2019“城市杯”初中数学应用能力竞赛(B)八年级试卷及答案
城郊初中2018-2019学年度第一学期竞赛试卷 八年级数学(答案)
城郊初中2018-2019学年度第一学期八年级数学竞赛试卷(答案)一.选择题(每小题4分,共8小题满分32分)1.7条长度均为正整数的线段a1、a2、……、a7满足a1<a2<……<a7,且这7条线段中的任意三条都不能构成三角形,则a7的最小值为()A.19 B.20 C.21 D.22【解答】解:因为三角形任意两边之和大于第三边,任意两边之差小于第三边,而且7条长度不同,但都是整数的线段.设最短的一条长1,则第二条线段长为2,所以只要满足任意两条线段之和等于下一个数字即可,此时最长的线段也最短,2+1=3 3+2=5 5+3=8 8+5=13 13+8=21即这七条线段为:1,2,3,5,8,13,21,任意三条都不能作为边构成三角形,所以a7的最小值为21,故选:C.2.下列说法中,正确的个数是()①三角形的中线、角平分线、高都是线段;②三角形的三条角平分线、三条中线、三条高都在三角形内部;③直角三角形只有一条高;④三角形的三条角平分线、三条中线、三条高分别交于一点.A.1 B.2 C.3 D.4【解答】解:①三角形的中线、角平分线、高都是线段,故正确;②钝角三角形的高有两条在三角形外部,故错误;③直角三角形有两条直角边和直角到对边的垂线段共三条高,故错误;④三角形的三条角平分线、三条中线分别交于一点是正确的,三条高线所在的直线一定交于一点,高线指的是线段,故错误.所以正确的有1个.故选:A.3.在△ABC中,如果∠A﹣∠B=90°,那么△ABC是()A.直角三角形B.钝角三角形C.锐角三角形D.以上三种都可能【解答】解:∵∠A﹣∠B=90°,∴∠A=90°+∠B,∴∠A大于90°.根据三角形性质可知大于90°的角为钝角,∴此三角形为钝角三角形.故选:B.4.长为l的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x的取值范围为()A .B .C .D .【解答】解:∵围成两个全等的三角形可得两个三角形的周长相等∴x+y+z=,∵y+z>x ∴可得x <,又因为x 为最长边大于∴x ≥综上可得≤x <故选:A.5.已知一个圆的半径为Rcm,若这个圆的半径增加2cm,则它的面积增加()A.4cm2B.(2R+4)cm2C.(4R+4)cm2D.以上都不对【解答】解:∵S2﹣S1=π(R+2)2﹣πR2,=π(R+2﹣R)(R+2+R),=4π(R+1),∴它的面积增加4π(R+1)cm2.故选:D.6.如图是由10把相同的折扇组成的“蝶恋花”(图1)和梅花图案(图2)(图中的折扇无重叠),则梅花图案中的五角星的五个锐角均为()A.36°B.42°C.45°D.48°【解答】解:如图,梅花扇的内角的度数是:360°÷3=120°,180°﹣120°=60°,正五边形的每一个内角=(5﹣2)•180°÷5=108°,∴梅花图案中的五角星的五个锐角均为:108°﹣60°=48°.故选:D.7.如图,地面上有三个洞口A、B、C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A、B、C三个点的距离相等),尽快抓到老鼠,应该蹲守在()A.△ABC三边垂直平分线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三条中线的交点【解答】解:∵三角形三边垂直平分线的交点到三个顶点的距离相等,∴猫应该蹲守在△ABC三边垂直平分线的交点处.故选:A.8.为了求1+2+22+23+…+22011+22012的值,可令S=1+2+22+23+…+22011+22012,则2S=2+22+23+24+…+22012+22013,因此2S﹣S=22013﹣1,所以1+22+23+…+22012=22013﹣1,仿照以上方法计算1+5+52+53+…+52012的值是()A.52013﹣1 B.52013+1 C .D .【解答】解:令S=1+5+52+53+ (52012)则5S=5+52+53+…+52012+52013,5S﹣S=﹣1+52013,4S=52013﹣1,则S=.故选:D.二.填空题(每小题4分,共8小题满分32分)9.314×(﹣)7= ﹣1 .【解答】解:314×(﹣)7=(32)7×(﹣)7=(﹣×9)7=(﹣1)7=﹣1,10.若一个三角形的三边长分别是m+2,10,2m﹣1,则m的取值范围为3<m<13 .【解答】解:根据三角形的三边关系,得即,解不等式组得,3<m<13.11.如图,△AOB≌△COD,∠B=29°,∠C=90°,则∠COD的度数是61°.【解答】解:∵△AOB≌△COD,∠B=29°,∴∠D=∠B=29°,∵∠C=90°,∴∠COD=180°﹣∠C﹣∠D=180°﹣90°﹣29°=61°,故答案为:61°.12.如图,在△ABC中,边BC的垂直平分线分别与AC、BC交于点D、E,如果AB=CD,∠C=20°,那么∠A= 40 度.【解答】解:连接DB,∵DE是边BC的垂直平分线,∴DB=DC,∴∠DBC=∠C,∴∠BDA=2∠C,∵AB=CD,DB=DC,∴BA=BD,∴∠A=∠BDA,∴∠A=2∠C,∵∠C=20°,∴∠A=40°,故答案为40.13.一个多边形的一个外角为α,且该多边形的内角和与α的和等于840°,则这个多边形的边数为六,α= 120 度.【解答】解:∵840÷180=4…120,∴这个多边形的边数为:4+2=6,α=120°,故答案为:六;120.14.如图,把一个三角尺的直角顶点D放置在△ABC内,使它的两条直角边DE,DF分别经过点B,C,如果∠A=30°,则∠ABD+∠ACD= 60°.【解答】解:∵∠A=30°,∴∠ABC+∠ACB=150°,∵∠D=90°,∴∠DBC+∠DCB=90°,∴∠DBA+∠DCA=150°﹣90°=60°.故答案为:60°.15.如图,已知△ABC中,∠C=90°,AD平分∠BAC,且CD:BD=3:4.若BC=21,则点D到AB边的距离为9 .【解答】解:如图,∵CD:BD=3:4.设CD=3x,则BD=4x,∴BC=CD+BD=7x,∵BC=21,∴7x=21,∴x=3,∴CD=9,过点D作DE⊥AB于E,∵AD是∠BAC的平分线,∠C=90°,∴DE=CD=9,∴点D到AB边的距离是9,故答案为:9.16.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为48【解答】解:由平移的性质知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四边形ODFC=S梯形ABEO =(AB+OE )•BE=(10+6)×6=48.故答案为48.三.解答题(共6小题满分56分)17.(8分)如图,在△ABC中,∠BFE=∠BDC,∠1=∠2,且∠3=115°,求∠ACB的度数.【解答】解:∵∠BFE=∠BDC,∴CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠ACB=∠3=115°.18.(8分)如图,在等边三角形ABC中,∠ABC,∠ACB的平分相交于点O,BO,CO的垂直平分线分别交BC于点E、F,判断△OEF的形状,并说明理由.【解答】解:△OEF是等边三角形,∵E为BO垂直平分线上的点,且∠OBC=30°,∴BE=OE,∠EBO=∠EOB=30°,∴∠OEF=∠EBO+∠EOB=60°,同理,∠OFE=∠FCO+∠FOC=60°,∴△OEF为等边三角形,19.(10分)如图,点M是线段AB中点,AD、BC交于点N,连接AC、BD、MC、MD,∠l=∠2,∠3=∠4.(1)求证:△AMD≌△BMC;(2)图中在不添加新的字母的情况下,请写出除了“△AMD≌△BMC”以外的所有全等三角形,并选出其中一对进行证明.【解答】(1)解:∵点M是AB中点,∴AM=BM,∵∠1=∠2,∴∠AMD=∠BMC,在△AMD和△BMC中,,∴△AMD≌△MBC(ASA);(2)△AMC≌△BMD,△ABC≌△BAD,△ACN≌△BDN.理由:∵△AMD≌△MBC,∴AD=BC,∵∠3=∠4,AB=BA,∴△BAD≌△ABC(SAS),∴AC=BD,∠BDN=∠ACN,∵∠ANC=∠BND,∴△ANC≌△BND(AAS),∵AC=BD,∠CAM=∠DBM,AM=BM,∴△AMC≌△BMD(SAS).20.(10分)近年来,为减少空气污染,北京市一些农村地区实施了煤改气工程,某燃气公司要从燃气站点A向B,C两村铺设天然气管道,经测量得知燃气站点A到B村距离约3千米,到 C村距离约4千米,B,C两村间距离约5千米.下面是施工部门设计的三种铺设管道方案示意图.请你通过计算说明在不考虑其它因素的情况下,下面哪个方案所用管道最短。
八年级数学竞赛题及答案解析(K12教育文档)
八年级数学竞赛题及答案解析(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学竞赛题及答案解析(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学竞赛题及答案解析(word版可编辑修改)的全部内容。
八年级数学竞赛题(本检测题满分:120分,时间:120分钟)班级: 姓名: 得分: 一、选择题(每小题3分,共30分)1.下列四个实数中,绝对值最小的数是( )A .-5B .-2C .1D .4 2。
下列各式中计算正确的是( )A 。
9)9(2-=- B.525±= C.3311()-=- D.2)2(2-=-3。
若901k k <<+ (k 是整数),则k =( )A. 6B. 7C.8D. 9 4。
下列计算正确的是( ) A 。
ab ·ab =2abC.3—=3(a ≥0) D 。
·=(a ≥0,b ≥0)5。
满足下列条件的三角形中,不是直角三角形的是( ) A.三内角之比为1∶2∶3 B.三边长的平方之比为1∶2∶3 C 。
三边长之比为3∶4∶5 D 。
三内角之比为3∶4∶56.已知直角三角形两边的长分别为3和4,则此三角形的周长为( ) A .12 B .7+7 C .12或7+7 D .以上都不对7。
将一根24 cm 的筷子置于底面直径为15 cm ,高为8 cm 的圆柱形水杯中,设筷子露在杯子外面的长度为h cm,则h 的取值范围是( ) A .h ≤17 B .h ≥8 C .15≤h ≤16D .7≤h ≤168.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )A.(4, -3) B 。
