第八章:向量代数及空间解析几何 第四节-388

合集下载

高等数学下册第八章 向量代数与空间解析几何

高等数学下册第八章 向量代数与空间解析几何

离.因为
PA 32 ( y 1)2 (z 2)2 , PB 42 ( y 2)2 (z 2)2 ,
PC 02 ( y 5)2 (z 1)2 ,
所以 32 ( y 1)2 (z 2)2 42 ( y 2)2 (z 2)2 02 ( y 5)2 (z 1)2 ,
零向量: 模为 0 的向量,
向量相等、向量平行向量共线、负向量、向量共面.
DMU
第一节 向量的线性运算与空间直角坐标系
向量线性运算的几何表达 ➢加法
平行四边形法则:
b ab
(a b) c
c
bc
三角形法则: a ab
a (b c) ab b
b a
a
运算规律 : 交换律 a b b a
结合律 ( a b ) c a (b c ) a b c
解 4u 3v 4 2a b 2c 3 a 4b c 5a 16b 11c.
例 如果平面上一个四边形的对角线互相平分试用向量证明
这是平行四边形
证 ABOBOA , DC OCOD 而 OC OA OD OB
所以
DC OA OB OB OA AB
这说明四边形 ABCD 的对边 AB CD 且 AB // CD 从而四边形
第八章
向量代数与空间解析几何
第一部分 向量代数 第二部分 空间解析几何
在三维空间中: 空间形式 — 点, 线, 面
数量关系 — 坐标, 方程(组) 基本方法 — 坐标法; 向量法
DMU
第八章 向量代数与空间解析几何
第一节 向量的线性运算与空间直角坐标系 第二节 数量积 向量积 混合积 第三节 平面及其方程 第四节 空间直线及其方程 第五节 曲面方程 第六节 空间曲线方程

高等数学-第8章空间解析几何与向量代数

高等数学-第8章空间解析几何与向量代数

b a b≤+,向量与数的乘法a ,方向与、向量与数量乘法的性质(运算律和方向,所以在数学上我们研究与起点无关的向量,并称这种向量为自由向量(以后简称向量),即只考虑向量的大小和方向,而不论它的起点在什么地方。

当遇到与起点有关的向量时(例如,谈到某一质点的运动速向量A B ''在轴上的投影,记为投影AB 。

向量在轴上的投影性质:性质1(投影定理)=cos AB ϕ与向量AB 的夹角。

)=Prj 1a +Prj 2a 。

性质可推广到有限个向量的情形。

:向量a 在坐标轴上的投影向量向量a 在三条坐标轴上的投影由向量在轴上的投影定义,a 在直角坐标系Oxyz 中的坐标{,,x y z a a a 量的投影具有与坐标相同的性质。

利用向量的坐标,可得向量的加法、减法以及向量与数的乘法的运算如下:利用向量加法的交换律与结合律,以及向量与数乘法的结合律与分配律,有{,x y a a a λλλ=由此可见,对向量进行加、2x a a a =+acos a b cos a b (,)a b =为向量之间的夹角并且0θπ≤≤。

2a =,因此我们可以把a a ∙简记为x y z z 由向量的坐标还可以计算两个向量之间的夹角, cos ab θ所以2cos xa b a ba θ∙==+两个向量垂直的充分必要条件是sin a b θ,它的方向是垂直于。

a b ⨯=sin a b b 为两边的平行四边形的面积。

如果向量a ={,,a a a },{,}b b =则a b ⨯=..........x y zi j a a b b b 两向量平行的充分必要条件为也就是说两向量共线,其对应坐标成比例。

决;在求向量,特别是求垂直向量问题时常用向量积。

注意向量的平行、垂直关系及角度。

利。

高等数学 第八章 空间解析几何与向量代数ppt精选课件

高等数学 第八章 空间解析几何与向量代数ppt精选课件

对两点 A( x1 , y1 , z1) 与 B( x2 , y2 , z2 ), 因
AB OB OA ( x2 x1 , y2 y1 , z2 z1 ) 得两点间的距离公式:
B
A
AB AB ( x2 x1)2 ( y2 y1)2 (z2 z1)2
.
2. 方向角与方向余弦
ijk, ij jk k i 0 ,
|i| |j| |k | 1 ,
ii jj k k 1 .
a
b
a x bx
ayby
azbz
.
a b |a |b ||co scos|a a||bb|,
由此得两向量夹角余弦的坐标表示式
cos
axbx a yby azbz
ax2 a y2 az 2 bx2 by2 bz2
(2)a b 0 ab 证 () a b 0,|a|0, |b|0,
co s0, , a b .
() a a b b ,|a |b ||c 2 , 2o 0 c .o s s0,
.
2、数量积符合下列运算规律: (1) 交换律: a b b a (2) 分配律: ( a b ) c a c b c
|c |1 2 0 5 2 55 ,
c0
|
c c|
2
j
5
15k.
.
作业 P23习题8-2
1(1)、(3),3,4,9
.
第三节 平面及其方程
.
一、平面的点法式方程
对支点O
的力矩是一向量
M
,它的模
F
|M | |O|F |Q |
O
P
L
|O|F |P |s in
Q
M
的方向垂直于OP

高数第八章总结

高数第八章总结

第八章空间解析几何与向量代数
第一节向量及其线性运算
1、右手定则方向角
2、记Prju r或(r)u :向量r在u轴上的投影
第二节数量积向量积混合积
1、a*b= 大小——a·b·sin
方向——右手定则确定
2、a*b=a=(a1,a2,a3)b=(b1,b2,b3)
3、混合积为(a*b)·c记作[abc]的作用:
①平行六面体的体积
②[abc]=0时说明三向量共面
③满足轮换对称性:[abc]= [bca] = [cab]
第三节曲面及其方程
①椭圆锥面
③单叶双曲面④双叶双曲面
⑤椭圆抛物面⑥双曲抛物面
第四节空间曲线及其方程
1、一般方程: F(x,y,z)=0
G(x,y,z)=0
x=x(t)
2、参数方程: y=y(t)
z=z(t)
第五节平面及其方程
1、点法式方程:A(x-x0)+B(y-y0)+C(z-z0)=0
[其中法向量n=(A,B,C) M0为(x0,y0,z0)]
2、一般方程:Ax+By+Cz+D=0(一般需要四个平面上的点求出)第六节空间直线及其方程
1、一般方程: A1x+B1y+C1z+D1=0
A2x+B2y+C2z+D2=0
2、点向式:
[其中方向向量为s=(p,m,n) 已知点为M0(x0,y0,z0)]
3、平面束方程的重要应用:P48。

高等数学期末复习-向量代数与空间解析几何

高等数学期末复习-向量代数与空间解析几何

r a
与三个坐标面
xoy,
yoz,
zox
的夹角分别为1, 2,
3 (
0

1, 2,
3

2
),则
cos2 1 cos2 2 cos2 3
;
解: cos2 1 cos2 2 cos2 3 2 ,所以填 2。(内容要求 2)
r 4、向量 a

(1,
1,
).
(A) a b a b
(B) a b a b
(C) a b a b
(D) a b a b
解: a b 2 | a |2 | b |2 2 | a | | b | cos | a |2 | b |2 ,( cos =0)
a b 2 | a |2 | b |2 2 | a | | b | cos | a |2 | b |2
{2, 4,
}
,且
r a
/
r /b
,则


(
);
10
(A)
(B) 10
(C) 6
(D) 6
3
3
解:因为
ar
/
r /b
,所以
1
2

3
,所以选 C。(内容要求 8)
24
r
r
r
r
16、设向量 a {2, 1, 10} , b {4, 2,1},则向量 a 与向量 b 的关系是(
5)
11、已知 a 1, b
2
,且 a 与 b 的夹角为
,则
a
b
(
).
4
(A) 5

