传热学第四版课后题答案第九章
《传热学》第四版课后习题标准答案
《传热学》第四版课后习题答案————————————————————————————————作者:————————————————————————————————日期:《传热学》第一章思考题1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。
答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。
联系是:在发生对流换热的同时必然伴生有导热。
导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能量的转移还伴有能量形式的转换。
2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。
试写出这三个公式并说明其中每一个符号及其意义。
答:① 傅立叶定律:dx dt q λ-=,其中,q -热流密度;λ-导热系数;dx dt-沿x 方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。
② 牛顿冷却公式:)(f w t t h q -=,其中,q -热流密度;h -表面传热系数;w t -固体表面温度;f t -流体的温度。
③ 斯忒藩-玻耳兹曼定律:4T q σ=,其中,q -热流密度;σ-斯忒藩-玻耳兹曼常数;T -辐射物体的热力学温度。
3. 导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关?答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m 2.K);③ 传热系数的单位是:W/(m 2.K)。
这三个参数中,只有导热系数是物性参数,其它均与过程有关。
4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。
试分析引入传热方程式的工程实用意义。
第四版《传热学》课后习题答案
第一章思考题1.试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。
答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。
联系是:在发生对流换热的同时必然伴生有导热。
导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能量的转移还伴有能量形式的转换。
2.以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。
试写出这三个公式并说明其中每一个符号及其意义。
答:①傅立叶定律:dx dt,其中,q -热流密度;-导热系数;dxdt-沿x方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。
②牛顿冷却公式:,其中,q-热流密度;h-表面传热系数;wt-固体表面温度;ft-流体的温度。
③斯忒藩-玻耳兹曼定律:,其中,q -热流密度;-斯忒藩-玻耳兹曼常数;T-辐射物体的热力学温度。
3.导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关?答:①导热系数的单位是:W/(m.K);②表面传热系数的单位是:W/(m2.K);③传热系数的单位是:W/(m2.K)。
这三个参数中,只有导热系数是物性参数,其它均与过程有关。
4.当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。
试分析引入传热方程式的工程实用意义。
答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。
5.用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。
而一旦壶内的水烧干后,水壶很快就烧坏。
试从传热学的观点分析这一现象。
答:当壶内有水时,可以对壶底进行很好的冷却(水对壶底的对流换热系数大),壶底的热量被很快传走而不至于温度升得很高;当没有水时,和壶底发生对流换热的是气体,因为气体发生对流换热的表面换热系数小,壶底的热量不能很快被传走,故此壶底升温很快,容易被烧坏。
传热学 第四版 (章熙民 任泽霈 著) 中国建筑工业出版社 课后答案
令m =
h 1 = 5.2432 1/ m 且 θ = t − t g ,则 θl = θ 0 , ch ( ml ) λδ
得到 l = 200mm , t g = 157.07 C , ∆t = 157.07 − 84 = 73.07 C ,
0
0
ξ=
157.07 − 84 × 100% = 46.52% 157.07
xc =
Rec ν 5 , Rec = 5 ×10 ,最后得到 u∞
⎛5 ⎞ Nu = ⎜ C Re 4 5 − 831⎟ Pr1 3 ,又因为已知 Nu = ( 0.0359 Re 4 5 − 831) Pr1 3 ,故 ⎝4 ⎠
传热学课后题答案及相关解题性
C = 0.02872 , Nu x ,t = 0.02872 Re x 4 5 ⋅ Pr1 3
23 题 分析 参考课本 P123 页(15)到(5-33)式。
⎛ d 2t ⎞ t = a − by + cy 2 ; y = 0, t = tw ; ⎜ 2 ⎟ = 0 ; y = δ t , t = t f 得到 ⎝ dy ⎠ w
t − tw θ y = = ,代入速度场和该温度场于能量积分方程 t f − tw θ f δ t
⎧−4ta + 2tb + 100 = 0 ⎪t − 4t + t + 500 = 0 ⎪a b c 第 7 题: ⎨ ⎪tb − 4tc + td + 500 = 0 ⎪ ⎩tc − 3td + 500 = 0
⎧ta ⎪t ⎪b ⎨ ⎪tc ⎪ ⎩td
= 133 = 216 = 240.3 = 245.8
⎞ ⎟ , τ = 328.07 s = 5.47 min ⎠
传热学 第九章 答案
X 1, 2 + X 1, 3 = 1 X 2 ,1 + X 2 , 3 = 1 X 3 ,1 + X 3 , 2 = 1
求解得, 求解得,
A1 X 1, 2 = A2 X 2 ,1 A1 X 1, 3 = A3 X 3 ,1 A2 X 2 , 3 = A3 X 3 , 2
X 1, 2 =
A1 + A2 − A3 2 A1
Φ 1, 2 = 0
E b1 = E b 2
第9章 辐射传热的计算
A1 X 1, 2 = A2 X 2 ,1
§9.1 辐射传热的角系数 辐射传热的角系数
二、角系数的性质
2.完整 2.完整性 完整性
有n个表面组成的封闭系统, 个表面组成的封闭系统,据能量守恒可得: 据能量守恒可得:
X i ,1 + X i ,2 + X i ,3 + ⋯ + X i , n = ∑ X i , j = 1
X 2,1 =