2019-2020年八年级数学应用能力竞赛试卷(B)及答案_
2009“城市杯”初中数学应用能力竞赛(B)八年级 2009/5/9 9:00—11:00(2)解答书写时不要超过装订线; (3)草稿纸不上交.一、选择题(每小题4分,共40分)A.41 B.4C.41-D.-42.已知3,2,1222=++=++=c b a c b a abc ,则111111-++-++-+b ca a bc c ab 的值为( ). A.1B.21-C.2D.32-3.若x 2-219x+1=0,则44x1x +等于( ). A .411 B . 16121 C . 1689 D . 427 4.使分式a xax --1有意义的x 应满足的条件是( ).A.0≠xB.)0(1≠≠a axC.0≠x 或)0(1≠≠a a xD.0≠x 且)0(1≠≠a ax5. 已知0≠abc ,并且p bac a c b c b a =+=+=+,那么直线p px y +=一定通过( ). A.第一、第二象限 B.第二、第三象限C.第三、第四象限D.第一、第四象限6.如图,在△ABC 中,D AC AB ,=点在AB 上,AC DE ⊥于E ,BC EF ⊥于F .若︒=∠140BDE ,那么DEF ∠等于( ).A.55°B.60°C.65°D.70°7.如图,已知边长为a 的正方形E ABCD ,为AD 的中点,P 为CE 的中点,F 为BP 的中点,则△BFD 的面积是( ). A.281a B.2161a C. 2321a D.2641a 学校 座号 姓名2019-2020年八年级数学应用能力竞赛试卷(B )及答案_ 密 封 线得 分 评卷人8.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是( )A .2005B .2006C .2007D .2008 9.明明用计算器求三个正整数a, b, c 的表达式a bc+的值.她依次按了a , +, b , ÷, c , =,得到数值11.而当她依次按b , +, a , ÷, c , =时,惊讶地发现得到数值是14.这时她才明白计算器是先做除法再做加法的,于是她依次按(, a , +, b , ), ÷, c , = 而得到了正确的结果.这个正确结果是( ) A.5B.6C.7D.810. 设x 、y 、z 是三个实数,且有⎪⎪⎩⎪⎪⎨⎧=++=++.1111,2111222z y xz y x 则zx yz xy 111++的值是( ). (A )1 (B )2 (C )23(D )3二、填空题(每小题5分,共40分)11. 已知y=5x-42-x -4-5x 2-x 22 +2,则x 2+y 2= . 12.如图,在直角坐标系中,矩形OABC 的顶点B 的坐标为(15,6), 直线b x y +=31恰好将矩形OA B C 分成面积相等的两部分,那么b = .13.如图,AD 是△ABC 的中线,︒=∠45ADC .把△ABC 沿直线AD 折过来,点C 落在点C '的位置上,如果4=BC ,那么='C B .得 分评卷人(第6题)(第7题)(第12题)(第14题)得 分 评卷人14.如图,在四边形ABCD 中,AD AB C A =︒=∠=∠,90.若这个四边形的面积为16,则=+CD BC .15. 已知082,043=-+=--z y x z y x ,那么代数式=++++zxyz xy z y x 2222 . 16. 小明家电话号码原为六位数,第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码.小明发现,他家两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍,则小明家原来的电话号码是 . 17. 一次函数111+++-=k x k k y (k 为正整数)的图像与x 轴、y 轴的交点是O B A ,,为原点.设Rt △ABO 的面积是k S ,则2009321S S S S ++++ = .18. 已知62-+x x 是多项式12234-+++-+b a bx ax x x 的因式,则=a ,=b .三、解答题(每题10分,共40分)19.已知1515153330,0c b a c b a c b a ++=++=++,求的值.(第13题)20.设关于x 的一次函数11b x a y +=与22b x a y +=,则称函数)()(2211b x a n b x a m y +++=(其中1=+n m )为此两个函数的生成函数.(1)当x=1时,求函数1+=x y 与x y 2=的生成函数的值;(2)若函数11b x a y +=与22b x a y +=的图象的交点为P ,判断点P 是否在此两个函数的生成函数的图象上,并说明理由.21.我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售。
2019-2020年初二数学竞赛初赛试题及答案
2019-2020年初二数学竞赛初赛试题及答案一、选择题(每小题4分,共40分。
)以下每题的四个选项中,仅有一个是正确的,请将正确答案前的英文字母写在下面的表格内。
1、 将a 千克含盐10﹪的盐水配制成含盐15﹪的盐水,需加盐x 千克,则由此可列出方程( )(A )()()().001510101-+=-x a a (B )().00150010•+=•x a a(C ).00150010•=+•a x a (D )()().0015100101-=-x a2、一辆汽车从A 地匀速驶往B 地,如果汽车行驶的速度增加a ﹪,则所用的时间减少b ﹪,则a 、b 的关系是( ) (A )001100a a b +=(B )001100a b += (C )a a b +=1 (D )a a b +=100100 3、当1≥x 时,不等式211--≥-++x m x x 恒成立,那么实数m 的最大值是( ) (A )1. (B )2。
(C )3。
(D )4。
4、在平面直角坐标系中,横、纵坐标都是整数的点称为整点,已知k 为整数,若函数12-=x y 与k kx y +=的图象的交点是整点,则k 的值有( )个(A )2. (B )3。
(C )4。
(D )5。
5、(英语意译)已知整数x 满足不等式6122≤-≤x ,则x 的值是( ) (A )8. (B )5。
(C )2。
(D )0。
6、若三角形的三条边的长分别为a 、b 、c ,且.03222=-+-b c b c a b a 则这个三角形一定是( )(A )等腰三角形 (B )直角三角形 (C )等边三角形 (D )等腰直角三角形7、如图1,点C 在线段BG 上,四边形ABCD 是一个正方形,AG 与BD 、CD 分别相交于点E 和F ,如果AE=5,EF=3,则FG=( ) (A )316。
(B )38。
(C )4。
(D )5。
2019-2020年八年级数学竞赛试题含答案_.docx
2019-2020 年八年级数学竞赛试题含答案_学校姓名成一、 (每小 8 分,共 64 分 )以下每个的四个中,有一个是正确的,将正确答案的英文字母填在后的括号内.1.用 11 到 2006 些自然数依次成下列算式:1112 + 1314, 1516 + 1718 ,1920 + 2122, 2324 + 2526,⋯⋯ 20032004 + 20052006.其中,能被 4整除的算式有() (A)0 个(B) 125 个( C)250 个(D)499 个2.中的五角星是用螺栓将两端打有孔的 5 根木条接而构成的,它的形状不定.如果用在中木条交叉点打孔加装螺栓的法来达到使其形状定的目的,且所加螺栓尽可能少,那么需要要添加螺栓()(A)1 个(B)2 个(C)3 个(D)4 个3.把度 4 的段分成四小段.若要以四小段构成一个四形,其中每一小段的度足的条件是()11(A) 不大于 1(B) 大于2且小于 1(C) 小于 2(D) 大于4!未定。
且小于 24.如,有一个均匀的片,两面上分写有1、 2,有—个均匀的三棱旋器和一个均匀的四棱旋器,它的面上分写有1、2、3 和 1、2、3、 4.在桌面上同旋三件器物,停下来后,面向桌面的三个数字的奇数的概率是()1111(A) 2(B)3(C)6(D)85.同价格的某种商品在三个商都行了两次提价.甲商第一次提价的百分率a,第二次提价的百分率b;乙商两次提价的百分率都a + b2;丙商第一次提价的百分率 b,第二次提价的百分率a.若 a > b > 0 ,提价最多的商是()(A) 甲(B) 乙(C)丙(D) 不能确定的6.一本册内有24 份卷,共有 426道,每份卷中有25 或 20或 16 .那么本册中有25 的卷的份数()(A) 1(B) 2( C)3(D)47.把一个正方体切成两个方体,如果两者表面乏比l: 2,那么两者体之比()(A)1:2(B) 1 :3( C)1: 5(D) 1:68.有七个大小相同的正方体,每个正方体的六个面上分写有1 到 6 六个整数,并且任意两个相面上的两数之和7.把些正方体如所示一个挨—个地接起来,使相的两个面上的两数之和 8,“※”所在面上的数是()(A)4(B)3( C)2(D)1二、填空 (每小8 分,共 96 分)9. 算:19972 –19982 +19992 –20002 +⋯ +20052 –20062 =.10.把 (1) 的正方体表面展开成 4 条棱都没有被剪开, 个面是正方形表示 ).(2) ,有—个面的(用字母次是 11.如 ,一个六 形的每个内角都是2. 7、3、 5、 2, 六 形的周 是120 °, 四 的 依.12.小王 置的某种四位密 ,每个密 的各位数字只能是0、 1、 2 或 3,且 0 不能出 在1、 2、3 的后面, 共可以 置 个不同的密 .13.有 度分 1、2、3、4、5、6、7、 8、 9 ( 位: cm)的 木棒各1 根,利用它 (允 接加 但不允 折断)能 成的周 不同的等 三角形共有种.14.在一个 周上均匀地写了任意四个整数. 定算法是:把每相 两数之和放在 两 数之 , 然后把原来的四个数抹去, 就算一次操作. 当开始 在 周上所写的四个整数不全是偶数 ,最多只要次操作,就一定能使 周上所得的四个数都 成偶数.15.《 代数学学 》 志2007 年 3 月将改版 《 代学 ·数学周刊》,其徽 是我国古代“弦 ”的 形 ( 示意 ). 可由直角三角形 ABC 点 O 同向 旋 三次 (每次旋90°)而得.因此有“数学 ”的 感.假 中 小正方形的面 1,整个徽(含中 小正方形 )的面 92, AD = 2 , 徽 的外 周.16.如 ,四 形 ABCD 中, E 、 F 、G 、 H 依次是各 中点,O 是形内一点.若 S四边形AEOH = 3, S四边形BFOE = 4,S四边形CGOF = 5,S 四边形 DHOG =.17. 徒加工某零件,加工1 个零件, 傅比徒弟少用 2. 5 小 ;加工 10 小 , 傅比徒弟多做 9 个零件. 徒合做3 个零件,需要小 .x 215x 4 –3x 2 + 518.如果 x 4 + x 2 + 1 =4 ,那么3x 2 =.19.如 ,∠ CAD 和∠ CBD 的平分 相交于点 P . ∠ CAD 、∠CBD 、∠ C 、∠ D 的度数依次 a 、 b 、 c 、 d ,用 含其中 2 个字母的代数式来表示∠P 的度数:.20.如 ,在每个小正方形1 的网格中取出12 个格点,以 些格点 点的等腰直角三角形的腰 可以是,能得到位置不同的等腰直角三角形 共有个.2008 年从化二中八年级数学竞赛试题参考答案与评分标准一、选择题:(每题 8 分,共 64 分 )题号12345678答案AACCBBCB二、填空题: (每题 8分,共 96 分)-9.–2001510.EFGH (CDHG )11. 20.712. 12113. 1114. 4c + d15. 4816. 4 17.218. 419.220. 1,2, 2 , 5 ;45.说明:第 10 题写出一个正确结果就给8 分,第 20题第一空共有 4 个值,每填 1 个值得1 分,填错 1 个扣 1 分,第二空 4 分.。