数学强化班(武忠祥)-高数第八章 向量代数与解析几何及多元微分在几何上应用

数学强化班(武忠祥)-高数第八章 向量代数与解析几何及多元微分在几何上应用

第八章 向量代数与空间解析几何及多元微分学在几何上的应用第一节 向 量1.数量积1)几何表示:αcos ||||b a b a =⋅. 2) 代数表示: z z y y x x b a b a b a ++=⋅b a . 3) 运算规律:i) 交换律: a b b a ⋅=⋅ii) 分配律: .)(c a b a c b a ⋅+⋅=+⋅ 4) 几何应用:i) 求模: a a a ⋅=||ii) 求夹角: ||||cos b a ba ⋅=α iii) 判定两向量垂直: 0=⋅⇔⊥b a b a 2.向量积1) 几何表示 b a ⨯是一向量. 模: αsin ||||||b a b a =⨯. 方向: 右手法则.2) 代数表示: zyx z y xb b b a a a k j ib a =⨯. 3) 运算规律 i) b a ⨯= )(a b ⨯-ii) 分配律: ⨯a (c b +)=b a ⨯+c a ⨯. 4)几何应用:i) 求同时垂直于a 和b 的向量: b a ⨯.ii) 求以a 和b 为邻边的平行四边形面积:=S |b a ⨯|.iii)判定两向量平行: ⇔b a //0=⨯b a . 3.混合积: c b a abc ⋅⨯=)()( 1) 代数表示:zyxz y xz y xc c c b b b a a a =)(abc . 2) 运算规律:i) 轮换对称性: )()()(cab bca abc ==. ii) 交换变号: )()(acb abc -=. 3) 几何应用i) 平行六面体V =|)(|abc .ii)判定三向量共面: c b a ,,共面⇔(abc )=0.题型一 向量运算例8.1 设,2)(=⋅⨯c b a 则=+⋅+⨯+)()]()[(a c c b b a .解 )()]()[(a c c b b a +⋅+⨯+)(][a c c b b b c a b a +⋅⨯+⨯+⨯+⨯=a cbc c b a c a c c a a b a c b a ⋅⨯+⋅⨯+⋅⨯+⋅⨯+⋅⨯+⋅⨯=)()()()()()( a c b c b a ⋅⨯+⋅⨯=)()( 4)(2=⋅⨯=c b a .例8.2 已知3||,2||==b a ,则=⋅⋅+⨯⋅⨯))(()()(b a b a b a b a .解 22)())(()()(b a b a b a b a b a b a ⋅+⨯=⋅⋅+⨯⋅⨯ ),(c o s ),(s i n 222222∧∧+=b a b a b a b a 3622==b a .例8.3 已知2||,2||==b a ,且2=⋅b a ,则=⨯||b a.A)2 B)22 C)22D)1 解 由于2),cos(==⋅∧b a b a b a ,而2,2==b a ,则21),cos(=∧b a ,从而4),(π=∧b a .故 22122),s i n (=⋅==⨯∧b a b a b a题型二 向量运算的应用及向量的位置关系例8.4 已知}4,4,2{-=a ,}2,2,1{--=b ,求a 与b 的角平分线向量且使其模为32。

(完整版)第八章向量代数及空间解析几何教学案(同济大学版高数)

(完整版)第八章向量代数及空间解析几何教学案(同济大学版高数)

第八章向量代数与空间解析几何第一节向量及其线性运算教学目的:将学生的思维由平面引导到空间,使学生明确学习空间解析几何的意义和目的。

使学生对(自由)向量有初步了解,为后继内容的学习打下基础。

教学重点:1.空间直角坐标系的概念2.空间两点间的距离公式3.向量的概念4.向量的运算教学难点:1.空间思想的建立2.向量平行与垂直的关系教学内容:一、向量的概念1.向量:既有大小,又有方向的量。

在数学上用有向线段来表示向量,其长度表示向量的大小,其方向表示向量的方向。

在数学上只研究与起点无关的自由向量(以后简称向量)。

2.量的表示方法有: a、i、F、OM等等。

a=:如果两个向量大小相等,方向相同,则说(即经过平移后能完全3.向量相等b重合的向量)。

4.量的模:向量的大小,记为a。

模为1的向量叫单位向量、模为零的向量叫零向量。

零向量的方向是任意的。

a//:两个非零向量如果它们的方向相同或相反。

零向量与如何向量都平5.量平行b行。

-6.负向量:大小相等但方向相反的向量,记为a二、向量的线性运算1.加减法c b a =+: 加法运算规律:平行四边形法则(有时也称三角形法则),其满足的运算规律有交换率和结合率见图7-42.c b a =- 即c b a =-+)(3.向量与数的乘法a λ:设λ是一个数,向量a 与λ的乘积a λ规定为0)1(>λ时,a λ与a 同向,||||a a λλ= 0)2(=λ时,0a =λ0)3(<λ时,a λ与a 反向,||||||a a λλ=其满足的运算规律有:结合率、分配率。

设0a 表示与非零向量a 同方向的单位向量,那么aa a 0=定理1:设向量a ≠0,那么,向量b 平行于a 的充分必要条件是:存在唯一的实数λ,使b =a λ例1:在平行四边形ABCD 中,设a =AB ,b =AD ,试用a 和b 表示向量MA 、MB 、MC 和MD ,这里M 是平行四边形对角线的交点。

第八章 空间解析几何与向量代数 ppt课件

第八章 空间解析几何与向量代数  ppt课件

【例4】P11例8 uuur
方法2 :设 OA ( x, y, z)
则由
cos
3
uuxur |OA|
x
6
1 2
3
z
A
O
4 y
x3
cos
4
uuyur y 6 |OA|
2 3 2
2
uuur | OA | x2 y2 z2 6 z 3
A(3, 3 2, 3)
ppt课件
18
目录 上页 下页 返回 结束
(3)
ar
r 0

若 0,则 ar 若ar 0,则
分配律.
r r0 ; 0.
见P4
.
(4)定理1.1:设
r a
r 0
,则
r a
/
r /b
1
r R, 使得b
ar
.
(5)与
r a
同向的单位向量为:er
ar o
ar r
.
|a|
ppt课件
6
目录 上页 下页 返回 结束
【例1】如果四边形对角线互相平分,则它是
ppt课件
2
目录 上页 下页 返回 结束
§1 向量及其线性运算
第一次课
一、向量的概念 二、向量的线性运算 三、空间直角坐标系 四、利用坐标作向量的线性运算 五、向量的模、方向角、投影
ppt课件
3
目录 上页 下页 返回 结束
一、向量的概念
1.向量: 既有大小, 又有方向的量称为向量 (又称矢量).
r rr
gi j k
r
ri 1 0 0
j0 1 0
r
k0 0 1
r
r

高等数学(第八章)向量代数与空间解析几何(全)

高等数学(第八章)向量代数与空间解析几何(全)

若向量a = x1i y1 j z1k,b = x2i y2 j z2k,由数量积的运算性质得
a b = x1x2 y1 y2 z1z2.
设非零向量a = x1, y1, z1,b = x2, y2, z2,则
(1) | a | a a x12 y12 z12;
(2) cos a, b a b
2
向量代数与空间解析几何
空间直角坐标系
一、空间直角坐标系 空间两点间的距离
向量的概念---大小,方向,相等,向径,坐标等.
二、向量代数 向量的运算---加减,数乘,点乘,叉乘,混合积.
❖ 向量位置关系的刻画 ---平行,垂直,夹角. ❖ 向量的方向角、方向余弦.
平面的方程
三、空间的平面 两平面的位置关系
五、 向量的坐标
空间直角坐标系Oxyz 中,在x 轴、y 轴、z 轴上各取一个与坐标轴同向的单位 向量,以此记作i,j,k,把它们称为基本单位向量或基向量.任一向量都可以 唯一地表示为i,j,k 数乘之积.
设M (x, y, z)是空间任意一点,记OM r,则r xi yj zk,我们把上式称为 向量r 的坐标分解式,xi,yj 和zk 称为向量r 沿3 个坐标轴方向的分向量,i,j,
d (x2 x1)2 ( y2 y1)2 (z2 z1)2 .
11
二、 空间两点间的距离 例 1 在z轴上求与点A(3,5, 2)和B(4,1,5)等距离的点M .
解 由于所求的点M 在z 轴上,因此M 点的坐标可设为(0, 0, z),又由于
MA MB ,
由空间两点间的距离公式,得
(3)结合律:(a) b = (a b) a (b);
(4)a a = a 2 ; (5)a b = 0 a b; (6) | a b || a | | b | . 特别地,有

