浙江省台州市椒江区书生中学2019-2020学年九年级(上)开学数学试卷

合集下载

2021-2022学年浙江省台州市椒江区书生中学九年级(上)起始考数学试卷(附答案详解)

2021-2022学年浙江省台州市椒江区书生中学九年级(上)起始考数学试卷(附答案详解)

2021-2022学年浙江省台州市椒江区书生中学九年级(上)起始考数学试卷一、选择题(本大题共10小题,共50.0分)1.下列各式中表示二次函数的是()A. y=x2+1x+1 B. y=2−x2C. y=1x2−x2 D. y=(x−1)2−x22.将抛物线y=2(x−3)2+2向左平移3个单位长度,再向下平移2个单位长度,得到抛物线的解析式是()A. y=2(x−6)2B. y=2(x−6)2+4C. y=2x2D. y=2x2+43.设方程x2−3x+2=0的两根分别是x1,x2,则x1+x2的值为()A. 3B. −32C. 32D. −24.二次函数y=ax2+bx+c对于x的任何值都恒为负值的条件是()A. a>0,△>0B. a>0,△<0C. a<0,△>0D. a<0,△<05.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为−1,则一次函数y=(a−b)x+b的图象大致是()A.B.C.D.6.已知抛物线y=(a+1)x2−ax−8过点(2,−2),且与x轴的一个交点的横坐标为2n,则代数式4n2−n+2016的值为()A. 2020B. 2019C. 2018D. 20177.若实数a,b(a≠b)分别满足方程a2−7a+2=0,b2−7b+2=0,则ba +ab的值为()A. 452B. 492C. 452或2 D. 492或28.已知二次函数y=x2−2mx(m为常数),当−1≤x≤2时,函数值y的最小值为−2,则m的值是()A. 32B. √2或−32C. 32或√2 D. 32或−32或√29.对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m为任意实数),⑥当x<−1时,y随x的增大而增大.其中结论正确的个数为()A. 3B. 4C. 5D. 610.如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A. B.C. D.二、填空题(本大题共6小题,共30.0分)11.若关于x的一元二次方程x2+4x+a=0有两个相等的实数根,则a的值是______.12.二次函数y=x2−1图象的顶点坐标是______.13.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表,则抛物线的对称轴是______.x…−2−1012…y…04664…14.如图,抛物线y=ax2−4和y=−ax2+4都经过x轴上的A、B两点,两条抛物线的顶点分别为C、D.当四边形ACBD的面积为40时,a的值为______ .15.已知二次函数y=−x2+x+6及一次函数y=−x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),当直线y=−x+m与新图象有4个交点时,m的取值范围是______.16.如图,抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依x平次为A1,A2,A3…A n,…其中A1的横坐标为1.将抛物线y=x2沿直线L:y=12移得一系列抛物线,且同时满足下列两个条件:①抛物线的顶点M1,M2,M3,…M n,x上;②抛物线依次经过点A1,A2,A3…A n,…则顶点M1的…都在直线L:y=12坐标为______.三、解答题(本大题共7小题,共70.0分)17.解下列方程.x2−6x+3=0;(1)14(2)2x2−1=4x.18.已知二次函数的顶点坐标为A(1,−4),且经过点B(3,0).(1)求该二次函数的解析式;(2)判断点C(2,−3)是否在该函数图象上,并说明理由.19.抛物线y=−x2−2x+3与x轴交于点A、B(点A在B右侧),与y轴交于点C,且点D为抛物线的顶点,连接BD,CD.(1)求四边形BOCD的面积.(2)求△BCD的面积.20.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为______件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?21.关于x的一元二次方程x2−(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k的取值范围.22.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想--转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+ x2−2x=0,可以通过因式分解把它转化为x(x2+x−2)=0,解方程x=0和x2+ x−2=0,可得方程x3+x2−2x=0的解.(1)问题:方程x3+x2−2x=0的解是x1=0,x2=______,x3=______;(2)拓展:用“转化”思想求方程√2x+3=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.23.如图,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)求S△CAB;(3)设点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使S△PAB面积最大,若存在,求出P点的坐标;若不存在,请说明理由.(4)设点Q是抛物线上的一个动点,是否存在一点Q,使S△QAB=S△CAB,若存在,直接写出Q点的坐标;若不存在,请说明理由.答案和解析1.【答案】B+1,含有分式,故不是二次函数,故此选项错误;【解析】解:A、y=x2+1xB、y=2−x2,是二次函数,故此选项正确;−x2含有分式,故不是二次函数,故此选项错误;C、y=1x2D、y=(x−1)2−x2=−2x+1,是一次函数,故此选项错误.故选:B.利用二次函数的定义分别分析得出即可.此题主要考查了二次函数的定义,判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0这个关键条件.2.【答案】C【解析】解:将抛物线y=2(x−3)2+2向左平移3个单位长度所得抛物线解析式为:y=2(x−3+3)2+2,即y=2x2+2;再向下平移2个单位为:y=2x2+2−2,即y=2x2.故选:C.根据“左加右减、上加下减”的原则进行解答即可.此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.3.【答案】A【解析】【分析】本题考查一元二次方程根与系数的关系,求解时可利用常规思路求解一元二次方程,也可以通过韦达定理提升解题效率.本题可利用根与系数的关系,求出该一元二次方程的二次项系数以及一次项系数的值,代入公式求解即可.解:由x2−3x+2=0可知,其二次项系数a=1,一次项系数b=−3,由根与系数的关系:x1+x2=−ba =−(−3)1=3,故选A.4.【答案】D【解析】解:如图所示,二次函数y=ax2+bx+c对于x的任何值都恒为负值的条件是:a<0,△<0;故选D.函数值恒为负值要具备两个条件:①开口向下:a<0,②与x轴无交点,即△<0.本题考查了抛物线的性质,二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的图象与x轴交点的个数由△=b2−4ac决定;①△=b2−4ac>0时,抛物线与x轴有2个交点;②△=b2−4ac=0时,抛物线与x轴有1个交点;③△=b2−4ac<0时,抛物线与x轴没有交点.抛物线的开口方向由a决定,当a>0时,开口向上,当a<0时,开口向下.5.【答案】D【解析】解:由二次函数的图象可知,a<0,b<0,当x=−1时,y=a−b<0,∴y=(a−b)x+b的图象在第二、三、四象限,故选:D.根据二次函数的图象可以判断a、b、a−b的正负情况,从而可以得到一次函数经过哪几个象限,本题得以解决.本题考查二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用函数的思想解答.6.【答案】A【分析】此题主要考查了二次函数与x轴的交点,正确得出a的值是解题关键.首先求出a的值,进而把x=2n代入得出关于n的等式进而得出答案.【解答】解:∵抛物线y=(a+1)x2−ax−8过点(2,−2),∴−2=(a+1)×22−a×2−8=2a−4,解得,a=1,∴y=2x2−x−8,∵抛物线y=2x2−x−8与x轴的一个交点的横坐标为2n,∴2×(2n)2−2n−8=0,化简,得4n2−n−4=0,∴4n2−n=4,∴4n2−n+2016=4+2016=2020,故选:A.7.【答案】A【解析】解:由实数a,b满足条件a2−7a+2=0,b2−7b+2=0,∴可把a,b看成是方程x2−7x+2=0的两个根,∴a+b=7,ab=2,∴ba +ab=a2+b2ab=(a+b)2−2abab=49−42=452.故选A.由实数a,b满足条件a2−7a+2=0,b2−7b+2=0,可把a,b看成是方程x2−7x+ 2=0的两个根,再利用根与系数的关系即可求解.本题考查了根与系数的关系,属于基础题,关键是把a,b看成方程的两个根后再根据根与系数的关系解题.8.【答案】B【解析】解:由二次函数y=x2−2mx(m为常数),得到对称轴为直线x=m,抛物线开口向上,当m≥2时,由题意得:当x=2时,y最小值为−2,代入得:4−4m=−2,即m=1.5<2,不合题意,舍去;当−1≤m≤2时,由题意得:当x=m时,y最小值为−2,代入得:−m2=−2,即m=√2或m=−√2(舍去);当m<−1时,由题意得:当x=−1时,y最小值为−2,代入得:1+2m=−2,即m=−1.5,综上,m的值是−1.5或√2,故选:B.分类讨论抛物线对称轴的位置确定出m的范围即可.本题考查二次函数的性质,二次函数的最值问题,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.【答案】A【解析】解:①由图象可知:a>0,c<0,∵−b=1,2a∴b=−2a<0,∴abc>0,故①错误;②∵抛物线与x轴有两个交点,∴b2−4ac>0,∴b2>4ac,故②正确;③∵对称轴为直线x=1,∴x=2与x=0时,y的值相同,当x=2时,y=4a+2b+c<0,故③错误;④当x=−1时,y=a−b+c>0,∴3a+c>0,故④正确;⑤当x=1时,y的值最小,此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c≤am2+bm+c,故a+b≤am2+bm,即a+b≤m(am+b),故⑤正确,⑥当x<−1时,y随x的增大而减小,故⑥错误,综上,结论正确的有3个.故选:A.由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.本题考查了二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.10.【答案】A【解析】解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH=√32EJ=√32x,∴y=12EJ⋅GH=√34x2.当x=2时,y=√3,且抛物线的开口向上.如图2所示:2<x≤4时,过点G作GH⊥BF于H.同理,△FGJ为等边三角形.而FJ=4−x,∴y=12FJ⋅GH=√34(4−x)2,函数图象为抛物线的一部分,且抛物线开口向上.故选:A.分为0<x≤2、2<x≤4两种情况,然后依据等边三角形的性质和三角形的面积公式可求得y与x的函数关系式,于是可求得问题的答案.本题主要考查的是动点问题的函数图象,求得函数的解析式是解题的关键.11.【答案】4【解析】解:∵关于x的一元二次方程x2+4x+a=0有两个相等的实数根,∴△=42−4a=16−4a=0,解得:a=4.故答案为:4.根据方程的系数结合根的判别式,即可得出△=16−4a=0,解之即可得出a值.本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.12.【答案】(0,−1)【解析】解:二次函数y=x2−1图象的顶点坐标是:(0,−1).故答案为:(0,−1).根据二次函数的性质,利用顶点式直接得出顶点坐标即可.此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握.13.【答案】直线x=12【解析】解:∵y=6时,x=0或x=1,∴对称轴为直线x=0+12=12.故答案为:直线x=12.找到表格中y值相等的两个x,然后取两个x的中间数即为所求.本题考查了二次函数的对称性,准确找到函数上y值相等的两个点是解题的关键,本题也可以找y=4时的x值求解对称轴.14.【答案】0.16【解析】解:∵抛物线y=ax2−4和y=−ax2+4都经过x轴上的A、B两点,∴点A、B两点的坐标分别是:(2√aa ,0)、(−2√aa,0);又∵抛物线y=ax2−4和y=−ax2+4的顶点分别为C、D.∴点C、D的坐标分别是(0,4)、(0,−4);∴CD=8,AB=4√aa,∴S四边形ABCD=S△ABD+S△ABC=12AB⋅OD+12AB⋅OC=12AB⋅CD=12×8×4√aa=40,即12×8×4√aa=40,解得,a=0.16;故答案是:0.16.根据抛物线的解析式求得点A、B、C、D的坐标;然后求得以a表示的AB、CD的距离;最后根据三角形的面积公式求得S四边形ABCD=S△ABD+S△ABC,列出关于a的方程,通过解方程求得a值即可.本题考查了二次函数的综合题.解得该题时,须牢记:函数与x轴的交点的纵坐标是0,与y轴的交点的横坐标是0.15.【答案】−6<m<−2【解析】解:如图,当y=0时,−x2+x+6=0,解得x1=−2,x2=3,则A(−2,0),B(3,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+ 2)(x−3),即y=x2−x−6(−2≤x≤3),当直线y=−x+m经过点A(−2,0)时,2+m=0,解得m=−2;当直线y=−x+m与抛物线y=x2−x−6(−2≤x≤3)有唯一公共点时,方程x2−x−6=−x+m有相等的实数解,解得m=−6,所以当直线y=−x+m与新图象有4个交点时,m的取值范围为−6<m<−2.故答案为:−6<m<−2.如图,解方程−x2+x+6=0得A(−2,0),B(3,0),再利用折叠的性质求出折叠部分的解析式为y=(x+2)(x−3),即y=x2−x−6(−2≤x≤3),然后求出直线y=−x+m 经过点A(−2,0)时m的值和当直线y=−x+m与抛物线y=x2−x−6(−2≤x≤3)有唯一公共点时m的值,从而得到当直线y=−x+m与新图象有4个交点时,m的取值范围.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数图象与几何变换.16.【答案】(32,3 4 )【解析】解:∵抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1,A2,A3,…,A n,…,∴点A n的坐标为(n,n2).设点M n的坐标为(a,12a),则以点M n为顶点的抛物线解析式为y=(x−a)2+12a,∵点A n(n,n2)在抛物线y=(x−a)2+12a上,∴n2=(n−a)2+12a,解得:a=2n−12或a=0(舍去),∴M n的坐标为(2n−12,n−14),∴顶点M1的坐标为(32,34 ),故答案为(32,3 4 ).根据抛物线的解析式结合整数点的定义,找出点A n的坐标为(n,n2),设点M n的坐标为(a,12a),则以点M n为顶点的抛物线解析式为y=(x−a)2+12a,由点A n的坐标利用待定系数法,即可求出a值,将其代入点M n的坐标即可得出结论.本题考查了二次函数图象与几何变换、一次函数图象上点的坐标特征以及待定系数法求二次函数解析式,根据点A n的坐标利用待定系数法求出a值是解题的关键.17.【答案】解:(1)∵a =14,b =−6,c =3,∴Δ=(−6)2−4×14×3=33>0, ∴x =−b±√b 2−4ac 2a =6±√3312=12±2√33,即x 1=12+2√33,x 2=12−2√33;(2)整理成一般式得:2x 2−4x −1=0,∵a =2,b =−4,c =−1,∴Δ=(−4)2−4×2×(−1)=24>0,则x =−b±√b 2−4ac 2a =4±2√64=2±√62, 即x 1=1+√62,x 2=1−√62.【解析】(1)利用公式法求解即可;(2)整理成一般式,再利用公式法求解即可.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.18.【答案】解:(1)设二次函数的解析式是y =a(x −ℎ)2+k ,∵二次函数的顶点坐标为A(1,−4),∴y =a(x −1)2−4,∵经过点B(3,0),∴代入得:0=a(3−1)2−4,解得:a =1,∴y =(x −1)2−4,即二次函数的解析式为y =x 2−2x −3;(2)点C(2,−3)在该函数图象上,理由是:把C(2,−3)代入y =x 2−2x −3得:左边=−3,右边=4−4−3=−3, 即左边=右边,所以点C在该函数的图象上.【解析】(1)设二次函数的解析式是y=a(x−ℎ)2+k,先代入顶点A的坐标,再把B 的坐标代入,即可求出a,即可得出解析式;(2)把C的坐标分别代入,看看两边是否相等即可.本题考查了用待定系数法求二次函数的解析式,二次函数图象上点的坐标特征的应用,能正确求出函数的解析式是解此题的关键.19.【答案】解:(1)连接OD,令y=0,−x2−2x+3=0,解得x=−3或1,∴A(1,0),B(−3,0),令x=0,y=3,得C(0,−3),∵y=−x2−2x+3=+1+−(x+1)2+4,∴顶点D(−1,4).∴S四边形CDBO =S△OCD+S△OBD=12×3×1+12×3×4=152;(2)∵B(3,0),C(0,3),∴OB=3,OC=3,∴S△BOC=12×OB×OC=12×3×3=92,∴S△BCD=S四边形CDBO −S△BOC=152−92=3.【解析】(1)求出B,C,D三点的坐标,根据S四边形CDBO=S△OCD+S△OBD计算即可得出答案.(2)求出三角形BOC的面积,根据S△BCD=S四边形CDBO−S△BOC可求出答案.本题考查二次函数与x轴交点、二次函数的性质等知识,解题的关键是熟练掌握求抛物线与坐标轴的交点,学会利用分割法求四边形的面积.20.【答案】解:(1)26;(2)解:设每件商品应降价x元时,该商店每天销售利润为1200元.根据题意,得(40−x)(20+2x)=1200,整理,得x2−30x+200=0,解得:x1=10,x2=20.∵要求每件盈利不少于25元,∴x2=20应舍去,解得:x=10.答:每件商品应降价10元时,该商店每天销售利润为1200元.【解析】【分析】此题主要考查了一元二次方程的应用有关知识.(1)根据销售单价每降低1元,平均每天可多售出2件,可得若降价3元,则平均每天可多售出2×3=6件,即平均每天销售数量为20+6=26件;(2)利用商品平均每天售出的件数×每件盈利=每天销售这种商品利润列出方程解答即可.【解答】解:(1)若降价3元,则平均每天销售数量为20+2×3=26件.故答案为26;(2)见答案.21.【答案】(1)证明:∵在方程x2−(k+3)x+2k+2=0中,△=[−(k+3)]2−4×1×(2k+2)=k2−2k+1=(k−1)2≥0,∴方程总有两个实数根;(2)解:∵x2−(k+3)x+2k+2=0,即x2−(k+3)x+2(k+1)=0,即(x−2)(x−k−1)=0,∴x1=2,x2=k+1.∵方程有一根小于1,∴k+1<1,解得:k<0,∴k的取值范围为k<0.【解析】本题考查了根的判别式、因式分解法解一元二次方程.解答本题的关键是正确求出该方程的两个根.(1)根据方程的系数结合根的判别式,可得△=(k−1)2≥0,由此可证出方程总有两个实数根;(2)利用因式分解法解一元二次方程,可得出x1=2、x2=k+1,根据方程有一根小于1,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.22.【答案】(1)−2,1;(2)√2x+3=x,方程的两边平方,得2x+3=x2即x2−2x−3=0(x−3)(x+1)=0∴x−3=0或x+1=0∴x1=3,x2=−1,当x=−1时,√2x+3=√1=1≠−1,所以−1不是原方程的解.所以方程√2x+3=x的解是x=3;(3)因为四边形ABCD是矩形,所以∠A=∠D=90°,AB=CD=3m设AP=xm,则PD=(8−x)m因为BP+CP=10,BP=√AP2+AB2,CP=√CD2+PD2∴√9+x2+√(8−x)2+9=10∴√(8−x)2+9=10−√9+x2两边平方,得(8−x)2+9=100−20√9+x2+9+x2整理,得5√x2+9=4x+9两边平方并整理,得x2−8x+16=0即(x−4)2=0所以x=4.经检验,x=4是方程的解.答:AP的长为4m.【解析】解:(1)x3+x2−2x=0,x(x2+x−2)=0,x(x+2)(x−1)=0所以x=0或x+2=0或x−1=0∴x1=0,x2=−2,x3=1;故答案为:−2,1;(2)√2x+3=x,方程的两边平方,得2x+3=x2即x2−2x−3=0(x−3)(x+1)=0∴x−3=0或x+1=0∴x1=3,x2=−1,当x=−1时,√2x+3=√1=1≠−1,所以−1不是原方程的解.所以方程√2x+3=x的解是x=3;(3)因为四边形ABCD是矩形,所以∠A=∠D=90°,AB=CD=3m设AP=xm,则PD=(8−x)m因为BP+CP=10,BP=√AP2+AB2,CP=√CD2+PD2∴√9+x2+√(8−x)2+9=10∴√(8−x)2+9=10−√9+x2两边平方,得(8−x)2+9=100−20√9+x2+9+x2整理,得5√x2+9=4x+9两边平方并整理,得x 2−8x +16=0即(x −4)2=0所以x =4.经检验,x =4是方程的解.答:AP 的长为4m .【分析】(1)因式分解多项式,然后得结论;(2)两边平方,把无理方程转化为整式方程,求解,注意验根;(3)设AP 的长为xm ,根据勾股定理和BP +CP =10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,本题考查了转化的思想方法,一元二次方程的解法.解无理方程是注意到验根.解决(3)时,根据勾股定理和绳长,列出方程是关键.23.【答案】解:(1)设抛物线的解析式为:y =a(x −1)2+4,把A(3,0)代入解析式求得a =−1,∴y =−(x −1)2+4=−x 2+2x +3,当x =0时,y =3,∴B(0,3),设直线AB 的解析式为:y =kx +b ,把A(3,0),B(0,3)代入y =kx +b 中,得:{3k +b =0b =3, 解得:{k =−1b =3, ∴直线AB 的解析式为:y =−x +3;(2)如图1,连接OA ,∴S △CAB =S △OCB +S △AOC −S △AOB=12×3×1+12×3×4−12×3×3=1.5+6−4.5=3;(3)如图2,设P(x,−x 2+2x +3)(0<x <3),S △PAB =S △OBP +S △AOP −S △AOB =12⋅3x +12⋅3(−x 2+2x +3)−12×3×3 =−32x 2+92x=−32(x 2−3x +94−94)=−32(x −32)2+278,∵−32<0, ∴当x =32时,△PAB 的面积最大,此时P(32,154);(4)分两种情况:①当Q 在AB 的上方时,如图3,过点C 作CD//AB ,交抛物线于Q ,连接QB ,QA ,此时S △ACB =S △QAB ,设CD 的解析式为:y =−x +m ,把C(1,4)代入得:4=−1+m ,∴m =5,∴−x 2+2x +3=−x +5,解得:x 1=1,x 2=2,∴Q(2,3);②当Q 在AB 的下方时,由①知:直线CD 与y 轴的交点为(0,5),即直线AB 向上平移2个单位,∴将直线AB 向下平移2个单位得到y =−x +1,∴−x 2+2x +3=−x +1,解得:x 1=−3+√172,x 2=−3−√172, ∴Q(−3−√172,−1−√172)或(−3+√172,−1+√172);综上,点Q 的坐标是(2,3)或(−3−√172,−1−√172)或(−3+√172,−1+√172).【解析】(1)先通过代入A 点坐到二次函数解析式中,求出系数a 的值,从而求二次函数解析式,再代入A ,B 求出直线AB 解析式;(2)连接OC ,根据面积差可得答案;(3)如图2,设P(x,−x 2+2x +3)(0<x <3),同理根据(2)的方法利用面积差可表示△PAB 的面积,配方后可得当x =32时,△PAB 有最大面积,由此可得点P 的坐标;(4)分两种情况:根据S △QAB =S △CAB 可知:在AB 的上方和下方作平行线,这条平行线与抛物线的交点就是Q 点,建立方程,解方程可得答案.此题是二次函数的综合题,考查了待定系数法求二次函数和一次函数的解析式,三角形面积的求法,两函数的交点坐标等知识.此题综合性很强,注意利用平行线确定两三角形的面积相等,并根据两直线平行时k 相等解决问题.。