八年级数学综合能力竞赛试卷
2019年八年级数学综合能力竞赛试卷【】多做练习题和试卷,可以使学生了解各种类型的题目,使学生在练习中做到举一反三。
在此查字典数学网为您提供2019年八年级数学综合能力竞赛试卷,希望给您学习带来帮助,使您学习更上一层楼!2019年八年级数学综合能力竞赛试卷一、选择题(每小题4分,共24分)1.计算的值是( )A. B. C. D.2.甲从A地到B地要走m小时,乙从B地到A地要走n小时,甲、乙两人分别从A、B两地同时出发相向而行到相遇需要的时间是( )A. B. C. D.m+n3.如图,点A在正方体左侧面的中心,点B是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点沿其表面爬到点的最短路程是A. 3B.C.D.44.如图,在Rt△ABC中,C=900,BD平分ABC,交AC于D,沿DE所在直线折叠,点B恰好与点A重合,若CD=2,则AB的值为( )A、2B、4C、4D、85.下列说法中,正确的个数是( )①已知直角三角形的面积为2,两直角边的比为1:2,则斜边长为;②直角三角形的最大边长为,最短边长为1,则另一边长为;③在中,若,则为直角三角形;④等腰三角形面积为12,底边上的高为4,则腰长为5。
A.1B.2C.3D.46.如图,已知动点P在函数的图像上运动,PMx轴于点M,PNy轴于点N,线段PM、PN分别与直线AB:y=-x+1交于点E、F,则AFBE的值为( )A. B. C. D.二、填空题(每小题4分,共24分)7..如图是三个反比例函数,,在x轴上方的图象,则、、的大小关系为8.已知,则的值等于9.已知分式值为负数,则的取值范围是10.已知是△ABC的三边的长,且满足,则此三角形的形状为11. 如图,Rt△ABC中,AC=10,BC=24,分别以它的三边为直径向上作三个半圆,则阴影部分面积为12.如图,直线y=-x+b与双曲线y= - (x0)交于点A,与x轴交于点B,则OA2-OB2三、解答题(本大共5小题,1316每题10分,17题12分,共52分)13.阅读材料,并完成下列问题:方程的解为:x1=3,x2= ; 的解为:x1=4,x2= ; 的解为:x1=5,x2= .(1) 观察上述方程及解,猜想关于x的方程的解为(2) 解方程14.我市是著名的苹果生产基地,果品公司从A村收购苹果400吨,从B村收购苹果600吨.现在要将这些苹果运到C,D两个冷藏仓库储存,已知C库可储存300吨,D库可储存700吨苹果;从A村运往C,D两处的费用分别为每吨20元和25元,从B村运往C,D两处的费用分别为每吨15元和18元.请你设计一个方案使苹果的运输费用最小,最小费用是多少?15. 如图,直线(k0)与x轴交于点B,与双曲线交于点A、C,其中点A在第一象限,点C在第三象限.⑴求B点的坐标;⑵若S△AOB=2,求A点的坐标;⑶坐标轴上是否存在点P,使△AOP是等腰三角形?若存在,请直接写出所有P点的坐标;若不存在,请说明理由.16.这是一个真实的故事,2019年5月12日14时28分,四川汶川发生了8.0级大地震,震后两小时,武警某师参谋长王毅奉命率部队乘车火速向汶川县城前进.13日凌晨1时15分,车行至古尔沟,巨大的山体塌方将道路完全堵塞,部队无法继续前进,王毅毅然决定带领先遣分队徒步向汶川挺进,到达理县时为救当地受灾群众而耽搁了1小时,随后,先遣分队将步行速度提高,于13日23时15分赶到汶川县城.求先遣分队徒步从理县到汶川用了多少小时?17.如图,轴是西气东输工程天然气的主管道,按规定主管道在我市只允许开一个口,A(2,1),B(10,5)是我市新建的两个天然气站,现在要在轴上选一个点开口,分别连接到A、B.(1)选择开口点C,使C点到A、B两点的距离相等,求点C 的坐标;(2)是否存在点D,使点D到A、B的距离之和最小,若存在,求出D到A、B的距离之和;若不存在请说明理由.答案一、DBCCDC二、7、;8、6;9、;10、等边三角形;11、120;12、2三、13、解:(1)x1= ,x2= ;3分(2)把变形得:,5分则,7分所以10分14、解:设运苹果的总费用为元,从A村运吨苹果到C库,,则从A村运(400 )吨到D库,从B村运(300 )吨苹果到C库,从B村运( +300)吨苹果到D库2分由题意得:6分一次函数, 随的增大而减小当时,最小9分答:从A村运300吨苹果到C库,,则从A村运100吨到D 库,从B村运600吨苹果到D库,这样苹果的运输费用最小,最小费用是19300元.10分15、解:(1)把代人得:所以B的坐标为(-2,0)2分(2) S△AOB=2即把代人得:所以A的坐标为(2,2)6分(3) 10分16、设先遣分队从古尔沟到理县的平均速度为每小时x千米,则从理县到汶川的平均速度为每小时千米.1分由题意得:5分解分式方程得:7分经检验是分式方程的解8分答:先遣分队徒步从理县到汶川用13.5小时.10分17、解:(1)连结AB,作线段AB的垂直平分线交轴于C点,C点到A、B距离相等2分过A作AF 轴于F,过B作BH 轴于H.在Rt AFC和Rt BHC中,AC=BC,FH=10-2=8,由勾股定理得即解得CF=5.5OC=7.5C点坐标为(7.5,0)7分唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。
2019八年级数学竞赛试题
八年级数学教学质量监测第1页(共6页)2019年八年级数学竞赛试题第Ⅰ卷 选择题一、选择题(本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上................) 1. 不等式212+>+x x 的解集是 A.1>x B.1<x C.1≥x D.1≤x2. 多项式2222y x -分解因式的结果是 A. 2)(2y x +B. 2)(2y x -C. ))((2y x y x -+D. ))((2x y x y -+3. 下列图案中,不是中心对称图形的是A .B .C .D .4. 如图,△ABC 中,AB 的垂直平分线DE 交AC 于D ,如果AC =5cm ,BC =4cm ,那么△DBC 的周长是 A. 6 cm B. 7 cmC. 8 cmD. 9 cm5. 要使分式9632++-x x x 有意义,那么x 的取值范围是A .x ≠3B .x ≠3且x ≠-3C .x ≠0且x ≠-3D .x ≠-3 6.如果关于x 的不等式(a +1) x >a +1的解集为x <1,则a 的取值范围是 A .a <0 B. a <-1 C. a >1 D. a >-1 7. 如图,在平行四边形ABCD 中,AD=2AB ,CE 平分∠BCD 交AD 边于点E ,且AE=3,则AB 的长为 A .4 B .3 C .52D .2 姓名八年级数学教学质量监测第2页(共6页)8. 将一个有45°角的三角板的直角顶点放在一张宽为3cm 的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为A .3cmB .6cmC .cmD .cm9. 如图,在□中,⊥于点,⊥于点.若,,且□的周长为40,则□的面积为A. 24B. 36C. 40D. 4810. 如图,函数y=2x 和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为 A. x< B. x<3 C. x>D. x>311.已知ba ba ab b a -+=+则,622的值为 A. 2B. 2±C. 2D. 2±12. △ABC 为等腰直角三角形,∠ACB=90°,AC=BC=2,P 为线段AB 上一动点,D 为BC 上中点,则PC+PD 的最小值为A. 3B. 3C. 5D. 21+八年级数学教学质量监测第3页(共6页)第Ⅱ卷 非选择题二、填空题:(本题有4小题,每小题3分,共12分.把答案填在答题卡上)........... 13. 分解因式:=+-2422x x14.一个多边形的内角和与外角和的比是4:1,则它的边数是15.如图,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD 的长为(第15题图)16.如图,在Rt △ABC 中,∠ABC =90º,AB =BC =22,将△ABC 绕点A 逆时针旋转60º,得到△ADE ,连接BE ,则BE 的长是三、解答题(本大题有七道题,其中17题6分,18题7分,19题7分,20题7分,21题7分,22题9分,23题9分,共52分;把解答过程在答题卡上..........) 17.(6分)解分式方程:4161222-=-+-x x x18(7分)解不等式组⎪⎩⎪⎨⎧-<-+≤-453143)3(265x x x x19. (7分)先化简,再求值:aa a a a a 4)4822(222-÷-+-+,其中a 满足方程0142=++a a .D八年级数学教学质量监测第4页(共6页)20. (7分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A 、B 、C 在小正方形的顶点上,将△ABC 向下平移4个单位、再向右平移3个单位得到△A 1B 1C 1,然后将△A 1B 1C 1绕点A 1顺时针旋转90°得到△A 1B 2C 2.