第9章 辐射传热的计算
§9.1 辐射传热的角系数 辐射传热的角系数
三、角系数的计算
2.代数分析法 2.代数分析法
利用角系数的性质, 利用角系数的性质,通过求解代数方程获得角系数。 通过求解代数方程获得角系数。 图(a)、(b):
X 1,1 = 0
A1 X 2,1 = A2
X 1,2 = 1
第9章 辐射传热的计算
§9.1 辐.角系数概念引出的原因 1.角系数概念引出的原因
辐射换热的计算除了与辐射换热表面的辐射和吸收特性有关 外,还与辐射换热表面的相对位置有关。 还与辐射换热表面的相对位置有关。
2.角系数概念引出的假定 2.角系数概念引出的假定
X 1,2
第四版《传热学》课后习题答案
第一章思考题1.试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。
答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。
联系是:在发生对流换热的同时必然伴生有导热。
导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能量的转移还伴有能量形式的转换。
2.以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。
试写出这三个公式并说明其中每一个符号及其意义。
答:①傅立叶定律:dx dt,其中,q -热流密度;-导热系数;dxdt-沿x方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。
②牛顿冷却公式:,其中,q-热流密度;h-表面传热系数;wt-固体表面温度;ft-流体的温度。
③斯忒藩-玻耳兹曼定律:,其中,q -热流密度;-斯忒藩-玻耳兹曼常数;T-辐射物体的热力学温度。
3.导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关?答:①导热系数的单位是:W/(m.K);②表面传热系数的单位是:W/(m2.K);③传热系数的单位是:W/(m2.K)。
这三个参数中,只有导热系数是物性参数,其它均与过程有关。
4.当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。
试分析引入传热方程式的工程实用意义。
答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。
5.用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。
而一旦壶内的水烧干后,水壶很快就烧坏。
试从传热学的观点分析这一现象。
答:当壶内有水时,可以对壶底进行很好的冷却(水对壶底的对流换热系数大),壶底的热量被很快传走而不至于温度升得很高;当没有水时,和壶底发生对流换热的是气体,因为气体发生对流换热的表面换热系数小,壶底的热量不能很快被传走,故此壶底升温很快,容易被烧坏。
《传热学》第四版课后习题答案
《传热学》第一章思考题1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。
答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。
联系是:在发生对流换热的同时必然伴生有导热。
导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能量的转移还伴有能量形式的转换。
2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。
试写出这三个公式并说明其中每一个符号及其意义。
答:① 傅立叶定律:dx dt q λ-=,其中,q -热流密度;λ-导热系数;dx dt-沿x 方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。
② 牛顿冷却公式:)(f w t t h q -=,其中,q -热流密度;h -表面传热系数;w t -固体表面温度;f t -流体的温度。
③ 斯忒藩-玻耳兹曼定律:4T q σ=,其中,q -热流密度;σ-斯忒藩-玻耳兹曼常数;T -辐射物体的热力学温度。
3. 导热系数、表面传热系数及传热系数的单位各是什么哪些是物性参数,哪些与过程有关答:① 导热系数的单位是:W/;② 表面传热系数的单位是:W/;③ 传热系数的单位是:W/。
这三个参数中,只有导热系数是物性参数,其它均与过程有关。
4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。
试分析引入传热方程式的工程实用意义。
答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。
5. 用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。
第四版《传热学》课后习题答案
第一章思考题1.试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。
答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。
联系是:在发生对流换热的同时必然伴生有导热。
导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能量的转移还伴有能量形式的转换。
2.以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。
试写出这三个公式并说明其中每一个符号及其意义。
答:①傅立叶定律:dx dt,其中,q -热流密度;-导热系数;dxdt-沿x方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。
②牛顿冷却公式:,其中,q-热流密度;h-表面传热系数;wt-固体表面温度;ft-流体的温度。
③斯忒藩-玻耳兹曼定律:,其中,q -热流密度;-斯忒藩-玻耳兹曼常数;T-辐射物体的热力学温度。
3.导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关?答:①导热系数的单位是:W/(m.K);②表面传热系数的单位是:W/(m2.K);③传热系数的单位是:W/(m2.K)。
这三个参数中,只有导热系数是物性参数,其它均与过程有关。
4.当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。
试分析引入传热方程式的工程实用意义。
答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。
5.用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。
而一旦壶内的水烧干后,水壶很快就烧坏。
试从传热学的观点分析这一现象。