(台州)2019-2020学年第一学期九年级期末测试-数学试题卷参考答案及评分建议

(台州)2019-2020学年第一学期九年级期末测试-数学试题卷参考答案及评分建议

九年级数学参考答案第 7 页(共 7 页)
16. 1 6
三、解答题(共 8 题,共 80 分)
17.(8 分)
解:(1)方程整理得,x(x+4)-3(x+4)=0,
分解因式得,(x+4)(x-3)=0,·······················································(2 分)
可得 x+4=0 或 x-3=0,
(2
分)
∴S△ABC=Biblioteka 1 2(8 m
1 2
m)

(m

4)

1 2
(
8 m

1 2
m)

(4

m)

30

整理得:

16 m

m

15

化简得:m2-15m-16=0,
解得 m=-1 或 m=16(舍去),
∴C(-1,8). ··········································································(2 分)
九年级数学参考答案第 1 页(共 7 页)
19.(8 分) (1)证明:如图,连接 OD.
∵△ABC 是等边三角形, ∴∠C=∠A=∠B=60°. ∵OD=OB, ∴△ODB 是等边三角形, ∴∠ODB=60°, ····································································(2 分) ∴∠ODB=∠C, ∴OD∥AC. 又∵DE⊥AC, ∴OD⊥DE, ∴DE 是⊙O 的切线.·····························································(2 分) (2)解:∵OD∥AC,点 O 是 AB 的中点, ∴OD 为△ABC 的中位线, ∴BD=CD=2. 在 Rt△CDE 中,∠C=60°, ∴∠CDE=30°, ∴CE= 1 CD=1,

2019-2020学年浙江省台州市椒江区九年级(上)期末数学试卷 (解析版)

2019-2020学年浙江省台州市椒江区九年级(上)期末数学试卷 (解析版)

2019-2020学年浙江省台州市椒江区九年级(上)期末数学试卷一、选择题(共10小题).1.(4分)剪纸是中国特有的民间艺术,在如图所示的四个剪纸图案中,既是轴对称又是中心对称图形的是()A.B.C.D.2.(4分)用配方法解方程x2﹣6x+4=0时,配方结果正确的是()A.(x﹣3)2=5B.(x﹣3)2=13C.(x﹣6)2=32D.(x﹣6)2=40 3.(4分)下列说法中正确的是()A.必然事件发生的概率是0B.“任意画一个等边三角形,其内角和是180°”是随机事件C.投一枚图钉,“钉尖朝上”的概率不能用列举法求得D.如果明天降水的概率是50%,那么明天有半天都在下雨4.(4分)已知点A(﹣1,﹣3)关于x轴的对称点A′在反比例函数y=的图象上,则实数k的值为()A.﹣3B.﹣C.D.35.(4分)在平面直角坐标系中,抛物线y=(x﹣1)(x+3)经变换后得到抛物线y=(x﹣3)(x+1),则这个变换可以是()A.向左平移2个单位B.向右平移2个单位C.向左平移4个单位D.向右平移4个单位6.(4分)如图,某物体由上下两个圆锥组成.其轴截面ABCD中,∠A=60°,∠ABC=90°,若下面圆锥的侧面积为1,则上部圆锥的侧面积为()A.B.C.D.27.(4分)《九章算术》是一本中国乃至东方世界最伟大的一本综合性数学专著,标志着中国古代数学形成了完整的体系.“圆材埋壁”是《九章算术》中的一个问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”朱老师根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为()A.26寸B.25寸C.13寸D.寸8.(4分)如图,在平面直角坐标系中,△AOB的顶点B在第一象限,点A在y轴的正半轴上,AO=AB=2,∠OAB=120°,将△AOB绕点O逆时针旋转90°,点B的对应点B′的坐标是()A.(﹣2﹣,)B.(﹣2﹣,2﹣)C.(﹣3,2﹣)D.(﹣3,)9.(4分)如图,在平面直角坐标系中,点A、B、C为反比例函数y=(k>0)上不同的三点,连接,OA、OB、OC,过点A作AD⊥x轴于点D,过点B、C分别作BE,CF垂直y轴于点E、F,OB与CF相交于点G,记四边形BEFG、△COG、△AOD的面积分别为S1、S2、S3,则()A.S 1>S2>S3B.S3<S1=S2C.<S3D.>110.(4分)模型结论:如图①,正△ABC内接于⊙O,点P是劣弧AB上一点,可推出结论P A+PB=PC.应用迁移:如图②,在Rt△EDG中,∠EDG=90°,DE=3,DG=2,F是△DEG 内一点,则点F到△DEG三个顶点的距离和的最小值为()A.B.5C.3D.二、填空题(本题共有6小题,每小题5分,共30分)11.(5分)数学学习应经历“观察、实验、猜想、证明”等过程.如表是几位数学家“抛掷硬币”的实验数据:实验者棣莫弗蒲丰德⋅摩根费勒皮尔逊罗曼诺夫斯基掷币次数204840406140100003600080640出现“正面朝上”的次数10612048310949791803139699频率0.5180.5070.5060.4980.5010.492请根据以上数据,估计硬币出现“正面朝上”的概率为(精确到0.1).12.(5分)在广安市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为y=﹣x2+x+,由此可知该生此次实心球训练的成绩为米.13.(5分)如图,四边形ABCD内接于圆,点B关于对角线AC的对称点E落在边CD上,连接AE.若∠ABC=115°,则∠DAE的度数为.14.(5分)一次函数y1=﹣x+b与反比例函数y2=(x>0)的图象如图所示,当y1<y2时,自变量x的取值范围是.15.(5分)如图,抛物线y=﹣x﹣的图象与坐标轴交于A、B、D,顶点为E,以AB 为直径画半圆交y轴的正半轴于点C,圆心为M,P是半圆AB上的一动点,连接EP,N 是PE的中点,当P沿半圆从点A运动至点B时,点N运动的路径长是.16.(5分)定义:在平面直角坐标系中,我们将函数y=x2+2的图象绕原点O逆时针旋转60°后得到的新曲线L称为“逆旋抛物线”.(1)如图①,已知点A(﹣1,a),B(b,6)在函数y=x2+2的图象上,抛物线的顶点为C,若L上三点A′、B′、C′是A、B、C旋转后的对应点,连接A′B′、A′C′、B′C′,则S△A′B′C′=;(2)如图②,逆旋抛物线L与直线y=相交于点M、N,则S△OMN=.三、解答题(题共有8小题,第17-20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)解下列方程:(1)x2﹣2x﹣1=0(2)(x+3)2=4(x﹣3)2.18.(8分)LED显示屏是一种平板显示器,可以显示计算机生成的动态图文画面.如图①是平面显示的8×8正三角形网格的示意图,其中每个小正三角形的边长均为1,位于AD 中点处的输入光点P按②的程序移动.(1)请在图①中画出光点P经过的路径;(2)求光点P经过的路径总长.19.(8分)2019年11月5日,第二届中国国际进口博览会(The2ndChinaInternationalImportExpo)在上海国家会展中心开幕.本次进博会将共建开放合作、创新、共享的世界经济,见证海纳百川的中国胸襟,诠释兼济天下的责任担当.小滕、小刘两人想到四个国家馆参观:A.中国馆;B.俄罗斯馆;C.法国馆;D.沙特阿拉伯馆.他们各自在这四个国家馆中任意选择一个参观.每个国家馆被选择的可能性相同(1)求小滕选择A中国馆的概率;(2)用画树状图或列表的方法,求小滕和小刘恰好选择同一国家馆的概率20.(8分)若关于x的一元二次方程(m﹣1)x2﹣2mx+m=2有实数根.(1)求m的取值范围;(2)如果m是符合条件的最小整数,且一元二次方程(k+1)x2+x+k﹣3=0与方程(m ﹣1)x2﹣2mx+m=2有一个相同的根,求此时k的值.21.(10分)如图,已知AB是⊙O的直径,PB切⊙O于点B,过点B作BC⊥PO于点D,交⊙O于点C,连接AC、PC(1)求证:PC是⊙O的切线;(2)若∠BPC=60°,PB=3,求阴影部分面积.22.(12分)如图,在△AOB中,∠OAB=90°,AO=AB=4,以O为原点,OB所在直线为x轴,建立平面直角坐标系,△OAB的顶点A在反比例函数y=的图象上.(1)求反比例函数的表达式.(2)把△OAB向右平移m个单位长度,对应得到△O′A′B′当这个函数图象经过△O′A′B′一边的中点时,求m的值.23.(12分)如图,在△AOB中,OA=OB,∠AOB=α,P在△AOB外移动,将△POB绕点O按顺时针方向旋转α得到△OP′A,且点A、P′、P三点在同一条直线上.(1)【观察猜想】在图①中,∠APB=;在图②中,∠APB=;(用含α的代数式表示)(2)【类比探究】如图③,若α=90°,请补全图形,再过点O作OH⊥AP与点H,探究线段PB,P A,OH之间的数量关系,并证明你的结论;【问题解决】若α=90°,AB=5,BP=3,求点O到AP的距离24.(14分)定义:在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与直线y=m交于点A、C(点C在点A右边)将抛物线y=ax2+bx+c沿直线y=m翻折,翻折前后两抛物线的顶点分别为点B、D.我们将两抛物线之间形成的封闭图形称为惊喜线,四边形ABCD 称为惊喜四边形,对角线BD与AC之比称为惊喜度(Degreeofsurprise),记作|D|=(1)图①是抛物线y=x2﹣2x﹣3沿直线y=0翻折后得到惊喜线.则点A坐标,点B坐标,惊喜四边形ABCD属于所学过的哪种特殊平行四边形,|D|为.(2)如果抛物线y=m(x﹣1)2﹣6m(m>0)沿直线y=m翻折后所得惊喜线的惊喜度为1,求m的值.(3)如果抛物线y=(x﹣1)2﹣6m沿直线y=m翻折后所得的惊喜线在m﹣1≤x≤m+3时,其最高点的纵坐标为16,求m的值并直接写出惊喜度|D|.参考答案一、选择题(本题共有10小题,每小题4分,共40分.请选出一个符合题意的正确选项,不选,多选,错选均不得分)1.(4分)剪纸是中国特有的民间艺术,在如图所示的四个剪纸图案中,既是轴对称又是中心对称图形的是()A.B.C.D.解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、不是轴对称图形,也不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误.故选:B.2.(4分)用配方法解方程x2﹣6x+4=0时,配方结果正确的是()A.(x﹣3)2=5B.(x﹣3)2=13C.(x﹣6)2=32D.(x﹣6)2=40解:用配方法解方程:x2﹣6x+4=0x2﹣6x+9=﹣4+9(x﹣3)2=5故选:A.3.(4分)下列说法中正确的是()A.必然事件发生的概率是0B.“任意画一个等边三角形,其内角和是180°”是随机事件C.投一枚图钉,“钉尖朝上”的概率不能用列举法求得D.如果明天降水的概率是50%,那么明天有半天都在下雨解:A、必然事件发生的概率为1,不可能事件发生的概率为0,故本选项错误;B、“任意画一个等边三角形,其内角和是180°”是必然事件,故本选项错误;C、投一枚图钉,“钉尖朝上”的概率不能用列举法求得,故本选项正确;D、明天降雨的概率是50%表示降雨的可能性,故本选项错误;故选:C.4.(4分)已知点A(﹣1,﹣3)关于x轴的对称点A′在反比例函数y=的图象上,则实数k的值为()A.﹣3B.﹣C.D.3解:点A(﹣1,﹣3)关于x轴的对称点A'的坐标为(﹣1,3),把A′(﹣1,3)代入y=得k=﹣1×3=﹣3.故选:A.5.(4分)在平面直角坐标系中,抛物线y=(x﹣1)(x+3)经变换后得到抛物线y=(x﹣3)(x+1),则这个变换可以是()A.向左平移2个单位B.向右平移2个单位C.向左平移4个单位D.向右平移4个单位解:y=(x﹣1)(x+3)=(x+1)2﹣4,顶点坐标是(﹣1,﹣4).y=(x﹣3)(x+1)=(x﹣1)2﹣4,顶点坐标是(1,﹣4).所以将抛物线y=(x﹣1)(x+3)向右平移2个单位长度得到抛物线y=(x﹣3)(x+1),故选:B.6.(4分)如图,某物体由上下两个圆锥组成.其轴截面ABCD中,∠A=60°,∠ABC=90°,若下面圆锥的侧面积为1,则上部圆锥的侧面积为()A.B.C.D.2解:连接AC,在△ABC和△ADC中,,∴△ABC≌△ADC(SSS)∴∠BAC=30°,∴=tan∠BAC=tan30°=,设圆锥的底面周长为c,则上部圆锥的侧面积=×c×AB,下面圆锥的侧面积=×c×BC,∴上部圆锥的侧面积:下面圆锥的侧面积=AB:BC=,∵下面圆锥的侧面积为1,∴上部圆锥的侧面积为,故选:C.7.(4分)《九章算术》是一本中国乃至东方世界最伟大的一本综合性数学专著,标志着中国古代数学形成了完整的体系.“圆材埋壁”是《九章算术》中的一个问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”朱老师根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为()A.26寸B.25寸C.13寸D.寸解:设圆心为O,过O作OC⊥AB于C,交⊙O于D,连接OA,∴AC=AB=×10=5,设⊙O的半径为r寸,在Rt△ACO中,OC=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故选:A.8.(4分)如图,在平面直角坐标系中,△AOB的顶点B在第一象限,点A在y轴的正半轴上,AO=AB=2,∠OAB=120°,将△AOB绕点O逆时针旋转90°,点B的对应点B′的坐标是()A.(﹣2﹣,)B.(﹣2﹣,2﹣)C.(﹣3,2﹣)D.(﹣3,)解:作B′H⊥x轴于H.由题意:OA′=A′B′=2,∠B′A′H=60°,∴∠A′B′H=30°,∴AH′=A′B′=1,B′H=,∴OH=3,∴B′(﹣3,),故选:D.9.