(1)在网格中画出△A 1B 1C 1和△A 1B 2C 2; (2)计算线段AC 从开始变换到A 1 C 2的过程中扫过区域的面积(重叠部分 不重复计算)21. (7分)如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,F 是DE 延长线上的点,且EF=DE (1)图中的平行四边形有哪几个?请选择其中一个说明理由(2)若△AEF 的面积是3,求四边形BCFD 的面积22.(9分)某汽车销售公司经销某品牌A 款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A 款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A 款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B 款汽车,已知A款汽车每辆进价为7.5万元,B 款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?C AB(3)按照(2)中两种汽车进价不变,如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?23.(9分)已知两个共一个顶点的等腰直角△ABC和等腰直角△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.八年级数学教学质量监测第5页(共6页)八年级数学教学质量监测第6页(共6页)八年级竞赛数学试卷参考答案及评分标准一、选择题(本题有12小题,每题3分,共36分)二、填空题(本题有4小题,每题3分,共12分.)三、解答题(本大题有七道题,共52分)17. 解:方程两边同时乘以)2)(2(-+x x 得:16)2)(2()2(2=-+--x x x解得x=2-……4分检验:当x=2-时,)2)(2(-+x x =0 ∴x=2-是原方程的增根,原方程无解……6分18. 解:⎪⎩⎪⎨⎧⋯⋯-<-⋯⋯+≤-)2(453143)1()3(265xx x x 解不等式①得:x ≤4 ……2分 解不等式②得:x<2 ……4分 原不等式组的解集为x<2 ……7分19.解:原式a a a a a a a a )2)(2()2)(2(8)2(2-+÷⎥⎦⎤⎢⎣⎡-+--+= ……2分 )2)(2()2)(2(8)2(2-+⋅-+-+=a a aa a a a a222)2()2()2(-+-=a a a 2)2(1+=a 4412++=a a ………5分0142=++a a 142-=+∴a a …………6分八年级数学教学质量监测第7页(共6页)∴原式31411=+-=…………7分20(1)如图所示:………4分(2)如图:观察可知,线段AC 变换到A 1C 2过程中所扫过部分为两个平行四边形和圆心角为45°扇形,所以扫过区域的面积=4×2+3×2+458360π⨯=14+π ………7分 21、(1)图中的平行四边形有:平行四边形ADCF ,平行四边形BDFC , ……2分理由是:∵E 为AC 的中点, ∴AE=CE , ∵DE=EF ,∴四边形ADCF 是平行四边形, ∴AD ∥CF ,AD=CF , ∵D 为AB 的中点, ∴AD=BD ,∴BD=CF ,BD ∥CF ,∴四边形BDFC 是平行四边形. ……5分 (2)由(1)知四边形ADCF 是平行四边形,四边形BDFC 是平行四边形, ∴△CEF 的面积和△CED 的面积都等于△AEF 的面积为3,∴平行四边形BCFD 的面积是12 ………7分 22 解:(1)设今年5月份A 款汽车每辆售价m 万元.则:, ……2分解得:m=9.经检验,m=9是原方程的根且符合题意.答:今年5月份A 款汽车每辆售价9万元; ……4分 (2)设购进A 款汽车x 量.则: 99≤7.5x+6(15﹣x )≤105.解得:≤x≤10.因为x的正整数解为3,4,5,6,7,8,9,10,所以共有8种进货方案;(不需要写出具体方案)……7分(3)设总获利为W元.则:W=(9﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.当a=0.5时,(2)中所有方案获利相同.……9分1)证法一:如答图1a,延长AB交CF于点D,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=BD,∴点B为线段AD的中点,又∵点M为线段AF的中点,∴BM为△ADF的中位线,∴BM∥CF.证法二:如答图1b,延长BM交EF于D,∵∠ABC=∠CEF=90°,∴AB⊥CE,EF⊥CE,∴AB∥EF,∴∠BAM=∠DFM,∵M是AF的中点,∴AM=MF,∵在△ABM和△FDM中,八年级数学教学质量监测第8页(共6页),∴△ABM≌△FDM(ASA),∴AB=DF,∵BE=CE﹣BC,DE=EF﹣DF,∴BE=DE,∴△BDE是等腰直角三角形,∴∠EBM=45°,∵在等腰直角△CEF中,∠ECF=45°,∴∠EBM=∠ECF,∴MB∥CF;……3分(2)解法一:如右图∵CB=a,CE=2a,∴BE=CE﹣CB=2a﹣a=a,∵△ABM≌△FDM,∴BM=DM,又∵△BED是等腰直角三角形,∴△BEM是等腰直角三角形,∴BM=ME=BE=a;解法二:如答图2a所示,延长AB交CF于点D,则易知△BCD与△ABC为等腰直角三角形,∴AB=BC=BD=a,AC=AD=a,∴点B为AD中点,又点M为AF中点,∴BM=DF.分别延长FE与CA交于点G,则易知△CEF与△CEG均为等腰直角三角形,∴CE=EF=GE=2a,CG=CF=a,∴点E为FG中点,又点M为AF中点,∴ME=AG.∵CG=CF=a,CA=CD=a,∴AG=DF=a,∴BM=ME=×a=a.八年级数学教学质量监测第9页(共6页)……6分(3)证法一:如答图3b,延长BM交CF于D,连接BE、DE,∵∠BCE=45°,∴∠ACD=45°×2+45°=135°∴∠BAC+∠ACF=45°+135°=180°,∴AB∥CF,∴∠BAM=∠DFM,∴M是AF的中点,∴AM=FM,在△ABM和△FDM 中,,∴△ABM≌△FDM(ASA),∴AB=DF,BM=DM,∴AB=BC=DF,∵在△BCE和△DFE中,,∴△BCE≌△DFE(SAS),∴BE=DE,∠BEC=∠DEF,∴∠BED=∠BEC+∠CED=∠DEF+∠CED=∠CEF=90°,∴△BDE是等腰直角三角形,又∵BM=DM,∴BM=ME=BD,故BM=ME.证法二:如答图3a,延长AB交CE于点D,连接DF,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=BD,AC=CD,∴点B为AD中点,又点M为AF中点,∴BM=DF.八年级数学教学质量监测第10页(共6页)延长FE与CB交于点G,连接AG,则易知△CEF与△CEG均为等腰直角三角形,∴CE=EF=EG,CF=CG,∴点E为FG中点,又点M为AF中点,∴ME=AG.在△ACG与△DCF中,,∴△ACG≌△DCF(SAS),∴DF=AG,∴BM=ME.……9分八年级数学教学质量监测第11页(共6页)。
2019年全国初中数学竞赛试题及答案
中国教育学会中学数学教学专业委员会“《数学周报》杯”2019年全国初中数学竞赛试题一、选择题(共5小题,每小题7分,共35分.其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.若20 10a b b c ==,,则a b b c++的值为( ). (A )1121 (B )2111 (C )11021 (D )21011解:D 由题设得12012101111110a ab bc b c b +++===+++. 2.若实数a ,b 满足21202a ab b -++=,则a 的取值范围是 ( ). (A )a ≤2- (B )a ≥4 (C )a ≤2-或 a ≥4 (D )2-≤a ≤4 解.C因为b 是实数,所以关于b 的一元二次方程21202b ab a -++= 的判别式 21()41(2)2a a ∆--⨯⨯+=≥0,解得a ≤2-或 a ≥4.3.如图,在四边形ABCD 中,∠B =135°,∠C =120°,AB =23BC =422-CD =2AD 边的长为( ).(A )26 (B )64(C )64+ (D )622+解:D如图,过点A ,D 分别作AE ,DF 垂直于直线BC ,垂足分别为E ,F .由已知可得BE =AE 6,CF =2DF =6,于是 EF =46.过点A 作AG ⊥DF ,垂足为G .在Rt △ADG 中,根据勾股定理得 AD 222(46)(6)(224)=++=+226+4.在一列数123x x x ,,,……中,已知11=x ,且当k ≥2时,1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭ (第3题)(第3题)(取整符号[]a 表示不超过实数a 的最大整数,例如[]2.62=,[]0.20=),则2010x 等于( ).(A) 1 (B) 2 (C) 3 (D) 4解:B由11=x 和1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭可得 11x =,22x =,33x =,44x =,51x =,62x =,73x =,84x =,……因为2010=4×502+2,所以2010x =2.5.如图,在平面直角坐标系xOy 中,等腰梯形ABCD 的顶点坐标分别为A (1,1),B (2,-1),C (-2,-1),D (-1,1).y 轴上一点P (0,2)绕点A 旋转180°得点P 1,点P 1绕点B 旋转180°得点P 2,点P 2绕点C 旋转180°得点P 3,点P 3绕点D 旋转180°得点P 4,……,重复操作依次得到点P 1,P 2,…, 则点P 2010的坐标是( ).(A )(2010,2) (B )(2010,2-)(C )(2012,2-) (D )(0,2)解:B 由已知可以得到,点1P ,2P 的坐标分别为(2,0),(2,2-).记222 )P a b (,,其中222,2a b ==-. 根据对称关系,依次可以求得: 322(42)P a b --,--,422(2)P a b ++,4,522(2)P a b ---,,622(4)P a b +,.