同济高等数学第八章学习指导及习题详解

同济高等数学第八章学习指导及习题详解

462第八章 向量代数与空间解析几何一、预习导引第一节 向量及其线性运算1. 中学阶段已经学习了向量的概念、线性运算及运算规律.阅读本节前两部分的内容,从中找出与你以前学过的向量有关内容不同之处.2. 尝试自己画出空间直角坐标系的图形,确认每一个卦限的方位.你能找出坐标轴上的点、坐标面上的点及各卦限内的点的坐标的特点吗?空间任意一个向量你能用坐标表示吗?阅读本节第三部分内容,从中找出答案.3. 在空间直角坐标系中,向量可以用坐标来表示,那么向量的线性运算是否也可以利用坐标作运算?点的坐标表示与向量的坐标表示有区别吗?利用坐标进行向量运算要注意什么问题?仔细阅读本节第四部分内容,你将会正确解答这些问题.4. 在空间直角坐标系中画出向量()1,2,2OM =,利用本节第三部分知识,求向量OM 的模及它与,,x y z 三个坐标轴的夹角(分别设为,,αβγ,称为向量的方向角)的余弦cos ,cos ,cos αβγ,并考察向量的模、方向余弦与其坐标的关系.这种关系式可以推广到空间任意向量吗?阅读本节第五部分的1、2,验证你的结论是否正确.在书上画出来空间任意两点间的距离公式.5 .阅读本节第五部分的3,细心体会向量在轴上的投影概念.向量(),,OM x y z =在三个坐标轴上的投影分别是什么?与向量OM 在三个坐标轴上的分向量有什么区别?注意向量投影的性质.第二节 数量积 向量积 *混合积1. 中学阶段我们已经学习了平面上两向量的数量积的定义、坐标表示及运算规律,请你尝试把数量积的定义、坐标表示及运算规463 律推广到空间向量.阅读本节第一部分内容,验证你的推论.2. 两向量的向量积是一个向量,怎样确定这个向量的模、方向及向量积如何用坐标表示、有什么运算规律?带着这些问题阅读本节第二部分,从中找出答案.3. 向量的混合积顾名思义,是指既含有向量积又含有数量积的向量运算,即()a b c ⨯⋅.根据本节前两部分所学知识,用坐标表示向量的混合积()a b c ⨯⋅;混合积()a b c ⨯⋅的几何意义是什么?阅读本节第三部分内容,检验你的结论.第三节 平面及其方程1. 在平面解析几何中,把平面曲线看作动点的轨迹,建立了曲线和二元方程之间的关系,那么空间曲面或曲线是否也可以看作动点的几何轨迹,建立三元方程或方程组之间的关系?阅读曲面方程与空间曲线方程的概念,从你熟悉的学习和生活实践中举例说明这些概念.2. 用坐标表示向量()0000,,M M x x y y z z =---垂直于向量(),,n A B C =.把(),,M x y z 看作动点,满足0M M n ⊥的点M 的集合在空间表示怎样的图形?如果把n 换为2n ,0M M n ⊥的坐标表示式会变吗?换为任意非零常数乘以n 呢?仔细阅读本节第二部分,回答上述问题,揣摩用平面的点法式方程求解的问题类型.3. 平面方程0Ax By Cz D +++=中,,,,A B C D 中任意一个为零、任意两个为零及,,A B C 中任意两个为零且0D =时,它们对应的几何图形分别有什么特点?阅读本节第三部分,总结特殊的三元一次方程所表示的平面的特点.4. 阅读本节第四部分,弄清楚两平面的夹角的概念,夹角取值的范围,并用向量的坐标表示两平面的夹角.思考如何判断两平面的位置关系.推导空间中的点到平面的距离公式.第四节 空间直线及其方程4641. 从几何的角度看,两张相交平面确定一条直线L ,直线L 用动点的坐标表示,即由两个三元一次方程构成的方程组.通过空间一条直线L 的平面有多少?L 的方程唯一吗?阅读本节第一部分,从中找出答案.2. 用坐标表示向量()0000,,M M x x y y z z =---平行于向量(),,s m n p =.把(),,M x y z 看作动点,满足0//M M s 的点M 的集合在空间表示怎样的图形?如果把s 换为2s ,0//M M s 的坐标表示式会变吗?换为任意非零常数乘以s 呢?仔细阅读本节第二部分,回答上述问题,在书上画出直线的对称式方程和参数式方程.3. 阅读本节第三部分,弄清楚两直线夹角的取值范围.如何计算两直线的夹角?如何判断两直线的位置关系?4. 阅读本节第四部分,弄清楚直线与平面的夹角的取值范围.如何计算直线与平面的夹角?如何判断直线与平面的位置关系?分析平面束方程与三元一次方程的关系.第五节 曲面及其方程1. 阅读本节第一部分内容,通过例1与例2仔细揣摩:已知空间曲面如何建立其方程;已知坐标,,x y z 间的一个方程怎样研究它所表示的曲面的形状.2. 阅读本节第二部分内容,找出在进行旋转曲面方程的推导过程中,变化的量和不变的量,总结旋转曲面的方程的特点.思考给定一个三元二次方程,你能判断出它是否是旋转曲面?如果是,你能给出它的母线的方程和轴吗?它的母线唯一吗?3. 柱面方程的特点是什么?它的图形有什么特点?柱面方程与平面曲线方程有什么区别与联系?带着这些问题,阅读本节第三部分内容,从中找出答案.4. 阅读本节第四部分内容,从中找出下列问题的答案,怎样方程表示的曲面是二次曲面?常见的二次曲面有哪些?它们的图形是怎样的?。