(4分)如图,在平面直角坐标系中,点A、B、C为反比例函数y=(k>0)上不同的三点,连接,OA、OB、OC,过点A作AD⊥x轴于点D,过点B、C分别作BE,CF垂直y轴于点E、F,OB与CF相交于点G,记四边形BEFG、△COG、△AOD的面积分别为S1、S2、S3,则()A.S 1>S2>S3B.S3<S1=S2C.<S3D.>1解:∵点A、B、C为反比例函数y=(k>0)上不同的三点,AD⊥x轴,BE,CF垂直y轴于点E、F,∴S△BOE=S△COF=S△AOD=k,∴S△BOE﹣S△GOF=S△COF﹣S△GOF,∴S1=S2<S3,∴S1﹣S2=0,故A、B、D错误,C正确;故选:C.10.(4分)模型结论:如图①,正△ABC内接于⊙O,点P是劣弧AB上一点,可推出结论P A+PB=PC.应用迁移:如图②,在Rt△EDG中,∠EDG=90°,DE=3,DG=2,F是△DEG 内一点,则点F到△DEG三个顶点的距离和的最小值为()A.B.5C.3D.解:模型结论:∵将△PBC绕C点顺时针旋转60°,∴∠PCD=60°,PC=CD,AD=PB,∠CAD=∠CBP,∵∠PBC+∠P AC=180°,∠DAC+∠P AC=180°,∴P,A,D在一条直线上,∴△PCD是等边三角形,∴PC=PD=DC,∴PB+P A=P A+AD=PD=PC;应用迁移:如图2:以DG为边作等边三角形△MGD,以DF为边作等边△DFP.连接EM,作MN⊥ED,交ED的延长线于N.∵△MGD和△DFP是等边三角形∴PF=DF=PD,∠FDP=∠GDM=60°,DG=MD,∴∠FDG=∠MDP,∴△DFG≌△DPM(SAS),∴FG=PM,∴EF+DF+FG=EF+PF+PM,∴当E、F、P、M四点共线时,EF+PF+PM值最小,且EF+PF+PM=EM,∵∠EDG=90°,DE=3,DG=2,∴∠EDM=150°,∴∠NDM=30°,∵MD=DG=2.∴MN=DM=,DN=3,∴NE=DE+DN=3+3=6,∴EM===,∴点F到△DEG三个顶点的距离和的最小值为,故选:D.二、填空题(本题共有6小题,每小题5分,共30分)11.(5分)数学学习应经历“观察、实验、猜想、证明”等过程.如表是几位数学家“抛掷硬币”的实验数据:实验者棣莫弗蒲丰德⋅摩根费勒皮尔逊罗曼诺夫斯基掷币次数204840406140100003600080640出现“正面朝上”的次数10612048310949791803139699频率0.5180.5070.5060.4980.5010.492请根据以上数据,估计硬币出现“正面朝上”的概率为0.5(精确到0.1).解:因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为0.5.12.(5分)在广安市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为y=﹣x2+x+,由此可知该生此次实心球训练的成绩为10米.解:当y=0时,y=﹣x2+x+=0,解得,x=﹣2(舍去),x=10.故答案为:10.13.(5分)如图,四边形ABCD内接于圆,点B关于对角线AC的对称点E落在边CD上,连接AE.若∠ABC=115°,则∠DAE的度数为50°.解:∵圆内接四边形ABCD,∴∠D=180°﹣∠ABC=65°,∵点B关于对角线AC的对称点E落在边CD上,∴∠B=∠AEC=115°,∴∠BAE=115°﹣65°=50°.故答案为:50°.14.(5分)一次函数y1=﹣x+b与反比例函数y2=(x>0)的图象如图所示,当y1<y2时,自变量x的取值范围是0<x<2或x>4.解:当0<x<2或x>4时,y1<y2.故答案为0<x<2或x>4.15.(5分)如图,抛物线y=﹣x﹣的图象与坐标轴交于A、B、D,顶点为E,以AB为直径画半圆交y轴的正半轴于点C,圆心为M,P是半圆AB上的一动点,连接EP,N 是PE的中点,当P沿半圆从点A运动至点B时,点N运动的路径长是π.解:连接EM,MN.对于抛物线y=﹣x﹣=(x﹣1)2﹣2,∴E(1,﹣2),由题意A(﹣1,0),B(3,0),∴M(2,0),∴EM⊥x轴.EM=MA=MB=2,∴点E在⊙M上,∵EN=NP,∴MN⊥EP,∴∠MNE=90°,∴点N的运动轨迹是以EM为直径的半圆,点N运动的路径长=×2π•2=π,故答案为π.16.(5分)定义:在平面直角坐标系中,我们将函数y=x2+2的图象绕原点O逆时针旋转60°后得到的新曲线L称为“逆旋抛物线”.(1)如图①,已知点A(﹣1,a),B(b,6)在函数y=x2+2的图象上,抛物线的顶点为C,若L上三点A′、B′、C′是A、B、C旋转后的对应点,连接A′B′、A′C′、B′C′,则S△A′B′C′=3;(2)如图②,逆旋抛物线L与直线y=相交于点M、N,则S△OMN=.解:(1)∵点A(﹣1,a),B(b,6)在函数y=x2+2的图象上,当x=﹣1时,y=3,∴A(﹣1,3),当y=6时,x=2,∴B(2,6),S△OAB=S△OA′B′,设直线AB的解析式为y=kx+b,∴,解得,∴直线AB的解析式为y=x+4,∴D(0,4),∵C(0,2),∴CD=4﹣2=2,∴S△ABC=CD•(1+2)==3,∴S△A′B′C′=3,故答案为:3;(2)如图②所示,设直线y=与y轴交于E,由旋转的性质得,OE=OE′=,∠OGF=∠EOE′=60°,OE′⊥FG,∴∠OFG=30°,∴OF=2OE′=3,∴OG=,∴直线FG的解析式为:y=﹣x+3,解方程组,得,x=,∴|x M′﹣x N′|=,∴S△OMN=OF=,故答案为:.三、解答题(题共有8小题,第17-20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)解下列方程:(1)x2﹣2x﹣1=0(2)(x+3)2=4(x﹣3)2.解:(1)∵a=1,b=﹣2,c=﹣1,∴△=(﹣2)2﹣4×1×(﹣1)=8>0,则x==1±;(2)∵(x+3)2=4(x﹣3)2,∴x+3=2(x﹣3)或x+3=﹣2(x﹣3),解得x=9或x=1.18.(8分)LED显示屏是一种平板显示器,可以显示计算机生成的动态图文画面.如图①是平面显示的8×8正三角形网格的示意图,其中每个小正三角形的边长均为1,位于AD 中点处的输入光点P按②的程序移动.(1)请在图①中画出光点P经过的路径;(2)求光点P经过的路径总长.解:(1)光点P经过的路径如图所示.(2)光点P经过的路径总长=2π×2=4π.19.(8分)2019年11月5日,第二届中国国际进口博览会(The2ndChinaInternationalImportExpo)在上海国家会展中心开幕.本次进博会将共建开放合作、创新、共享的世界经济,见证海纳百川的中国胸襟,诠释兼济天下的责任担当.小滕、小刘两人想到四个国家馆参观:A.中国馆;B.俄罗斯馆;C.法国馆;D.沙特阿拉伯馆.他们各自在这四个国家馆中任意选择一个参观.每个国家馆被选择的可能性相同(1)求小滕选择A中国馆的概率;(2)用画树状图或列表的方法,求小滕和小刘恰好选择同一国家馆的概率解:(1)∵共有四个国家馆参观:A.中国馆;B.俄罗斯馆;C.法国馆;D.沙特阿拉伯馆,∴小滕选择A中国馆的概率是;(2)根据题意画图如下:共有16种等可能的结果数,其中小滕和小刘恰好选择同一国家馆的有4种,则小滕和小刘恰好选择同一国家馆的概率是=.20.(8分)若关于x的一元二次方程(m﹣1)x2﹣2mx+m=2有实数根.(1)求m的取值范围;(2)如果m是符合条件的最小整数,且一元二次方程(k+1)x2+x+k﹣3=0与方程(m ﹣1)x2﹣2mx+m=2有一个相同的根,求此时k的值.解:(1)化为一般式:(m﹣1)x2﹣2mx+m﹣2=0,∴,解得:m≥且m≠1(2)由(1)可知:m是最小整数,∴m=2,∴(m﹣1)x2﹣2mx+m=2化为x2﹣4x=0,解得:x=0或x=4,∵(k+1)x2+x+k﹣3=0与(m﹣1)x2﹣2mx+m=2有一个相同的根,∴当x=0时,此时k﹣3=0,k=3,当x=4时,16(k+1)+4+k=0,∴k=﹣1,∵k+1≠0,∴k=﹣1舍去,综上所述,k=3.21.(10分)如图,已知AB是⊙O的直径,PB切⊙O于点B,过点B作BC⊥PO于点D,交⊙O于点C,连接AC、PC(1)求证:PC是⊙O的切线;(2)若∠BPC=60°,PB=3,求阴影部分面积.【解答】(1)证明:连接OC,如图:∵OB=OC,∴∠OBC=∠OCB,∵AB是⊙O的直径,PB切⊙O于点B,∴AB⊥PB,∠PBO=∠OBC+∠PBC=90°,∵BC⊥PO,∴BD=CD,∴PO是BC的垂直平分线,∴PB=PC,∴∠PBC=∠PCB,∴∠OCB+∠PCB=∠OBC+∠PBC=90°,即OC⊥PC,∴PC是⊙O的切线;(2)解:由(1)知,PB、PC为⊙O的切线,∴PB=PC,∵∠BPC=60°,PB=3,∴△PBC是等边三角形,∴BC=PB=3,∠PBC=60°,∴∠OBC=30°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴AC=OC=OB=PB=,∴扇形OAC的面积==,△OAC的面积=×()2=,∴阴影部分面积=﹣.22.(12分)如图,在△AOB中,∠OAB=90°,AO=AB=4,以O为原点,OB所在直线为x轴,建立平面直角坐标系,△OAB的顶点A在反比例函数y=的图象上.(1)求反比例函数的表达式.(2)把△OAB向右平移m个单位长度,对应得到△O′A′B′当这个函数图象经过△O′A′B′一边的中点时,求m的值.解:(1)过点A作AD⊥x轴于点D,如图1,∵∠OAB=90°,AO=AB=4,∴S△AOB==8∵OD=DB∴S△AOD=S△AOB=4∴k=2S△AOD=8∴y=;答:反比例函数的表达式为y=;(2)①当边A′B′的中点C在y=的图象上,如图2,∵∠OAB=90°,AO=AB=4,∴A′(2+m,2),B′(4+m,0),C(3+m,)∴(3+m)=8∴m=;②当边A′O′的中点E在y=的图象上,过点A′作A′D⊥x轴于点D,如备用图,∵O′(m,0),A′(m+2,2)∴中点E(m+,)∴(m+)=8∴m=3综上所述:符合条件的m的值有或3.23.(12分)如图,在△AOB中,OA=OB,∠AOB=α,P在△AOB外移动,将△POB绕点O按顺时针方向旋转α得到△OP′A,且点A、P′、P三点在同一条直线上.(1)【观察猜想】在图①中,∠APB=α;在图②中,∠APB=180°﹣α;(用含α的代数式表示)(2)【类比探究】如图③,若α=90°,请补全图形,再过点O作OH⊥AP与点H,探究线段PB,P A,OH之间的数量关系,并证明你的结论;【问题解决】若α=90°,AB=5,BP=3,求点O到AP的距离解:(1)如图①,由旋转知,△AOP'≌△BOP,∴∠OAP'=∠OBP,∵∠AOB+∠OAP'=∠OBP+∠APB,∴∠AOB+∠OBP=∠OBP+∠APB,∴∠APB=∠AOB,∵∠AOB=α,∴∠APB=α;如图②,由旋转知,△AOP'≌△BOP,∴∠OPP'=α,∠OAP'=∠OBP,∴∠APB=∠APO+∠APB=∠APO+∠AP'O,在△POP'中,∠APO+∠AP'O=180°﹣∠POP'=180°﹣α,∴∠APB=180°﹣α,故答案为:α,180°﹣α;(2)P A=PB+2OH,理由:如图③由旋转知,△OPB≌△OP'A,∴∠POP'=∠AOB=90°,PB=P'A,OP=OP',∴△OPP'是等腰直角三角形,∵OH⊥P A,∴PP'=2OH,∴P A=PP'+P'A=2OH+PB;(3)Ⅰ、如图④,当点P在AB上方时,过点O作OH⊥AP于H,由(1)知,∠APB=α=90°,∵AB=5,PB=3,根据勾股定理得,P A=4,由(2)知,P A=PB+2OH,∴OH===Ⅱ、如图⑤,当点P在AB下方时,过点O作OH⊥AP于H,由(1)知,∠APB=180°﹣α=90°,∵AB=5,PB=3,根据勾股定理得,P A=4,同(2)的方法得,P A+PB=2OH,∴OH==,即点O到AP的距离为或.24.(14分)定义:在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与直线y=m交于点A、C(点C在点A右边)将抛物线y=ax2+bx+c沿直线y=m翻折,翻折前后两抛物线的顶点分别为点B、D.我们将两抛物线之间形成的封闭图形称为惊喜线,四边形ABCD 称为惊喜四边形,对角线BD与AC之比称为惊喜度(Degreeofsurprise),记作|D|=(1)图①是抛物线y=x2﹣2x﹣3沿直线y=0翻折后得到惊喜线.则点A坐标(1,0),点B坐标(3,0),惊喜四边形ABCD属于所学过的哪种特殊平行四边形菱形,|D|为2.(2)如果抛物线y=m(x﹣1)2﹣6m(m>0)沿直线y=m翻折后所得惊喜线的惊喜度为1,求m的值.(3)如果抛物线y=(x﹣1)2﹣6m沿直线y=m翻折后所得的惊喜线在m﹣1≤x≤m+3时,其最高点的纵坐标为16,求m的值并直接写出惊喜度|D|.解:(1)y=x2﹣2x﹣3,令y=0,则x=﹣1或3,故点A、B的坐标分别为:(﹣1,0)、(3,0);顶点D(1,﹣4),点D(1,4),则AB=AD=CD=BC,故惊喜四边形ABCD为菱形;BD=8,AC=4,故|D|=2;故答案为:(1,0);(3,0);菱形;2;(2)联立y=m(x﹣1)2﹣6m、y=m并解得:x=1,故:AC=2=BD,抛物线的顶点纵坐标为:﹣6m,则m+6m=BD=,解得:m=;(3)抛物线的对称轴为:x=1;①当m﹣1≤1≤m+3时,即﹣2≤m≤2时,如图1,点B(1,﹣6m),y=m时,点D(1,8m),即8m=16,解得:m=2,则抛物线表达式为:y=(x﹣1)2﹣12,直线为y=2,联立上式并解得:x=1,则AC=2,而BD=14m=28,则|D|=;②当m﹣1>1时,即m>2,如图2,当x=m﹣1对应的点R的纵坐标为:16,即点R(m﹣1,16);当x=m﹣1时,y′=(x﹣1)2﹣6m=(m﹣1﹣1)2﹣6m;有中点公式得:16﹣y′=2m,解得:m=2(舍去)或10,联立y=(x﹣1)2﹣6m、y=m并解得:x=1±=1,AC=2,BD=14m=140,故|D|=;③当m+3<1,即m<﹣2时,形成不了惊喜线,故不存在m,综上,m=2,|D|=2或m=10,|D|=.。