答:当壶内有水时,可以对壶底进行很好的冷却(水对壶底的对流换热系数大),壶底的热量被很快传走而不至于温度升得很高;当没有水时,和壶底发生对流换热的是气体,因为气体发生对流换热的表面换热系数小,壶底的热量不能很快被传走,故此壶底升温很快,容易被烧坏。
第四版《传热学》课后习题答案
第一章思考题1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。
答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。
联系是:在发生对流换热的同时必然伴生有导热。
导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能量的转移还伴有能量形式的转换。
2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。
试写出这三个公式并说明其中每一个符号及其意义。
答:① 傅立叶定律:dx dt q λ-=,其中,q -热流密度;λ-导热系数;dx dt-沿x 方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。
② 牛顿冷却公式:)(f w t t h q -=,其中,q -热流密度;h -表面传热系数;wt -固体表面温度;ft -流体的温度。
③ 斯忒藩-玻耳兹曼定律:4T q σ=,其中,q -热流密度;σ-斯忒藩-玻耳兹曼常数;T -辐射物体的热力学温度。
3. 导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关?答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m 2.K);③ 传热系数的单位是:W/(m 2.K)。
这三个参数中,只有导热系数是物性参数,其它均与过程有关。
4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。
试分析引入传热方程式的工程实用意义。
答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。
5. 用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。
《传热学》第四版课后习题答案
《传热学》第一章思考题1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。
答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。
联系是:在发生对流换热的同时必然伴生有导热。
导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能量的转移还伴有能量形式的转换。
2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。
试写出这三个公式并说明其中每一个符号及其意义。
答:① 傅立叶定律:dx dt q λ-=,其中,q -热流密度;λ-导热系数;dx dt-沿x 方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。
② 牛顿冷却公式:)(f w t t h q -=,其中,q -热流密度;h -表面传热系数;w t -固体表面温度;ft -流体的温度。
③ 斯忒藩-玻耳兹曼定律:4T q σ=,其中,q -热流密度;σ-斯忒藩-玻耳兹曼常数;T -辐射物体的热力学温度。
3. 导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关?答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m 2.K);③ 传热系数的单位是:W/(m 2.K)。
这三个参数中,只有导热系数是物性参数,其它均与过程有关。
4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。
试分析引入传热方程式的工程实用意义。
答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。
5. 用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。
传热学课后习题答案(第四版)
第1章1-3 解:电热器的加热功率: kW W tcm QP 95.16.195060)1543(101000101018.4633==-⨯⨯⨯⨯⨯=∆==-ττ15分钟可节省的能量:kJ J t cm Q 4.752752400)1527(15101000101018.4633==-⨯⨯⨯⨯⨯⨯=∆=-1-33 解:W h h t t A w f 7.45601044.02.061)]10(2[6311)(2121=++--⨯=++-=Φλδ如果取K m W h ./3022=,则W h h t t A w f 52.45301044.02.061)]10(2[6311)(2121=++--⨯=++-=Φλδ即随室外风力减弱,散热量减小。
但因墙的热阻主要在绝热层上,室外风力变化对散热量的影响不大。
第2章2-4 解:按热平衡关系有:)(1222121f w BBA A w f t t h h t t -=++-λδλδ,得:)2550(5.906.01.0250150400-=++-B Bδδ,由此得:,0794.0,0397.0m m A B ==δδ 2-9 解:由0)(2121=+=w w m t t t ℃从附录5查得空气层的导热系数为K m W ⋅/0244.0空气λ 双层时:W t t A w w s 95.410244.0008.078.0006.02)]20(20[6.06.02)(21=+⨯--⨯⨯=+-=Φ空气空气玻璃玻璃λδλδ单层时:W t t A w w d 187278.0/006.0)]20(20[6.06.0/)(21=--⨯⨯=-=Φ玻璃玻璃λδ两种情况下的热损失之比:)(6.4495.411872倍==ΦΦs d题2-15解:这是一个通过双层圆筒壁的稳态导热问题。
由附录4可查得煤灰泡沫砖的最高允许温度为300℃。
设矿渣棉与媒灰泡沫砖交界面处的温度为t w ,则有 23212121ln 21ln 21)(d d l d d l t t πλπλ+-=Φ (a ) 23221211ln )(2ln )(2d d t t l d d t t l w w -=-=Φπλπλ (b ) 65110ln )50(12.02565ln )400(11.0:-⨯=-⨯w w t t 即由此可解得:4.167=w t ℃<300℃又由式(a )可知,在其他条件均不变的情况下,增加煤灰泡沫砖的厚度δ2对将使3d 增大,从而损失将减小;又由式(b )左边可知t w 将会升高。
传热学第四版课后题答案第九章.