第八章空间解析几何与向量代数知识点题库与答案

第八章空间解析几何与向量代数知识点题库与答案

第八章:空间解析几何与向量代数一、重点与难点1重点① 向量的基本概念、向量的线性运算、向量的模、方向角; ② 数量积(是个数)、向量积(是个向量); ③ 几种常见的旋转曲面、柱面、二次曲面;④ 平面的几种方程的表示方法(点法式、一般式方程、三点式方程、截距式方程) 的夹角;⑤ 空间直线的几种表示方法(参数方程、对称式方程、一般方程、两点式方程) 两直线的夹角、直线与平面的夹角;2、难点① 向量积(方向)、混合积(计算);② 掌握几种常见的旋转曲面、柱面的方程和二次曲面所对应的图形; ③ 空间曲线在坐标面上的投影;④ 特殊位置的平面方程(过原点、平行于坐标轴、垂直于坐标轴等; )⑤ 平面方程的几种表示方式之间的转化; ⑥ 直线方程的几种表示方式之间的转化;二、基本知识1、向量和其线性运算① 向量的基本概念:向量 既有大小 又有方向的量;向量表示方法:用一条有方向的线段(称为有向线段)来表示向量有向线段的长度表示向量的大小 有向线段的方向表示向量的方向 .;向量的符号 以A 为起点、B 为终点的有向线段所表示的向量记作表示 也可用上加箭头书写体字母表示例如a 、r 、v 、F 或a 、r 、v 、F ;向量的模 向量的大小叫做向量的模 向量a 、a 、AB 的模分别记为|a|、|a|、|AB |单位向量模等于1的向量叫做单位向量;向量的平行 两个非零向量如果它们的方向相同或相反就称这两个向量平行向量a 与b平行 记作a // b 零向量认为是与任何向量都平行; 两向量平行又称两向量共线零向量 模等于0的向量叫做零向量记作0或0 零向量的起点与终点重合 它的方向可以看作是任意的共面向量:设有k (k 3)个向量 当把它们的起点放在同一点时如果k 个终点和公共起点在一个平面上 就称这k 个向量共面;,两平面AB 向量可用粗体字母两向量夹角:当把两个非零向量a与b的起点放到同一点时两个向量之间的不超过的夹角称为向量a 与b 的夹角 记作(a :b)或(b :a)如果向量a 与b 中有一个是零向量 规定它们的夹角可以在 0与 之间任意取值;② 向量的线性运算向量的加法(三角形法则):设有两个向量a 与b 平移向量使b 的起点与a 的终点重合 此 时从a 的起点到b 的终点的向量c 称为向量a 与b 的和 记作a+b 即 c a+b .平行四边形法则 向量a 与b 不平行时 平移向量使a 与b 的起点重合 以a 、b 为邻边作一平行四边形 从公共起点到对角的向量等于向量a 与b 的和a b向量的加法的运算规律(1)交换律abba(2)结合律(a b) c a (b c)负向量 设a 为一向量 与a 的模相同而方向相反的向量叫做a 的负向量 记为a把向量a 与b 移到同一起点 0则从a 的终点A 向b 的终点B 所引向量AB 便是向量b 与a 的差b a向量a 与实数 的乘积记作规定 a 是一个向量 方向当>0时与a 相同 当<0时与a 相反 当 向量这时它的方向可以是任意的a③ 空间直角坐标系在空间中任意取定一点 O 和三个两两垂直的单位向量 i 、j 、k 就确定了三条都以 O 为 原点的两两垂直的数轴依次记为x 轴(横轴卜y 轴(纵轴卜z 轴(竖轴)统称为坐标轴 它们 构成一个空间直角坐标系称为Oxyz 坐标系注:(1)通常三个数轴应具有相同的长度单位(2) 通常把x 轴和y 轴配置在水平面上 而z 轴则是铅垂线(3) 数轴的的正向通常符合右手规则坐标面 在空间直角坐标系中 任意两个坐标轴可以确定一个平面 这种平面称为坐标面x 轴和y 轴所确定的坐标面叫做xOy 面 另两个坐标面是 yOz 面和zOx 面 卦限三个坐标面把空间分成八个部分每一部分叫做卦限含有三个正半轴的卦限叫做第一卦限它位于xOy 面的上方在xOy 面的上方按逆时针方向排列着第二卦限、 第三卦限和第四卦限 在xOy 面的下方 与第一卦限对应的是第五卦限 按逆时针方向还排列着第六卦限、 第七卦限和第八卦限 八个卦限分别用字母I 、II 、III 、IV 、V 、VI 、VII 、VIII 表示向量的坐标分解式任给向量r 对应有点M 使OM r 以OM 为对角线、三条坐标轴为棱作长方体 有 r OM OP PN NM OP OQ OR向量的减法 向量与数的乘法: 它的模| a| | ||a|它的 0时| a| 0即a 为零运算规律(1)结合律 (a) ( a) ( )a ;(2)分配律()a a a ; (a b) a b 向量的单位化 设a0则向量看是与a 同方向的单位向量记为e a ,于是a |a|e a定理1 设向量a 0那么向量b 平行于a 的充分必要条件是存在唯一的实数设 OP Xi OQ yj OR zk 贝U r OM xi yj zk上式称为向量r 的坐标分解式xi 、yj 、zk 称为向量r 沿三个坐标轴方向的分向量点M 、向量r 与三个有序x 、y 、z 之间有一一对应的关系M r OM xi yj zk (x, y, z)投影的性质性质1 (a)u |a|cos (即Prj u a |a|cos )其中 为向量与u 轴的夹角 性质 2 (a b)u (a)u (b)u (即 Prj u (a b) Prj u a Prj u b) 性质 3 ( a)u (a)u (即 Prj u ( a) Prj u a)有序数x 、y 、z 称为向量 r (在坐标系Oxyz )中的坐标 记作r (x y z) 向量r OM 称为点M 关于原点O 的向径 ④ 利用坐标作向量的线性运算设 a (a x a y a z ) b (b x b y b z )a b (a x b x a y b y a z b z ) a b (a x b x a y b y a z b z ) a ( a x a y a z )利用向量的坐标判断两个向量的平行设 a (a x a y a z ) 0 b (b x b y b z )向量 b//a b a即 b//a (b x b y b z )(a x a y a z )于是 bx b y axaybzaz⑤ 向量的模、方向角、投影 设向量r (x y z )作OM r 则 向量的模长公式|r| ..x 2 y 2 z 2设有点 A(x i y i z i )、B(x y 2 z 2) AB OB OA(x 2 y 2 Z 2)(X 1 y 1 Z 1)(X 2 X 1 y 2 y 1 Z 2 z”A 、B 两点间的距离公式为: |AB| |AB|、(X 2 %)2 (y 2 yj 2厶 乙)2方向角:非零向量r 与三条坐标轴的夹角 称为向量r 的方向角设 r (x y z) 则 x |r|cos y |r|cos z |r|coscos 、cos 、cos 称为向量 r 的方向余弦cos x cos|r|从而(cos ,cos 1,COS ) F|r e r2 2 2cos cos cos 12、数量积、向量积、混合积① 两向量的数量积数量积 对于两个向量a 和b 它们的模|a|、|b|和它们的夹角 的 余弦的乘积称为向量 a 和b 的数量积记作ab 即a b |a| |b| cos数量积的性质⑴ a a |a| 2(2)对于两个非零向量 a 、b 如果a b 0贝U a b;反之如果a b 则a b 0如果认为零向量与任何向量都垂直 则a b a b 0两向量夹角的余弦的坐标表示设 (a 人b)则当a 0、b 0时有数量积的坐标表示设 a (a x a y a z ) b (b x b y b z )贝U a b a x b x a y b y a z b z 数量积的运算律 (1) 交换律 a b b a;⑵分配律 (a b) c a c b c(3) ( a) b a ( b) (a b)(a) (• b) (a b)、为数② 两向量的向量积向量积 设向量c 是由两个向量a 与b 按下列方式定出c 的模|c| |a||b|sin其中 为a 与b 间的夹角;c 的方向垂直于a 与b 所决定的平面 c 的指向按右手规则从 a 转向b 来确定那么 向量c 叫做向量a 与b 的向量积 记作a b 即c a b向量积的性质(1) a a 0(2) 对于两个非零向量 a 、b 如果a b 0则a//b 反之 如果a//b 则a b 0 如果认为零向量与任何向量都平行 则a//b a b 0数量积的运算律(1) 交换律a b b a (2) 分配律(a b) c a c b c (3) ( a) b a ( b) (a b)(为数)数量积的坐标表示 设a (a x a y a z ) b (b x b y b z )a b (a yb z a z b y ) i ( a z b xa xb z ) j (a xb y a y b x ) kcosa xb x a y b y a z b z|a||b|X a 2 a z为了邦助记忆利用三阶行列式符号 上式可写成a yb z i a z b x j a x b y k a y b x k a x b z j a z b y ii j k a x a y a z b x b y b z(a y b z a z b y ) i ( a z b x a x b z ) j ( a x b y a y b x ) k③三向量的混合积混合积的几何意义: 混合积[abc]是这样一个数,它的绝对值表示以向量a 、b 、c 为棱的平行六面体的体积,如果向量a 、b 、c 组成右手系,那么混合积的符号是正的,如果a 、b 、c 组成左手系,那么混合积的符号是负的。

[实用]向量代数与空间解析几何课件PPT文档

[实用]向量代数与空间解析几何课件PPT文档
a M 1 P M 1 Q M 1 P a x i a y j a z k
z
R
k M 1•
向 向向
•M 2
量 量量 在 在在
Q x yz
x
P
o
j
i
N

y上
axx2x1
的 投
轴 上 的 投
轴 上 的 投
ay y2y1
az z2z1 影 影

M 1 M 2 ( x 2 x 1 ) i ( y 2 y 1 ) j ( z 2 z 1 ) k
利用坐标作向量的线性运算
a { ax,ay,az},b{bx,by,bz},
a b { a x b x , a y b y ,a z b z }
( a x b x ) i ( a y b y ) j ( a z b z ) k a b { a x b x , a y b y ,a z b z }
按基本单位向量的坐标分解式:
M 1 M 2 ( x 2 x 1 ) i ( y 2 y 1 ) j ( z 2 z 1 ) k
在三个坐标轴上的分向量:a x i,a yj,a zk ,
向量的坐标: ax, ay, az,
向量的坐标表达式:
a { a x ,a y ,a z}
M 1 M 2 { x 2 x 1 ,y 2 y 1 ,z 2 z 1 } 特殊地: O M {x ,y ,z}
三、向量的坐标表示
1. 起点在原点的向量(向径)OM
z zC
设点 M(x,y,z)
以 i, j,k分别表示沿x, y, z
k
轴正向的单位向量, 称为基本单
位向量. rOM = OA + AN +NM

同济高等数学下册第八章知识点精讲

同济高等数学下册第八章知识点精讲

总之:
运算律 : 结合律 分配律
可见
因此
机动 目录 上页 下页 返回 结束
设 a 为非零向量 , 则
a∥b
( 为唯一实数)
证: “ ”. 设 a∥b , 取 =±
, a , b 同向时
取正号, 反向时取负号, 则 b 与 a 同向, 且
再证数 的唯一性 . 设又有 b= a , 则
机动 目录 上页 下页 返回 结束
求三
机动 目录 上页 下页 返回 结束
导出刚体上
一点 M 的线速度 的表示式 .
解: 在轴 l 上引进一个角速度向量 使

方向与旋转方向符合右手法则 , 在 l 上任取一点 O, 作
向径
它与 的夹角为 , 则
点 M离开转轴的距离

符合右手法则
机动 目录 上页 下页 返回 结束
1. 定义 已知三向量
机动 目录 上页 下页 返回 结束
两平面法向量的夹角(常指锐角)称为两平面的夹角. 设平面∏1的法向量为
平面∏2的法向量为
则两平面夹角 的余弦为

机动 目录 上页 下页 返回 结束
机动 目录 上页 下页 返回 结束
和 垂直于平面∏: x + y + z = 0, 求其方程 .
解: 设所求平面的法向量为 方程为
• 坐标轴

• 坐标面

• 卦限(八个) Ⅶ
y轴(纵轴)
x轴(横轴) Ⅷ
Ⅵ Ⅴ
机动 目录 上页 下页 返回 结束
点M
有序数组
向径
(称为点 M 的坐标) 特殊点的坐标 :
原点 O(0,0,0) ; 坐标轴上的点 P, Q , R ;

