答题]计算题:为测定某聚氯乙烯树脂中氯乙烯单体的含量,分别称取试样0.4025g和0.3985g置于50m1样品瓶中,并注入3.0m1N,N-二甲基乙酰胺(DMAC),待试样平衡后从两份试样溶液中各取出1.0ml上部气体注入气相色谱中分析,测得峰面积分别为15.6cm2和14.8cm2,同时从装有浓 [多选]土壤环境质量评价指标主要包括()。A.土壤资源评价指标B.化学指标C.物理指标D.单项评价指标E.综合指标 [单选]按一般要求,输油气管道进出站和()穿跨越管段应修筑管道固定墩。A.重要的B.小型的C.永久的D.临时的 [单选]在计算责任成本时,对于不能直接归属于个别责任中心的费用,应该()。A.优先按责任基础分配B.优先按受益基础分配C.优先归入某一个特定的责任中心D.不进行分摊 [填空题]复杂高层结构包括(),(),(),()。 [单选]()是调查取证任务能否顺利完成的重要保证。A、成立调查组B、明确调查取证内容C、正确的方法与步骤D、严格的调查取证纪律 [单选,A2型题,A1/A2型题]不需酶催化反应即可发光的发光底物是()A.吖啶酯B.三联吡啶钌C.鲁米诺或其衍生物D.4-MUPE.AMPPD [填空题]发现牵引供电设备断线及其部件损坏,或发现牵引供电设备上挂有线头、绳索、塑料布或脱落搭接等异物,均不得与之(),应立即通知附近车站,在牵引供电设备检修人员到达未采取措施以前,任何人员均应距已断线索或异物处所()以外。 [单选]无机盐的生理功能不包括()A.构成人体组织B.维持渗透C.维持肌肉兴奋性D.构成生物活性物质E.提供必需氨基酸 [单选,A2型题,A1/A2型题]在《实验室认可管理办法》规定的认可原则中,未包含()。A.自愿申请原则B.非歧视原则C.专家评审原则D.国家认可原则E.国家强制原则 [单选]呼吸纯氧时,COHb的半衰期约为()A.0.5小时B.1小时C.1.5小时D.2小时E.2.5小时 [单选]混凝土用石应采用连续级配,砂宜选用()砂,配制泵送混凝土宜采用中砂。A.Ⅰ区B.Ⅱ区C.Ⅲ区 [单选]通过遥控器的以下组合来操作高清变焦摄像机的录制视频()A、shift键↑+滚转指令→B、shift键↑+俯仰指令↓↑C、shift键↑+滚转指令←D、shift键↑+油门指令↓↑ [单选]胎盘基本形成的时间约在().A.孕4周B.孕8周C.孕12周D.孕14周E.孕18周 [单选,A1型题]产程正常胎儿娩出后30分钟,胎盘仍未排出,出血不多,恰当的处理方法()A.等待自然娩出B.压子宫及注射子宫收缩药C.肌注阿托品0.5mgD.立即手取胎盘E.立即剖宫取胎盘 [填空题]现已确定石油中烃类主要是()、()、()。 [单选]()是指反映企业在某一特定日期的财务状况的会计报表。A.利润表B.现金流量表C.附注D.资产负债表 [填空题]灵感是一切创造性劳动中普遍存在的现象,周恩来用______________,______________八个字对灵感产生过程作了科学的概括。 [配伍题,B1型题]通过严格控制条件,研究行为或活动条件与心理的因果关系,在医学心理学的研究方法中属于()。</br>通过交谈或问卷的方法了解一些人对某一事件的感受、态度和行为,在医学心理学的研究方法中属于()。A.调查法B.临床观察法C.个案法D.实验法E.心理测验法 [单选,A1型题]按照需要起源,可把需要分为()。A.生理性需要和社会性需要B.生理性需要和心理性需要C.自然需要和精神需要D.物质需要和精神需要E.物质需要和心理需要 [单选,A1型题]右手Байду номын сангаас指受伤,2日后到医院就诊,查中指肿胀、发热、有波动感,下列处理最恰当的是()。A.中指侧面纵形切口引流B.抗菌药物静脉注射C.肌注哌替啶25mgD.热盐水浸泡患指E.患指理疗 [单选]巨噬细胞功能检测临床意义()A.NBT试验对发热病因作过筛性鉴别B.补体抗体缺陷症的重要指标C.鉴别自身免疫性疾病D.机体抗肿瘤免疫的重要效应细胞E.与过敏症有关 [单选]按照我国《票据法》的规定,下列选项中属于支票的相对记载事项的是()。A.付款地B.付款人名称C.出票日期D.出票人签章 [单选]SPECT脑血流灌注显像表现为局限性放射性分布稀疏或缺损一般不出现在哪项疾病()。A.缺血性脑血管疾病B.偏头痛和脑肿瘤C.脑脓肿D.癫痫的发作间期E.癫痫的发作期
15.2.1分式的乘除(第一课时)教案
课堂解决方案教学详案15.2.1分式的乘除(第1课时)【设计说明】本节课从生活中的问题引入,让学生感受到学习分式乘除运算是生产和生活的实际需要,从而激发学生的学习兴趣。
由于分式的乘除法法则与分数的乘除法法则类似,故以类比的方法得出分式的乘除法则,易于学生理解、接受。
利用表格给出分式的乘除法法则更利于学生的对比和理解;例题采取学生自主运用新知识代替单纯的教师讲授,这是教学方法的一大尝试。
本节课采取把自主权交给学生,遵循“教师为主导,学生为主体”原则。
体现了自主探索,合作学习的新理念,在实际问题解决的过程中培养了学生分析问题和解决问题的能力。
【教学目标】1、理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,能解决一些与分式乘除有关的实际问题。
2、经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深从特殊到一般的数学思想认识。
3、教学中渗透类比转化的思想,培养学生主动探究,合作交流的能力,使学生在学知识的同时感受探索的乐趣和成功的体验。
【教学重点难点】重点:运用分式的乘除法法则进行运算。