令662(,)P a b ,同样可以求得,点10P 的坐标为(624,a b +),即10P (2242,a b ⨯+), 由于2010=4⨯502+2,所以点2010P 的坐标为(2010,2-).二、填空题6.已知a =5-1,则2a 3+7a 2-2a -12 的值等于 .解:0由已知得 (a +1)2=5,所以a 2+2a =4,于是2a 3+7a 2-2a -12=2a 3+4a 2+3a 2-2a -12=3a 2+6a -12=0.7.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶.在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间.过了10分钟,小轿车追上了货车;又过了5分钟,小轿(第5题)车追上了客车;再过t 分钟,货车追上了客车,则t = .解:15设在某一时刻,货车与客车、小轿车的距离均为S 千米,小轿车、货车、客车的速度分别为a b c ,, (千米/分),并设货车经x 分钟追上客车,由题意得()10a b S -=, ①()152a c S -=, ② ()x b c S -=. ③由①②,得30b c S -=(),所以,x =30. 故 3010515t =--=(分). 8.如图,在平面直角坐标系xOy 中,多边形OABCDE 的顶点坐标分别是O (0,0),A (0,6),B (4,6),C (4,4),D (6,4),E (6,0).若直线l 经过点M (2,3),且将多边形OABCDE 分割成面积相等的两部分,则直线l 的函数表达式是 .解:11133y x =-+ 如图,延长BC 交x 轴于点F ;连接OB ,AF ;连接CE ,DF ,且相交于点N .由已知得点M (2,3)是OB ,AF 的中点,即点M 为矩形ABFO 的中心,所以直线l 把矩形ABFO 分成面积相等的两部分.又因为点N (5,2)是矩形CDEF 的中心,所以,过点N (5,2)的直线把矩形CDEF 分成面积相等的两部分.于是,直线MN 即为所求的直线l .设直线l 的函数表达式为y kx b =+,则2352k b k b =⎧⎨+=⎩+,, 解得 1311.3k b ⎧=-⎪⎪⎨⎪=⎪⎩,,故所求直线l 的函数表达式为11133y x =-+. 9.如图,射线AM ,BN 都垂直于线段AB ,点E 为AM 上一点,过点A 作BE 的垂线AC 分别交BE ,BN 于点F ,C ,过点C 作AM 的垂线CD ,垂足为D .若CD =CF ,则AE AD= . (第8题) (第8题解: 215- 见题图,设,FC m AF n ==. 因为Rt △AFB ∽Rt △ABC ,所以 2AB AF AC =⋅.又因为 FC =DC =AB ,所以 2()m n n m =+,即 2()10n n m m+-=, 解得51n m -=,或51n m --=(舍去). 又Rt △AFE ∽Rt △CFB ,所以AE AE AF n AD BC FC m ====51-, 即AE AD=51-. 10.对于i =2,3,…,k ,正整数n 除以i 所得的余数为i -1.若n 的最小值0n 满足020003000n <<,则正整数k 的最小值为 .解:9 因为1n +为2 3 k ,,,的倍数,所以n 的最小值0n 满足[]012 3 n k +=,,,,其中[]2 3 k ,,,表示2 3 k ,,,的最小公倍数. 由于[][]2 3 88402 3 92520 ==,,,,,,,, [][]2 3 1025202 3 1127720==,,,,,,,, 因此满足020003000n <<的正整数k 的最小值为9.三、解答题(共4题,每题20分,共80分)11.如图,△ABC 为等腰三角形,AP 是底边BC 上的高,点D 是线段PC 上的一点,BE 和CF 分别是△ABD 和△ACD 的外接圆直径,连接EF . 求证: .tan EF PAD BC ∠=(第9题) (第11题)证明:如图,连接ED ,FD . 因为BE 和CF 都是直径,所以ED ⊥BC , FD ⊥BC ,因此D ,E ,F 三点共线. …………(5分)连接AE ,AF ,则AEF ABC ACB AFD ∠=∠=∠=∠,所以,△ABC ∽△AEF . …………(10分)作AH ⊥EF ,垂足为H ,则AH =PD . 由△ABC ∽△AEF 可得 EF AH BC AP=, 从而 EF PD BC AP=, 所以 tan PD EF PAD AP BC∠==. …………(20分) 12.如图,抛物线2y ax bx =+(a >0)与双曲线k y x=相交于点A ,B . 已知点A 的坐标为(1,4),点B 在第三象限内,且△AOB 的面积为3(O 为坐标原点).(1)求实数a ,b ,k 的值;(2)过抛物线上点A 作直线AC ∥x 轴,交抛物线于另一点C ,求所有满足△EOC ∽△AOB 的点E 的坐标.解:(1)因为点A (1,4)在双曲线k y x=上, 所以k=4. 故双曲线的函数表达式为xy 4=. 设点B (t ,4t ),0t <,AB 所在直线的函数表达式为y mx n =+,则有 44m n mt n t=+⎧⎪⎨=+⎪⎩,, 解得4m t =-,4(1)t n t +=. 于是,直线AB 与y 轴的交点坐标为4(1)0,t t +⎛⎫ ⎪⎝⎭,故 ()141132AOB t S t t∆+=⨯-=(),整理得22320t t +-=, 解得2t =-,或t =21(舍去).所以点B 的坐标为(2-,2-). 因为点A ,B 都在抛物线2y ax bx =+(a >0)上, 所以 4422a b a b +=⎧⎨-=-⎩,, 解得13.a b =⎧⎨=⎩, …(10分) (第11题)(第12题)(2)如图,因为AC ∥x 轴,所以C (4-,4),于是CO =42. 又BO =22,所以2=BO CO . 设抛物线2y ax bx =+(a >0)与x 轴负半轴相交于点D ,则点D 的坐标为(3-,0).因为∠COD =∠BOD =45︒,所以∠COB =90︒.(i )将△BOA 绕点O 顺时针旋转90︒,得到△1B OA '.这时,点B '(2-1A 的坐标为(4,1-).延长1OA 到点1E ,使得1OE =12OA ,这时点1E (8,2-)是符合条件的点.(ii )作△BOA 关于x 轴的对称图形△2B OA ',得到点2A (1,4-);延长2OA 到点2E ,使得2OE =22OA ,这时点E 2(2,8-)是符合条件的点.所以,点E 的坐标是(8,2-),或(2,8-). …………(20分)13.求满足22282p p m m ++=-的所有素数p 和正整数m .解:由题设得(21)(4)(2)p p m m +=-+,所以(4)(2)p m m -+,由于p 是素数,故(4)p m -,或(2)p m +. ……(5分)(1)若(4)p m -,令4m kp -=,k 是正整数,于是2m kp +>, 2223(21)(4)(2)p p p m m k p >+=-+>,故23k <,从而1k =.所以4221m p m p -=⎧⎨+=+⎩,,解得59.p m =⎧⎨=⎩, …………(10分) (2)若(2)p m +,令2m kp +=,k 是正整数.当5p >时,有46(1)m kp kp p p k -=->-=-,223(21)(4)(2)(1)p p p m m k k p >+=-+>-,故(1)3k k -<,从而1k =,或2.由于(21)(4)(2)p p m m +=-+是奇数,所以2k ≠,从而1k =.于是4212m p m p -=+⎧⎨+=⎩,, 这不可能.当5p =时,2263m m -=,9m =;当3p =,2229m m -=,无正整数解;当2p =时,2218m m -=,无正整数解.综上所述,所求素数p =5,正整数m =9. …………(20分)14.从1,2,…,2010这2010个正整数中,最多可以取出多少个数,使得所取出的数中任意三个数之和都能被33整除?解:首先,如下61个数:11,1133+,11233+⨯,…,116033+⨯(即1991)满足题设条件.(5分)另一方面,设12n a a a <<<是从1,2,…,2010中取出的满足题设条件的数,对于这n 个数中的任意4个数i j k m a a a a ,,,,因为33()i k m a a a ++, 33()j k m a a a ++,所以 33()j i a a -.因此,所取的数中任意两数之差都是33的倍数. …………(10分)设133i i a a d =+,i =1,2,3,…,n . 由12333()a a a ++,得12333(33333)a d d ++, 所以1333a ,111a ,即1a ≥11. …………(15分)133n n a a d -=≤2010116133-<, 故n d ≤60. 所以,n ≤61. 综上所述,n 的最大值为61. …………(20分)。
八年级数学竞赛试题及参考答案
八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分)1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14-2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ). A .10151- B .10051- C .101514- D .100514- 4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分) 7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COFOEDCBA (第4题图)DCB(第15题图)EDCB A的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= . 9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= . 11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD . 求证:∠BAD=12∠C .参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。
浙教版2018-2019学年度八年级数学竞赛试卷B(含解析)