高等数学第一节、向量及其线性运算

高等数学第一节、向量及其线性运算

o
a
A
记作(a, b) 或 (b, a),即(a, b) .
如果向量 a 与 b 中有一个是零向量 ,规定它们的
夹角可以在 0 与 π 之间任意取值 .
8、向量平行
如果(a, b) 0或,就称向量a 与b 平行,记作a// b .
a
c
b
零向量与任何向量都平行.
9、向量垂直
如果
( a,
b)
,就称向量a
因为向量 a 与 a 平行,所以常用向量与数的乘
积来说明两个向量的平 行关系.
定理 1 设向量 a 0,那么向量b 平行于 a 的充分
必要条件是: 存在唯一的实数,使得 b a .
6、数轴与向量
数轴可由一个点、一个方向及单位长度确定,故
给定一个点及一个单位向量即可确定一条数轴.
6、零向量: 模等于零的向量叫做零 向量,记作 0 或 0 .
零向量的起点与终点重合,它的方向可以看做是任意的.
7、向量的夹角 设有两个非零向量 a, b, 任取空间一点 O,
作 OA a, OB b,
规定不超过 π 的 AOB
B
b
(设 AOB, 0 π)
称为向量a 与 b的夹角,
A
D
二、向量的线性运算
1. 向量的加法
三角形法则
ab
C
A
a
b
B
或平行四边形法则
b
A
D
ab
a
B
C
b (ab)c
a (b c)
c bc
运算规律 :
ab b
交换律 结合律
a b b a (a b) c
a
(b
c)