2024-2025学年浙江省台州市椒江区书生中学数学九年级第一学期开学学业水平测试模拟试题【含答案】

2024-2025学年浙江省台州市椒江区书生中学数学九年级第一学期开学学业水平测试模拟试题【含答案】

2024-2025学年浙江省台州市椒江区书生中学数学九年级第一学期开学学业水平测试模拟试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在ABC ∆中,90C ∠=︒,2AC =,点D 在BC 上,AD =ADC 2B ∠=∠,则BC 的长为()A .1-B 1+C 1-D .1+2、(4分)如图,在菱形ABCD 中,AB=5,∠BCD=120°,则△ABC 的周长等于()A .20B .15C .10D .53、(4分)如图,把三角形ABC 沿直线BC 方向平移得到三角形DEF ,则下列结论错误的是()A .∠A =∠DB .BE =CFC .AC =DED .AB ∥DE4、(4分)如图这个几何体的左视图正确的是()A .B .C .D .5、(4分)在▱ABCD 中,已知∠A =60°,则∠C 的度数是()A .30°B .60°C .120°D .60°或120°6、(4分)在如图所示的计算程序中,y 与x 之间的函数关系式所对应的图象是()A .B .C .D .7、(4分)有意义,则m 能取的最小整数值是()A .0m =B .1m =C .2m =D .3m =8、(4分)计算÷的结果是()A .B .32x C .D .二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在平面直角坐标系中,直线y =45x -1与矩形OABC 的边BC 、OC 分别交于点E 、F ,已知OA =3,OC =4,则CEF △的面积是_________.10、(4分)化简;22442x x x x -++÷(4x+2﹣1)=______.11、(4分)若一元二次方程2210mx x -+=有两个不相同的实数根,则实数m 的取值范围________.12、(4分)如图,在四边形ABCD 中,∠ADC =∠ABC =90°,AD =CD ,DP ⊥AB 于P .若四边形ABCD 的面积是18,则DP 的长是_____.13、(4分)如图,P 是等边三角形ABC 内一点,将线段CP 绕点C 顺时针旋转60°得到线段CP ',连接'AP .若3PA =,4PC =,5PB =,则四边形APCP '的面积为___________.三、解答题(本大题共5个小题,共48分)14、(12分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本数最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表:本数(本)人数(人数)百分比5a 0.26180.36714b 880.16合计c 1根据以上提供的信息,解答下列问题:(1)a =_____,b =_____,c =______;(2)补全上面的条形统计图;(3)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的有多少名?15、(8分)如图,在ABC ∆中,点F 是BC 的中点,点E 是线段AB 的延长线上的一动点,连接EF ,过点C 作AB 的平行线CD ,与线段EF 的延长线交于点D ,连接CE 、BD .(1)求证:四边形DBEC 是平行四边形.(2)若120ABC ∠=︒,4AB BC ==,则在点E 的运动过程中:①当BE =______时,四边形BECD 是矩形;②当BE =______时,四边形BECD 是菱形.16、(8分)已知函数()213y m x m =++-.(1)若这个函数的图象经过原点,求m 的值(2)若这个函数的图象不经过第二象限,求m 的取值范围.17、(10分)类比、转化等数学思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.已知ABC ∆.(1)观察发现如图①,若点D 是ABC ∠和ACB ∠的角平分线的交点,过点D 作//EF BC 分别交AB 、AC 于、E ,F 填空:EF 与BE 、CF 的数量关系是________________________________________.(2)猜想论证如图②,若D 点是外角CBE ∠和BCF ∠的角平分线的交点,其他条件不变,填:EF 与BE 、CF 的数量关系是_____________________________________.(3)类比探究如图③,若点D 是ABC ∠和外角ACM ∠的角平分线的交点.其他条件不变,则(1)中的关系成立吗?若成立,请加以证明;若不成立,请写出关系式,再证明.18、(10分)已知,ABC ∆是等边三角形,D 是直线BC 上一点,以D 为顶点做60ADE ∠=.DE 交过C 且平行于AB 的直线于E ,求证:AD DE =;当D 为BC 的中点时,(如图1)小明同学很快就证明了结论:他的做法是:取AB 的中点F ,连结DF ,然后证明AFD DCE ∆∆≌.从而得到AD DE =,我们继续来研究:(1)如图2、当D 是BC 上的任意一点时,求证:AD DE =(2)如图3、当D 在BC 的延长线上时,求证:AD DE =(3)当D 在CB 的延长线上时,请利用图4画出图形,并说明上面的结论是否成立(不必证明).B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,含45°角的直角三角板DBC 的直角顶点D 在∠BAC 的角平分线AD 上,DF ⊥AB 于F ,DG ⊥AC 于G ,将△DBC 沿BC 翻转,D 的对应点落在E 点处,当∠BAC =90°,AB =4,AC =3时,△ACE 的面积等于_____.20、(4分)将函数4y x =-的图象沿y 轴向下平移1个单位,则平移后所得图象的解析式是____.21、(4分)当x 1时,代数式x 2+2x +2的值是_____.22、(4分)如图,在平面直角坐标系中,点(,)A a b 为第一象限内一点,且a b <.连结OA ,并以点A 为旋转中心把OA 逆时针转90°后得线段BA .若点A 、B 恰好都在同一反比例函数的图象上,则b a 的值等于________.23、(4分)如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=20°,则∠2=_____.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在平面直角坐标系xOy 中,A(1,1),B(4,1),C(2,3).(1)在图中作出△ABC 关于y 轴的轴对称图形△A ′B ′C ′;(2)在图中作出△ABC 关于原点O 中心对称图形△A"B"C".25、(10分)如图,ABCD 的对角线AC ,BD 相交于点O ,E ,F 是AC 上的两点,并且AE CF =,连接BE ,DF .(1)求证BE DF =;(2)若BD EF =,连接DE ,BF ,判断四边形BEDF 的形状,并说明理由.26、(12分)提出问题:(1)如图1,在正方形ABCD 中,点E ,H 分别在BC ,AB 上,若AE ⊥DH 于点O ,求证:AE =DH ;类比探究:(2)如图2,在正方形ABCD 中,点H ,E ,G ,F 分别在AB ,BC ,CD ,DA 上,若EF ⊥HG 于点O ,探究线段EF 与HG 的数量关系,并说明理由.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B 【解析】根据ADC 2B ∠=∠,可得∠B=∠DAB ,即BD AD ==,在Rt △ADC 中根据勾股定理可得DC=1,则1.【详解】解:∵∠ADC 为三角形ABD 外角∴∠ADC=∠B+∠DAB ∵ADC 2B ∠=∠∴∠B=∠DAB ∴BD AD ==在Rt △ADC 中,由勾股定理得:DC 1===∴1+故选B 本题考查勾股定理的应用以及等角对等边,关键抓住ADC 2B ∠=∠这个特殊条件.2、B 【解析】∵ABCD 是菱形,∠BCD=120°,∴∠B=60°,BA=BC .∴△ABC 是等边三角形.∴△ABC 的周长=3AB=1.故选B 3、C【解析】试卷分析:根据平移的性质结合图形,对选项进行一一分析,选出正确答案.解:∵三角形ABC 沿直线BC 沿直线BC 方向平移到△DEF ,∴△ABC ≌△DEF ,∴∠A =∠D ,BC =EF ,∠B =∠DEF ,故A 选项结论正确,∴BC−EC=EF−EC,即BE=CF,故B选项结论正确,∵∠B=∠DEF,∴AB∥DE,故D选项结论正确,AC=DF,DE与DF不相等,综上所述,结论错误的是AC=DE.故选C.4、C【解析】找到从几何体的左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中,并且如果是几何体内部的棱应为虚线.【详解】解:根据题意从几何体的左面看所得到的图形是竖立的矩形,因中空的棱在内部,所以矩形中间的棱应为虚线且为横线,故选:C.此题主要考查了简单几何体的三视图,关键是掌握左视图所看的位置.5、B【解析】由平行四边形的对角相等即可得出答案.【详解】∵四边形ABCD是平行四边形,∴∠C=∠A=60°;故选:B.本题考查了平行四边形的性质;熟练掌握平行四边形的对角相等是解题的关键.6、A【解析】根据程序得到函数关系式,即可判断图像.【详解】解:根据程序框图可得y =﹣x×2+3=﹣2x+3,y =2x+3的图象与y 轴的交点为(0,3),与x 轴的交点为(1.5,0).故选:A .此题主要考查一次函数的图像,解题的关键是根据程序得到函数解析式.7、C 【解析】根据二次根式的性质,被开方数大于等于0,即可求解.【详解】有意义,则满足1m-3≥0,解得m≥32,即m≥32时,二次根式有意义.则m 能取的最小整数值是m=1.故选C .a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.8、C 【解析】根据根式的计算法则计算即可.【详解】解:÷443÷=故选C.本题主要考查分式的计算化简,这是重点知识,应当熟练掌握.二、填空题(本大题共5个小题,每小题4分,共20分)9、12140【解析】先根据直线的解析式求出点F 的坐标,从而可得OF 、CF 的长,再根据矩形的性质、OC 的长可得点E 的横坐标,代入直线的解析式可得点E 的纵坐标,从而可得CE 的长,然后根据直角三角形的面积公式即可得.【详解】对于一次函数415y x =-当0y =时,4105x -=,解得54x =即点F 的坐标为5(,0)4F 54OF ∴=4OC =511444CF OC OF ∴=-=-=四边形OABC 是矩形90OCB ∴∠=︒∴点E 的横坐标为4当4x =时,4114155y =⨯-=,即点E 的坐标为11(4,)5E 115CE ∴=则CEF △的面积是111111*********CF CE ⋅=⨯⨯=故答案为:12140.本题考查了一次函数的几何应用、矩形的性质等知识点,利用一次函数的解析式求出点E 的坐标是解题关键.10、-2x x-【解析】直接利用分式的混合运算法则即可得出.【详解】原式22444222x x x x x x ⎛⎫-+--⎛⎫=÷ ⎪ ⎪++⎝⎭⎝⎭,()()22222x x x x x --⎛⎫=÷ ⎪++⎝⎭,()()22222x x x x x -+⎛⎫=⋅- ⎪+-⎝⎭,2x x -=-.故答案为2x x --.此题主要考查了分式的化简,正确掌握运算法则是解题关键.11、1m <且0m ≠【解析】利用一元二次方程的定义和判别式的意义得到m≠1且△=(-2)2-4m >1,然后求出两不等式的公共部分即可.【详解】解:根据题意得m≠1且△=(-2)2-4m >1,解得m <1且m≠1.故答案为:m <1且m≠1.本题考查了根的判别式:一元二次方程ax 2+bx+c=1(a≠1)的根与△=b 2-4ac 有如下关系:当△>1时,方程有两个不相等的两个实数根;当△=1时,方程有两个相等的两个实数根;当△<112、【解析】过点D 作DE⊥DP 交BC 的延长线于E,先判断出四边形DPBE 是矩形,再根据等角的余角相等求出∠ADP=∠CDE,再利用“角角边”证明△ADP 和△CDE 全等,根据全等三角形对应边相等可得DE=DP,然后判断出四边形DPBE 是正方形,再根据正方形的面积公式解答即可.解:如图,过点D 作DE⊥DP 交BC 的延长线于E,∵∠ADC=∠ABC=90°,∴四边形DPBE 是矩形,∵∠CDE+∠CDP=90°,∠ADC=90°,∴∠ADP+∠CDP=90°,∴∠ADP=∠CDE ,∵DP ⊥AB ,∴∠APD=90°,∴∠APD=∠E=90°,在△ADP 和△CDE 中,∠ADP=∠CDE ,∠APD=∠E ,AD=CD ,∴△ADP ≌△CDE (AAS ),∴DE=DP,四边形ABCD 的面积=四边形DPBE 的面积=18,∴矩形DPBE 是正方形,∴ 故答案为.“点睛”本题考查了正方形的判定与性质,全等三角形的判定与性质,熟记各性质并作辅助线构造出全等三角形和正方形是解题的关键.13、【解析】连结PP′,如图,由等边三角形的性质得到∠BAC=60°,AB=AC ,由旋转的性质得到CP=CP′=4,∠PCP′=60°,得到△PCP′为等边三角形,求得PP′=PC=4,根据全等三角形的性质得到AP′=PB=5,根据勾股定理的逆定理得到△APP′为直角三角形,∠APP′=90°,根据三角形的面积公式即可得到结论.【详解】连结PP′,如图,∵△ABC 为等边三角形,∴∠BAC=60°,AB=AC ,∵线段CP 绕点C 顺时针旋转60°得到线段CP',∴CP=CP′=4,∠PCP′=60°,∴△PCP′为等边三角形,∴PP′=PC=4,∵∠ACP+∠BCP=60°,∠ACP+∠ACP′=60°,∴∠BCP=∠ACP′,且AC=BC ,CP=CP′∴△BCP ≌△ACP′(SAS ),∴AP′=PB=5,在△APP′中,∵PP′2=42=16,AP 2=32=9,AP′2=52=25,∴PP′2+AP 2=AP′2,∴△APP′为直角三角形,∠APP′=90°,∴S 四边形APCP′=S △APP′+S △PCP′=12AP×PP′+4×PP′2,故答案为:.此题考查旋转的性质,全等三角形的性质,勾股定理以及逆定理,证明△APQ 为等边三角形是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)10,0.28,50;(2)补图见解析;(3)该校八年级学生课外阅读7本及以上的有528名.【解析】(1)根据统计图和表格中的数据可以得到a 、b 、c 的值;(2)根据(1)中a 的值,可以将条形统计图补充完整;(3)根据统计图中的数据可以求得该校八年级学生课外阅读7本及以上的有多少名.【详解】解:(1)本次调查的学生有:18÷0.36=50(人),a =50×0.2=10,b =14÷50=0.28,c =50,故答案为:10、0.28、50;(2)由(1)知,a =10,补全的条形统计图如图所示;(3)∵1200×(0.28+0.16)=528(名),∴该校八年级学生课外阅读7本及以上的有528名.本题考查条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.15、(1)、证明过程见解析;(2)、①、2;②、1.【解析】(1)、首先证明△BEF 和△DCF 全等,从而得出DC=BE ,结合DC 和AB 平行得出平行四边形;(2)、①、根据矩形得出∠CEB=90°,结合∠ABC=120°得出∠CBE=60°,根据直角三角形的性质得出答案;②、根据菱形的性质以及∠ABC=120°得出△CBE 是等边三角形,从而得出答案.【详解】(1)、证明:∵AB ∥CD ,∴∠CDF=∠FEB ,∠DCF=∠EBF ,∵点F 是BC 的中点,∴BF=CF ,在△DCF 和△EBF 中,∠CDF=∠FEB ,∠DCF=∠EBF ,FC=BF ,∴△EBF ≌△DCF (AAS ),∴DC=BE ,∴四边形BECD 是平行四边形;(2)、①BE=2;∵当四边形BECD 是矩形时,∠CEB=90°,∵∠ABC=120°,∴∠CBE=60°;∴∠ECB=30°,∴BE=12BC=2,②BE=1,∵四边形BECD 是菱形时,BE=EC ,∵∠ABC=120°,∴∠CBE=60°,∴△CBE 是等边三角形,∴BE=BC=1.本题主要考查的是平行四边形的性质以及矩形、菱形的判定定理,属于中等难度的题型.理解平行四边形的判定定理以及矩形和菱形的性质是解决这个问题的关键.16、(1)m 的值为3;(2)m 的取值范围为:132m -<≤.【解析】(1)将原点坐标(0,0)代入解析式即可得到m 的值;(2)分两种情况讨论:当2m+1=0,即m=-12,函数解析式为:y=-72,图象不经过第二象限;当2m+1>0,即m>-12,并且m-3≤0,即m≤3;综合两种情况即可得到m 的取值范围.【详解】(1)将原点坐标(0,0)代入解析式,得m−3=0,即m=3,所求的m 的值为3;(2)①当2m+1=0,即m=−12,函数解析式为:y=−72,图象不经过第二象限;②当2m+1>0,即m>−12,并且m−3⩽0,即m ⩽3,所以有−12<m ⩽3;所以m 的取值范围为132m -<≤.此题考查一次函数的性质,一次函数图象上点的坐标特征,解题关键在于原点坐标(0,0)代入解析式.17、(1)EF BE CF =+;(2)EF BE CF =+;(3)不成立,EF BE CF =-,证明详见解析.【解析】(1)根据平行线的性质与角平分线的定义得出∠EDB=∠EBD ,∠FCD=∠FDC ,从而得出EF 与BE 、CF 的数量关系;(2)根据平行线的性质与角平分线的定义得出∠EDB=∠EBD ,∠FCD=∠FDC ,从而得(3)根据平行线的性质与角平分线的定义得出EF与BE、CF的数量关系.【详解】(1)EF=BE+CF.∵点D是∠ABC和∠ACB的角平分线的交点,∴∠EBD=∠DBC,∠FCD=∠DCB.∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCB.∴∠EDB=∠EBD,∠FCD=∠FDC.∴EB=ED,DF=CF.∴EF=BE+CF.故本题答案为:EF=BE+CF.(2)EF=BE+CF.∵D点是外角∠CBE和∠BCF的角平分线的交点,∴∠EBD=∠DBC,∠FCD=∠DCB.∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCB.∴∠EDB=∠EBD,∠FCD=∠FDC.∴EB=ED,DF=CF.∴EF=BE+CF.故本题答案为:EF=BE+CF.(3)不成立;EF=BE−CF,证明详见解析.∵点D是∠ABC和外角∠ACM的角平分线的交点,∴∠EBD=∠DBC,∠ACD=∠DCM.∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCM.∴∠EBD=∠EDB,∠FDC=∠FCD.∴BE=ED,FD=FC.∵EF=ED−FD,∴EF=BE−CF .本题考查了平行线的性质,等腰三角形的判定,以及角平分线的定义等知识.解决本题的关键突破口是掌握平行线的性质与等腰三角形的概念.18、(1)见解析;(2)见解析;(4)见解析,AD=DE ,仍成立【解析】(1)在AB 上截取AF=DC ,连接FD ,证明△BDF 是等边三角形,得出∠BFD=60°,证出∠FAD=∠CDE ,由ASA 证明△AFD ≌△DCE ,即可得出结论;(2)在BA 的延长线上截取AF=DC ,连接FD ,证明△BDF 是等边三角形得出∠F=60°,证出∠FAD=∠CDE ,由ASA 证明△AFD ≌△DCE ,即可得出结论;(3)在AB 的延长线上截取AF=DC ,连接FD ,证明△BDF 是等边三角形,得出∠BFD=60°,证出∠FAD=∠CDE ,由ASA 证明△AFD ≌△DCE ,即可得出结论.【详解】(1)证明:在AB 上截取AF=DC ,连接FD ,如图所示:∵△ABC 是等边三角形,∴AB=BC ,∠B=60°,又∵AF=DC ,∴BF=BD ,∴△BDF 是等边三角形,∴∠BFD=60°,∴∠AFD=120°,又∵AB ∥CE ,∴∠DCE=120°=∠AFD ,而∠EDC+∠ADE=∠ADC=∠FAD+∠B ∠ADE=∠B=60°,∴∠FAD=∠CDE ,在△AFD 和△DCE 中FAD CDE AF CD AFD DCE ∠∠∠⎧⎪⎪⎩∠⎨===,∴△AFD ≌△DCE (ASA ),∴AD=DE ;(2)证明:在BA 的延长线上截取AF=DC ,连接FD ,如图所示:∵△ABC 是等边三角形,∴AB=BC ,∠B=60°,又∵AF=DC ,∴BF=BD ,∴△BDF 是等边三角形,∴∠F=60°,又∵AB ∥CE ,∴∠DCE=60°=∠F ,而∠FAD=∠B+∠ADB ,∠CDE=∠ADE+∠ADB ,又∵∠ADE=∠B=60°,∴∠FAD=∠CDE ,在△AFD 和△DCE 中,FAD CDE AF CD F DCE ∠∠⎩∠⎪⎪∠⎧⎨===,∴△AFD ≌△DCE (ASA ),∴AD=DE ;(3)解:AD=DE 仍成立.理由如下:在AB 的延长线上截取AF=DC ,连接FD ,如图所示:∵△ABC 是等边三角形,∴AB=BC ,∠ABC=60°,∴∠FAD+∠ADB=60°,又∵AF=DC ,∴BF=BD ,∵∠DBF=∠ABC=60°,∴△BDF 是等边三角形,∴∠AFD=60°,又∵AB ∥CE ,∴∠DCE=∠ABC=60°,∴∠AFD=∠DCE ,∵∠ADE=∠CDE+∠ADB=60°,∴∠FAD=∠CDE ,在△AFD 和△DCE 中,FAD CDEAF CD AFD DCE∠∠∠⎧⎪⎪⎩∠⎨===,∴△AFD ≌△DCE (ASA ),∴AD=DE .本题是三角形综合题目,考查了全等三角形的判定与性质、等边三角形的判定与性质、平行线的性质、三角形的外角性质等知识;本题综合性强,有一定难度,通过作辅助线证明三角形全等是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、34【解析】根据勾股定理得到BC=5,由折叠的性质得到△BCE 是等腰直角三角形,过E 作EH ⊥AC 交CA 的延长线于H,根据勾股定理得到EH=12,于是得到结论【详解】∵在△ABC 中,∠BAC=90°,AB=4,AC=3,∴BC=5,∵△BCE 是△DBC 沿BC 翻转得到得∴△BCE 是等腰直角三角形,∴∠BEC=90°,∠BCE=45°,CE=22,BC=522过E 作EH ⊥AC 交CA 的延长线于H,易证△CEH ≌△DCG,△DBF ≌△DCG ∴EH=CG,BF=CG,∵四边形AFDG 和四边形BECD 是正方形∴AF=AG,设BF=CG=x,则AF=4-x,AG=3+x∴4-x=3+x,∴x=12∴EH=CG=12∴△ACE 的面积=12×12×3=34,故答案为:34此题考查折叠问题和勾股定理,等腰直角三角形的性质,解题关键在于做辅助线20、y=-4x-1【解析】根据函数图象的平移规律:上加下减,可得答案.【详解】解:将函数y=-4x 的图象沿y 轴向下平移1个单位,则平移后所得图象的解析式是y=-4x-1.故答案为:y=-4x-1.本题考查了一次函数图象与几何变换,利用一次函数图象的平移规律是解题关键.21、24【解析】将原式化为x 2+2x+1+1的形式并运用完全平方公式进行求解.【详解】解:原式=(x+1)21+1)2+1=23+1=24,故答案为24.观察并合理使用因式分解的相关公式可以大大简化计算过程.22、2【解析】分析:过A 作AE ⊥x 轴,过B 作BD ⊥AE ,利用同角的余角相等得到一对角相等,再由一对角相等,且AE=BD=b ,OE=AD=a ,进而表示出ED 和OE+BD 的长,即可表示出B 坐标,由A 与B 都在反比例函数图象上,得到A 与B 横纵坐标乘积相等,列出关系式,变形后即可求出b a 的值.详解:过A 作AE ⊥x 轴,过B 作BD ⊥AE ,∵∠OAB =90°,∴∠OAE +∠BAD =90°,∵∠AOE +∠OAE =90°,∴∠BAD =∠AOE ,在△AOE 和△BAD 中,∠AOE =∠BAD ,∠AEO =∠BDA =90°AO =BA ∴△AOE ≌△BAD (AAS ),∴AE=BD=b ,OE=AD=a ,∴DE=AE-AD=b-a ,OE+BD=a+b ,则B (a+b ,b-a ),∵A 与B 都在反比例图象上,得到ab =(a+b )(b-a ),整理得:b 2-a 2=ab ,即210b b a a ⎛⎫--= ⎪⎝⎭,∵△=1+4=5,∴152b a =,∵点A (a ,b )为第一象限内一点,∴a >0,b >0,则12b a =,故答案为:15 2.点睛:本题主要考查反比例函数图象上点的坐标特征,解决本题的关键是构造全等三角形根据反比例函数上点的坐标特征列关系式.23、110°【解析】已知∠1=20°,可求得∠3=90°-20°=70°,再由矩形的对边平行,根据两直线平行,同旁内角互补可得∠2+∠3=180°,即可得∠2=110°.二、解答题(本大题共3个小题,共30分)24、(1)答案见解析;(2)答案见解析.【解析】(1)在坐标轴中找出点A '(-1,1),B (-4,1),C '(-2,3),连线即可.(2)在坐标轴中找出点A"(-1,-1),B"(-4,-1),C"(-2,-3),连线即可.【详解】(1)△ABC 关于y 轴的轴对称图形△A′B′C′的坐标分别为A '(-1,1),B '(-4,1),C '(-2,3),在坐标轴中找出点,连线即可.(2)△ABC 关于原点O 中心对称图形△A"B"C"的坐标分别为A"(-1,-1),B"(-4,-1),C"(-2,-3),在坐标轴中找出点,连线即可.本题主要考查了坐标轴中图形的对称,正确掌握坐标轴中图形的对称图形的坐标是解题的关键.25、(1)详见解析;(2)四边形BEDF 是矩形,理由详见解析.【解析】(1)已知四边形ABCD 是平行四边形,根据平行四边形的性质可得OA =OC ,OB =OD ,由AE =CF 即可得OE =OF ,利用SAS 证明△BOE ≌△DOF ,根据全等三角形的性质即可得BE =DF ;(2)四边形BEDF 是矩形.由(1)得OD =OB ,OE =OF ,根据对角线互相平方的四边形为平行四边形可得四边形BEDF 是平行四边形,再由BD =EF ,根据对角线相等的平行四边形为矩形即可判定四边形EBFD 是矩形.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∵AE =CF ,∴OE =OF ,在△BOE 和△DOF 中,0B 0D BOE DOF OE OF =⎧⎪∠=∠⎨⎪=⎩,∴△BOE ≌△DOF (SAS ),∴BE =DF ;(2)四边形BEDF 是矩形.理由如下:如图所示:∵OD=OB,OE=OF,∴四边形BEDF是平行四边形,∵BD=EF,∴四边形EBFD是矩形.本题考查了平行四边形的性质及判定、矩形的判定,熟练运用相关的性质及判定定理是解决问题的关键.26、(1)见解析;(2)EF=GH,理由见解析【解析】(1)由正方形的性质可得AB=DA,∠ABE=90°=∠DAH.又由∠ADO+∠OAD=90°,可证得∠HAO=∠ADO,继而证得△ABE≌△DAH,可得AE=DH;(2)将FE平移到AM处,则AM∥EF,AM=EF,将GH平移到DN处,则DN∥GH,DN=GH.根据(1)的结论得AM=DN,所以EF=GH;【详解】(1)证明:∵四边形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAH.∴∠HAO+∠OAD=90°.∵AE⊥DH,∴∠ADO+∠OAD=90°.∴∠HAO=∠ADO.在△ABE和△DAH中,∴△ABE≌△DAH(ASA),∴AE=DH;(2)解:EF =GH .理由:如图所示:将FE 平移到AM 处,则AM ∥EF ,AM =EF .将GH 平移到DN 处,则DN ∥GH ,DN =GH .∵EF ⊥GH ,∴AM ⊥DN ,根据(1)的结论得AM =DN ,所以EF =GH .此题考查四边形综合题,解题关键在于证明△ABE ≌△DAH ,再根据平移的性质求得AM =EF ,DN =GH.。