传热学第四版课后题答案第九章.第九章思考题1、试述⾓系数的定义。
“⾓系数是⼀个纯⼏何因⼦”的结论是在什么前提下得出的?答:表⾯1发出的辐射能落到表⾯2上的份额称为表⾯]对表⾯2的⾓系数。
“⾓系数是⼀个纯⼏何因⼦”的结论是在物体表⾯性质及表⾯湿度均匀、物体辐射服从兰贝特定律的前提下得出的。
2、⾓系数有哪些特性?这些特性的物理背景是什么?答:⾓系数有相对性、完整性和可加性。
相对性是在两物体处于热平衡时,净辐射换热量为零的条件下导得的;完整性反映了⼀个由⼏个表⾯组成的封闭系统中。
任⼀表⾯所发⽣的辐射能必全部落到封闭系统的各个表⾯上;可加性是说明从表⾯1发出⽽落到表⾯2上的总能量等于落到表⾯2上各部份的辐射能之和。
3、为什么计算—个表⾯与外界之间的净辐射换热量时要采⽤封闭腔的模型?答:因为任⼀表⾯与外界的辐射换热包括了该表⾯向空间各个⽅向发出的辐射能和从各个⽅向投⼊到该表⾯上的辐射能。
4、实际表⾯系统与⿊体系统相⽐,辐射换热计算增加了哪些复杂性?答:实际表⾯系统的辐射换热存在表⾯间的多次重复反射和吸收,光谱辐射⼒不服从普朗克定律,光谱吸收⽐与波长有关,辐射能在空间的分布不服从兰贝特定律,这都给辐射换热计算带来了复杂性。
5、什么是⼀个表⾯的⾃⾝辆射、投⼊辐射及有效辐射?有效辐射的引⼊对于灰体表⾯系统辐射换热的计算有什么作⽤?答:由物体内能转变成辐射能叫做⾃⾝辐射,投向辐射表⽽的辐射叫做投⼊辐射,离开辐射表⾯的辐射叫做有效辐射,有效辐射概念的引⼊可以避免计算辐射换热计算时出现多次吸收和反射的复杂性。
6、对于温度已知的多表⾯系统,试总结求解每⼀表⾯净辐射换热量的基本步骤。
答:(1)画出辐射⽹络图,写出端点辐射⼒、表⾯热阻和空间热阻;(2)写出由中间节点⽅程组成的⽅程组;(3)解⽅程组得到各点有效辐射;(4)由端点辐射⼒,有效辐射和表⾯热阻计算各表⾯净辐射换热量。
7、什么是辐射表⾯热阻?什么是辐射空间热阻?⽹络法的实际作⽤你是怎样认识的?答:出辐射表⾯特性引起的热阻称为辐射表⾯热阻,由辐射表⾯形状和空间位置引起的热阻称为辐射空间热阻,⽹络法的实际作⽤是为实际物体表⾯之间的辐射换热描述了清晰的物理概念和提供了简洁的解题⽅法。
《传热学(第四版)》课后习题及答案
《传热学》第一章思考题1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。
答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。
联系是:在发生对流换热的同时必然伴生有导热。
导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能量的转移还伴有能量形式的转换。
2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。
试写出这三个公式并说明其中每一个符号及其意义。
答:① 傅立叶定律:,其中,-热流密度;-导热系数;-沿x 方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。
② 牛顿冷却公式:,其中,-热流密度;-表面传热系数;-固体表面温度;-流体的温度。
③ 斯忒藩-玻耳兹曼定律:,其中,-热流密度;-斯忒藩-玻耳兹曼常数;-辐射物体的热力学温度。
3. 导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关?答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m 2.K);③ 传热系数的单位是:W/(m 2.K)。
这三个参数中,只有导热系数是物性参数,其它均与过程有关。
4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。
试分析引入传热方程式的工程实用意义。
答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。
5. 用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。
而一旦壶内的水烧干后,水壶很快就烧坏。
试从传热学的观点分析这一现象。
答:当壶内有水时,可以对壶底进行很好的冷却(水对壶底的对流换热系数大),壶底的热量被很快传走而不至于温度升得很高;当没有水时,和壶底发生对流换热的是气体,因为气体发生对流换热的表面换dx dt q λ-=q λdx dt)(f w t t h q -=q h w tft 4T q σ=q σT热系数小,壶底的热量不能很快被传走,故此壶底升温很快,容易被烧坏。
第四版《传热学》课后习题答案
第一章思考题1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。
答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。
联系是:在发生对流换热的同时必然伴生有导热。
导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能量的转移还伴有能量形式的转换。
2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。
试写出这三个公式并说明其中每一个符号及其意义。
答:① 傅立叶定律:dx dt q λ-=,其中,q -热流密度;λ-导热系数;dx dt-沿x 方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。
② 牛顿冷却公式:)(f w t t h q -=,其中,q -热流密度;h -表面传热系数;wt -固体表面温度;ft -流体的温度。