同济大学(高等数学)-第八章-向量代数与解析几何

同济大学(高等数学)-第八章-向量代数与解析几何

第五篇 向量代数与空间解析几何第八章 向量代数与空间解析几何解析几何的基本思想是用代数的方法来研究几何的问题,为了把代数运算引入几何中来,最根本的做法就是设法把空间的几何结构有系统的代数化,数量化. 平面解析几何使一元函数微积分有了直观的几何意义,所以为了更好的学习多元函数微积分,空间解析几何的知识就有着非常重要的地位.本章首先给出空间直角坐标系,然后介绍向量的基础知识,以向量为工具讨论空间的平面和直线,最后介绍空间曲面和空间曲线的部分容.第1节 空间直角坐标系1.1 空间直角坐标系用代数的方法来研究几何的问题,我们需要建立空间的点与有序数组之间的联系,为此我们通过引进空间直角坐标系来实现.1.1.1 空间直角坐标系过定点O ,作三条互相垂直的数轴,这三条数轴分别叫做x 轴(横轴)、y 轴(纵轴)、z 轴(竖轴),它们都以O 为原点且具有相同的长度单位. 通常把x 轴和y 轴配置在水平面上,而z 轴则是铅垂线;它们的正方向要符合右手规则:右手握住z 轴,当右手的四指从x 轴的正向转过2角度指向y 轴正向时,大拇指的指向就是z 轴的正向,这样就建立了一个空间直角坐标系(图8-1),称为Oxyz 直角坐标系,点O 叫做坐标原点.图8-1在Oxyz 直角坐标系下,数轴Ox ,Oy ,Oz 统称为坐标轴,三条坐标轴中每两条可以确定一个平面,称为坐标面,分别为xOy ,yOz ,zOx ,三个坐标平面将空间分为八个部分,每一部分叫做一个卦限(图8-2),分别用Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ、Ⅷ表示.yxzO图8-21.1.2 空间点的直角坐标设M 为空间中的任一点,过点M 分别作垂直于三个坐标轴的三个平面,与x 轴、y 轴和z 轴依次交于A 、B 、C 三点,若这三点在x 轴、y 轴、z 轴上的坐标分别为x ,y ,z ,于是点M 就唯一确定了一个有序数组(, , )x y z ,则称该数组(, , )x y z 为点M 在空间直角坐标系Oxyz 中的坐标,如图8-3.x ,y ,z 分别称为点M 的横坐标、纵坐标和竖坐标.图8-3反之,若任意给定一个有序数组(, , )x y z ,在x 轴、y 轴、z 轴上分别取坐标为x ,y ,z 的三个点A 、B 、C ,过这三个点分别作垂直于三个坐标轴的平面,这三个平面只有一个交点M ,该点就是以有序数组(, , )x y z 为坐标的点,因此空间中的点M 就与有序数组(, , )x y z 之间建立了一一对应的关系.注:A 、B 、C 这三点正好是过M 点作三个坐标轴的垂线的垂足.yxzOyxzAB C(,,)M x y z1.2 空间中两点之间的距离设两点111(, , )M x y z ,222(, , )N x y z ,则M 与N 之间的距离为212212212)()()(z z y y x x d -+-+-= (8-1-1)事实上,过点M 和N 作垂直于xOy 平面的直线,分别交xOy 平面于点1M 和1N ,则1MM ∥1NN ,显然,点1M 的坐标为11(, , 0)x y ,点1N 的坐标为22(, , 0)x y (如图8-4).图8-4由平面解析几何的两点间距离公式知,1M 和1N 的距离为:21221211)()(||y y x x N M -+-=.过点M 作平行于xOy 平面的平面,交直线1NN 于2N ,则11M N ∥2MN ,因此2N 的坐标为221(, , )x y z ,且212212112)()(||||y y x x N M MN -+-==,在直角三角形N MN 2中,||||122z z N N -=,所以点M 与N 间的距离为2122122122222)()()(||||z z y y x x N N MN d -+-+-=+=.例1 设(1, 2, 0)A -与(1, 0, 2)B --为空间两点,求A 与B 两点间的距离. 解 由公式(8-1-1)可得,A 与B 两点间的距离为d ==例2 在z 轴上求与点(3, 5, 2)A -和(4, 1, 5)B -等距的点M .解 由于所求的点M 在z 轴上,因而M 点的坐标可设为(0, 0, )z ,又由于MA MB =,由公式(8-1-1),得222222)5(1)4()2(53z z -++-=--++.从而解得72=z ,即所求的点为2(0, 0, )7M .习题8-11.讨论空间直角坐标系的八个卦限中的点的坐标的符号. 2.在坐标轴上的点和在坐标平面上的点的坐标各有何特点? 3.在空间直角坐标系中,画出以下各点:(2, 0, 0)A ;(0, 3, 0)B -;(3, 0, 1)C ;(3, 2, 1)D -.4.求点(1, 2, 3)-关于各坐标平面对称的点的坐标. 5.求点(1, 2, 3)关于各坐标轴对称的点的坐标. 6.求以下各对点间的距离: (1) (0, 1, 3)A -与(2, 1, 4)B ;(2) (1, 4, 2)C -与D(2, 7, 3).7.在坐标平面yOz 上求与三点(3, 1, 2)A 、(4, 2, 2)B --和(0, 5, 1)C 等距的点. 8.求点(12, 3, 4)A -与原点、各坐标平面和各坐标轴的距离.9. 证明以()()()A 4,3,1,B 7,1,2,C 5,2,3为顶点的三角形△ABC 是一等腰三角形.第2节 空间向量的代数运算2.1 空间向量的概念在日常生活中,我们经常会遇到一些量,如质量、时间、面积、温度等,它们在取定一个度量单位后,就可以用一个数来表示.这种只有大小没有方向的量,叫做数量(或标量).但有一些量,如力、位移、速度、电场强度等,仅仅用一个实数是无法将它们确切表示出来,因为它们不仅有大小,而且还有方向,这种既有大小又有方向的量,叫做向量(或矢量).在数学上,我们用有向线段AB 来表示向量,A 称为向量的起点,B 称为向量的终点,有向线段的长度就表示向量的大小,有向线段的方向就表示向量的方向.通常在印刷时用黑体小写字母a ,b ,c ,…来表示向量,手写时用带箭头的小写字母, ,,a b c来记向量.向量的长度称为向量的模,记作a 或AB ,模为1的向量叫做单位向量,模为0的向量叫做零向量,记作0,规定:零向量的方向可以是任意的.本章我们讨论的是自由向量,即只考虑向量的大小和方向,而不考虑向量的起点,因此,我们把大小相等,方向相同的向量叫做相等向量,记作a =b .规定:所有的零向量都相等.与向量a 大小相等,方向相反的向量叫做a 的负向量(或反向量),记作 a . 平行于同一直线的一组向量称为平行向量(或共线向量).平行于同一平面的一组向量,叫做共面向量,零向量与任何共面的向量组共面.2.2 向量的线性运算2.2.1 向量的加法我们在物理学中知道力与位移都是向量,求两个力的合力用的是平行四边形法则,我们可以类似地定义两个向量的加法.定义1 对向量a ,b ,从同一起点A 作有向线段AB 、AD 分别表示a 与b ,然后以AB 、AD 为邻边作平行四边形ABCD ,则我们把从起点A 到顶点C 的向量AC 称为向量a 与b 的和(图8-5),记作a +b .这种求和方法称为平行四边形法则.图8-5 图8-6若将向量b 平移,使其起点与向量a 的终点重合,则以a 的起点为起点,b 的终点为终ab Cabc =a +b点的向量c 就是a 与b 的和(图8-6),该法则称为三角形法则.多个向量,如a 、b 、c 、d 首尾相接,则从第一个向量的起点到最后一个向量的终点的向量就是它们的和a +b +c +d (图8-7).图8-7对于任意向量a ,b ,c ,满足以下运算法则: (1)a +b =b +a (交换律).(2)()()a +b +c =a +b +c (结合律). (3)0a +=a .2.2.2 向量的减法定义2 向量a 与b 的负向量-b 的和,称为向量a 与b 的差,即()--a b =a +b .特别地,当b =a 时,有()-0a +a =.由向量减法的定义,我们从同一起点O 作有向线段OA ,OB 分别表示a ,b ,则()OA OB OA OB --=+-a b =OA BO BA =+=.也就是说,若向量a 与b 的起点放在一起,则a ,b 的差向量就是以b 的终点为起点,以a 的终点为终点的向量(图8-8).图8-82.2.3数乘向量定义3 实数λ与向量a 的乘积是一个向量,记作λa ,λa 的模是λa ,方向: 当0λ>时,λa 与a 同向;当0λ<时,λa 与a 反向;当0λ=时,λ0a =.abcda +b +c +daabb -a bBAC对于任意向量a ,b 以与任意实数λ,μ,有运算法则: (1) ()()λμλμa =a . (2) ()+λμλμ+a =a a .(3) ()+λλλ+a b =a b .向量的加法、减法与数乘向量运算统称为向量的线性运算,λμa +b 称为a ,b 的一个线性组合(, )R λμ∈.特别地,与 a 同方向的单位向量叫做a 的单位向量,记做a e ,即aa e a=.上式说明:一个非零向量除以它的模的结果是一个与原向量同方向的单位向量.例1 如图8-9,在平行六面体///ABCD B C D /—A 中,设/=AA ,a AD =b AB =c ,试用,,a b c 来表示对角线向量//,.AC A C图8-9解 ''AC AB BC CC =++'AB BC AA =++a b c =++;'''AC A A AB BC AA AB AD =++=-++a b c =++.由于向量λa 与a 平行,所以我们通常用数与向量的乘积来说明两个向量的平行关系.即有,定理1 向量a 与非零向量b 平行的充分必要条件是存在一个实数λ,使得λa =b .2.3 向量的坐标表示2.3.1向量在坐标轴上的投影设A 为空间中一点,过点A 作轴u 的垂线,垂足为'A ,则'A 称为点A 在轴u 上的投影(图8-10).图8-10若M 为空间直角坐标系中的一点,则M 在x 轴、y 轴、z 轴上的投影为A 、B 、C ,如图8-11所示.图8-11设向量AB 的始点与终点B 在轴u 的投影分别为A '、B ',那么轴u 上的有向线段A B ''的值A B ''叫做向量AB 在轴u 上的投影,记作u prj AB A B ''=,轴u 称为投影轴.图8-12当A B ''与轴u 同向时,投影取正号,当A B ''与轴u 反向时,投影取负号. 注 (1) 向量在轴上投影是标量.(2) 设MN 为空间直角坐标系中的一个向量,点M 的坐标为111(, , )x y z ,点N 的坐标为222(, , )x y z ,显然,向量MN 在三个坐标轴上的投影分别为12x x -,12y y -,12z z -. 2.3.2向量的坐标表示yxzOA B CM取空间直角坐标系Oxyz ,在x 轴、y 轴、z 轴上各取一个与坐标轴同向的单位向量,依次记作, , i j k ,它们称为坐标向量.空间中任一向量a ,它都可以唯一地表示为, , i j k 数乘之和. 事实上,设MN a =,过M 、N 作坐标轴的投影,如图8-13所示.MN =MA+AP +PN =MA+MB +MC a =.由于MA 与i 平行,MB 与j 平行,MC 与k 平行,所以,存在唯一的实数, , x y z ,使得MA x =i ,MB y =j ,MC z =k ,即x y z a =i +j +k . (8-2-1)图 8-13我们把(8-2-1)式中, , i j k 系数组成的有序数组(, , )x y z 叫做向量a 的直角坐标,记为{, , }x y z a =,向量的坐标确定了,向量也就确定了.显然,(8-2-1)中的, , x y z 是向量a 分别在x 轴、y 轴、z 轴上的投影.因此,在空间直角坐标系中的向量a 的坐标就是该向量在三个坐标轴上的投影组成的有序数组.例2 在空间直角坐标系中设点(3, 1, 5)M -,(2, 3, 1)N -,求向量MN 与NM 的直角坐标.解 由于向量的坐标即为向量在坐标轴上的投影组成的有序数组,而向量的各投影即为终点坐标与起点坐标对应分量的差.所以向量MN 的坐标为{5, 4, 4}--,向量NM 的坐标为{5, 4, 4}-. 例3(定比分点公式) 设111(,,)A x y z 和222(,,)B x y z 为两已知点,有向线段AB 上的点M 将它分为两条有向线段AM 和MB ,使它们的值的比等于数(1)λλ≠-,即AMMBλ=,求分点(,,)M x y z 的坐标.图8-14 解 如图8-14,因为AM 与MB 在同一直线上,且同方向,故AM MB λ=⋅,而122{,,}AM x x y y z z =---, 222{,,}MB x x y y z z =---222{(),(),()}MB x x y y z z λλλλ=---所以 12()x x x x λ-=-,12()y y y y λ-=-,12()z z z z λ-=- 解得121212,,.111x x y y z z x y z λλλλλλ+⋅+⋅+⋅===+++当λ=1, 点M 的有向线段→AB x 2.3.3向量可以用它的模与方向来表示,设空间向量12a M M =分别为,,αβγ,规定: 0,0απ≤≤≤称,,αβγ为向量a 的方向角因为向量a 12cos cos x a M M a αα=⋅=⋅12cos cos y a M M a ββ=⋅=⋅(8-2-2)12cos cos z a M M a γγ=⋅=⋅公式(8.2.2)中出现的cos ,cos ,cos αβγ称为向量a 的方向余弦.而{,,}{cos ,cos ,cos }x y z a a a a a a a αβγ==⋅⋅⋅{cos ,cos ,cos }a a a e αβγ=⋅=⋅{cos ,cos ,cos }a e αβγ=是与向量a 同方向的单位向量.而 a =M M =12,,x y z M P a M Q a M R a ===111,故向量a 的模为 x a a a =+2(8-2-3)从而向量a 的方向余弦为cos a αβγ===(8-2-4)并且 222cos cos cos 1αβγ++=.例4 已知两点1M 和()21,3,0M ,求向量12M M 的模、方向余弦和方向角.解12(12,32,0(1,1,M M =--=-2)2(1)1(222=-++-=;11cos ,cos ,cos 22αβγ=-==; 23,,334πππαβγ===. 