台州书生中学九年级上第一次月考数学试卷含答案解析

台州书生中学九年级上第一次月考数学试卷含答案解析

2022-2023浙江省台州市书生中学九年级(上)第一次月考数学试卷一、选择题(每小题4分)1.一元二次方程x2﹣x﹣2=0的解是()A.x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=﹣1,x2=﹣2 D.x1=﹣1,x2=22.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点3.以如图的右边缘所在直线为轴将该图案向右翻折后,再绕中心旋转180°,所得到的图形是()A.B.C.D.4.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠BOD等于()A.20° B.30°C.40°D.60°5.关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠56.已知二次函数y=ax2+bx+c的图象如图,则下列叙述正确的是()A.abc<0B.﹣3a+c<0C.b2﹣4ac≥0D.将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c7.用数学的方式理解“当窗理云鬓,对镜贴花黄”和“坐地日行八万里”(只考虑地球的自转),其中蕴含的图形运动是()A.平移和旋转 B.对称和旋转 C.对称和平移 D.旋转和平移8.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88° B.92°C.106°D.136°9.在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点旋转180°得到抛物线y=x2+5x+6,则原抛物线的解析式是()A.y=﹣(x﹣)2﹣B.y=﹣(x+)2﹣C.y=﹣(x﹣)2﹣D.y=﹣(x+)2+10.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定二、填空题(每小题5分)11.若关于x的方程ax2﹣4x+3=0有两个相等的实数根,则常数a的值是.12.若⊙O的弦AB所对的圆心角∠AOB=50°,则弦AB所对的圆周角的度数为.13.如图,在Rt△ABC中,∠B=90°,AB=BC=12cm,点D从点A开始沿边AB以2cm/s 的速度向点B移动,移动过程中始终保持DE∥BC,DF∥AC,则出发秒时,四边形DFCE的面积为20cm2.14.如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弦CD 的长是.15.若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为.16.在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是.三、解答题(共80分)17.(1)解方程:(x+1)(x﹣2)=2x(x﹣2)(2)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣15=0.18.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是上一点(不与C、D重合),求证:∠CPD=∠COB;(2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论.19.关于x的方程有两个不相等的实数根(1)求m的取值范围;(2)是否存在实数m,使方程的两个实数根的倒数和等于0?若存在,求出m的值;若不存在,请说明理由.20.直角坐标系中,已知点P(﹣2,﹣1),点T(t,0)是x轴上的一个动点.(1)求点P关于原点的对称点P′的坐标;(2)当t取何值时,△P′TO是等腰三角形?21.某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如表:产品每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)甲 6 a 20 200乙20 10 40+0.05x280其中a为常数,且3≤a≤5(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.22.阅读下面材料:小明遇到这样一个问题:如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD之间的数量关系.小明发现,利用轴对称做一个变化,在BC上截取CA′=CA,连接DA′,得到一对全等的三角形,从而将问题解决(如图2).请回答:(1)在图2中,小明得到的全等三角形是△≌△;(2)BC和AC、AD之间的数量关系是.参考小明思考问题的方法,解决问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9.求AB的长.23.已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.(1)求k的取值范围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.24.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.2022-2023浙江省台州市书生中学九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每小题4分)1.一元二次方程x2﹣x﹣2=0的解是()A.x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=﹣1,x2=﹣2 D.x1=﹣1,x2=2【考点】解一元二次方程-因式分解法.【分析】直接利用十字相乘法分解因式,进而得出方程的根【解答】解:x2﹣x﹣2=0(x﹣2)(x+1)=0,解得:x1=﹣1,x2=2.故选:D.2.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点【考点】二次函数的性质.【分析】根据抛物线的性质由a=1得到图象开口向上,根据顶点式得到顶点坐标为(1,2),对称轴为直线x=1,从而可判断抛物线与x轴没有公共点.【解答】解:二次函数y=(x﹣1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x=1,抛物线与x轴没有公共点.故选:C.3.以如图的右边缘所在直线为轴将该图案向右翻折后,再绕中心旋转180°,所得到的图形是()A.B.C.D.【考点】生活中的旋转现象.【分析】首先根据轴对称的性质得出翻折后图形,再利用中心对称图形的概念得出即可.【解答】解:以图的右边缘所在的直线为轴将该图形向右翻转180°后,黑圆在右上角,再按顺时针方向旋转180°,黑圆在左下角.故选:A.4.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠BOD等于()A.20° B.30°C.40°D.60°【考点】圆周角定理;垂径定理.【分析】由线段AB是⊙O的直径,弦CD丄AB,根据垂径定理的即可求得: =,然后由圆周角定理,即可求得答案.【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∴∠BOD=2∠CAB=2×20°=40°.故选C.5.关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5【考点】根的判别式.【分析】由方程有实数根可知根的判别式b2﹣4ac≥0,结合二次项的系数非零,可得出关于a一元一次不等式组,解不等式组即可得出结论.【解答】解:由已知得:,解得:a≥1且a≠5.故选C.6.已知二次函数y=ax2+bx+c的图象如图,则下列叙述正确的是()A.abc<0B.﹣3a+c<0C.b2﹣4ac≥0D.将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c【考点】二次函数图象与系数的关系;二次函数图象与几何变换.【分析】A.由开口向下,可得a<0;又由抛物线与y轴交于负半轴,可得c<0,然后由对称轴在y轴右侧,得到b与a异号,则可得b>0,故得abc>0.B.根据图知对称轴为直线x=2,即=2,得b=﹣4a,再根据图象知当x=1时,y<0,即可判断;C.由抛物线与x轴有两个交点,可得b2﹣4ac>0;D.把二次函数y=ax2+bx+c化为顶点式,再求出平移后的解析式即可判断.【解答】解:A.由开口向下,可得a<0;又由抛物线与y轴交于负半轴,可得c<0,然后由对称轴在y轴右侧,得到b与a异号,则可得b>0,故得abc>0,故本选项错误;B.根据图知对称轴为直线x=2,即=2,得b=﹣4a,再根据图象知当x=1时,y=a+b+c=a﹣4a+c=﹣3a+c<0,故本选项正确;C.由抛物线与x轴有两个交点,可得b2﹣4ac>0,故本选项错误;D.y=ax2+bx+c=,∵=2,∴原式=,∴向左平移2个单位后所得到抛物线的解析式为,故本选项错误;故选:B.7.用数学的方式理解“当窗理云鬓,对镜贴花黄”和“坐地日行八万里”(只考虑地球的自转),其中蕴含的图形运动是()A.平移和旋转 B.对称和旋转 C.对称和平移 D.旋转和平移【考点】生活中的旋转现象.【分析】根据对称和旋转定义来判断.【解答】解:根据对称和旋转定义可知:“当窗理云鬓,对镜贴花黄”是对称;“坐地日行八万里”是旋转.故选B.8.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88° B.92°C.106°D.136°【考点】圆内接四边形的性质;圆周角定理.【分析】首先根据∠BOD=88°,应用圆周角定理,求出∠BAD的度数多少;然后根据圆内接四边形的性质,可得∠BAD+∠BCD=180°,据此求出∠BCD的度数是多少即可.【解答】解:∵∠BOD=88°,∴∠BAD=88°÷2=44°,∵∠BAD+∠BCD=180°,∴∠BCD=180°﹣44°=136°,即∠BCD的度数是136°.故选:D.9.在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点旋转180°得到抛物线y=x2+5x+6,则原抛物线的解析式是()A.y=﹣(x﹣)2﹣B.y=﹣(x+)2﹣C.y=﹣(x﹣)2﹣D.y=﹣(x+)2+【考点】二次函数图象与几何变换.【分析】先求出绕原点旋转180°的抛物线解析式,求出向下平移3个单位长度的解析式即可.【解答】解:∵抛物线的解析式为:y=x2+5x+6,设原抛物线上有点(x,y),绕原点旋转180°后,变为(﹣x,﹣y),点(﹣x,﹣y)在抛物线y=x2+5x+6上,将(﹣x,﹣y)代入y=x2+5x+6得﹣y=x2﹣5x+6,所以原抛物线的方程为y=﹣x2+5x﹣6=﹣(x﹣)2+,∴向下平移3个单位长度的解析式为y=﹣(x﹣)2+﹣3=﹣(x﹣)2﹣.故选A.10.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定【考点】抛物线与x轴的交点.【分析】设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b﹣)x+c=0(a≠0)的两根为m,n再根据根与系数的关系即可得出结论.【解答】解:设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴﹣>0.设方程ax2+(b﹣)x+c=0(a≠0)的两根为m,n,则m+n=﹣=﹣+,∵a>0,∴>0,∴m+n>0.故选A.二、填空题(每小题5分)11.若关于x的方程ax2﹣4x+3=0有两个相等的实数根,则常数a的值是.【考点】根的判别式.【分析】根据判别式的意义得到△=(﹣4)2﹣4a×3=0,然后求解即可.【解答】解:根据题意得△=(﹣4)2﹣4a×3=0,解得a=.故答案为.12.若⊙O的弦AB所对的圆心角∠AOB=50°,则弦AB所对的圆周角的度数为25°或155°.【考点】圆周角定理.【分析】首先根据圆周角定理,可得同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,用⊙O的弦AB所对的圆心角除以2,求出∠C的度数为多少,然后用180°减去∠C,求出∠C′的度数是多少即可.【解答】解:如图,∵∠AOB=50°,∴∠C=50°÷2=25°,∴∠C′=180°﹣25°=155°,即弦AB所对的圆周角的度数为25°或155°.故答案为:25°或155°.13.如图,在Rt△ABC中,∠B=90°,AB=BC=12cm,点D从点A开始沿边AB以2cm/s 的速度向点B移动,移动过程中始终保持DE∥BC,DF∥AC,则出发1或5秒时,四边形DFCE的面积为20cm2.【考点】一元二次方程的应用.【分析】设点D从点A出发x秒时,则四边形DFCE的面积为20cm2.根据S四边形DECF=S△ABC ﹣S△ADE﹣S△BDF,就可以求出结论.【解答】解:设点D从点A出发x秒时,则四边形DFCE的面积为20cm2,由题意,得,解得:x1=1,x2=5.故答案为:1或5.14.如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弦CD 的长是2.【考点】垂径定理;勾股定理.【分析】在△ACE中,由勾股定理的逆定理可判定△ACE为直角三角形,再由垂径定理可求得CD的长.【解答】解:∵AC=2,AE=,CE=1,∴AE2+CE2=3+1=4=AC2,∴△ACE为直角三角形,∴AE⊥CD,∵AB为直径,∴CD=2CE=2,故答案为:2.15.若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为﹣1或2或1.【考点】抛物线与x轴的交点.【分析】直接利用抛物线与x轴相交,b2﹣4ac=0,进而解方程得出答案.【解答】解:∵函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,当函数为二次函数时,b2﹣4ac=16﹣4(a﹣1)×2a=0,解得:a1=﹣1,a2=2,当函数为一次函数时,a﹣1=0,解得:a=1.故答案为:﹣1或2或1.16.在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,).【考点】中心对称;坐标与图形性质.【分析】首先根据△OA1B1是边长为2的等边三角形,可得A1的坐标为(1,),B1的坐标为(2,0);然后根据中心对称的性质,分别求出点A2、A3、A4的坐标各是多少;最后总结出A n的坐标的规律,求出A2n+1的坐标是多少即可.【解答】解:∵△OA1B1是边长为2的等边三角形,∴A1的坐标为(1,),B1的坐标为(2,0),∵△B2A2B1与△OA1B1关于点B1成中心对称,∴点A2与点A1关于点B1成中心对称,∵2×2﹣1=3,2×0﹣=﹣,∴点A2的坐标是(3,﹣),∵△B2A3B3与△B2A2B1关于点B2成中心对称,∴点A3与点A2关于点B2成中心对称,∵2×4﹣3=5,2×0﹣(﹣)=,∴点A3的坐标是(5,),∵△B3A4B4与△B3A3B2关于点B3成中心对称,∴点A4与点A3关于点B3成中心对称,∵2×6﹣5=7,2×0﹣=﹣,∴点A4的坐标是(7,﹣),…,∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×3﹣1,…,∴A n的横坐标是2n﹣1,A2n+1的横坐标是2(2n+1)﹣1=4n+1,∵当n为奇数时,A n的纵坐标是,当n为偶数时,A n的纵坐标是﹣,∴顶点A2n+1的纵坐标是,∴△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,).故答案为:(4n+1,).三、解答题(共80分)17.(1)解方程:(x+1)(x﹣2)=2x(x﹣2)(2)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣15=0.【考点】解一元二次方程-因式分解法;分式的化简求值.【分析】(1)因式分解法求解可得;(2)先化简分式,再将x2+2x=15代入可得.【解答】解:(1)(x+1)(x﹣2)﹣2x(x﹣2)=0,(x﹣2)(﹣x+1)=0,∴x﹣2=0或﹣x+1=0,解得:x=2或x=1;(2)原式=•﹣=﹣=,∵x2+2x﹣15=0,即x2+2x=15,∴原式=.18.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是上一点(不与C、D重合),求证:∠CPD=∠COB;(2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论.【考点】圆心角、弧、弦的关系.【分析】(1)根据垂径定理知,弧CD=2弧BC,由圆周角定理知,弧BC的度数等于∠BOC的度数,弧AD的度数等于∠CPD的2倍,可得:∠CPD=∠COB;(2)根据圆内接四边形的对角互补知,∠CP′D=180°﹣∠CPD,而:∠CPD=∠COB,∴∠CP′D+∠COB=180°.【解答】(1)证明:连接OD,∵AB是直径,AB⊥CD,∴.∴∠COB=∠DOB=∠COD.又∵∠CPD=∠COD,∴∠CPD=∠COB.(2)解:∠CP′D+∠COB=180°.理由如下:连接OD,∵∠CPD+∠CP′D=180°,∠COB=∠DOB=∠COD,又∵∠CPD=∠COD,∴∠COB=∠CPD,∴∠CP′D+∠COB=180°.19.关于x的方程有两个不相等的实数根(1)求m的取值范围;(2)是否存在实数m,使方程的两个实数根的倒数和等于0?若存在,求出m的值;若不存在,请说明理由.【考点】根的判别式;根与系数的关系.【分析】(1)利用方程有两根不相等的实数根可以得到,解得m的取值范围即可;(2)假设存在,然后利用根的判别式求得m的值,根据m的值是否能使得一元二次方程有实数根作出判断即可.【解答】解:(1)由,得m>﹣1又∵m≠0∴m的取值范围为m>﹣1且m≠0;(2)不存在符合条件的实数m.设方程两根为x1,x2则,解得m=﹣2,此时△<0.∴原方程无解,故不存在.20.直角坐标系中,已知点P(﹣2,﹣1),点T(t,0)是x轴上的一个动点.(1)求点P关于原点的对称点P′的坐标;(2)当t取何值时,△P′TO是等腰三角形?【考点】关于原点对称的点的坐标;等腰三角形的性质.【分析】(1)根据坐标关于原点对称的特点即可得出点P′的坐标,(2)要分类讨论,动点T在原点左侧和右侧时分别进行讨论即可得出当t取何值时,△P′TO是等腰三角形.【解答】解:(1)点P关于原点的对称点P'的坐标为(2,1);(2),(a)动点T在原点左侧,当时,△P'TO是等腰三角形,∴点,(b)动点T在原点右侧,①当T2O=T2P'时,△P'TO是等腰三角形,得:,②当T3O=P'O时,△P'TO是等腰三角形,得:点,③当T4P'=P'O时,△P'TO是等腰三角形,得:点T4(4,0).综上所述,符合条件的t的值为.21.某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如表:产品每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)甲 6 a 20 200乙20 10 40+0.05x280其中a为常数,且3≤a≤5(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.【考点】二次函数的应用.【分析】(1)根据利润=销售数量×每件的利润即可解决问题.(2)根据一次函数的增减性,二次函数的增减性即可解决问题.(3)根据题意分三种情形分别求解即可:)①=440,②>440,③<440.【解答】解:(1)y1=(6﹣a)x﹣20,(0<x≤200)y2=10x﹣40﹣0.05x2=﹣0.05x2+10x﹣40.(0<x≤80).(2)对于y1=(6﹣a)x﹣20,∵6﹣a>0,∴x=200时,y1的值最大=万元.对于y2=﹣0.05(x﹣100)2+460,∵0<x≤80,∴x=80时,y2最大值=440万元.(3)①=440,解得a=3.7,②>440,解得a<3.7,③<440,解得a>3.7,∵3≤a≤5,∴当a=3.7时,生产甲乙两种产品的利润相同.当3≤a<3.7时,生产甲产品利润比较高.当3.7<a≤5时,生产乙产品利润比较高.22.阅读下面材料:小明遇到这样一个问题:如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD之间的数量关系.小明发现,利用轴对称做一个变化,在BC上截取CA′=CA,连接DA′,得到一对全等的三角形,从而将问题解决(如图2).请回答:(1)在图2中,小明得到的全等三角形是△ADC≌△A′DC;(2)BC和AC、AD之间的数量关系是BC=AC+AD.参考小明思考问题的方法,解决问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9.求AB的长.【考点】全等三角形的判定与性质;勾股定理.【分析】(1)由SAS容易证明△ADC≌△A′DC;(2)由△ADC≌△A′DC,得出DA′=DA,∠CA′D=∠A=60°,再求出DA′=BA′,得出BA′=AD,即可得出结论;解决问题:在AB上截取AE=AD,连接CE,先证明△ADC≌△AEC,得出AE=AD=9,CE=CD=10=BC,过点C作CF⊥AB于点F,设EF=BF=x;在Rt△CFB和Rt△CFA中,根据勾股定理求出x,即可得出结果.【解答】解:(1)△ADC≌△A′DC;理由如下:∵CD平分∠ACB,∴∠ACD=∠A′CD,在△ADC和△A′DC中,,∴△ADC≌△A′DC(SAS);(2)BC=AC+AD;理由如下:由(1)得:△ADC≌△A′DC,∴DA′=DA,∠CA′D=∠A=60°,∵∠ACB=90°,∴∠B=90°﹣∠A=30°,∵∠CA′D=∠B+∠BDA′,∠∠BDA′=30°=∠B,∴DA′=BA′,∴BA′=AD,∴BC=CA′+BA′=AC+AD;解决问题如图,在AB上截取AE=AD,连接CE,如图3所示:∵AC平分∠BAD,∴∠DAC=∠EAC.在△AEC和△ADC中,,∴△ADC≌△AEC(SAS),∴AE=AD=9,CE=CD=10=BC,过点C作CF⊥AB于点F,∴EF=BF,设EF=BF=x.在Rt△CFB中,∠CFB=90°,由勾股定理得CF2=CB2﹣BF2=102﹣x2,在Rt△CFA中,∠CFA=90°,由勾股定理得CF2=AC2﹣AF2=172﹣(9+x)2.∴102﹣x2=172﹣(9+x)2,解得:x=6,∴AB=AE+EF+FB=9+6+6=21,∴AB的长为21.23.已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.(1)求k的取值范围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.【考点】根与系数的关系;根的判别式;分式方程的解.【分析】(1)先解出分式方程①的解,根据分式的意义和方程①的根为非负数得出k的取值;(2)先把k=m+2,n=1代入方程②化简,由方程②有两个整数实根得△是完全平方数,列等式得出关于m的等式,由根与系数的关系和两个整数根x1、x2得出m=1和﹣1,再根据方程有两个整数根得△>0,得出m>0或m<﹣,符合题意,分别把m=1和﹣1代入方程后解出即可.(3)根据(1)中k的取值和k为负整数得出k=﹣1,化简已知所给的等式,并将两根和与积代入计算得出m的等式,并由根的判别式组成两式可做出判断.【解答】解:(1)∵关于x的分式方程的根为非负数,∴x≥0且x≠1,又∵x=≥0,且≠1,∴解得k≥﹣1且k≠1,又∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0中2﹣k≠0,∴k≠2,综上可得:k≥﹣1且k≠1且k≠2;(2)∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0有两个整数根x1、x2,且k=m+2,n=1时,∴把k=m+2,n=1代入原方程得:﹣mx2+3mx+(1﹣m)=0,即:mx2﹣3mx+m﹣1=0,∴△>0,即△=(﹣3m)2﹣4m(m﹣1),且m≠0,∴△=9m2﹣4m(m﹣1)=m(5m+4)>0,则m>0或m<﹣;∵x1、x2是整数,k、m都是整数,∵x1+x2=3,x1•x2==1﹣,∴1﹣为整数,∴m=1或﹣1,由(1)知k≠1,则m+2≠1,m≠﹣1∴把m=1代入方程mx2﹣3mx+m﹣1=0得:x2﹣3x+1﹣1=0,x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3;(3)|m|≤2成立,理由是:由(1)知:k≥﹣1且k≠1且k≠2,∵k是负整数,∴k=﹣1,(2﹣k)x2+3mx+(3﹣k)n=0且方程有两个实数根x1、x2,∴x1+x2=﹣==﹣m,x1x2==n,x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),x12﹣x1k+x22﹣x2k=x1x2﹣x1k﹣x2k+k2,x12+x22═x1x2+k2,(x1+x2)2﹣2x1x2﹣x1x2=k2,(x1+x2)2﹣3x1x2=k2,(﹣m)2﹣3×n=(﹣1)2,m2﹣4n=1,n=①,△=(3m)2﹣4(2﹣k)(3﹣k)n=9m2﹣48n≥0②,把①代入②得:9m2﹣48×≥0,m2≤4,则|m|≤2,∴|m|≤2成立.24.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.【考点】二次函数综合题.【分析】(1)将B、C的坐标代入抛物线的解析式中即可求得待定系数的值;(2)由于菱形的对角线互相垂直平分,若四边形POP′C为菱形,那么P点必在OC的垂直平分线上,据此可求出P点的纵坐标,代入抛物线的解析式中即可求出P点的坐标;(3)由于△ABC 的面积为定值,当四边形ABPC 的面积最大时,△BPC 的面积最大;过P 作y 轴的平行线,交直线BC 于Q ,交x 轴于F ,易求得直线BC 的解析式,可设出P 点的横坐标,然后根据抛物线和直线BC 的解析式求出Q 、P 的纵坐标,即可得到PQ 的长,以PQ 为底,B 点横坐标的绝对值为高即可求得△BPC 的面积,由此可得到关于四边形ACPB 的面积与P 点横坐标的函数关系式,根据函数的性质即可求出四边形ABPC 的最大面积及对应的P 点坐标.【解答】解:(1)将B 、C 两点的坐标代入得, 解得:;所以二次函数的表达式为:y=x 2﹣2x ﹣3(2)存在点P ,使四边形POP ′C 为菱形;设P 点坐标为(x ,x 2﹣2x ﹣3),PP ′交CO 于E若四边形POP ′C 是菱形,则有PC=PO ;连接PP ′,则PE ⊥CO 于E ,∵C (0,﹣3),∴CO=3,又∵OE=EC ,∴OE=EC=∴y=;∴x 2﹣2x ﹣3=解得x 1=,x 2=(不合题意,舍去), ∴P 点的坐标为(,)(3)过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设P (x ,x 2﹣2x ﹣3),设直线BC 的解析式为:y=kx +d , 则, 解得:∴直线BC 的解析式为y=x ﹣3,则Q 点的坐标为(x ,x ﹣3);当0=x 2﹣2x ﹣3,解得:x 1=﹣1,x 2=3,∴AO=1,AB=4,S 四边形ABPC =S △ABC +S △BPQ +S △CPQ=AB•OC+QP•BF+QP•OF==当时,四边形ABPC的面积最大此时P点的坐标为,四边形ABPC的面积的最大值为.12月24日。

2019-2020年九年级数学上学期开学考试试题浙教版.docx

2019-2020年九年级数学上学期开学考试试题浙教版.docx

2019-2020 年九年级数学上学期开学考试试题浙教版一、(本有10 小,每小 3 分,共30 分)1.如果 1≤a≤2,a22a 1+|a-2|的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(▲)A. 6+a B. -6-a C . -a D. 12.若一元二次方程( m -1) x 2( m21)x m 2-10 有一个根0,m的(▲)A. m= 1B. m=-1C. m= 1D.以上都不。

3.下列一元二次方程两数根的和 -4 的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(▲)A. x22x 4 0B.x 2 - 4x 4 0C.x24x 10 0D. x24x 5 04.已知y x2 - 4 4 - x 24. x y的⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(▲)x2A. -2B.+2C.11D.2 25.在同一坐平面内2的象通平移、称得到的, 象不可能由函数 y=2x +1函数是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(▲)2221x21A. y=2(x+1) - 1B.y=2x +3C.y=- 2x - 1D.y26. 某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植 3株,平均每株盈利 4 元;若每盆增加 1 株,平均每株盈利减少0.5 元,要使每盆的盈利达到15元,每盆多植多少株 ?每盆多植x 株,可以列出的方程是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(▲)A.(3+x)(4 - 0.5x)=15B.(x+3)(4+0.5x)=15C.(x+4)(3- 0.5x)=15D.(x+1)(4- 0.5x)=157. 已知抛物y=a(x - 1) 2+k(a,k是常数,且a>0)上三点P1( - 2,y1),P2( - 1,y2),P3(2,y3),⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( ▲ )A.y 1> y2> y3B.y3>y2>y1C.y 3>y1> y2D.y2>y1>y38. 将矩形片ABCD按如所示的方式折叠, 得到菱形AECF.若 AB=3,BC的(▲)A. 1B. 2 C2 D.3k9. 如 , 反比例函数y=x (x>0)的象矩形OABC角的交点M,分与AB、BC交于点D. E, 若四形ODBE的面9,k 的⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( ▲)(第 9)(第 10 )A. 1B. 2C. 3D.410.二次函数 y=ax 2+bx+c(a ≠ 0) 象如,下列:2⑤若 ax22①abc>0; ②2a+b=0; ③当 m≠ 1 ,a+b>am +bm;④ a- b+c>0;+bx =ax+bx , 且 x ≠11221x2,x 1 +x2=2. 其中正确的有几个⋯⋯⋯⋯⋯⋯ ( ▲) A. 2 B.3 C.4 D. 5二、填空(本有 6 小,每小 4 分,共 24 分)11.化40的果是 _________12.已知二次函数 y= ax2+ 4x+ c(a ≠ 0) ,当 x= 5 , y=0;当 x=1 , y=0,函数的解析式 _____________ _____13. 已知一数据x1,x 2,x 3,x 4的平均数是5, 数据 x1+3,x 2+3,x 3+3,x 4+3 的平均数是______________.14.已知( x2y 2 1)( x2y23) 5,则x2y2的值等于_________15.如图,正方形 ABCD的边长是 4,DAC的平分线交 DC于点 E,若点 P、Q分别是 AD和AE上的动点,则DQ+PQ的最小值 _____________。