③ 斯忒藩-玻耳兹曼定律:4T q σ=,其中,q -热流密度;σ-斯忒藩-玻耳兹曼常数;T -辐射物体的热力学温度。
3. 导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关?答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m 2.K);③ 传热系数的单位是:W/(m 2.K)。
这三个参数中,只有导热系数是物性参数,其它均与过程有关。
4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。
试分析引入传热方程式的工程实用意义。
答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。
5. 用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。
[工学]第四版传热学第九章习题解答
第九章思考题1、试述角系数的定义。
“角系数是一个纯几何因子”的结论是在什么前提下得出的?答:表面1发出的辐射能落到表面2上的份额称为表面]对表面2的角系数。
“角系数是一个纯几何因子”的结论是在物体表面性质及表面湿度均匀、物体辐射服从兰贝特定律的前提下得出的。
2、角系数有哪些特性?这些特性的物理背景是什么?答:角系数有相对性、完整性和可加性。
相对性是在两物体处于热平衡时,净辐射换热量为零的条件下导得的;完整性反映了一个由几个表面组成的封闭系统中。
任一表面所发生的辐射能必全部落到封闭系统的各个表面上;可加性是说明从表面1发出而落到表面2上的总能量等于落到表面2上各部份的辐射能之和。
3、为什么计算—个表面与外界之间的净辐射换热量时要采用封闭腔的模型?答:因为任一表面与外界的辐射换热包括了该表面向空间各个方向发出的辐射能和从各个方向投入到该表面上的辐射能。
4、实际表面系统与黑体系统相比,辐射换热计算增加了哪些复杂性?答:实际表面系统的辐射换热存在表面间的多次重复反射和吸收,光谱辐射力不服从普朗克定律,光谱吸收比与波长有关,辐射能在空间的分布不服从兰贝特定律,这都给辐射换热计算带来了复杂性。
5、什么是一个表面的自身辆射、投入辐射及有效辐射?有效辐射的引入对于灰体表面系统辐射换热的计算有什么作用?答:由物体内能转变成辐射能叫做自身辐射,投向辐射表而的辐射叫做投入辐射,离开辐射表面的辐射叫做有效辐射,有效辐射概念的引入可以避免计算辐射换热计算时出现多次吸收和反射的复杂性。
6、对于温度已知的多表面系统,试总结求解每一表面净辐射换热量的基本步骤。
答:(1)画出辐射网络图,写出端点辐射力、表面热阻和空间热阻;(2)写出由中间节点方程组成的方程组;(3)解方程组得到各点有效辐射;(4)由端点辐射力,有效辐射和表面热阻计算各表面净辐射换热量。
7、什么是辐射表面热阻?什么是辐射空间热阻?网络法的实际作用你是怎样认识的?答:出辐射表面特性引起的热阻称为辐射表面热阻,由辐射表面形状和空间位置引起的热阻称为辐射空间热阻,网络法的实际作用是为实际物体表面之间的辐射换热描述了清晰的物理概念和提供了简洁的解题方法。
第四版《传热学》课后习题答案详解
第一章思考题1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。
答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。
联系是:在发生对流换热的同时必然伴生有导热。
导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能量的转移还伴有能量形式的转换。
2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。
试写出这三个公式并说明其中每一个符号及其意义。
答:① 傅立叶定律:dx dt q λ-=,其中,q -热流密度;λ-导热系数;dx dt-沿x 方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。
② 牛顿冷却公式:)(f w t t h q -=,其中,q -热流密度;h -表面传热系数;wt -固体表面温度;ft -流体的温度。
③ 斯忒藩-玻耳兹曼定律:4T q σ=,其中,q -热流密度;σ-斯忒藩-玻耳兹曼常数;T -辐射物体的热力学温度。
3. 导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关?答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m 2.K);③ 传热系数的单位是:W/(m 2.K)。
这三个参数中,只有导热系数是物性参数,其它均与过程有关。
4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。
试分析引入传热方程式的工程实用意义。
答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。
5. 用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。
传热学(第四版)课后题答案
传热学(第四版)-------中国建筑工业出版社会教材习题答案绪论8.1/12;9. 若λ不随温度变化,则呈直线关系变化;反之,呈曲线关系变化。
11. 37.5W/m 2 13.7℃ -8.5℃;12. 4104.7-⨯℃/W 3104.4-⨯ m 2℃/W 30.4KW/ m 2 182.4KW 13. 155℃ 2 KW14. 139.2 W/ m 2 1690.3 W/ m 2 辐射换热量增加了11倍。