例5 已知两点(4,0,5)A 和(7,1,3)B ,求与AB 同方向的单位向量e . 解 因为{74,10,35}{3,1,2},AB =---=-所以23AB == 于是 {}.e =2.4 向量的数量积在物理中我们知道,一质点在恒力F 的作用下,由A 点沿直线移到B 点,若力F 与位移向量AB 的夹角为θ,则力F 所作的功为||||cos W F AB θ=⋅⋅.类似的情况在其他问题中也经常遇到.由此,我们引入两向量的数量积的概念. 定义1 设a ,b 为空间中的两个向量,则数cos ,a b a b叫做向量a 与b 的数量积(也称积或点积),记作⋅a b ,读作“a 点乘b ”.即cos ,⋅a b =a b a b (8-2-5)其中,a b 表示向量a 与b 的夹角,并且规定0, π≤≤a b .两向量的数量积是一个数量而不是向量,特别地当两向量中一个为零向量时,就有0⋅a b =.由向量数量积的定义易知:(1)2⋅a a =a ,因此=a(2) 对于两个非零向量a ,b ,a 与b 垂直的充要条件是它们的数量积为零,即⊥a b ⇔0⋅a b =.注 数量积在解决有关长度、角度、垂直等度量问题上起着重要作用. 数量积的运算满足如下运算性质: 对于任意向量a ,b 与任意实数λ,有 (1) 交换律:⋅⋅a b =b a .(2) 分配律:()⋅⋅⋅a b +c =a b +a c .(3) 与数乘结合律:()()()λλλ⋅⋅=⋅a b =a b a b . (4)0⋅≥a a 当且仅当0a =时,等号成立.例6 对坐标向量i ,j ,k ,求⋅i i ,⋅j j ,⋅k k ,⋅i j ,⋅j k ,⋅k i . 解 由坐标向量的特点与向量积的定义得1⋅⋅⋅i i =j j =k k =, 0⋅⋅⋅i j =j k =k i =.例7 已知2=a ,3=b ,2, 3π=a b ,求a b ⋅,(2)()-+a b a b ⋅,+a b . 解 由两向量的数量积定义有2cos , 23cos 3π⋅=⨯⨯a b =a b a b 123()=32=⨯⨯--.(2)()=22-⋅+⋅⋅-⋅-⋅a b a b a a +a b b a b b22=2-⋅-a a b b 222(3)23=11=---⨯-.2()()+=⋅+a b a +b a b =⋅⋅+⋅+⋅a a +a b b a b b222=+⋅+a a b b 2222(3)3=7=+⨯-+,因此+=a b .在空间直角坐标系下,设向量111{,,}x y z a =,向量222{,,}x y z b =,即111x y z ++a =i j k , 222x y z ++b =i j k .则111222()()x y z x y z ⋅++⋅++a b =i j k i j k121212()()+()x x x y x z ⋅+⋅⋅=i i i j i k 121212()()+()y x y y y z ⋅+⋅⋅+j i j j j k 121212()()+()z x z y z z ⋅+⋅⋅+k i k j k k .由于1⋅⋅⋅i i =j j =k k =, 0⋅⋅⋅i j =j k =k i =,所以121212x x y y z z ⋅++a b =.(8-2-6)也就是说,在直角坐标系下,两向量的数量积等于它们对应坐标分量的乘积之和.同样,利用向量的直角坐标也可以求出向量的模、两向量的夹角公式以与两向量垂直的充要条件,即设非零向量111{,,}x y z a =,向量222{,,}x y z b =,则=a (8-2-7)cos ||||⋅=a ba,b a b=. (8-2-8)⊥a b ⇔1212120x x y y z z ++=. (8-2-9)例8 在空间直角坐标系中,设三点(5, 4, 1)A -,(3, 2, 1)B ,(2, 5, 0)C -.证明:ABC ∆是直角三角形.证明 由题意可知{2, 6, 0}AB =-,={3, 1, 1}AC ---,则(2)(3)6(1)0(1)0AB AC ⋅=-⨯-+⨯-+⨯-=,所以AB AC ⊥.即ABC ∆是直角三角形.2.5向量的向量积在物理学中我们知道,要表示一外力对物体的转动所产生的影响,我们用力矩的概念来描述.设一杠杆的一端O 固定,力F 作用于杠杆上的点A 处,F 与OA 的夹角为θ,则杠杆在F 的作用下绕O 点转动,这时,可用力矩M 来描述.力F 对O 的力矩M 是个向量,M 的大小为||||||sin OA OA =M F ,F .M 的方向与OA 与F 都垂直,且OA ,F ,M 成右手系,如图8-16所示.图8-162.5.1向量积的定义在实际生活中,我们会经常遇到象这样由两个向量所决定的另一个向量,由此,我们引入两向量的向量积的概念.定义2 设a ,b 为空间中的两个向量,若由a ,b 所决定的向量c ,其模为sin , c =a b a b . (8-2-10)其方向与a ,b 均垂直且a ,b ,c 成右手系(如图8-17),则向量c 叫做向量a 与b 的向量积(也称外积或叉积).记作⨯a b ,读作“a 叉乘b ”.注 (1) 两向量a 与b 的向量积⨯a b 是一个向量,其模⨯a b 的几何意义是以a ,b 为邻边的平行四边形的面积. (2)⨯0a a =这是因为夹角θ=0,所以⨯0a a = 图8-17(3)对两个非零向量a 与b ,a 与b 平行(即平行)的充要条件是它们的向量积为零向量.a ∥b ⇔⨯0a b =.向量积的运算满足如下性质:对任意向量a ,b 与任意实数λ,有 (1) 反交换律:⨯-⨯a b =b a . (2) 分配律:()⨯⨯⨯a b +c =a b +a c ,()⨯⨯⨯a +b c =a c +b c .(3) 与数乘的结合律:()()()λλλ⨯⨯⨯a b =a b =a b .例9 对坐标向量i ,j ,k ,求⨯i i ,⨯j j ,⨯k k ,⨯i j ,⨯j k ,⨯k i . 解⨯⨯⨯0i i =j j =k k =.⨯i j =k ,⨯j k =i ,⨯k i =j .2.5.2向量积的直角坐标运算在空间直角坐标系下,设向量111{, , }x y z a =,向量222{, , }x y z b =,即111x y z ++a =i j k ,222x y z ++b =i j k ,因为⨯⨯⨯0i i =j j =k k =. ⨯i j =k ,⨯j k =i ,⨯k i =j , ⨯-j i =k ,⨯-k j =i ,⨯-i k =j .则111222()()x y z x y z ⨯++⨯++a b =i j k i j k121212()()+()x x x y x z ⨯+⨯⨯=i i i j i k 121212()()+()y x y y y z ⨯+⨯⨯+j i j j j k 121212()()+()z x z y z z ⨯+⨯⨯+k i k j k k121212121212()()+()()()()x y y x y z z y x z z x -⨯-⨯--⨯=i j j k k i 121212121212()()+()y z z y x z z x x y y x ----=i j k .为了便于记忆,借助于线性代数中的二阶行列式与三阶行列式有111111222222y z x z x y y z x z x y ⨯-a b =i j +k 111222x y z x y z =i j k . 注 设两个非零向量111{, , }x y z a =,222{, , }x y z b =,则a ∥b ⇔⨯0a b =,⇔212121z z y y x x ==. 若某个分母为零,则规定相应的分子为零.例10 设向量{1,2,1}--a =,{2,0,1}b =,求⨯a b 的坐标.解211112121012120201----⨯--=-i j ka b =i j +k 234=--i j +k .因此⨯a b 的直角坐标为{2, 3, 4}--.例11 在空间直角坐标系中,设向量{3, 0, 2}a =,{1, 1, 1}--b =,求同时垂直于向量a 与b 的单位向量.解 设向量⨯c =a b ,则c 同时与a ,b 垂直.而302111⨯--i j kc =a b =23=-+i j +k ,所以向量c 的坐标为{2, 1, 3}-.再将c 单位化,得02,1,3}={=-c ,即{与-- 为所求的向量. 例12 在空间直角坐标系中,设点(4, 1, 2)A -,(1, 2, 2)B -,(2, 0, 1)C ,求ABC ∆的面积.解 由两向量积的模的几何意义知:以AB 、AC 为邻边的平行四边形的面积为AB AC ⨯,由于{3, 3, 4}AB =--,{2, 1, 1}AC =--,因此33453211AB AC ⨯=--=++--i j ki j k ,所以21AB AC ⨯=故ABC ∆的面积为235=∆ABC S .2.6向量的混合积定义3 给定空间三个向量,,a b c ,如果先作前两个向量a 与b 的向量积,再作所得的向量与第三个向量c 的数量积,最后得到的这个数叫做三向量,,a b c 的混合积,记做()a b c ⨯⋅或abc ⎡⎤⎣⎦.说明:三个不共面向量,,a b c 的混合积的绝对值等于以,,a b c 为棱的平行六面体的体积V .定理如果111a X i Y j Z k =++,222b X i Y j Z k =++,333c X i Y j Z k =++,那么 111222333.X Y Z abc X Y Z X Y Z ⎡⎤=⎣⎦习题8-21.,,,,,().ABCD AB AD AC DB MA M ==设为一平行四边形试用表示为平行四边形对角线的交点a b.a b12.,().2M AB O OM OA OB =+设为线段的中点,为空间中的任意一点证明 2223.?(1)()();(2)();(3)()().==⨯=⨯对于任意三个向量与判断下列各式是否成立a,b c,a b c b c a a b a b a b c c a b4.:(1);(2)(3).利用向量证明三角形的余弦定理正弦定理;勾股定理5.设,,a b c 为单位向量,且满足0a b c ++=,求.a b b c c a ++6.1(3,2,2),(1,3,2),(8,6,2),322a b c a b + c.求=-==--7.已知三点(3,0,2),A B AB ==求的坐标、模、方向余弦和方向角.8.一向量的终点在点B(2,-1,7),它在x 轴、y 轴和z 轴上的投影依次为4,-4和7.求这向量的起点A 的坐标.9.设2=a ,4=b ,3πa,b =,求⋅a b ,(2)-⋅a b b ,-a b . 10.设向量a ,b ,c 两两垂直,且1=a ,2=b ,3=c ,求向量d =a +b +c 的模与d,a .11.在空间直角坐标系中,已知{1,2,3}-a = ,{2,2,1}-b = ,求: (1)⋅a b ;(2) 25⋅a b ;(3) a ;(4)cos a,b .12.已知向量2332和,,a i j k b i j k c i j =-+=-+=-,计算 (1)()();a b c a c b -(2)()();a b b c +⨯+(3)()a b c ⨯.13.设向量a ,b 的直角坐标分别为{1, 3, 2}--和{2, 4, }k -,若a b ⊥,求k 的值.14.设向量{2, 1, 1}-a =,{1, 3, 0}-b =,求以、a b 为邻边构造的平行四边形面积. 15.求同时垂直于向量{3, 2, 4}-a =和纵轴的单位向量.16.已知三角形三个顶点(4, 1, 2)A -,(3, 0, 1)B -,(5, 1, 2)C ,求ABC ∆的面积.第3节 空间中的平面与直线方程在本节我们以向量为工具,在空间直角坐标系中讨论最简单的曲面和曲线——平面和直线.3.1平面与其方程首先利用向量的概念,在空间直角坐标系中建立平面的方程,下面我们将给出几种由不同条件所确定的平面的方程.3.1.1平面的点法式方程若一个非零向量n 垂直于平面π,则称向量n 为平面π的一个法向量.显然,若n 是平面π的一个法向量,则λn (λ为任意非零实数)都是π的法向量,即平面上的任一向量均与该平面的法向量垂直.由立体几何知识知道,过一个定点0000(, , )M x y z 且垂直于一个非零向量{, , }A B C n =有且只有一个平面π.设(, , )M x y z 为平面π上的任一点,由于π⊥n ,因此0M M ⊥n .由两向量垂直的充要条件,得00M M =⋅n ,而0000{, , }M M x x y y z z =---,{, , }A B C n =,所以可得0)()()(000=-+-+-z z C y y B x x A . (8-3-1)由于平面π上任意一点(, , )M x y z 都满足方程(8-3-1),而不在平面π上的点都不满足方程(8-3-1),因此方程(8-3-1)就是平面π的方程.由于方程(8-3-1)是给定点0000(, , )M x y z 和法向量{, , }A B C n =所确定的,因而称式(8-3-1)叫做平面π的点法式方程.图8-18例1 求通过点0(1, 2, 4)M -且垂直于向量{3, 2, 1}-n =的平面方程.解 由于{3, 2, 1}-n =为所求平面的一个法向量,平面又过点0(1, 2, 4)M -,所以,由平面的点法式方程(6-14)可得所求平面的方程为3(1)2(2)1(4)=0x y z --⋅++⋅-,整理,得32110x y z -+-=.例2 求过三点()12,1,4M -,()2M 1,3,2--,()3M 0,2,3 的平面π的方程. 解 所求平面π的法向量必定同时垂直于12M M 与13M M .因此可取12M M 与13M M 的向量积1213M M M M ⨯为该平面的一个法向量n .即1213n =M M M M ⨯.由于12{3, 4, 6}M M =--,13{2, 3, 1}M M =--,因此1213-631i j kn =M M M M =342⨯---149i j k,=+-,因此所求平面π的方程为0419214=--++-)()()(z y x ,化简得.015914=--+z y x一般地,过三点(,,)(1,2,3)k k k k M x y z k =的平面方程为1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 称为平面的三点式方程。