浙江省台州市2019-2020学年中考数学考试试题

浙江省台州市2019-2020学年中考数学考试试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知二次函数y=(x+m)2–n的图象如图所示,则一次函数y=mx+n与反比例函数y=mnx的图象可能是()A. B.C.D.2.已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A.6 B.7 C.11 D.123.在数轴上到原点距离等于3的数是( )A.3 B.﹣3 C.3或﹣3 D.不知道4.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c<0;③4a+c <2b;④m(am+b)+b<a(m≠﹣1),其中结论正确的个数是()A.1 B.2 C.3 D.45.已知二次函数y=x2﹣4x+m的图象与x轴交于A、B两点,且点A的坐标为(1,0),则线段AB的长为() A.1 B.2 C.3 D.46.下列说法正确的是()A.“明天降雨的概率是60%”表示明天有60%的时间都在降雨B.“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近7.某广场上有一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法错误的是()A.红花、绿花种植面积一定相等B.紫花、橙花种植面积一定相等C.红花、蓝花种植面积一定相等D.蓝花、黄花种植面积一定相等8.一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体9.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A.140°B.160°C.170°D.150°10.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.1(1)282x x-=B.1(1)282x x+=C.(1)28x x-=D.(1)28x x+=二、填空题(本题包括8个小题)11.如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为______dm.12.若代数式1x-在实数范围内有意义,则x的取值范围是_______.13.如图,点P(3a,a)是反比例函kyx=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的表达式为______.14.对于任意实数m、n,定义一种运算m※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=1.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,则a的取值范围是_____.15.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于_____.16.如图,在矩形ABCD中,E、F分别是AD、CD的中点,沿着BE将△ABE折叠,点A刚好落在BF上,若AB=2,则AD=________.17.关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根,则m的取值范围是_____.18.如图,▱ABCD中,M、N是BD的三等分点,连接CM并延长交AB于点E,连接EN并延长交CD于点F,以下结论:①E为AB的中点;②FC=4DF;③S△ECF=92EMNS;④当CE⊥BD时,△DFN是等腰三角形.其中一定正确的是_____.三、解答题(本题包括8个小题)19.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.20.(6分)如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,•景区管委会又开发了风景优美的景点D,经测量,景点D位于景点A的北偏东30′方向8km处,•位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km.景区管委会准备由景点D向公路a修建一条距离最短的公路,不考试其他因素,求出这条公路的长.(结果精确到0.1km).求景点C与景点D之间的距离.(结果精确到1km).21.(6分)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨. 请问1辆大货车和1辆小货车一次可以分别运货多少吨?目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完,其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?22.(8分)解不等式组:2(2)3{3122x xx+>-≥-,并将它的解集在数轴上表示出来.23.(8分)如图,在Rt△ABC中,CD,CE分别是斜边AB上的高,中线,BC=a,AC=b.若a=3,b=4,求DE的长;直接写出:CD=(用含a,b的代数式表示);若b=3,tan∠DCE=13,求a的值.24.(10分)在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,连接AD,求∠ADB的度数.(不必解答)小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图1),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是三角形;∠ADB的度数为.在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=1.请直接写出线段BE的长为.25.(10分)如图,一次函数y=-x+5的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,n)和B两点.求反比例函数的解析式;在第一象限内,当一次函数y=-x+5的值大于反比例函数y=kx(k≠0)的值时,写出自变量x的取值范围.26.(12分)庐阳春风体育运动品商店从厂家购进甲,乙两种T恤共400件,其每件的售价与进货量m(件)之间的关系及成本如下表所示:T恤每件的售价/元每件的成本/元甲0.1100m-+50乙()0.21200200m m-+<<60()600050200400mm+≤≤(1)当甲种T恤进货250件时,求两种T恤全部售完的利润是多少元;若所有的T恤都能售完,求该商店获得的总利润y(元)与乙种T恤的进货量x(件)之间的函数关系式;在(2)的条件下,已知两种T 恤进货量都不低于100件,且所进的T恤全部售完,该商店如何安排进货才能使获得的利润最大?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】试题解析:观察二次函数图象可知: 00m n ,,∴一次函数y=mx+n 的图象经过第一、二、四象限,反比例函数mn y x的图象在第二、四象限. 故选D.2.C【解析】【分析】根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.【详解】∵x+2y=5,∴2x+4y=10,则2x+4y+1=10+1=1.故选C .【点睛】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.3.C【解析】【分析】根据数轴上到原点距离等于3的数为绝对值是3的数即可求解.【详解】绝对值为3的数有3,-3.故答案为C.【点睛】本题考查数轴上距离的意义,解题的关键是知道数轴上的点到原点的距离为绝对值.4.C【解析】【分析】试题解析:∵图象与x 轴有两个交点,∴方程ax 2+bx+c=0有两个不相等的实数根,∴b 2﹣4ac >0,∴4ac ﹣b 2<0,∵﹣=﹣1,∴b=2a , ∵a+b+c <0,∴b+b+c <0,3b+2c <0,∴②是正确;∵当x=﹣2时,y >0,∴4a ﹣2b+c >0,∴4a+c >2b ,③错误;∵由图象可知x=﹣1时该二次函数取得最大值,∴a ﹣b+c >am 2+bm+c (m≠﹣1).∴m (am+b )<a ﹣b .故④正确∴正确的有①②④三个,故选C .考点:二次函数图象与系数的关系.【详解】请在此输入详解!5.B【解析】【分析】先将点A(1,0)代入y =x 2﹣4x+m ,求出m 的值,将点A(1,0)代入y =x 2﹣4x+m ,得到x 1+x 2=4,x 1•x 2=3,即可解答【详解】将点A(1,0)代入y =x 2﹣4x+m ,得到m =3,所以y =x 2﹣4x+3,与x 轴交于两点,设A(x 1,y 1),b(x 2,y 2)∴x 2﹣4x+3=0有两个不等的实数根,∴x 1+x 2=4,x 1•x 2=3,∴AB =|x 1﹣x 2|21212)4x x x x ++(=2;【点睛】此题考查抛物线与坐标轴的交点,解题关键在于将已知点代入.6.D【解析】【分析】根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案.【详解】解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A不符合题意;B. “抛一枚硬币正面朝上的概率为12”表示每次抛正面朝上的概率都是12,故B不符合题意;C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖.故C不符合题意;D. “抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近,故D符合题意;故选D【点睛】本题考查了概率的意义,正确理解概率的含义是解决本题的关键.7.C【解析】【分析】图中,线段GH和EF将大平行四边形ABCD分割成了四个小平行四边形,平行四边形的对角线平分该平行四边形的面积,据此进行解答即可.【详解】解:由已知得题图中几个四边形均是平行四边形.又因为平行四边形的一条对角线将平行四边形分成两个全等的三角形,即面积相等,故红花和绿花种植面积一样大,蓝花和黄花种植面积一样大,紫花和橙花种植面积一样大.故选择C.【点睛】本题考查了平行四边形的定义以及性质,知道对角线平分平行四边形是解题关键.8.A【解析】【分析】根据三视图的形状可判断几何体的形状.观察三视图可知,该几何体是直三棱柱.故选A.本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.9.B【解析】试题分析:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°. 考点:角度的计算10.A【解析】【分析】根据应用题的题目条件建立方程即可.【详解】解:由题可得:1(1)47 2x x-=⨯即:1(1)28 2x x-=故答案是:A.【点睛】本题主要考察一元二次方程的应用题,正确理解题意是解题的关键.二、填空题(本题包括8个小题)11.【解析】【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为4dm,圆柱高为2dm,∴AB=2dm,BC=BC′=2dm,∴AC2=22+22=8,∴dm.∴这圈金属丝的周长最小为dm.故答案为:dm本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题把圆柱的侧面展开成矩形,“化曲面为平面”是解题的关键.12.1x ≥【解析】先根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.解:∵∴x-1≥2,解得x≥1.故答案为x≥1.本题考查的是二次根式有意义的条件,即被开方数大于等于2.13.y=12x【解析】设圆的半径是r ,根据圆的对称性以及反比例函数的对称性可得:14πr 2=10π解得:r=∵点P(3a ,a)是反比例函y=k x(k>0)与O 的一个交点, ∴3a 2=k.r =∴a 2=2110⨯=4. ∴k=3×4=12, 则反比例函数的解析式是:y=12x . 故答案是:y=12x. 点睛:本题主要考查了反比例函数图象的对称性,正确根据对称性求得圆的半径是解题的关键. 14.45a ≤<【解析】【详解】解:根据题意得:2※x=2x ﹣2﹣x+3=x+1,∵a <x+1<7,即a ﹣1<x <6解集中有两个整数解,∴a 的范围为45a ≤<,故答案为45a ≤<.【点睛】本题考查一元一次不等式组的整数解,准确理解题意正确计算是本题的解题关键.15.210°【解析】【分析】根据三角形内角和定理得到∠B =45°,∠E =60°,根据三角形的外角的性质计算即可.【详解】解:如图:∵∠C =∠F =90°,∠A =45°,∠D =30°,∴∠B =45°,∠E =60°,∴∠2+∠3=120°,∴∠α+∠β=∠A+∠1+∠4+∠B =∠A+∠B+∠2+∠3=90°+120°=210°,故答案为:210°.【点睛】本题考查的是三角形的外角的性质、三角形内角和定理,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.16.22【解析】如图,连接EF ,∵点E 、点F 是AD 、DC 的中点,∴AE=ED ,CF=DF=12CD=12AB=1, 由折叠的性质可得AE=A′E ,∴A′E=DE ,在Rt △EA′F 和Rt △EDF 中,EA ED EF EF='⎧⎨=⎩ , ∴Rt △EA′F ≌Rt △EDF (HL ),∴A′F=DF=1,∴BF=BA′+A′F=AB+DF=2+1=3,在Rt △BCF 中, BC=22223122BF CF -=-=.∴AD=BC=22 .点睛:本题考查了翻折变换的知识,解答本题的关键是连接EF ,证明Rt △EA′F ≌Rt △EDF ,得出BF 的长,再利用勾股定理解答即可.17.m≤1【解析】【分析】根据一元二次方程有实数根,得出△≥0,建立关于m 的不等式,求出m 的取值范围即可.【详解】解:由题意知,△=4﹣4(m ﹣1)≥0,∴m≤1,故答案为:m≤1.【点睛】此题考查了根的判别式,掌握一元二次方程根的情况与判别式△的关系:△>0,方程有两个不相等的实数根;△=0,方程有两个相等的实数根;△<0,方程没有实数根是本题的关键.18.①③④【解析】【分析】由M 、N 是BD 的三等分点,得到DN=NM=BM ,根据平行四边形的性质得到AB=CD ,AB ∥CD ,推出△BEM ∽△CDM ,根据相似三角形的性质得到,于是得到BE=AB ,故①正确;根据相似三角形的性质得到=,求得DF=BE ,于是得到DF=AB=CD ,求得CF=3DF ,故②错误;根据已知条件得到S △BEM =S △EMN =S △CBE ,求得=,于是得到S △ECF =,故③正确;根据线段垂直平分线的性质得到EB=EN ,根据等腰三角形的性质得到∠ENB=∠EBN ,等量代换得到∠CDN=∠DNF ,求得△DFN 是等腰三角形,故④正确.【详解】解:∵•ƒM、N是BD的三等分点,∴DN=NM=BM,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴△BEM∽△CDM,∴,∴BE=CD,∴BE=AB,故①正确;∵AB∥CD,∴△DFN∽△BEN,∴=,∴DF=BE,∴DF=AB=CD,∴CF=3DF,故②错误;∵BM=MN,CM=2EM,∴△BEM=S△EMN=S△CBE,∵BE=CD,CF=CD,∴=,∴S△EFC=S△CBE=S△MNE,∴S△ECF=,故③正确;∵BM=NM,EM⊥BD,∴EB=EN,∴∠ENB=∠EBN,∵CD∥AB,∴∠ABN=∠CDB,∵∠DNF=∠BNE,∴∠CDN=∠DNF,∴△DFN是等腰三角形,故④正确;故答案为①③④.【点睛】 考点:相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的性质. 三、解答题(本题包括8个小题) 19.1 【解析】 【分析】 先提取公因式ab ,再根据完全平方公式进行二次分解,然后代入数据进行计算即可得解.【详解】解:a 3b+2a 2b 2+ab 3=ab (a 2+2ab+b 2) =ab (a+b )2,将a+b=3,ab=2代入得,ab (a+b )2=2×32=1.故代数式a 3b+2a 2b 2+ab 3的值是1.20.(1)景点D 向公路a 修建的这条公路的长约是3.1km ;(2)景点C 与景点D 之间的距离约为4km .【解析】【详解】解:(1)如图,过点D 作DE ⊥AC 于点E ,过点A 作AF ⊥DB ,交DB 的延长线于点F ,在Rt △DAF 中,∠ADF=30°,∴AF=12AD=12×8=4,∴DF=22228443AD AF -=-=, 在Rt △ABF 中BF=2222AB AF 54-=-=3,∴BD=DF ﹣BF=43﹣3,sin ∠ABF=45AF AB =, 在Rt △DBE 中,sin ∠DBE=DB BD ,∵∠ABF=∠DBE ,∴sin ∠DBE=45, ∴DE=BD•sin ∠DBE=45×(43﹣3)=163125-≈3.1(km ),∴景点D 向公路a 修建的这条公路的长约是3.1km ;(2)由题意可知∠CDB=75°,由(1)可知sin ∠DBE=45=0.8,所以∠DBE=53°, ∴∠DCB=180°﹣75°﹣53°=52°,在Rt △DCE 中,sin ∠DCE=DB DC,∴DC= 3.1sin 520.79DE ︒=≈4(km ), ∴景点C 与景点D 之间的距离约为4km . 21.(1)1辆大货车一次可以运货4吨,1辆小货车一次可以运货32吨;(2)货运公司应安排大货车8辆时,小货车2辆时最节省费用.【解析】【分析】(1)设1辆大货车和1辆小货车一次可以分别运货x 吨和y 吨,根据“3辆大货车与4辆小货车一次可以运货18吨、2辆大货车与6辆小货车一次可以运货17吨”列方程组求解可得;(2)因运输33吨且用10辆车一次运完,故10辆车所运货不低于10吨,所以列不等式,大货车运费高于小货车,故用大货车少费用就小进行安排即可.【详解】(1)解:设1辆大货车一次可以运货x 吨,1辆小货车一次可以运货y 吨,依题可得:34182617x y x y +=⎧⎨+=⎩ , 解得:432x y =⎧⎪⎨=⎪⎩. 答:1辆大货车一次可以运货4吨,1辆小货车一次可以运货32吨. (2)解:设大货车有m 辆,则小货车10-m 辆,依题可得:4m+32(10-m )≥33 m≥010-m≥0解得:365≤m≤10, ∴m=8,9,10;∴当大货车8辆时,则小货车2辆;当大货车9辆时,则小货车1辆;当大货车10辆时,则小货车0辆;设运费为W=130m+100(10-m )=30m+1000,∵k=30〉0,∴W 随x 的增大而增大,∴当m=8时,运费最少,∴W=130×8+100×2=1240(元),答:货运公司应安排大货车8辆时,小货车2辆时最节省费用.【点睛】考查了二元一次方程组和一元一次不等式的应用,体现了数学建模思想,考查了学生用方程解实际问题的能力,解题的关键是根据题意建立方程组,并利用不等式求解大货车的数量,解题时注意题意中一次运完的含义,此类试题常用的方法为建立方程,利用不等式或者一次函数性质确定方案.22.-1≤x<4,在数轴上表示见解析.【解析】试题分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.试题解析:()223{3x122x x+>-≥-①②,由①得,x<4;由②得,x⩾−1.故不等式组的解集为:−1⩽x<4.在数轴上表示为:23.(1)710;(2)22ab a b+;(3)101-.【解析】【分析】(1)求出BE,BD即可解决问题.(2)利用勾股定理,面积法求高CD即可.(3)根据CD=3DE,构建方程即可解决问题.【详解】解:(1)在Rt△ABC中,∵∠ACB=91°,a=3,b=4,∴2235,cos5BCAB a b BAC∴=+===.∵CD,CE是斜边AB上的高,中线,∴∠BDC=91°,15BE AB22==.∴在Rt△BCD中,39cos355BD BC B=⋅=⨯=5972510DE BE BD∴=-=-=(2)在Rt△ABC中,∵∠ACB=91°,BC=a,AC=b,AB ∴==ABC 11S AB CD AC BC 22=⋅=⋅AC BC CD AB ⋅∴=== (3)在Rt △BCD 中,2cos BD BC B a =⋅==,∴222DE BE BD =-==, 又1tan 3DE DCE CD ∠==, ∴CD =3DE 223=.∵b =3,∴2a =9﹣a 2,即a 2+2a ﹣9=1.由求根公式得1a =-(负值舍去),即所求a 1.【点睛】本题考查解直角三角形的应用,直角三角形斜边中线的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(1)①△D′BC 是等边三角形,②∠ADB=30°(1)∠ADB=30°;(3)7【解析】【分析】(1)①如图1中,作∠ABD′=∠ABD ,BD′=BD ,连接CD′,AD′,由△ABD ≌△ABD′,推出△D′BC 是等边三角形;②借助①的结论,再判断出△AD′B ≌△AD ′C ,得∠AD′B =∠AD′C ,由此即可解决问题.(1)当60°<α≤110°时,如图3中,作∠AB D′=∠ABD ,B D′=BD ,连接CD′,AD′,证明方法类似(1).(3)第①种情况:当60°<α≤110°时,如图3中,作∠AB D′=∠ABD ,B D′=BD ,连接CD′,AD′,证明方法类似(1),最后利用含30度角的直角三角形求出DE ,即可得出结论;第②种情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD ,BD′=BD ,连接CD′,AD′.证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结论.【详解】(1)①如图1中,作∠ABD′=∠ABD ,BD′=BD ,连接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,AB ABABD ABD BD BD'=⎧⎪∠=∠⎨='⎪⎩∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等边三角形,②∵△D′BC是等边三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,AD AD D B D C AB AC=⎧⎪=⎨⎪=''⎩'∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=12∠BD′C=30°,∴∠ADB=30°.(1)∵∠DBC<∠ABC,∴60°<α≤110°,如图3中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BA C=α,∴∠ABC=12(180°﹣α)=90°﹣12α,∴∠ABD=∠ABC﹣∠DBC=90°﹣12α﹣β,同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣12α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣12α﹣β+90°﹣12α=180°﹣(α+β),∵α+β=110°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=12∠BD′C=30°,∴∠ADB=30°.(3)第①情况:当60°<α<110°时,如图3﹣1,由(1)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=1,∴3,∵△BCD'是等边三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=7﹣3;第②情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.同理可得:∠ABC=12(180°﹣α)=90°﹣12α,∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣12α),同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=β﹣(90°﹣12α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC﹣∠ABD′=90°﹣12α﹣[β﹣(90°﹣12α)]=180°﹣(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可证△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360°,∴∠ADB=∠AD′B=150°,在Rt△ADE中,∠ADE=30°,AD=1,∴3,∴3故答案为:373【点睛】此题是三角形综合题,主要考查全等三角形的判定和性质.等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.25.(1)4yx=;(2)1<x<1.【解析】【分析】(1)将点A的坐标(1,1)代入,即可求出反比例函数的解析式;(2)一次函数y=-x+5的值大于反比例函数y=kx,即反比例函数的图象在一次函数的图象的下方时自变量的取值范围即可.【详解】解:(1)∵一次函数y=﹣x+5的图象过点A(1,n),∴n=﹣1+5,解得:n=1,∴点A的坐标为(1,1).∵反比例函数y=kx(k≠0)过点A(1,1),∴k=1×1=1,∴反比例函数的解析式为y=4x.联立54y xyx=-+⎧⎪⎨=⎪⎩,解得:14xy=⎧⎨=⎩或41xy=⎧⎨=⎩,∴点B的坐标为(1,1).(2)观察函数图象,发现:当1<x<1.时,反比例函数图象在一次函数图象下方,∴当一次函数y=﹣x+5的值大于反比例函数y=kx(k≠0)的值时,x的取值范围为1<x<1.【点睛】本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.解题的关键是:(1)联立两函数解析式成二元一次方程组;(2)求出点C的坐标;(3)根据函数图象上下关系结合交点横坐标解决不等式.本题属于基础题,难度不大,解决该题型题目时,联立两函数解析式成方程组,解方程组求出交点的坐标是关键.26.(1)10750;(2)220.3904000(0200)0.12010000(200400)x x xyx x x⎧-++<<=⎨-++≤≤⎩;(3)最大利润为10750元.【解析】【分析】(1)根据“利润=销售总额-总成本”结合两种T恤的销售数量代入相关代数式进行求解即可;(2)根据题意,分两种情况进行讨论:①0<m<200;②200≤m≤400时,根据“利润=销售总额-总成本”即可求得各相关函数关系式;(3)求出(2)中各函数最大值,进行比较即可得到结论. 【详解】(1)∵甲种T 恤进货250件∴乙种T 恤进货量为:400-250=150件故由题意得,()()7550250906015010750-⨯+-⨯=;(2)①()()()20200,0.2120600.1400100504000.390+4000x y x x x x x x <<=-+-+⎡--+-⎤-=-+⎣⎦②()()26000200400,0.14001005040050600.12010000x y x x x x x x ⎛⎫≤≤=⎡--+-⎤-++-=-++⎪⎣⎦⎝⎭; 故220.3904000(0200)0.12010000(200400)x x x y x x x ⎧-++<<=⎨-++≤≤⎩. (3)由题意,100300x ≤≤,①100200x ≤<,()20.315010750y x =--+,max 150,10750x y ∴== ②()2200400,0.110011000,10000x y x y ≤≤=--+∴≤, 综上,最大利润为10750元. 【点睛】本题考查了二次函数的应用,找出题中的等量关系以及根据题意确定二次函数的解析式是解题的关键.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整幅挂图的面积是25400cm ,设金色纸边的宽为xcm ,那么x 满足的方程是( )A .213014000x x +-=B .2653500x x +-=C .213014000x x --=D .2653500x x --=2.点A (m ﹣4,1﹣2m )在第四象限,则m 的取值范围是 ( ) A .m >12B .m >4C .m <4D .12<m <4 3.若二次函数22y x x m =-+的图像与x 轴有两个交点,则实数m 的取值范围是( ) A .m 1≥B .1mC .1mD .1m <4.如图,点A 、B 、C 是⊙O 上的三点,且四边形ABCO 是平行四边形,OF ⊥OC 交圆O 于点F ,则∠BAF 等于( )A .12.5°B .15°C .20°D .22.5°5.如图,在平行线l 1、l 2之间放置一块直角三角板,三角板的锐角顶点A ,B 分别在直线l 1、l 2上,若∠l=65°,则∠2的度数是( )A .25°B .35°C .45°D .65°6.如图,已知BD 是ABC △的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A.6 B.5 C.4 D.337.方程(m–2)x2+3mx+1=0是关于x的一元二次方程,则()A.m≠±2B.m=2 C.m=–2 D.m≠28.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()A.73 B.81 C.91 D.1099.某反比例函数的图象经过点(-2,3),则此函数图象也经过()A.(2,-3)B.(-3,3)C.(2,3)D.(-4,6)10.全球芯片制造已经进入10纳米到7纳米器件的量产时代.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A.0.7×10﹣8B.7×10﹣8C.7×10﹣9D.7×10﹣10二、填空题(本题包括8个小题)11.如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为_____.12.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上kyx,则k值为_____.13.某厂家以A 、B 两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A 原料、1.5千克B 原料;乙产品每袋含2千克A 原料、1千克B 原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A 原料和B 原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为_____元. 14.分解因式:22()4a b b --=___.15.如图,宽为(1020)m m <<的长方形图案由8个相同的小长方形拼成,若小长方形的边长为整数,则m 的值为__________.16.如图,身高是1.6m 的某同学直立于旗杆影子的顶端处,测得同一时刻该同学和旗杆的影子长分别为1.2m 和9m.则旗杆的高度为________m.17.关于x 的分式方程3111m x x+=--的解为正数,则m 的取值范围是___________. 18.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.三、解答题(本题包括8个小题)19.(6分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A 1,A 2,A 3,A 4,现对A 1,A 2,A 3,A 4统计后,制成如图所示的统计图.求七年级已“建档立卡”的贫困家庭的学生总人数;将条形统计图补充完整,并求出A 1所在扇形的圆心角的度数;现从A 1,A 2中各选出一人进行座谈,若A 1中有一名女生,A 2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.20.(6分)已知2410x x --=,求代数式22(23)()()x x y x y y --+--的值.21.(6分)某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:请将条形统计图补全;获得一等奖的同学中有14来自七年级,有14来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.22.(8分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D 的高度.如图,当李明走到点A 处时,张龙测得李明直立身高AM 与其影子长AE 正好相等,接着李明沿AC 方向继续向前走,走到点B 处时,李明直立时身高BN 的影子恰好是线段AB ,并测得AB =1.25 m ,已知李明直立时的身高为1.75 m ,求路灯的高CD 的长.(结果精确到0.1 m)23.(8分)如图,在△ABC 中,已知AB=AC ,AB 的垂直平分线交AB 于点N ,交AC 于点M ,连接MB .若∠ABC=70°,则∠NMA 的度数是 度.若AB=8cm ,△MBC 的周长是14cm . ①求BC 的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.24.(10分)解方程:2(x-3)=3x(x-3).25.(10分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:命中环数 6 7 8 9 10甲命中相应环数的次数0 1 3 1 0乙命中相应环数的次数 2 0 0 2 1(1)根据上述信息可知:甲命中环数的中位数是_____环,乙命中环数的众数是______环;(2)试通过计算说明甲、乙两人的成绩谁比较稳定?(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会变小.(填“变大”、“变小”或“不变”)26.(12分)如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的(0,b),且a、b满足4速度沿着O﹣C﹣B﹣A﹣O的线路移动.a=,b=,点B的坐标为;当点P移动4秒时,请指出点P的位置,并求出点P的坐标;在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.B【解析】。