15. 83.6 W/ (m 2K) 1.7% 管外热阻远大于管内及管壁,加热器热阻主要由其构成,故此例忽略管内热阻及管壁热阻对加热器传热系数影响不大。
第一章2.傅立叶定律及热力学第一定律,及能量守恒与转化定律。
3.⑴梯度2000,-2000。
⑵热流-5102-⨯,5102-⨯。
4.⑴4.5 KW/ m 2 ⑵由040002≠-=∇t 可知有内热源。
⑶202.5 KW/ m 3 7.)(22rt r r r a t ∂∂∂∂=∂∂τ 00><<τR r0),(t r t =τ 00=≤≤τR r)(f t t h rt-=∂∂-λ0>=τR r0=∂∂rt00>=τr8. p b C f U T xT a T ρεστ422+∂∂=∂∂ 00><<τl x0T T = 00>=τx0=∂∂xT0>=τl x第二章1. 由热流温差的关系式可以看出:由于通过多层平壁的热流相同,层厚相同的条件下,导热系数小的层温差大,温度分布曲线(直线)的斜率大。
各层斜率不同,形成了一条折线。
2. 不能。
任意给定一条温度分布曲线,则与其平行的温度分布曲线都具有同样的第二类边界条件。
3. ⑴因为描述温度分布的导热微分方程及边界条件中均未出现λ值,其解自然与λ值无关。
⑵不一定相同。
4. 上凸曲线。
5. 参见6。
6. 22221121212141441h r r r r r h r t t f f ππλπ+-+-=Φ W222211212141441h r r r r r h r R ππλπ+-+=℃/W 7. 672W ; 8. 15.08℃; 9. 90.6mm ;10. 147.4mm ;11. 500mm ; 12. 41.66W 64倍; 13. 22.2%, 51.9%, 25.9%;14. 29.9 W/ (m 2K) 5.7KW ;15. 0.75‰, 2‰, 25.9%;16. 0.204 m 2℃/W ; 17. 分别为41066.1-⨯ m 2℃/W , 0.28m 2℃/W , 0.17m 2℃/W ,231R R R << 555.4W/m ,299.9℃,144.4℃;18. 减少21.7%;19. 123.7A ;20. 大于等于243.7mm ; 21. 3.38 kg/h ;22. 有。
传热学【第四版】课后答案
第一章 导热理论基础1. 按20℃时,铜、碳钢(1.5%C )、铝和黄铜导热系数的大小,排列它们的顺序;隔热保温材料导热系数的数值最大为多少?列举膨胀珍珠岩散料、矿渣棉和软泡沫塑料导热系数的数值。
答:铜>铝>黄铜>碳钢;隔热保温材料导热系数最大值为0.12W/(m •K )膨胀珍珠岩散料:25℃ 60-300Kg/m 3 0.021-0.062 W/(m •K ) 矿渣棉: 30℃ 207 Kg/m 3 0.058 W/(m •K )软泡沫塑料: 30℃ 41-162 Kg/m 3 0.043-0.056 W/(m •K ) 2. 推导导热微分方程式的已知前提条件是什么? 答:导热物体为各向同性材料。
3.(1)m k xt /2000=∂∂ , q=-2×105(w/m 2). (2)m k xt /2000-=∂∂, q=2×105(w/m 2). 4. (1),00==x q 3109⨯==δx q w/m 2 (2) 5108.1⨯=νq w/m 35. 已知物体的热物性参数是λ、ρ和c ,无内热源,试推导圆柱坐标系的导热微分方程式。
答:2222211[()]t t t t a r r r r r zτφ∂∂∂∂∂=++∂∂∂∂∂ 6. 已知物体的热物性参数是λ、ρ和c ,无内热源,试推导球坐标系的导热微分方程式。
答:2222222111[()(sin )]sin sin t t t ta r r r r r r θτθθθθϕ∂∂∂∂∂∂=++∂∂∂∂∂∂ 7. 一半径为R的实心球,初始温度均匀并等于t 0,突然将其放入一温度恒定并等于t f 的液体槽内冷却。
已知球的热物性参数是λ、ρ和c ,球壁表面的表面传热系数为h ,试写出描写球体冷却过程的完整数学描述。
答:2201[()],0,00,0,0,,()f r R r Rt t r r R c r r r r R t t tr R h t t rλττρττλ==∂∂∂=><<∂∂∂=≤≤=∂>=-=-∂0,0dtr dr== 8. 从宇宙飞船伸出一根细长散热棒,以辐射换热将热量散发到外部空间去,已知棒的发射率(黑度)为ε,导热系数为λ,棒的长度为l ,横截面面积为f ,截面周长为U,棒根部温度为T0。
《传热学》第四版课后习题答案
《传热学》第一章思考题1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。
答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。
联系是:在发生对流换热的同时必然伴生有导热。
导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能量的转移还伴有能量形式的转换。
2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。
试写出这三个公式并说明其中每一个符号及其意义。
答:① 傅立叶定律:dx dt q λ-=,其中,q -热流密度;λ-导热系数;dx dt-沿x 方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。
② 牛顿冷却公式:)(f w t t h q -=,其中,q -热流密度;h -表面传热系数;w t -固体表面温度;f t -流体的温度。
③ 斯忒藩-玻耳兹曼定律:4T q σ=,其中,q -热流密度;σ-斯忒藩-玻耳兹曼常数;T -辐射物体的热力学温度。