浙教版2018-2019学年八年级数学竞赛试卷 B一.选择题(共 8小题,3*8=24)21 . x=1时,多项式ax+bx+1的值为3,则多项式2 (3a-b ) - ( 5a - 3b )值的值等于( ) A. 0 B. 1C. 2D. - 22 .解方程,』山+4 4 ― 1的步骤如下:0. 3 0. 05解:第一步: 纥L/史L-1 (分数的基本性质) 3 1 第二步:2x- 1=3 (2x+8) - 3……(①) 第三步:2x - 1=6x+24 - 3……(②) 第四步:2x- 6x=24 - 3+1……(③) 第五步:-4x=22 (④) 第六步:x=-工工 .... (⑤)2以上解方程第二步到第六步的计算依据有:①去括号法则.②等式性质一.③等式性质二.④合并同 类项法则.请选择排序完全正确的一个选项()3,若2/ +x ?+kR -2能被■整除,那么k 等于()A.悬B.C.-占D.不能确定4.如图,/ AOB=60°, OA=OB,动点C 从点O 出发,沿射线6.如图中不同的长方形(包括正方形)的个数为(A.②①③④②B.②①③④③C.③①②④③D.③①④②③OB 方向移动,以AC 为边在右侧作等边AACD,连接BD,则BD 所在直线与OA 所在直线的位置关系是A .平行 B.相交 C.垂直 D.平行、相交或垂直A.①③B.①④C.②④D.②③5.已知a 、b 、c 、d 都是正实数,且给出下列四个不等式:b d其中不等式正确的是(A.36B.87C.72D. 1027,下列各数能整除(-8) 2011+ ( - 8)2010的是()B. 5C.7D.98.如图,2>5的正方形网格中, 用5张1 X2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()B.5种C.8种D.13 种二.填空题(共8小题,3*8=24)9.若|a — 2|+ (— b) 2=0,贝U b a= .310.设a、b、c 都是实数,且满足(2—a )I 白+£1=0,ax2+bx+c=0;则代数式x2+2x+1的值为.11.点M在y轴的左侧,且到x轴,y轴的距离分别是3和5,则点M的坐标是 .12.时针指示6点15分,它的时针和分针所夹的角是度.13.如图,?ABCD中,ZB=60 °, AB=4, BC=5, P是对角线AC上任一点(点P不与点A, C重合),且PE // BC交AB于E, PF // CD交AD于F ,则阴影部分的面积是 .14.若40个数据的平方和是56,平均数是巧,则这组数据的方差 .15.若直线y=2x+3与直线y=mx+5平行,则m+2的值为16.某中学生暑期社会调查团共17人到几个地方去考察,事先预算住宿费平均每人每天不超过x元.一日到达某地,该地有两处招待所A, B. A有甲级床位8个,乙级床位11个;B有甲级床位10个, 乙级床位4个,丙级床位6个.已知甲,乙,丙床位每天分别为14元,8元,5元.若全团集中住在一个招待所里,按预算只能住B处,那么整数x的值为三.解答题(共4小题,52分)। 4x―bv=—1 f望三万17.(10分)甲、乙两人解关于x, y的方程组J ,甲因看错a,解得.乂一乙,乙将其中一(ax+by=5 1 尸3个方程的b写成了它的相反数,解得[户一1 ,求a、b的值.ly=-l18.( 12分)观察下列各式:1+2 =1+8=9,而(1+2) =9, 1 +2 = (1+2);Q Q Q__ 2 3 3 3 21 +2 +3 =36,而(1+2+3) =36, . . 1 +2 +3 = (1+2+3);Q 3 3 3 9 3 3 3 3 21 +2 +3 +4 =100,而(1+2+3+4) =100, . . 1 +2 +3 +4 = ( 1+2+3+4);..3 3 3 3 3 、 2•• 1 +2 +3 +4 +5 = () =.根据以上规律填空:(D 13+23+33+-+ n3= () 2=[「(2)猜想:113+123+133+143+153=.19.(15分)某中学的1号教学大楼共有4道门,其中两道正门大小相同,两道侧门也大小相同,安全检查时,对 4 道门进行了测试,当同时开启一道正门和两道侧门时, 2 分钟内可以通过560 名学生,当同时开启一道正门和一道侧门时, 4 分钟内可通过800 名学生.(1 )求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)该中学的2 号教学大楼,有和 1 号教学大楼相同的正门和侧门共 5 道,若这栋大楼的教室里最多有1920 名学生,安全检查规定,在紧急情况下,全大楼学生应在 4 分钟内通过这 5 道门安全撤离,该栋大楼正门和侧门各有几道?20.(15分)阅读探究:任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,*尸2 ,消去y化简彳导:2x2 - 7x+6=0 ,疗3••• b2- 4ac=49 -48>0, . . x i =, x2=,,满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形 B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?参考答案与试题解析1.解:把x=1代入多项式ax2+bx+1得: a+b+1=3,- x=1时,多项式ax2+bx+1的值为3,1- a+b+1=3, a+b=2,•••2 (3a- b) - ( 5a- 3b)=6a-2b-5a+3b = a+b=2,故选:C.2S-1 2Y+8 ,2.解:第一步:*匚号马—1 (分数的基本性质)0 JL第二步:2x- 1=3 (2x+8) - 3……(等式性质二)第三步:2x- 1=6x+24- 3……(去括号法则)第四步:2x- 6x=24 - 3+1……(等式性质一)第五步:-4x=22 (合并同类项法则)第六步:x=-卫-……(等式性质二),2故选:C.3.解:方法一:利用大除法,若2工点12『+工沁工-2,即、(义4)二-2, Z Z 1 Q Z、一人1 1 …一、- 7方法一:令2x+—=0, x=--,代入原式=0,解得k=-7—.2 4 8方法三、: 2尸+箕、kx-2能被2工。
2018-2019学年度第二学期八年级数学知识竞赛试题(含答案)
2018~2019学年度第二学期八年级数学竞赛试题一、选择题(本大题共5小题,每小题4分,共20分)1.下面四个所给的选项中,能折成如图给定的图形的是()A.B.C.D.2.如果(x﹣1)(x+3)(x﹣4)(x﹣8)+m是一个完全平方式,则m是()A.±196 B.﹣196 C.196 D.以上都不对3.一天有个年轻人来到李老板的店里买了一件礼物,这件礼物成本是18元,标价是21元.结果是这个年轻人掏出100元要买这件礼物.李老板当时没有零钱,用那100元向街坊换了100元的零钱,找给年轻人79元.但是街坊后来发现那100元是假钞,李老板无奈还了街坊100元.现在问题是:李老板在这次交易中到底损失()A.179元B.97 C.100元D.118元4.如图,已知AB∥EF,∠BAC=p,∠ACD=x,∠CDE=y,∠DEF=q,则用p、q、y来表示x.得()A.x=p+y﹣q+180°B.x=2p+2q﹣y+90°C.x=p+q+y D.x=p+q﹣y+180°5.已知直线l1:y=kx+b与直线l2:y=﹣x+m都经过C(﹣,),直线l1交y轴于点B(0,4),交x轴于点A,直线l2交y轴于点D,P为y轴上任意一点,连接PA、PC,有以下说法:①方程组的解为;②△BCD为直角三角形;③S△ABD=3;④当PA+PC的值最小时,点P的坐标为(0,1).其中正确的说法个数有()A.4个B.3个C.2个D.1个6.已知a=2255,b=3344,c=5533,则a ,b ,c 的大小关系(从小到大排列,用“<”连接) 。
7.若|x ﹣y +6|+(y +8)2=0,则xy= 。
8.若的值为 。
9. 如果a 、b 为定值,关于x 的方程,无论k 为任何值,它的根总是1,则2a ﹣b= 。
10.符号“f ”表示一种运算,它对一些数的运算结果如下:(1)f (1)=0,f (2)=1,f (3)=2,f (4)=3,…;(2)f ()=2,f ()=3,f ()=4,f ()=5,…利用以上规律计算:f (2015)﹣f ()= 。
2019最新八年级数学竞赛初赛试题(含答案)
八年级数学竞赛初赛试题一、填空题:每小题2分,共40分。
1、使等式x x x =-成立的的值是 。
2、扇形统计图中扇形占圆的30%,则此时扇形所对的圆心角为 。
3、如果点A (3,a )是点B (3,4)关于y 轴的对称点,那(图1)FEDCBA么a的值是。
4、如图1,正方形ABCD的边长为1cm,以对角线AC为边长再作一个正方形,则正方形ACEF的面积是2cm .5、已知四个命题:①1是1的平方根,②负数没有立方根,③无限小数不一定是无理数,一定没有意义;其中正确的命题有个。
6、已知72π⎡--⎢⎣,,,其中无理数有个。
7、若A的算术平方根是。
8、如图2,在△ABC中,AB=AC,G是三角形的重心,那么图中例行全等的三角形的对数是对。
9、足球比赛的记分规则是:胜一场记3分,平一场记1分,负一场记0分;一支中学生足球队参加了15场比赛,负了4场,共得29分,则这支球队胜了场。
10、若方程组4101,43x y kx y kx y+=+⎧<+<⎨+=⎩的解满足则围是。
11、如图3,在一个正方体的两个面上画两条对角线AB,AC,那么这两条对角线的夹角等于。
(图2)FGEDC BA(图3)(图5)12、某班级共48人,春游时到杭州西湖划船,每只小船坐3人,租金16元,每只大船坐5人,租金24元,则该班至少要花租金 元。
13、正三角形△ABC 所在平面内有一点P ,使得△PAB 、△PBC 、△PCA 都是等腰三角形,则这样的P 点有 个。
14、若61m m -表示一个数,则整数可取值的个数是 个。
15、已知x 和y 满足2x+3y=5,则当x=4时,代数式22312x xy y ++的值是 。
16、方程550x x -+-=的解的个数为 个。
17、如图4,△ABC 为等边三角形,且BM=CN ,AM 与BN 相交于点P ,则∠APN= . 18、已知有如下一组,x y z 和的单项式:3232242323117 8 3 9 9 0.325x z x y x yz xy z x zy zy xyz y z xz y z --,,,,,,,,,我们用下面的方法确定它们的先后次序:对任两个单项式,先看x 的次幂,规定x 幂次高的单项式排在x 幂次低的单项式的前面;再先看y 的次幂,规定y 幂次高的单项式排在y 幂次低的单项式的前面;再先看z 的次幂,规定z 幂次高的单项式排在z 幂次低的单项式的前面。