2019-2020学年浙江省台州市中考数学考试试题

2019-2020学年浙江省台州市中考数学考试试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.下列二次根式中,最简二次根式的是( ) A .15B .0.5C .5D .502.如图,已知l 1∥l 2,∠A=40°,∠1=60°,则∠2的度数为( )A .40°B .60°C .80°D .100°3.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x++=在同一坐标系内的图象大致为( )A .B .C .D .4.若ab <0,则正比例函数y=ax 与反比例函数y=bx在同一坐标系中的大致图象可能是( ) A . B . C . D .5.二次函数y=ax 2+bx+c(a≠0)的图象如图,则反比例函数y=ax与一次函数y=bx ﹣c 在同一坐标系内的图象大致是( )A .B .C .D .6.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为14,则原来盒里有白色棋子( ) A .1颗B .2颗C .3颗D .4颗7.如图,从边长为a 的正方形中去掉一个边长为b 的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b -=-+C .222()2a b a ab b +=++D .2()a ab a a b +=+8.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )A .小丽从家到达公园共用时间20分钟B .公园离小丽家的距离为2000米C .小丽在便利店时间为15分钟D .便利店离小丽家的距离为1000米9.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车x 辆,根据题意,可列出的方程是 ( ). A .3229x x -=+ B .3(2)29x x -=+ C .2932x x +=- D .3(2)2(9)x x -=+10.如图,AB ∥CD ,∠1=45°,∠3=80°,则∠2的度数为( )A.30°B.35°C.40°D.45°二、填空题(本题包括8个小题)11.不等式组2012xxx-≤⎧⎪⎨-<⎪⎩的最大整数解是__________.12.如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠P=46°,则∠BAC= ▲度.13.如图,点P(3a,a)是反比例函kyx=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的表达式为______.14.若m、n 是方程x2+2018x﹣1=0 的两个根,则m2n+mn2﹣mn=_________.15.如图,为保护门源百里油菜花海,由“芬芳浴”游客中心A处修建通往百米观景长廊BC的两条栈道AB,AC.若∠B=56°,∠C=45°,则游客中心A到观景长廊BC的距离AD的长约为_____米.(sin56°≈0.8,tan56°≈1.5)16.如图,在△ABC中,∠C=120°,AB=4cm,两等圆⊙A与⊙B外切,则图中两个扇形的面积之和(即阴影部分)为cm2(结果保留π).17.已知抛物线y=ax 2+bx+c=0(a≠0) 与 x 轴交于 A ,B 两点,若点 A 的坐标为 ()2,0-,线段 AB 的长为8,则抛物线的对称轴为直线 ________________. 18.已知A(x 1,y 1),B(x 2,y 2)都在反比例函数y =6x的图象上.若x 1x 2=﹣4,则y 1⋅y 2的值为______. 三、解答题(本题包括8个小题)19.(6分)如图1,已知△ABC 是等腰直角三角形,∠BAC =90°,点D 是BC 的中点.作正方形DEFG ,使点A 、C 分别在DG 和DE 上,连接AE ,BG .试猜想线段BG 和AE 的数量关系是_____;将正方形DEFG 绕点D 逆时针方向旋转α(0°<α≤360°),①判断(1)中的结论是否仍然成立?请利用图2证明你的结论; ②若BC =DE =4,当AE 取最大值时,求AF 的值.20.(6分)先化简代数式22321(1)24a a a a -+-÷+-,再从-2,2,0三个数中选一个恰当的数作为a 的值代入求值.21.(6分)小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x+=--.她把这个数“?”猜成5,请你帮小华解这个分式方程;小华的妈妈说:“我看到标准答案是:方程的增根是2x =,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?22.(8分)如图,以AB 边为直径的⊙O 经过点P ,C 是⊙O 上一点,连结PC 交AB 于点E ,且∠ACP=60°,PA=PD .试判断PD 与⊙O 的位置关系,并说明理由;若点C 是弧AB 的中点,已知AB=4,求CE•CP 的值.23.(8分)如图,在△ABC 中,AB=AC ,CD 是∠ACB 的平分线,DE ∥BC ,交AC 于点 E .求证:DE=CE . 若∠CDE=35°,求∠A 的度数.24.(10分)水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做图①所示的试验,并根据试验数据绘制出图②所示的容器内盛水量W (L )与滴水时间t (h )的函数关系图象,请结合图象解答下列问题:容器内原有水多少?求W 与t 之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?图 ① 图②25.(10分)如图,矩形ABCD 中,对角线AC 、BD 交于点O ,以AD 、OD 为邻边作平行四边形ADOE ,连接BE求证:四边形AOBE 是菱形若180EAO DCO ∠+∠=︒,2DC =,求四边形ADOE 的面积26.(12分)嘉淇同学利用业余时间进行射击训练,一共射击7次,经过统计,制成如图12所示的折线统计图.这组成绩的众数是 ;求这组成绩的方差;若嘉淇再射击一次(成绩为整数环),得到这8次射击成绩的中位数恰好就是原来7次成绩的中位数,求第8次的射击成绩的最大环数.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A,被开方数含分母,不是最简二次根式;故A选项错误;B,被开方数为小数,不是最简二次根式;故B选项错误;C C选项正确;D D选项错误;故选C.考点:最简二次根式.2.D【解析】【分析】根据两直线平行,内错角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:∵l1∥l2,∴∠3=∠1=60°,∴∠2=∠A+∠3=40°+60°=100°.故选D.【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键. 3.D 【解析】 【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解. 【详解】∵二次函数图象开口方向向上, ∴a>0,∵对称轴为直线02bx a=->, ∴b<0,二次函数图形与x 轴有两个交点,则24b ac ->0, ∵当x=1时y=a+b+c<0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交, 反比例函数a b cy x++=图象在第二、四象限, 只有D 选项图象符合. 故选:D. 【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键. 4.D 【解析】 【分析】根据ab <0及正比例函数与反比例函数图象的特点,可以从a >0,b <0和a <0,b >0两方面分类讨论得出答案. 【详解】 解:∵ab <0, ∴分两种情况:(1)当a >0,b <0时,正比例函数y=ax 数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a <0,b >0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D 符合. 故选D 【点睛】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题. 5.C 【解析】 【分析】根据二次函数的图象找出a 、b 、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论. 【详解】解:观察二次函数图象可知: 开口向上,a >1;对称轴大于1,2ba->1,b <1;二次函数图象与y 轴交点在y 轴的正半轴,c >1. ∵反比例函数中k =﹣a <1,∴反比例函数图象在第二、四象限内; ∵一次函数y =bx ﹣c 中,b <1,﹣c <1, ∴一次函数图象经过第二、三、四象限. 故选C . 【点睛】本题考查了二次函数的图象、反比例函数的图象以及一次函数的图象,解题的关键是根据二次函数的图象找出a 、b 、c 的正负.本题属于基础题,难度不大,解决该题型题目时,根据二次函数图象找出a 、b 、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论. 6.B 【解析】试题解析:由题意得25134x x y x x y ⎧⎪+⎪⎨⎪⎪++⎩==,解得:23x y ⎧⎨⎩==. 故选B . 7.A 【解析】 【分析】由图形可以知道,由大正方形的面积-小正方形的面积=矩形的面积,进而可以证明平方差公式. 【详解】解:大正方形的面积-小正方形的面积=22a b -, 矩形的面积=()()a b a b +-, 故22()()a b a b a b +-=-, 故选:A . 【点睛】本题主要考查平方差公式的几何意义,用两种方法表示阴影部分的面积是解题的关键. 8.C 【解析】解:A .小丽从家到达公园共用时间20分钟,正确; B .公园离小丽家的距离为2000米,正确; C .小丽在便利店时间为15﹣10=5分钟,错误; D .便利店离小丽家的距离为1000米,正确. 故选C . 9.B 【解析】 【分析】根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可. 【详解】根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9. 故选B. 【点睛】此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可. 10.B【解析】分析:根据平行线的性质和三角形的外角性质解答即可.详解:如图,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故选B.点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.二、填空题(本题包括8个小题)11.2【解析】【分析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.【详解】解:2012xxx-≤⎧⎪⎨-<⎪⎩①②,由不等式①得x≤1,由不等式②得x>-1,其解集是-1<x≤1,所以整数解为0,1,1,则该不等式组的最大整数解是x=1.故答案为:1.【点睛】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12.1.【解析】【分析】由PA 、PB 是圆O 的切线,根据切线长定理得到PA=PB ,即三角形APB 为等腰三角形,由顶角的度数,利用三角形的内角和定理求出底角的度数,再由AP 为圆O 的切线,得到OA 与AP 垂直,根据垂直的定义得到∠OAP 为直角,再由∠OAP-∠PAB 即可求出∠BAC 的度数【详解】∵PA ,PB 是⊙O 是切线,∴PA=PB.又∵∠P=46°,∴∠PAB=∠PBA=00018046=672-. 又∵PA 是⊙O 是切线,AO 为半径,∴OA ⊥AP .∴∠OAP=90°.∴∠BAC=∠OAP ﹣∠PAB=90°﹣67°=1°.故答案为:1【点睛】此题考查了切线的性质,切线长定理,等腰三角形的性质,以及三角形的内角和定理,熟练掌握定理及性质是解本题的关键.13.y=12x【解析】设圆的半径是r ,根据圆的对称性以及反比例函数的对称性可得:14πr 2=10π解得:r=∵点P(3a ,a)是反比例函y=k x(k>0)与O 的一个交点, ∴3a 2=k.r =∴a 2=2110⨯=4. ∴k=3×4=12, 则反比例函数的解析式是:y=12x . 故答案是:y=12x. 点睛:本题主要考查了反比例函数图象的对称性,正确根据对称性求得圆的半径是解题的关键.14.1【解析】【分析】根据根与系数的关系得到 m+n=﹣2018,mn=﹣1,把 m 2n+mm 2﹣mn 分解因式得到 mn (m+n ﹣1),然后利用整体代入的方法计算.【详解】解:∵m 、n 是方程 x 2+2018x ﹣1=0 的两个根,则原式=mn (m+n ﹣1)=﹣1×(﹣2018﹣1)=﹣1×(﹣1)=1,故答案为:1.【点睛】本题考查了根与系数的关系,如果一元二次方程 ax 2+bx+c=0 的两根分别 为与,则解题时要注意这两个关 系的合理应用.15.60【解析】 【分析】根据题意和图形可以分别表示出AD 和CD 的长,从而可以求得AD 的长,本题得以解决.【详解】∵∠B=56°,∠C=45°,∠ADB=∠ADC=90°,BC=BD+CD=100米, ∴BD=tan 56AD ︒,CD=tan 45AD ︒, ∴tan 56AD ︒+tan 45AD ︒=100, 解得,AD≈60 考点:解直角三角形的应用.16.23π. 【解析】【分析】图中阴影部分的面积就是两个扇形的面积,圆A ,B 的半径为2cm ,则根据扇形面积公式可得阴影面积.【详解】()2260423603603A B πππ∠+∠⨯⨯==(cm 2). 故答案为23π. 考点:1、扇形的面积公式;2、两圆相外切的性质.17.2x =或x=-1【解析】【分析】由点A 的坐标及AB 的长度可得出点B 的坐标,由抛物线的对称性可求出抛物线的对称轴.【详解】∵点A 的坐标为(-2,0),线段AB 的长为8,∴点B 的坐标为(1,0)或(-10,0).∵抛物线y=ax 2+bx+c (a≠0)与x 轴交于A 、B 两点,∴抛物线的对称轴为直线x=262-+=2或x=2102--=-1. 故答案为x=2或x=-1.【点睛】本题考查了抛物线与x 轴的交点以及二次函数的性质,由抛物线与x 轴的交点坐标找出抛物线的对称轴是解题的关键.18.﹣1.【解析】【分析】 根据反比例函数图象上点的坐标特征得到121266,y y x x ==, 再把它们相乘,然后把124x x =-代入计算即可.【详解】 根据题意得121266,y y x x ==, 所以1212126636369.4y y x x x x =⋅===-- 故答案为:−1.【点睛】考查反比例函数图象上点的坐标特征,把点,A B 的坐标代入反比例函数解析式得到121266,,y y x x ==是解题的关键.三、解答题(本题包括8个小题)19.(1)BG=AE.(2)①成立BG=AE.证明见解析.②AF=213.【解析】【分析】(1)由等腰直角三角形的性质及正方形的性质就可以得出△ADE≌△BDG就可以得出结论;(2)①如图2,连接AD,由等腰直角三角形的性质及正方形的性质就可以得出△ADE≌△BDG就可以得出结论;②由①可知BG=AE,当BG取得最大值时,AE取得最大值,由勾股定理就可以得出结论.【详解】(1)BG=AE.理由:如图1,∵△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,∴AD⊥BC,BD=CD,∴∠ADB=∠ADC=90°.∵四边形DEFG是正方形,∴DE=DG.在△BDG和△ADE中,BD=AD,∠BDG=∠ADE,GD=ED,∴△ADE≌△BDG(SAS),∴BG=AE.故答案为BG=AE;(2)①成立BG=AE.理由:如图2,连接AD,∵在Rt△BAC中,D为斜边BC中点,∴AD=BD,AD⊥BC,∴∠ADG+∠GDB=90°.∵四边形EFGD为正方形,∴DE=DG,且∠GDE=90°,∴∠ADG+∠ADE=90°,∴∠BDG=∠ADE.在△BDG和△ADE中,BD=AD,∠BDG=∠ADE,GD=ED,∴△BDG≌△ADE(SAS),∴BG=AE;②∵BG=AE,∴当BG取得最大值时,AE取得最大值.如图3,当旋转角为270°时,BG=AE.∵BC=DE=4,∴BG=2+4=6.∴AE=6.在Rt△AEF中,由勾股定理,得AF=22AE EF+=3616+,∴AF=213.【点睛】本题考查的知识点是全等三角形的判定与性质及勾股定理及正方形的性质和等腰直角三角形,解题的关键是熟练的掌握全等三角形的判定与性质及勾股定理以及正方形的性质和等腰直角三角形.20.21aa--,2【解析】试题分析:首先将括号里面的进行通分,然后将除法改成乘法进行分式的化简,选择a的值时,不能使原分式没有意义,即a不能取2和-2.试题解析:原式=232aa+-+·2(2)(2)(1)a aa+--=21aa--当a=0时,原式=21aa--=2.考点:分式的化简求值.x=;(2)原分式方程中“?”代表的数是-1.21.(1)0【解析】【分析】(1)“?”当成5,解分式方程即可,(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.【详解】x-得(1)方程两边同时乘以()2()+-=-5321xx=解得0x=是原分式方程的解.经检验,0(2)设?为m,x-得方程两边同时乘以()2()+-=-m x321x=是原分式方程的增根,由于2x=代入上面的等式得所以把2()3221m+-=-m=-1所以,原分式方程中“?”代表的数是-1.【点睛】本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.22.(1)PD是⊙O的切线.证明见解析.(2)1.【解析】试题分析:(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;(2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE•CP的值.试题解析:(1)如图,PD是⊙O的切线.证明如下:连结OP ,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP ,∴∠OAP=∠OPA=30°,∵PA=PD ,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD 是⊙O 的切线.(2)连结BC ,∵AB 是⊙O 的直径,∴∠ACB=90°,又∵C 为弧AB 的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C ,∠CAB=∠APC ,∴△CAE ∽△CPA ,∴,∴CP•CE=CA 2=()2=1.考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.23. (1)见解析;(2) 40°.【解析】【分析】(1)根据角平分线的性质可得出∠BCD=∠ECD ,由DE ∥BC 可得出∠EDC=∠BCD ,进而可得出∠EDC=∠ECD ,再利用等角对等边即可证出DE=CE ;(2)由(1)可得出∠ECD=∠EDC=35°,进而可得出∠ACB=2∠ECD=70°,再根据等腰三角形的性质结合三角形内角和定理即可求出∠A 的度数.【详解】(1)∵CD 是∠ACB 的平分线,∴∠BCD=∠ECD .∵DE ∥BC ,∴∠EDC=∠BCD ,∴∠EDC=∠ECD ,∴DE=CE .(2)∵∠ECD=∠EDC=35°,∴∠ACB=2∠ECD=70°.∵AB=AC ,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°.【点睛】本题考查了等腰三角形的判定与性质、平行线的性质以及角平分线.解题的关键是:(1)根据平行线的性质结合角平分线的性质找出∠EDC=∠ECD ;(2)利用角平分线的性质结合等腰三角形的性质求出∠ACB=∠ABC=70°.24.(1)0.3 L ;(2)在这种滴水状态下一天的滴水量为9.6 L.【解析】【分析】(1)根据点()0,0.3的实际意义可得;(2)设W 与t 之间的函数关系式为W kt b =+,待定系数法求解可得,计算出24t =时W 的值,再减去容器内原有的水量即可.【详解】(1)由图象可知,容器内原有水0.3 L.(2)由图象可知W与t之间的函数图象经过点(0,0.3),故设函数关系式为W=kt+0.3.又因为函数图象经过点(1.5,0.9),代入函数关系式,得1.5k+0.3=0.9,解得k=0.4.故W与t之间的函数关系式为W=0.4t+0.3.当t=24时,W=0.4×24+0.3=9.9(L),9.9-0.3=9.6(L),即在这种滴水状态下一天的滴水量为9.6 L.【点睛】本题考查了一次函数的应用,关键是利用待定系数法正确求出一次函数的解析式.25.(1)见解析;(2)S四边形ADOE =【解析】【分析】(1) 根据矩形的性质有OA=OB=OC=OD,根据四边形ADOE是平行四边形,得到OD∥AE,AE=OD. 等量代换得到AE=OB.即可证明四边形AOBE为平行四边形.根据有一组邻边相等的平行四边形是菱形即可证明.(2)根据菱形的性质有∠EAB=∠BAO.根据矩形的性质有AB∥CD,根据平行线的性质有∠BAC=∠ACD,求出∠DCA=60°,求出AD=根据面积公式SΔADC,即可求解.【详解】(1)证明:∵矩形ABCD,∴OA=OB=OC=OD.∵平行四边形ADOE,∴OD∥AE,AE=OD.∴AE=OB.∴四边形AOBE为平行四边形.∵OA=OB,∴四边形AOBE为菱形.(2)解:∵菱形AOBE,∴∠EAB=∠BAO.∵矩形ABCD,∴AB∥CD.∴∠BAC=∠ACD,∠ADC=90°.∴∠EAB=∠BAO=∠DCA.∵∠EAO+∠DCO=180°,∴∠DCA=60°.∵DC=2,∴AD=∴S ΔADC =122⨯⨯= ∴S四边形ADOE =【点睛】考查平行四边形的判定与性质,矩形的性质,菱形的判定与性质,解直角三角形,综合性比较强. 26.(1)10;(2)87;(3)9环 【解析】【分析】(1)根据众数的定义,一组数据中出现次数最多的数,结合统计图得到答案.(2)先求这组成绩的平均数,再求这组成绩的方差;(3)先求原来7次成绩的中位数,再求第8次的射击成绩的最大环数.【详解】解:(1)在这7次射击中,10环出现的次数最多,故这组成绩的众数是10;(2)嘉淇射击成绩的平均数为:()1107101098997++++++=, 方差为:()()()()22221[109791091097-+-+-+- ()()()2228998999]7+-+-+-=. (3)原来7次成绩为7 8 9 9 10 10 10,原来7次成绩的中位数为9,当第8次射击成绩为10时,得到8次成绩的中位数为9.5,当第8次射击成绩小于10时,得到8次成绩的中位数均为9,因此第8次的射击成绩的最大环数为9环.【点睛】 本题主要考查了折线统计图和众数、中位数、方差等知识.掌握众数、中位数、方差以及平均数的定义是解题的关键.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.二次函数2y x =的对称轴是( )A .直线y 1=B .直线x 1=C .y 轴D .x 轴2. 如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A .20°B .30°C .40°D .50°3.如图,一束平行太阳光线FA 、GB 照射到正五边形ABCDE 上,∠ABG =46°,则∠FAE 的度数是( )A .26°.B .44°.C .46°.D .72°4.如果将抛物线2y x 2=+向下平移1个单位,那么所得新抛物线的表达式是A .()2y x 12=-+B .()2y x 12=++C .2y x 1=+D .2y x 3=+5.如图1,点F 从菱形ABCD 的顶点A 出发,沿A→D→B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A .5B .2C .52D .256.小手盖住的点的坐标可能为( )A .()5,2B .()3,4-C .()6,3-D .()4,6--7.如图,已知△ABC ,按以下步骤作图:①分别以 B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点 M ,N ;②作直线 MN 交 AB 于点 D ,连接 CD .若 CD=AC ,∠A=50°,则∠ACB 的度数为( )A .90°B .95°C .105°D .110°8.已知关于x 的一元二次方程2230x kx -+=有两个相等的实根,则k 的值为( )A .26±B .6±C .2或3D .2或39.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3π-C .23π-D .223π-10.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为( )A .0.96×107B .9.6×106C .96×105D .9.6×102二、填空题(本题包括8个小题)11.如图,正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,位似比为2:3,点B 、E 在第一象限,若点A 的坐标为(1,0),则点E 的坐标是______.12.已知线段a =4,线段b =9,则a ,b 的比例中项是_____.13.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠AED 的正切值等于__________.14.若一个多边形的内角和是900º,则这个多边形是 边形.15.如图,矩形ABCD 面积为40,点P 在边CD 上,PE ⊥AC ,PF ⊥BD ,足分别为E ,F .若AC =10,则PE+PF =_____.16.一只蚂蚁从数轴上一点 A 出发,爬了7 个单位长度到了+1,则点 A 所表示的数是_____17.如图,AB=AC ,要使△ABE ≌△ACD ,应添加的条件是 (添加一个条件即可).18.在Rt △ABC 中,∠C =90°,AB =2,BC =3,则sin2A =_____. 三、解答题(本题包括8个小题) 19.(6分)已知,如图,BD 是ABC ∠的平分线,AB BC =,点P 在BD 上,PM AD ⊥,PN CD ⊥,垂足分别是M 、N .试说明:PM PN =.20.(6分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.求甲、乙两种树苗每棵的价格各是多少元?在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?21.(6分)先化简,再求值:22+x 21(-)21-1x x x x x÷-+,请你从﹣1≤x <3的范围内选取一个适当的整数作为x 的值.22.(8分)我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数.另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的a、b、c的数是一组勾股数.然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作《九章算术》中,书中提到:当a=12(m2﹣n2),b=mn,c=12(m2+n2)(m、n为正整数,m>n时,a、b、c构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n=5,求该直角三角形另两边的长.23.(8分)解不等式组:2(3)47{22x xxx+≤++>并写出它的所有整数解.24.(10分)漳州市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:请将以上两幅统计图补充完整;若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有_ ▲人达标;若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?25.(10分)如图,已知反比例函数y=kx(x>0)的图象与一次函数y=﹣12x+4的图象交于A和B(6,n)两点.求k和n的值;若点C(x,y)也在反比例函数y=kx(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.26.(12分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4). 请画出△ABC向左平移5个单位长度后得到的△A B C;请画出△ABC关于原点对称的△A B C;在轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】【分析】根据顶点式y=a(x-h)2+k的对称轴是直线x=h,找出h即可得出答案.【详解】解:二次函数y=x2的对称轴为y轴.故选:C .【点睛】本题考查二次函数的性质,解题关键是顶点式y=a(x-h)2+k的对称轴是直线x=h,顶点坐标为(h,k).2.C【解析】【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】∴∠3=∠1=50°,∴∠2=90°−50°=40°.故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.3.A【解析】【分析】先根据正五边形的性质求出∠EAB的度数,再由平行线的性质即可得出结论.【详解】解:∵图中是正五边形.∴∠EAB=108°.∵太阳光线互相平行,∠ABG=46°,∴∠FAE=180°﹣∠ABG﹣∠EAB=180°﹣46°﹣108°=26°.故选A.【点睛】此题考查平行线的性质,多边形内角与外角,解题关键在于求出∠EAB.4.C【解析】【分析】根据向下平移,纵坐标相减,即可得到答案.【详解】∵抛物线y=x2+2向下平移1个单位,∴抛物线的解析式为y=x2+2-1,即y=x2+1.故选C.5.C【解析】【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,5BE和a.【详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm1.. ∴AD=a.∴12DE•AD=a.∴DE=1.当点F从D到B5∴5Rt△DBE中,()2222=521 BD DE--=,∵四边形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=5 2 .故选C.【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.6.B【解析】【分析】根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案.【详解】根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有B符合.故选:B.【点睛】此题考查点的坐标,解题的关键是记住各象限内点的坐标的符号,进而对号入座,四个象限的符号特点分7.C【解析】【分析】根据等腰三角形的性质得到∠CDA=∠A=50°,根据三角形内角和定理可得∠DCA=80°,根据题目中作图步骤可知,MN垂直平分线段BC,根据线段垂直平分线定理可知BD=CD,根据等边对等角得到∠B=∠BCD,根据三角形外角性质可知∠B+∠BCD=∠CDA,进而求得∠BCD=25°,根据图形可知∠ACB=∠ACD+∠BCD,即可解决问题.【详解】∵CD=AC,∠A=50°∴∠CDA=∠A=50°∵∠CDA+∠A+∠DCA=180°∴∠DCA=80°根据作图步骤可知,MN垂直平分线段BC∴BD=CD∴∠B=∠BCD∵∠B+∠BCD=∠CDA∴2∠BCD=50°∴∠BCD=25°∴∠ACB=∠ACD+∠BCD=80°+25°=105°故选C【点睛】本题考查了等腰三角形的性质、三角形内角和定理、线段垂直平分线定理以及三角形外角性质,熟练掌握各个性质定理是解题关键.8.A【解析】【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于k的方程,解之即可得出结论.【详解】∵方程2x kx-+=有两个相等的实根,230∴△=k2-4×2×3=k2-24=0,解得:k=±故选A.。