3. 导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关?答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m 2.K);③ 传热系数的单位是:W/(m 2.K)。
这三个参数中,只有导热系数是物性参数,其它均与过程有关。
4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。
试分析引入传热方程式的工程实用意义。
答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。
5. 用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章思考题1、试述角系数的定义。
“角系数是一个纯几何因子”的结论是在什么前提下得出的?答:表面1发出的辐射能落到表面2上的份额称为表面]对表面2的角系数。
“角系数是一个纯几何因子”的结论是在物体表面性质及表面湿度均匀、物体辐射服从兰贝特定律的前提下得出的。
2、角系数有哪些特性?这些特性的物理背景是什么?答:角系数有相对性、完整性和可加性。
相对性是在两物体处于热平衡时,净辐射换热量为零的条件下导得的;完整性反映了一个由几个表面组成的封闭系统中。
任一表面所发生的辐射能必全部落到封闭系统的各个表面上;可加性是说明从表面1发出而落到表面2上的总能量等于落到表面2上各部份的辐射能之和。
3、为什么计算—个表面与外界之间的净辐射换热量时要采用封闭腔的模型?答:因为任一表面与外界的辐射换热包括了该表面向空间各个方向发出的辐射能和从各个方向投入到该表面上的辐射能。
4、实际表面系统与黑体系统相比,辐射换热计算增加了哪些复杂性?答:实际表面系统的辐射换热存在表面间的多次重复反射和吸收,光谱辐射力不服从普朗克定律,光谱吸收比与波长有关,辐射能在空间的分布不服从兰贝特定律,这都给辐射换热计算带来了复杂性。
5、什么是一个表面的自身辆射、投入辐射及有效辐射?有效辐射的引入对于灰体表面系统辐射换热的计算有什么作用?答:由物体内能转变成辐射能叫做自身辐射,投向辐射表而的辐射叫做投入辐射,离开辐射表面的辐射叫做有效辐射,有效辐射概念的引入可以避免计算辐射换热计算时出现多次吸收和反射的复杂性。
6、对于温度已知的多表面系统,试总结求解每一表面净辐射换热量的基本步骤。
答:(1)画出辐射网络图,写出端点辐射力、表面热阻和空间热阻;(2)写出由中间节点方程组成的方程组;(3)解方程组得到各点有效辐射;(4)由端点辐射力,有效辐射和表面热阻计算各表面净辐射换热量。
7、什么是辐射表面热阻?什么是辐射空间热阻?网络法的实际作用你是怎样认识的?答:出辐射表面特性引起的热阻称为辐射表面热阻,由辐射表面形状和空间位置引起的热阻称为辐射空间热阻,网络法的实际作用是为实际物体表面之间的辐射换热描述了清晰的物理概念和提供了简洁的解题方法。
8、什么是遮热板?试根据自己的切身经历举出几个应用遮热板的例子。
答:所谓遮热板是指插人两个辐射表面之间以削弱换热的薄板。
如屋顶隔热板、遮阳伞都是我们生活中应用遮热板的例子。
9、试述气体辐射的基本特点。
10、什么是气体辐射的平均射线程长?离开了气体所处的几何空间而谈论气体的发射率与吸热比有没有实际意义?11、按式(9-29)当s 很大时气体的()s ,λα趋近于1.能否认为此时的气体层具有黑体的性质? 12、,其结论对于像图9-15a 所示的两表面封闭系统是否也成立?13、图9-39所示的电子器件机箱冷却系统中,印制板上大功率元件布置在机箱出口处,试分析其原因。
习题9-1、已知:一曲边六面体的几何条件。
求:各个表面之间共有多少个角系数,其中有多少个是独立的?解:共有6×6个角系数,其中仅有5+4+3+2+1=15个是独立的。
即其余的角系数均可由完整性、相对性等特性而由这15个角系数来求得。
9-2、设有如附图所示的两个微小面积A 1,A 2,A 1=2×10-4m 2,A 2=3×10-4m 2。
A 1为漫射表面,辐射力E 1=5×104W/m 2。
试计算由A 1发出而落到A 2上的辐射能。
9-3、如附图所示,已知一微元圆盘dA 1与有限大圆盘A 2(直径维D )相平行,两中心线之连线垂直于两圆盘,且长度为s 。
试计算X d1,2。
ur T drdu =+==222π2222222⎪⎭⎫⎝⎛+-=⎰D s s usu du s =⎪⎪⎪⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡+-2222211D s s s =222222422D s D D s D +=⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛9-4、已知:如图,微元面积1dA 与球缺2A 。
求:从角系数的积分定义出发,计算1dA 到球缺内表面2A 的角系数,并用两种极限情形来检查你所得到的公式的正确性。
解:2121,22222cos cos ,0,cos 1,d A X dA r ϕϕϕϕπ===⎰()2112sin dA r rd πϕϕ=,代入上式得:()2111,211112cos 2sin 2sin cos d r X d d r ββϕπϕϕϕϕϕπ==⎰⎰=()()1101sin 21cos 22d βϕϕβ=-⎡⎤⎣⎦⎰=2sin β当0β=时,应有1,20d X =,由上式确实得出此值;当2πβ=时,应有1,21d X =,由上式亦确实得出此值。
9-5、已知:如图,l =0.2m ,1r =0.1m ,2r =0.13m 。
求:2,1d X解:由9-3题可知:9-6、 试用简捷方法确定本题附图中的角系数X 1,2。