城郊中学2018-2019学年度第二学期竞赛试卷八年级数学(答案)
第1页 共4页 ◎ 第2页 共4页绝密★启用前城郊中学2018-2019学年度第二学期竞赛试卷八年级数学考试时间:100分钟 满分:100分第Ⅰ卷(选择题)一.选择题(每小题4分,共40分)1.骆驼被称为“沙漠之舟”,它的体温是随时间的变化而变化的,在这一问题中,因变量是 ( B ) A .沙漠 B .体温C .时间D .骆驼2.式子有意义的x 的取值范围是 ( A )A .x ≥﹣且x ≠1B .x ≠1C .D .x >﹣且x ≠13.已知ab <0,则化简后为 ( B )A .aB .﹣aC .aD .﹣a4.《九章算术》是我国古代的数学名著,书中的“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺.问折者高几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部3尺远,问折断处离地面的高度是多少?设折断后离地面的高度为x 尺,则可列方程为 (D ) A .x 2﹣3=(10﹣x )2B .x 2﹣32=(10﹣x )2C .x 2+3=(10﹣x )2D .x 2+32=(10﹣x )25.如图,在长方形ABCD 中无重叠放入面积分别为16cm 2和12cm 2的两张正方形纸片,则图中空白部分的面积为多少cm 2.( B )A .16﹣8B .﹣12+8C .8﹣4D .4﹣26.如图所示,△ABC 的顶点A 、B 、C 在边长为1的正方形网格的格点上,BD ⊥AC 于点D ,则BD 的长为 (A ) A .B .C .D .7.如图,把一块含有30°角的直角三角板ABC 的直角顶点放在矩形桌面CDEF 的一个顶点C 处,桌面的另一个顶点F 与三角板斜边相交于点F ,如果∠1=50°,那么∠AFE 的度数为 (B ) A .10°B .20°C .30°D .40°第5题图 第6题图 第7题图8.如图,一个平行四边形被分成面积为S 1、S 2、S 3、S 4四个小平行四边形,当CD 沿AB 自左向右在平行四边形内平行滑动时,S 1S 4与S 2S 3的大小关系为(C ) A .S 1S 4>S 2S 3B .S 1S 4<S 2S 3C .S 1S 4=S 2S 3D .无法确定9.如图:图中的两条射线分别表示甲、乙两名同学运动的一次函数图象,图中s 和t 分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB 表示甲的路程与时间的函数关系; ②甲的速度比乙快1.5米/秒;③甲让乙先跑了12米; ④8秒钟后,甲超过了乙。
2019-2020学年八年级数学上学期学科竞赛试题新人教版
2019-2020 学年八年级数学上学期 11 月学科竞赛试题 新人教版(考试时间: 90 分钟,试卷满分:120 分)一、选择题 ( 每题 3 分,共 30 分)题号 1 2 3 4 56 7 8 9 10答案1.已知△ ABC 中, AB=4, BC=6,那么边 AC 的长可能是以下哪个值B . 5C . 2D . 12.以下列图案是轴对称图形的有( )个.3. 以下计算正确的选项是().A . 2a 5 a 5 3a 10B . a 2 a 3 a 6C . (a 2 )3 a 5D . a 10 a 2 a 84.如图,将△ ABC 沿直线 DE 折叠后,使得点 B 与点 A 重合.已知 AC=5cm ,△ ADC 的周长为 17cm ,则 BC 的长为A . 7 cmB. 10cmC. 12cmD.22cm5.计算 (1 3x)(3x1) 9(1x)( x1) 的结果是().33A . 18x22B . 2 18 x 2C . 0D. 8x 2第 4 题图6. 以下列图形中有牢固性的是( )A.正方形B.直角三角形C.长方形 D. 平行四边形7.把多项式 1 x 1xx 1 提取公因式 x1 后,余下的部分是().A . x 1B.x 1C . xD.x 28. 在 ABC 内部取一点 P 使点 P 到 ABC 的三边距离相等,则点 P 是( )的交点 A. 三条高 B. 三条角均分线 C. 三条中线 D. 三边的垂直均分线 9. 以下各图中,不用然全等的是()A . 有一个角是 3 7°腰长相等的两个等腰三角形B. 周长相等的两个等边三角形C. 有一个角是 102°,腰长相等的两个等腰三角形D. 斜边和一条直角边分别相等的两个直角三角形第 10 题图10.如图,已知在△ ABC 中, CD 是 AB 边上的高线, BE 均分∠ ABC ,交 CD 于点 E , BC=5, DE=2,则△ BCE 的面积等于 A. 10B. 7C. 5D. 4二、填空题 11.已知点12.代数式( 每题 3 分,共 24 分)P 关于 x 轴的对称点P 1 的坐标是( 1, 2),则点 P 的坐标是24x + 3mx +9 是完好平方式,则m = ___________..13. 如 所示,在四 形 ABCD 中,∠ A=45°。
“城市杯”八年级数学应用能力竞赛(无答案) 人教新课标版
“城市杯”八年级数学应用能力竞赛(无答案) 人教新课标版八年级说明:1.考试时间120分钟;2.满分150分;3.把A 卷的选择题和填空题的答案填写在B 卷的答题卡上,交卷时只交B 卷一、选择题(每题5分,合计50分)1.若10,20==c b b a ,则c b b a ++的值为( )A 、2111 B 、1121 C 、21110 D 、11210 2.已知3x =是不等式214mx m +<-的一个解,如果m 是整数,那么m 的最大值是( )A 、1-B 、0C 、1D 、2-3.已知7a =,70b =,则 4.9等于( )A 、10a b +B 、10b a -C 、b aD 、10ab 4.已知22211148(344454A =⨯+++---…21)1004+-,则与A 最接近的正整数是( ) A 、18 B 、20 C 、24 D 、255.在同一直角坐标系中,函数)0(≠=k xk y 与)0(≠+=k k kx y 的图象大致是( )A B C D6.在等边三角形ABC 所在的平面内存在点P ,使⊿PAB 、⊿PBC 、⊿PAC 都是等腰三角形.请指出具有这种性质的点P 的个数( ) A 、1 B 、7 C 、10 D 、157.设一次函数11kx y k-=+(常数k 为正整数)的图像与两坐标轴所围成的三角形面积为k s ,则123s s s +++……100s +的值是( )A 、50 B 、101 C 、10150 D 、501018.水池有两个进水口,一个出水口,每个进水口的进水量与时间的关系如图甲所示,出水口的出水量与时间的关系如图乙所示,某天0点到6点,该水池的蓄水量与蓄水量的关5 6 3 蓄水量1进水量出水量 2下面的论断中可能正确的是( )①0点到1点,打开两个进水口,关闭出水口;②1点到3点,同时关闭两个进水口和一个出水口;③3点到4点,关闭两个进水口,打开出水口;④5点到6点,同时打开两个进水口和一个出水口。
2019-八年级数学竞赛试卷
2019-2020 年八年级数学比赛试卷一、选择题(每题 4 分,共 24分)1、已知实数a在数轴上的地点以下图,则化简 |1 a |a2的结a果为(▲)( 2009 年湖南长沙中考试题)101A 、 1B、1C、1 2a D、2a 1B5C 2、如图 2,长方体的长为 15,宽为10,高为20,点 B 离点 C 的距离为 5,一只蚂蚁假如要沿着长方体的表面从点 A 爬到点 B,需要爬行的最短距离20是 ( ▲ )(2009 年湖北省恩施市中考题)A15A 、 521B、 25C、10 5 +5D、 3510图 23、如图,已知△ ABC 中,∠ ABC = 90°,AB= BC,三角形的极点在互相平行的三条直线l 1,l 2,l 3上,且 l 1,l2之间的距离为A 2 ,l2, l3之间的距离为 3 ,则 AC 的长是(▲)Cl1( 2009 年浙江省丽江市中考题)l 2BA 、2 17B 、2 5C、4 2D、 7l34、一旅馆有二人间、三人间、四人间三种客房供旅客租住,某旅行团 20人准备同时租用这三种客房共7 间,假如每个房间都住满,租房方案有(▲)( 2009 年齐齐哈尔中考题)A 、 4 种B、 3 种C、 2 种D、 1 种yA5、如图,点 A 的坐标是(2, 2),若点 P 在x轴上,且△ APO 是等腰2三角形,则点P 的坐标不行能是(▲)1x...(2009 年重庆綦江中考题)-1012 3 4A 、 (4, 0)B 、( 1, 0)C、(- 2 2 ,0) D 、( 2, 0)6、某校数学课外小组,在座标纸上为学校的一块空地设计植树方案以下:第k棵树栽种在点 P k ( x k, y k ) 处,此中 x11, y1 1 ,当k≥2时,x k xk 11k1k25([] [])55, [ a ] 表示非负实数 a 的整数部分,比如[2.6]=2 ,[k 1] [k 2]y k yk 155[0.2]=0 。
八年级数学竞赛试题及答案.docx
还剩:21345、25143、23541、43125、45321
所以共有
5种排法故选:D.
2、 设18
路公交车的速度是
x米/分,小王行走的速度是y米/分,同向行驶的相邻两车的间距为
s米.
每隔6分钟从背后开过一辆
18路公交车,则6x-6y=s.①
1、法一:设
a1,a2,a3,a4,a5是1,2,3,4,5的一个满足要求的排列.
首先,对于a1,a2,a3,a4,不能有连续的两个都是偶数
,否则,这两个之后都是偶数,与已知条件矛盾.
又如果a(1≤i≤3)是偶数,a
i+1是奇数,则ai+2是奇数,这说明一个偶数后面一定要接两个或两个以上的奇数,
i
除非接的这个奇数是最后一个数.
(第3题)
的值等 于
.(x表示不超过x的最大整数)
5.小明家电话号码原为六位数
,第一次升位是在首位号码和第二位号码之间加上数字
8,成为一个七位数的
电话号码;第二次升位是在首位号码前加上数字
2,成为一个八的 电 话 号 码 的 八 位 数,恰 是 原 来 电 话 号 码 的 六 位 数 的81倍,则 小 明 家 原 来 的 电 话 号 码
所以a1,a2,a3,a4,a5只能是:偶,奇,奇,偶,奇,有如下5种情形满足条件:
2,1,3,4,5;
2,3,5,4,1;
2,5,1,4,3;
4,3,1,2,5;
4,5,3,2,1.