难点:分子、分母为多项式的分式乘除运算。
【课前准备】课件、多媒体【教学过程】(-)导入新课一、提出问题,引入课题(出示多媒体)活动1:问题1 :一个水平放置的长方体容器器,其容积为V,底面的长为a,宽为b,当容器内的水占容积的时,水面的高度为多少?问题2:大拖拉机m天耕地ahm2,小拖拉机n天耕地b hm2,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?师生活动:学生根据题意,分别列出问题1、问题2所求的数量关系式为:问题 1:求得容积的高:问题2:大拖拉机的工作效率是小拖拉机的倍教师引导学生观察分析以上两式的特点得出它们分别是分式的乘法和分式的除法。
从上面的问题可知,解决生活中的问题有时需要进行分式的乘除运算,那么分式的乘除是怎样运算的呢?这是我们本节课要学习的内容。
.教师板书课题。
(二)探究新知活动2 :类比联想,探究新知计算下式:类比分数的乘除法则猜想分式的乘除法则本环节的任务:让学生从分数的乘除法法则类比探究得出分式的乘除法法则。
15.2.1分式的乘除(1)
500
aHale Waihona Puke 21千克 / 米 ; 丰收2号”小麦的试
2 2
2
(a 1) 米 ,
是
田面积是
(a 1)
2 500 单位面积产量 千米 / 米 . 2
∵a2-1 -(a2-2a+1)=2a-2=2(a-1)>0 (a>1) 500 500 2 2 < ∴0<(a-1) <a -1 2 2 a 1 a 1
V 长方体容器的高为 ab
V m ,水高为 . ab n
问题2
大拖拉机m天耕地a公顷,小拖拉机n天耕地 b公顷,大拖拉机的工作效率是小拖拉机的工 作效率的多少倍?
b 工作效率是 公顷/天,大拖拉机的工作效率 n
是小拖拉机的工作效率的(
a 大拖拉机的工作效率是 公顷/天,小拖拉机的 m
a b m n
a2 a 2a 1
a 1 a2 1 ( 2) 2 2 a 4a 4 a 4 2 a 1 a 4 a 2 4a 4 a 2 1
分子分母分解因式
你能说出 每一步的 依据吗?
除号变乘号 分子分母都颠倒
ad a c ? bc b d
分式乘除法法则:
分式乘分式,用分子的积做积的分子,分母的积 做积的分母。 分式除以分式,把除式的分子、分母颠倒位置 后与被除式相乘。
a c ac b d bd a c a d ad b d b c bc
例1 计算:
a2 1 (2) 2 a 2 a 2a
( m 2 4m)
课堂练习
计算
3ab 10xy (2) 2 21b 4x y
3a 16b (1) 2 4b 9a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学重点
分式的乘除法法则的探索及其应用
教学难点
1、灵活运用分式乘除的法则进行运算
2、把实际问题转化为数学问题并解决之
教学方法
1.启发式教学。启发性原则是永恒的,在教师的启发下,让学生成为课堂上行为的主体。
2.合作式教学,在师生平等的交流中评价学习。
教
学
过
程
教
学
过
程
教学预案
小练习:计算:
(1) (2)
例3“丰收1号”小麦的试验田是边长为 米的正方形减去一个边长为1米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为( )米的正方形,两块试验田里的小麦都收获了500千克。
(1)“丰收1号”小麦的种植面积为;“丰收2号”小麦的种植面积为;
(2)哪种小麦的单位面积产量高?
2、探究分式的乘除法法则
观察:
由以上算式,请写出分数乘除法的法则:
乘法法则:;
除法法则:;
如果把上面算式中的3、5、15、2、分别用字母a、b、c、d来代替,请写出相应的式子:
;
1.
5)拓展题:
讲授:
用文字归纳分式的乘除法法则:
乘法法则;
除法法则,
一、合作探究
例1、计算:
(1) (2)
例2、计算:
(1) (2)
教学内容
分式的乘除(1)
预案修改
(二次备课)
课标要求
分式是分数的“代数化”,与分数的约分、分数的乘除法有密切的联系,也为后面学习分式的混合运算作准备,为分式方程作铺垫
教学目标
1、通过类比分数的乘、除运算,探索出分式的乘、除运算法则,并理解其算理;
2、理解并掌握分式的乘除运算法则,并会运用法则进行分式的乘除运算;
预案修改
(二次备课)
教学
环节
教师活动
学生活动
教学资源(课件)
导入:
1、一个长方形容器的容积为V,底面的长为a,宽为b,则此长方形容器的高为,若容器中的水占容积的 时,水的高度为,若若容器中的水占容积的 时,水的高度为;
2、大拖拉机m天耕地a公顷,小拖拉机n天耕地b公顷,则大拖拉机的工作效率是;小拖拉机的工作效率是;大拖拉机的工作效率是小拖拉机的工作效率的倍.
(3)高的单位面积产量是低的单位面积产量的多少倍?
讲授:
小结:
【分式的乘除法法则】
乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
用式子表示为:
板
书
设
计
当
堂
练
习
检
测
题
1、 =, =
2、计算:(1) (2)
(3) (4)
课
后
作
业
教材77页到78页,习题3.1,1、2、4.并补充一题(分式乘除法混合运算的)
教
学
反
思
在总结出分式乘除法的运算步骤后,大部分学生能很好的掌握,但是还有些学生忘记运算结果要化成最简形式,老师要及时提醒学生。 分解因式的知识没掌握好,将会影响到分式的运算,所以有的学生有必要复习和巩固一下分解因式的知识。