9-7试确定附图a 、b 中几何结构的角系数X 1,2。
1.67 1.0 1.67 1.0 1.33 1.33 0.667 0.667 角系数0.190.1650.2750.255解: (a)()11,211,11,2,.211,211,2,A AB B A A B A A B A X A X A X A X A X A X A X +++=+++=+111,21,21,2,,A AB B A A X X X +--=∴=-查图8-7得:0.67 0.67 1.33 0.67 角系数0.1750.11(b)由扩充了的1'可知,2,10.2X '=,由于对称性,可得:2,10.054X ==,22,11,210.2A X X A ∴==。
9-9、已知:三根直径为且相互平行的长管成正三角形布置,中心距为。
求:其中任一根管子所发出的辐射能落到其余两管子以外区域上的百分数。
解:先研究两管子可见的半个管子表面间的角系数。
如图所示:利用交叉线法,1,sin /,222d d s ab ϕϕ-⎛⎫== ⎪⎝⎭ 将这些关系式代入并整理之,得:()1/2211,3211sin X Y Y Y π-⎡⎤=---⎢⎥⎣⎦,其中s Y d =。
因而整个管子表面所发出的辐射能落到另一根管子上的百分比数为1,312X 。
9-10、已知:如图。
求:每一对边的角系数、两邻边 的角系数及任一边对管子的角系数。
解:(1)先计算任一边对圆管的角系数。
如下图所示:设圆管表面为5,则由对称性知:5,15,25,35,410.254X X X X =====,51,55,110.25 3.14160.10.31420.25A dX X A π∴==⨯=⨯=。
(2)再计算两邻边的角系数。
如图示:()3,42AD AB DF BE EF X AD +-++=,()220.12520.050.1696mBE DF ==-=,arccos arccos 1.2840.1252OE BO α⎛⎫===⎪ ⎪⎝⎭⎝⎭,22 1.2840.5735θπαπ=-=-⨯=(弧度),0.050.57350.02867EF r θ=⋅=⨯=,3,40.25220.16950.028670.264720.25X ⨯-⨯-==⨯。
(3)计算每一对边角系数。
如图示:3,13,43,23,51120.26470.31420.1564X X X X =---=-⨯-=。
9-11、已知:如图。
求:4,1X解:11,422,331,2A X A X A X ==,312A A =,3,21,412X X ∴=,从能量分配的观点可以写出:()11,21,431,43,412A X X A X X ⎛⎫=+++ ⎪⎝⎭,将13131,2,3A A A +===代入上式,并归并之得:()1,413,241,23,41322X X X X ++=--,查图(8-8)得:()1,410.2630.20.240.052X =⨯--⨯=2。
9-12、已知:在煤粉炉炉膛出口有4排凝渣管,其相对节距d s 1、d s 2比较大,透过前一排管子而落到后一排管子的辐射平面上的来自炉膛的火焰辐射能可认为是均匀分布的。
火焰对第一排管子的角系数为X 。
d s 1=5。
求:火焰对凝渣管束总的角系数是多少?火焰辐射能可以透过凝渣管束的百分数是多少? 解:根据表中数据,算得落到前四排管子表面上的总能量为:()()()()2304111111ax x x x x x ⎡⎤Φ--+-+-⎣⎦==--Φ总,管排 投入到该排上的辐射能该排的角系数 落到该排管子表面上的能量穿过该排落到后一排上去的能量1 2 3 41/21/2221111arccos 11arccos 10.294555d d d x s s s ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=---=+--=⎢⎥⎢⎥⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,()4110.2940.7516x ∴=--=总,透过管束的辐射能百分数为1-0.7516=0.2484=24.8%。
9-13、已知:如图,圆柱表面及平面在垂直于纸面的方向上为无限长。
求证:()H t t dX D AB arctan 2,=。
证明:如下图所示:按交叉线法:()0222AB O AD DC BCX AB-+-=,AD BC =,022AB O DC DCX AB t -∴==。
利用几何关系确定DC :22AOB AOF β∠=∠=,BOC AOD ∠=∠,2BOC AOD γγβ∠+=∠+=, 2DOC βα∴∠==,2DC r r αβ=⋅=(r 为半径),tan t h β=,1tan t h β-⎛⎫∴= ⎪⎝⎭, 即()()1102tan /tan /222AB Or t h d t h DC X t t t ---===。
9-14、已知:如图,在垂直于纸面的方向上均为无限长。
求:导出从沟槽表面发出的辐射能中落到沟槽外面的部分所占的百分数的计算公式。
解:对三种情形,在开口处做一假想表面,设表面积为1A ,而其余沟槽表面为2A ,则有11,222,1A X A X =,1,21X =,2,112/X A A ∴=,于是有:(a )()2,1sin 2/2/sin WX W ϕϕ==;(b )2,12WX H W =+;(c )2,12/sin WX H W ϕ=+。
9-15、已知:如图。
求:当02→r H 时角系数2,1X的极限值。
解:如图所示:圆柱侧面为1,圆盘为2,1,2X 当2/0h r →时的极限值为12,只要设想在顶面上有另一相当圆盘表面,则很易理解当2/0h r →时,每个表面都得到一半的辐射能,故1,20.5X =。
9-16、已知:如图。