法二:第一位是
2,后面两位奇数任意:21345、23145、21543、25143、23541、25341
第一位是4,后面两位奇数不能是1、5或5、1:41325、43125、43521、45321
2019-2020年初二级数学竞赛试题及答案
如19-2020年初二级数学竞赛试题及答案一、选择题(本大题共8小题,每小题5分,菜40分。
)以下每题的四个选项 中,仅有一个是正确的,请将正确答案的英文字母写在每题后面的圆括号内。
1、设[a]表示不超过a 的最大整数,如[4.3] =4, [-4.3 ] =-5,则下列各式 中正确的是((A) [a] = | a |(C) [a] =—a 2、如图,四边形 ABCD 中,/A=60°, ZB=ZD=900, AD=8,AB=7,贝U BC+CD(A)等边三角形 (C)直角三角形(B)钝角三角形 (D)锐角三角形4、若干个正方形和等腰直角三角形拼接成如图 2所示的图形,若最大的正方形1,矩形ABCD 的长AD=9cm ,宽AB=3cm ,将它折叠,使点 D 与点B求折叠后DE 的长和折痕EF 的长分别是( ) 成年人按规定的剂量限用,服药后每毫升血液 (小时)之间的函数关系近似满足如图3所示曲线,当每毫升血液中的含药量不少于 0.25毫克时治疗有效,则服药一次治疗疾(B)3、AABC 的边长分别是 (C)(D)a=m 2-1, b=m 2+1, c = 2m(m>0),则 AABC 是 的边长是7cm,则正方形A 、 (A) 14cm2(B) 42cmB 、C 、D 的面积和是( )22(C) 49cm (D) 64cm5、图 重合, A 、5cm,、砧cm C 、6cm, J10cm B 、5cm,3cm 5cm,4cm6、某医药研究所开发一种新药, 中的含药量y (毫克)与时间t (B) [a] = | a |2图1病有效的时间为(7、某公司组织员工一公园划船,报名人数不足 50人,在安排乘船时发现,每 只船坐6人,就剩下18人无船可乘;每只船坐10人,那么其余的船坐满后内 参有一只船不空也不满,参加划船的员工共有()(A ) 48 人 (B ) 45 人 (C ) 44人(D ) 42 人8、方程| xy | + | x-y+1 | =0的图像是 ( )(A )三条直线 x=0, y=0, x-y+1 =0 (B )两直线 x=0, x-y+1 =0(C ) 一点和一条直线,(0, 0), x-y+1 =0 (D )两个点(0, 1), (-1 , 0)9、已知,如图,长方形 ABCDK 4ABP 的面积 10、已知 a 5-a 4b- a 4+a-b-1=0,且 2a-3b=1 ,贝^ a 3+b 3 的值是(A) 16小时 (B) 157小时815 一. (C) 1515 小16 (D) 17小时、填空题(本大题共7小题,每小题5分,共 为20平方厘米,△ CDQ 勺面积为35平方厘米, 则四边形PFQE 勺面积是 平方厘米...... 2x _ a : 111、若不等式组 a 中的未知数x的取值范围是-1<x<1 ,那么(a + 1)x-2b 3L(b-1)的值等于12、I a b|叫做二阶行列式,它的算法是:ad-bc,将四个数2、3、4、5排c d 成不同的二阶行列式,则不同的计算结果有一个,其中,数值最大的是—13、如图4, 一只小猫沿着斜立在墙角的木板往上爬,木板J 底端距离墙角0.7米,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3米,木板顶端向下滑动了0.9米,则小猫在木板上爬动了一米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019“城市杯”初中数学应用能力竞赛(B)八年级 2019/5/9 9:00—11:00(2)解答书写时不要超过装订线; (3)草稿纸不上交.一、选择题(每小题4分,共40分)1.已知2009222==-=+cb a ,且kc b a 2009=++,则k 的值为( ). A.41 B.4 C.41- D.-4 2.已知3,2,1222=++=++=c b a c b a abc ,则111111-++-++-+b ca a bc c ab 的值为( ). A.1B.21-C.2D.32-3.若x 2-219x+1=0,则44x1x +等于( ). A .411 B . 16121 C . 1689 D . 427 4.使分式a xax --1有意义的x 应满足的条件是( ).A.0≠xB.)0(1≠≠a axC.0≠x 或)0(1≠≠a a xD.0≠x 且)0(1≠≠a ax5. 已知0≠abc ,并且p bac a c b c b a =+=+=+,那么直线p px y +=一定通过( ). A.第一、第二象限 B.第二、第三象限C.第三、第四象限D.第一、第四象限6.如图,在△ABC 中,D AC AB ,=点在AB 上,AC DE ⊥于E ,BC EF ⊥于F .若︒=∠140BDE ,那么DEF ∠等于( ).A.55°B.60°C.65°D.70°7.如图,已知边长为a 的正方形E ABCD ,为AD 的中点,P 为CE 的中点,F 为BP 的中点,则△BFD 的面积是( ).学校 座号 姓名密 封 线得 分 评卷人A. 281a B.2161a C. 2321a D.2641a8.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是( )A .2005B .2006C .2019D .2019 9.明明用计算器求三个正整数a, b, c 的表达式a bc+的值.她依次按了a , +, b , ÷, c , =,得到数值11.而当她依次按b , +, a , ÷, c , =时,惊讶地发现得到数值是14.这时她才明白计算器是先做除法再做加法的,于是她依次按(, a , +, b , ), ÷, c , = 而得到了正确的结果.这个正确结果是( ) A.5B.6C.7D.810. 设x 、y 、z 是三个实数,且有⎪⎪⎩⎪⎪⎨⎧=++=++.1111,2111222z y xz y x 则zx yz xy 111++的值是( ). (A )1 (B )2 (C )23(D )3二、填空题(每小题5分,共40分)11. 已知y=5x-42-x -4-5x 2-x 22 +2,则x 2+y 2= . 12.如图,在直角坐标系中,矩形OABC 的顶点B 的坐标为(15,6), 直线b x y +=31恰好将矩形OA B C 分成面积相等的两部分,那么b = .13.如图,AD 是△ABC 的中线,︒=∠45ADC .把△ABC 沿直线AD 折过来,点C 落在得 分评卷人(第6题)(第7题)(第12题)得 分 评卷人点C '的位置上,如果4=BC ,那么='C B .14.如图,在四边形ABCD 中,AD AB C A =︒=∠=∠,90.若这个四边形的面积为16,则=+CD BC .15. 已知082,043=-+=--z y x z y x ,那么代数式=++++zxyz xy z y x 2222 . 16. 小明家电话号码原为六位数,第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码.小明发现,他家两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍,则小明家原来的电话号码是 . 17. 一次函数111+++-=k x k k y (k 为正整数)的图像与x 轴、y 轴的交点是O B A ,,为原点.设Rt △ABO 的面积是k S ,则2009321S S S S ++++ = .18. 已知62-+x x 是多项式12234-+++-+b a bx ax x x 的因式,则=a ,=b .三、解答题(每题10分,共40分)19.已知1515153330,0c b a c b a c b a ++=++=++,求的值.(第13题) (第14题)20.设关于x 的一次函数11b x a y +=与22b x a y +=,则称函数)()(2211b x a n b x a m y +++=(其中1=+n m )为此两个函数的生成函数.(1)当x=1时,求函数1+=x y 与x y 2=的生成函数的值;(2)若函数11b x a y +=与22b x a y +=的图象的交点为P ,判断点P 是否在此两个函数的生成函数的图象上,并说明理由.21.我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售。
按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满。
根据下表提供的信息,解答以下问题:脐 橙 品 种A B C 每辆汽车运载量(吨)6 5 4 每吨脐橙获得(百元)12 16 10 (1)设装运A 种脐橙的车辆数为x ,装运B 种脐橙的车辆数为y ,求y 与x 之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.22. 从连续自然数1,2,3,…,2019中任意取n个不同的数.(1)求证:当n=1007时,无论怎样选取这n个数,总存在其中的4个数的和等于4017;(2)当n≤1006(n是正整数)时,上述结论成立否?请说明理由.答案:1.BDCDBCBAAC 11. 6 12.21 13. 22 14. 4 15. 1 16. 282500 17. 40202009 18. 16 ,319. ))((3222333bc ac ab c b a c b a abc c b a ---++++=-++=020. 解: (1) 当x =1时,)2()1(x n x m y ++=)12()11(⨯++=n m n m 22+=)(2n m +=,∵ 1=+n m , ∴ 2=y . (2)点P 在此两个函数的生成函数的图象上. 设点P 的坐标为(a , b ), ∵ b b a a =+⨯11, b b a a =+⨯22,∴ 当x = a 时,)()(2211b x a n b x a m y +++=)()(2211b a a n b a a m +⨯++⨯=nb mb +=b n m b =+=)(,即点P 在此两个函数的生成函数的图象上.21. 解:(1)根据题意,装运A 种脐橙的车辆数为x ,装运B 种脐橙的车辆数为y ,那么装运C 种脐橙的车辆数为()y x --20,则有:()10020456=--++y x y x 整理得:202+-=x y(2)由(1)知,装运A 、B 、C 三种脐橙的车辆数分别为x 、202+-x 、x ,由题意得:⎩⎨⎧≥+-≥42024x x ,解得:4≤x ≤8,因为x 为整数,所以x 的值为4、5、6、7、8,所以安排方案共有5种。
方案一:装运A 种脐橙4车,B 种脐橙12车,C 种脐橙4车; 方案二:装运A 种脐橙5车,B 种脐橙10车,C 种脐橙5车; 方案三:装运A 种脐橙6车,B 种脐橙8车,C 种脐橙6车; 方案四:装运A 种脐橙7车,B 种脐橙6车,C 种脐橙7车; 方案五:装运A 种脐橙8车,B 种脐橙4车,C 种脐橙8车; (3)设利润为W (百元)则:()160048104162025126+-=⨯+⨯+-+⨯=x x x x W∵048<-=k ∴W 的值随x 的增大而减小 要使利润W 最大,则4=x ,故选方案一1600448+⨯-=最大W =1408(百元)=14.08(万元)答:当装运A 种脐橙4车,B 种脐橙12车,C 种脐橙4车时,获利最大,最大利润为14.08万元.22. 解:(1)设123x x x ,,,…,1007x 是1,2,3,…,2019中任意取出的1007个数.首先,将1,2,3,...,2019分成1004对,每对数的和为2019, 每对数记作(m ,2018-m ) ,其中m =1,2,3, (1004)因为2019个数取出1007个数后还余1001个数,所以至少有一个数是1001个数之一的数对至多为1001对,因此至少有3对数,不妨记为112233(2009)(2009)(2009)m m m m m m ---,,,,, (123m m m ,,互不相等)均为123x x x ,,,…,1007x 中的6个数.其次,将这2019个数中的2006个数(除1004、2019 外)分成1003对,每对数的和为2019,每对数记作(k ,2018-k ) ,其中k =1,2, (1003)2006个数中至少有1005个数被取出,因此2006个数中除去取出的数以外最多有1001个数,这1003对数中,至少有2对数是123x x x ,,,…,1007x 中的4个数,不妨记其中的一对为11(2008)k k -,. 又在三对数112233(2009)(2009)(2009)m m m m m m ---,,,,,,(123m m m ,,互不相等)中至少存在1对数中的两个数与11(2008)k k -,中的两个数互不相同,不妨设该对数为11(2009)m m -,, 于是1111200920084017m m k k +-++-=. (2)不成立.当1006n =时,不妨从1,2,…,2019中取出后面的1006个数:1003 ,1004, (2019)则其中任何四个不同的数之和不小于1003+1004+1005+1006=4018>4017; 当1006n <时,同样从1,2,…,2019中取出后面的n 个数,其中任何4数之和大于1003+1004+1005+1006=4018>4017.所以1006n ≤时都不成立.。