高等数学 第八章

高等数学 第八章

22 (3) 232 11 .
因 | a b |2 (a b) (a b) |a |2 2a b | b |2 22 2 (3) 32 = 7 ,
故可 得
| a b| 7 .
二、数量积的坐标运算
设非零向量 a (x1 ,y1 ,z1) , b (x2 ,y2 ,z2 ) ,则
于是可得向量 r (x ,y ,z) 的模的坐标表达式为 | r | x2 y2 z2 .
向量 M1M2 的模即为点 M1 (x1 ,y1 ,z1) 和点 M2 (x2 ,y2 ,z2 ) 之间的距离,即 | M1M2 | (x2 x1)2 (y2 y1)2 (z2 z1)2 .
方向 角为
2 , , 3 .
3
3
4
第三节
向量的数量积与向量积
一、数量积的定义及性质
定义 1 设 a,b 为空间中的两个向量,则数| a | | b | cos a ,b 称为向量 a,b 的数量积(也
称内积或点积),记作 a b ,读作“a 点乘 b”,即
a b | a | | b | cos a ,b .
在空间直角坐标系中,设点 M1 的坐标为 (x1 ,y1 ,z1) ,点 M 2 的坐标为 (x2 ,y2 ,z2 ) ,则以 M1 为
起点、 M 2 为终点的向量为
M1M2 OM2 OM1 .
因为 OM2 与 OM1 均为向径,所以 M1M2 OM2 OM1 (x2i y2 j z2k) (x1i y1 j z1k)
图8-7
交换律:a+b=b+a 结合律:(a+b)+c=a+(b+c) a+0=a a+(-a)=a
(二)向量的减法

向量代数与空间解析几何课件

向量代数与空间解析几何课件

空间曲线
空间中的曲线可以由三个 参数方程表示,例如球面 和抛物面。
曲面
曲面可以由两个或三个参 数方程表示,例如球面和 圆柱面。
空间解析几何中的常见问题与解决方法
求解点到直线的距离
使用点到直线距离公式,将点坐标和直线方程代入公式计 算。
求解两直线交点
将两直线的方程联立求解,得到交点的坐标。
判断两线是否平行或垂直
向量的数量积
01
向量数量积的定义
两个向量的数量积定义为它们的模长和夹角的余弦值的乘积,记作a·b

02
向量数量积的性质
数量积满足交换律、结合律、数乘律和分配律。
03
向量数量积的应用
在物理学中,向量数量积常用于描述力的做功、动量等物理量;在解析
几何中,向量数量积可用于计算向量的长度和向量的投影等。
向量的向量积
02
空间几何基础
空间直角坐标系
空间直角坐标系的定义
坐标轴上的单位向量
空间直角坐标系是三维空间中的一个 固定坐标系,由三个互相垂直的坐标 轴组成,分别为x轴、y轴和z轴。
与x轴、y轴和z轴正方向同向的单位向 量分别记为i、j、k,它们的模都为1, 且满足i×j=k,j×k=i,k×i=j。
空间点的坐标表示
在空间直角坐标系中,任意一点P的 位置可以用三个实数x、y、z来表示, 这三个实数称为点P的坐标。
向量的线性组合
向量线性组合的定义
如果向量a和b满足a=λb(λ为实数),则称向量a是向量b的线性 组合。
向量线性组合的性质
线性组合满足交换律、结合律和数乘律。
向量线性组合的应用
在物理学、工程学等领域中,向量线性组合常用于描述力的合成与 分解、速度和加速度的合成等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

z
表示上半球面与圆柱面的交线C.
ay
x
二、空间曲线的参数方程
将曲线C上的动点坐标x, y, z表示成参数t 的函数:
z
称它为空间曲线的 参数方程.
例如,圆柱螺旋线 的参数方程为
令 t , b v
M o
x y
上升高度 h 2 b, 称为螺距 .
例1. 将下列曲线化为参数方程表示: 解: (1) 根据第一方程引入参数 , 得所求为
C
(x, z) y0
0
例如,
C
:
x
2
x2 (y
y2 1) 2
z2 1 (z 1)2
1
在xoy 面上的投影曲线方程为
x
2
2
y z
2 2 0
y
0
z
C
o
1y
x
画出下列各曲面所围图形:
2y2 x
x y z 1Leabharlann 422z0(8, 2,0)
4
x
z
z 2 o (2,1,0) y
o
x
y
z 1
1
1o x
1
x2 1 z y0
z0 x y 1
y
1z
1
1
x
1y
z
(1,1)
o 1
x
x2 y2 z
y2 x
y (1,1)
x 1 z0
又如 x2 z2 a2 x2 y2 a2
与x y z 0
z
a
oa
y
x
又如,
上半球面
和锥面
所围的立体在 xoy 面上的投影区域为:
xoy 面上的投影曲线所围之域 .
二者交线在
二者交线
z
在 xoy 面上的投影曲线
所围圆域: x2 y2 1, z 0.
Co x
1y
又如,方程组
z
表示上半球面与圆柱面的交线C.
ay
x
z
ay x xz20y2 ax
第四节 空间曲线及其方程
一、空间曲线的一般方程 二、空间曲线的参数方程 三、空间曲线在坐标面上的投影
一、空间曲线的一般方程
空间曲线可视为两曲面的交线, 其一般方程为方程组
例如,方程组
S2
G(x, y, z) 0
L
S1
F(x, y, z) 0
z
表示圆柱面与平面的交线 C.
2C
o 1y
x
又如,方程组
(2) 将第二方程变形为
故所求为
三、空间曲线在坐标面上的投影
设空间曲线 C 的一般方程为
消去 z 得投影柱面
z
则C 在xoy 面上的投影曲线 C´为
C
H (x, y) 0
z 0
y
消去 x 得C 在yoz 面上的投影曲线方程
R(
y, z) x0
0
消去y 得C 在zox 面上的投影曲线方程
x
T
相关文档
最新文档