人教版2019-2020学年九年级(上)开学数学试卷【含答案】

人教版2019-2020学年九年级(上)开学数学试卷【含答案】

人教版2019-2020学年九年级(上)开学数学试卷一、选择题(每小题 3 分,共计 30 分)1.实数2-,,0.2-,17,π中,无理数的个数是( ) A .2 个 B .3 个C .4 个D .5 个2.下列运算中,正确的是( )A.x3•x 2=x5(x 2)3=x 5C .2x 3÷x 2=xD .﹣(x ﹣1)=﹣x ﹣13.下列图形中,对称轴条数最多的是()A .B .C .D .4.下列命题中正确的是( )A .对角线互相垂直的四边形是菱形 B.对角线相等的四边形是矩形 C .对角线相等且互相垂直的四边形是菱形 D .对角线相等的平行四边形是矩形5.制造一种产品,原来每件成本是 100 元,由于连续两次降低成本,现在的成本是 81 元, 则平均每次降低的百分率是()A .8.5%B .9%C .9.5%D .10%6.如图,修建抽水站时,沿着倾斜角为30°的斜坡铺设管道,若量得水管AB 的长度为80米,那么点B 离水平面的高度B C 的长为()A.B.C.40米D.10米7.直线132y x=+与坐标轴分别交于,A B两点,O为坐标原点,则AOB∆的面积是()B. C.40米 D.10米7.直线132y x=+与坐标轴分别交于A、B两点,O为坐标原点,则AOB∆的面积是()A.4.5 B.6 C.9 D.188.反比例函数1myx-=的图象在第一、三象限,则m的取值范围是()A.m≥1 B.m≤1 C.m>1 D.m<19.如图,在△ABC 中,D 是A B 边上一点,DE∥BC,DF∥AC,下列结论正确的是()A.AD AEBD AC= B.DE AEBF AC= C.AD AEAB AC= D.AD DFBD AC=10.甲、乙两人以相同路线前往距离学校10km 的科技中心参观学习.图中y1 与y2 分别表示甲、乙两人前往目的地所走的路程y(km)随时间x(分)变化的函数图象.以下说法:①乙比甲提前12 分钟到达;②甲的平均速度为15 千米/小时;③乙走了5.5km 后遇到甲;④当乙到达时甲距离科技中心4.4km.其中正确的结论有()A.4 个B.3 个C.2 个D.1个二、填空题(每小题3分,共计30 分)11.数字72000 用科学记数法表示为.12.函数13xyx+=-的自变量x的取值范围是.13.不等式组24050xx-≥⎧⎨+≥⎩的解集为.14.把多项式2a2﹣4ab+2b2 分解因式的结果是.15.如果x=2 是方程x2﹣kx﹣k+5=0 的一个根,那么k的值等于.16.在反比例函数2yx=-的图象上有两点(,y1),(﹣2,y2),则y1y2.(填“>”或“<”)17.如图,在平行四边形A BCD 中,E 为B C 边上的点,连接A E 交B D 于F,AE 的延长线与D C的延长线交于点K,若B E:EC=5:4,则B F:FD 等于.18.等腰三角形中,腰长为4 5cm,底边长8cm,则它的顶角的正切值是.19.如图,菱形A BCD 中,∠BAD=60°,M 是A B 的中点,P 是对角线A C 上的一个动点,若P M+PB 的最小值是3,则A B 长为.20.在△ABC 中,∠BAC=90°,点D、E 分别在BC、AC 上,AC=CD,2∠EDC=∠B,AB=3,CE=2,AE=.三、解答题(其中21-22 题各7 分,23-24 题各8 分,25-27 题各10 分,共计60 分)21.先化简,再求值:21()(1)11x x x x -÷++-,其中2cos452cos60x =︒+︒. 22.图 1,图 2 均为正方形网格,每个小正方形的边长均为 1,各个小正方形的顶点叫做格点,请在下面的网格中按要求分别画图,使得每个图形的顶点均在格点上.(1)画一个边长均为整数的等腰三角形,且面积等于12;( 2 )5,并直接写出这个三角形的面积.23.如图,在平面直角坐标系 xOy 中,一次函数 y =ax +b (a ≠0)与反比例函数k y x=(k ≠0)的图象交于点 A (4,1)和 B (﹣1,n ).(1)求 n 的值和直线 y =ax +b 的表达式;(2)根据这两个函数的图象,直接写出不等式0kax b x+-<的解集.24.如图甲楼 AB 的高为 40 米,小华从甲楼顶 A 测乙楼顶 C 仰角为α=30°,观测乙楼的底部 D 俯角为β=45°;(1)求甲、乙两楼之间的距离;(2)求乙楼的高度(结果保留根号).25.某商场销售一批A 型衬衫,平均每天可售出20 件,每件赢利40 元,为了增加盈利并尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价 1 元,商场平均每天可多售出 2 件.(1)若商场平均每天赢利1200 元,每件衬衫应降价多少元?(2)在(1)的定价情况下,衬衫的成本是100 元,为了更快的盈利和清理库存,商店选择一种领带与 A 型衬衫成套出售,领带按照标价的8 折出售,领带标价是其进价的2倍,要使每套的利润率不低于40%,则选择的领带的成本至少多少钱?26.已知△ABC 中,AB=AC,点D、H 分别在边BC、AC 上,BH 与AD 交于点E,∠BAC=∠BED.(1)如图①,若∠BAC=60°,求证:BD=CH;(2)如图②,连接EC,若BE=2AE,求证:∠BED=2∠DEC.(3)在(2)的条件下,延长AE 至点F,连接BF、CF,∠ABE+∠ACE+∠BFE=90°,∠BFC=90°,DE = 2,求CH 的长.27.如图,平面直角坐标系中,点O 为BD 交线段 OA 于点 E ,E 点坐标为(0,1),且 D 点恰在 AB 的垂直平分线上. (1)求 A 点坐标; (2)动点 P 从点 O 出发沿线段 OA 以每秒 1 个单位的速度向终点 A 运动,动点 Q 从C 出发沿折线 C ﹣﹣O ﹣﹣y 轴负方向以每秒 4 个单位长度的速度运动.P 、Q 两点同时出发,且 P 点到达 A 处时,P 、Q 两点同时停止运动.设点 P 的运动时间为 t 秒,△BPQ 的面积为 S ,请用含 t 的式子表示 S ,并直接写出相应的 t 的取值范围;(3)在(2)问的条件下,是否存在 t 值,使得△BPQ 是以坐标轴为对称轴的等腰三角形?若存在,请求出符合条件的 t 值;若不存在,请说明理由.试卷答案一、选择题1-5: AAADD 6-10: CCCDD二、填空题11. 47.210⨯ 12.3x ≠ 13.2x ≥14.()22a b - 15.3 16.>17.5918.4319.20.6三、解答题21.解:∵2cos452cos60x =︒+︒,∴122122x =⨯+⨯=, 原式()2211111x x x x x x +--+=÷+- 22211x x x x-=⋅+ 1x =-,把1x =代入上式,原式=22.解:(1)如图所示,ABC ∆即为所求:(2)如图所示,DEF ∆即为所求:152DEF S ∆==.23.解:(1)把点()4,1A 代入ky x=,解得4k =. 把点()4,1B 和()1,4B --代入y ax b =+得414k b k b +=⎧⎨-+=-⎩解得13k b =⎧⎨=-⎩∴一次函数的表达式为3y x =-.(2)观察图象可知:0kax b x+-<的解集为:1x <-或04x <<. 24.解:(1)过点A 作AE CD ⊥于E ,则四边形ABCD 为矩形,∴40DE AB ==米,∵45β=︒∴40AE DE ==米即两楼之间的距离为40米;(2)在Rt ACE ∆中,∵30α=︒,40AE =米,∴tan 30CEAE=︒,∴40CE ==则楼高为:403DE CE +=+(米).答:乙楼的高度为(403+米. 25.解:(1)设每件衬衫应降价x 元,则每天多销售2x 件,由题意,得()()40 202 1200x x -+=,解得:120x =,210x =, ∵要增加盈利并尽快减少库存,∴每件衬衫应降价20元;(2)设选择的领带的成本为y 元,由题意,得()()()4020 0.82100 40%y y y -+⨯-≥+⨯,解得100y ≥.答:选择的领带的成本至少100元.26.(1)证明:如图①中,∵AB=AC,∠BAC=60°,∴△ABC 是等边三角形,∴∠BAC=∠C=60°,∵∠BAC=∠BED,∴∠ABH+∠BAE=∠BAE+∠DAC,∴∠ABH=∠DAC,∴△BAH≌△ACD,∴AH=CD,∵BC=AC,∴BD=CH.(2)证明:如图②中,取BE 的中点F,连接AF.∵BE=2AE,BF=EF,∴AE=EF,∴∠EAF=∠EFA,∴∠BED=∠EAF+∠EFA=2∠EFA,∵AB=AC,∠FBA=∠EAC,BF=AE,∴△BAF≌△EAC,∴∠BFA=∠AEC,∴∠EFA=∠DEC,∴∠BED=2∠DEC.(3)解:取BE 的中点F,连接AF.作EM⊥BF 于M,DN⊥AC 于N,连接FM.∵∠ABE=∠CAD,∠ABE+∠ACE+∠BFE=90°,∠FEC=∠ACE+∠DAC=∠ACE+∠ABF,∴∠BFE+∠FEC=90°,∵∠MEF+∠AFB=90°,∠BFE+∠EFC=90°∴∠MEF=∠FEC=∠EFC,∴CF=CE,∵∠BEF=2∠FEC,∴∠BEM=∠FEM=∠CEF,∵∠EBM+∠BEM=90°,∠EFB+∠MEF=90°,∴∠EBF=∠EFB,∴EB=EF,∴BM=MF,∵BF=FE,∴FM∥EF,FM=12 EF,∵EF=BE=2AE,∴FM=AE,∴四边形AEMF 是平行四边形,∴AF=EM=EC=CF,∵EM∥CF,∴四边形ECFM 是平行四边形,∵CE=CF,∠EMF=90°,∴四边形ECFM 是正方形,∴∠FEM=∠FEC=45°,∴∠BEF=2∠FEC=90°,∴∠AEB=90°,∵∠ABE+∠BAE=90°,∠ABE=∠CAD,∴∠BAE+∠CAD=90°,∴∠BAC=90°,△ABC 是等腰直角三角形,∴tan∠ABE=12 AE AHBE AB==,∴AB=AC=2AH,∴AH=CH,设EH=a,则AE=2a,BE=4a,AB=AC=,∵1tan2DNDAAN∠=,DN CN=,∴133CN DN AC a ===,∵AD=,∴1023a a=,∴4a=∴CH==.27.解:(1)如图1 中,作DF⊥OC 于F.∵|a+2|=﹣b2+6b﹣9.∴|a+2|+(b﹣3)2=0,∵|a+2|≥0,(b﹣3)2≥0,∴a=﹣2,b=3,∴B(﹣2,0),C(3,0),∵E(0,1),∴OB=2,OE=1,OC=3,BE==,又∵D在AB的垂直平分线上,AD AC⊥,∴BOE BDC∠=∠,∵EBO CBD∠=∠,∴BOE BDC∆∆,∴OB EO BE BD CD BC==,∴21 BD DC==∴BD=CD=∴BE DE==∵EO∥DF,∴OB=OF=2,∴DF=2OE=2,∴D(2,2),设直线AD 的解析式是y=kx+b,则22 30k bk b+=⎧⎨+=⎩,解得:26kb=-⎧⎨=⎩,则直线AD 的解析式是y=﹣2x+6,∴A(0,6).(2)当304t ≤≤时,Q 在线段OC 上,则54PB t =-,OP t =, 则()115422S PB OP t t =⋅=-,即2522S t t =-+; 当364t <≤时,Q 在y 轴的负半轴上,P 在线段OA 上,OP t =,43OQ t =-, 则()4353PQ t t t =+-=- 则()115325322S PQ OB t t =⋅=⨯-⨯=-. (3)当对称轴是y 轴时,Q 在OC 上,此时0≤t ≤34,OQ =3﹣4t ,则OQ =OA ,即3﹣4t =2, 解得:14t =; 当x 轴是对称轴时,364t <≤时,,Q 在y 轴的负半轴上,P 在线段OA 上,OP =t ,OQ =4t ﹣3, OP =OQ ,则t =4t ﹣3,解得:t =1.总之,t 14=或1.。

2019-2020学年度第一学期九年级数学开学考数学试卷

2019-2020学年度第一学期九年级数学开学考数学试卷

2019-2020学年第一学期开学考九年级数学试题一、选择题(每小题3分,共30分)1.要使式子错误!未找到引用源。

有意义,则x 的取值范围是( ) A.x>0B.x ≥-2C.x ≥2D.x ≤22.下列计算正确的是( ) A .234265+=B .842=C .2733÷=D .2(3)3-=-3.下列各组线段中,能够组成直角三角形的是( ) A .6,7,8 B .5,6,7 C .4,5,6 D .3,4,5 4.下列二次根式中,不能与合并的是( ) A .B .C .D .5.一组数据4,5,6,7,7,8的中位数和众数分别是( )A .7,7B .7,6.5C .5.5,7D .6.5,76.如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( )A .40°B .50°C .60°D .80°7.表示一次函数y =mx+n 与正比例函数y =mnx(m 、n 是常数且mn ≠0)图象是( )8.如图,函数y=2x 和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为( )A.x<错误!未找到引用源。

B.x<3C.x>错误!未找到引用源。

D.x>31FEDCBA年级________班级__________姓名__________学号____________9.如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( ) A.4 cmB.5 cmC.6 cmD.10 cm10.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为( )A .54 B .52C .53D .65二、填空题(每小题3分,共18分) 11. 计算123 的结果是 .12.在一次函数y=(2-k)x+1中,y 随x 的增大而增大,则k 的取值范围为 . 13.在综合实践课上,六名同学做的作品的数量(单位:件)分别是:5,7,3,x ,6,4;若这组数据的平均数是5,则这组数据的中位数是 件.14.在直角三角形ABC 中,∠C=90°,CD 是AB 边上的中线,∠A=30°,AC=5 3,则△ADC 的周长为 。

最新2019届九年级上学期起始考数学试题(附答案)

最新2019届九年级上学期起始考数学试题(附答案)

台州市书生中学 2018学年第一学期 起始考九年级数学试卷命题人: 解题人: 2018.09 (满分:分 考试时间:分钟)一、选择题(每题4分,共40分)1、下列方程中,关于x 的一元二次方程是( )A.3(x+1) 3 =2(x+1)B.x -1 +5=0C.ax 2 +bx+c=0D.x 2 +2x=x-1 2、抛物线y =-x 2+2x +3的顶点坐标为( )A .(1,3)B .(-1,4)C .(-1,3)D .(1,4) 3、已知二次函数y =a(x -h)2+k(a>0),其图象过点A(0,2),B(8,3),则h 的值可以是( )A .6B .5C .4D .34、已知二次函数y=2x 2﹣2(a+b )x+a 2+b 2,a ,b 为常数,当y 达到最小值时,x 的值为( )A .a+bB .C .﹣2abD .5、一元二次方程()212=-x 的解是( ) A .x 1 =-1-,x 2 =-1+B .x 1 =1-,x 2 =1+C .x 1 =3,x 2 =-1D .x 1 =1,x 2 =-36、若关于x 的一元二次方程mx 2-2x +1=0无实数根,则一次函数y =(m -1)x -m 的图象不经过( )A .第四象限B .第三象限C .第二象限D .第一象限 7、有一人患了流感,经过两轮传染后共有64人患了流感,设每轮传染中平均一个人传染了x 个人,列出的方程是( )A .()164x x +=B .()164x x -=C .()2164x += D .()1264x +=8、在同一平面直角坐标系中,函数2y kx k =-和(0)y kx k k =+≠的图象大致是( )9、已知二次函数y =(x -h )2+1(h 为常数)在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为( )A .1或-5B .-1或5C .1或-3D .1或3 10、二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,对称轴为x =1,给出下列结论:①abc>0;②当x >2时,y >0;③3a +c >0;④3a+b >0.其中正确的结论有( )A .①③B .①④C .①③④D .②③④ 二、填空题(每题5分,共40分)11、方程x(2x -1)=5(x+3)的一般形式是_______________,其中二次项系数、一次项系数、常数项的和是 。

2020-2021学年浙江省台州市书生中学九年级数学(上)起始考试卷(无答案)

2020-2021学年浙江省台州市书生中学九年级数学(上)起始考试卷(无答案)

15. 一 段 抛 物 线 L:y x(x 3) c(0 x 3) 与 直 线 l:y x 2 有 唯 一 公 共 点 , 则 c 的 取 值 范 围 为
_______________.
16.已知函数 y x2 bx 2b (b 为常数 ) 图象不经过第三象限,当 - 5 x 1时,函数的最大值与最小值之差为 16, 则 b 的值为__________.
19.(本题 8 分)阅读下面的例题:
范例:解方程 x2 | x | 2 0. 解:当 x 0 时,原方程化为 x2 x 2 0. 解得 x1 1(舍),x2 2; 当 x 0 时,原方程化为 x2 x 2 0. 解得 x1 1(舍),x2 -2. 综上所述,原方程的解为 x1 2,x2 -2. 请参照例题解方程 x2 | x 1| 1 0.
(1)求Байду номын сангаас条抛物线的解析式;
(2)若有搭建一个矩形的“支撑架” AD DC CB ,使 C, D .点在抛物线上, A, B 点在地面 OM 上( A 在 B 左侧),则
这个“支撑架”总长的最大值是多少?
23.(本题 12 分)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立
22.(本题 12 分)已知,点 A(m,n) 在函数 y1 (x k )2 k (k 0) 图象上,也在函数 y2 (x k )2 - k 图象上. (1)观察 y1,y2 图象的顶点位置,发现它们均在某个函数图象上,请写出这个函数表达式. (2)若 k 3,当 - 3<x<3时,请比较 y1,y2 的大小. (3)求证: m n> 3 .
的所有正整数 m 的和为( )
A. 6
B. 5
C. 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年浙江省台州市椒江区书生中学九年级(上)开学数学试卷
一、选择题(每小题4分,共40分)
1.(4分)(2007•兰州)下列方程中是一元二次方程的是( ) A .210x +=
B .21y x +=
C .210x +=
D .
21
1x x
+= 2.(4分)(2019秋•椒江区校级月考)方程223x x -=-化成一般形式后,它的各项系数之和是( ) A .5-
B .0
C .4
D .2
3.(4分)(2016x 的取值范围为( ) A .2x …
B .3x ≠
C .2x …或3x ≠
D .2x …且3x ≠
4.(4分)(2019秋•椒江区校级月考)如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( ) A .7,24,25
B .23,24,25
C .6,8,10
D .4,172,1
82
5.(4分)(2019春•潍坊期末)能表示一次函数y mx n =+与正比例函数(y mnx m =,n 是常数且0)m ≠的图象的是( )
A .
B .
C .
D .
6.(4分)(2019春•密山市期末)如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若3EF =,则菱形ABCD 的周长是( )
A .12
B .16
C .20
D .24
7.(4分)(2017•崂山区校级自主招生)把抛物线2241y x x =-++的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是( )
A .22(1)6y x =--+
B .22(1)6y x =---
C .22(1)6y x =-++
D .22(1)6y x =-+-
8.(4分)(2019秋•椒江区校级月考)实数x ,y 满足2222()(1)2x y x y +++=,则22x y +的值为( ) A .1
B .2
C .2-或1
D .2或1-
9.(4分)(2017•温州)我们知道方程2230x x +-=的解是11x =,23x =-,现给出另一个方程
2(23)2(23)30x x +++-=,它的解是( ) A .11x =,23x =
B .11x =,23x =-
C .11x =-,23x =
D .11x =-,23x =-
10.(4分)(2014•孝感)抛物线2y ax bx c =++的顶点为(1,2)D -,与x 轴的一个交点A 在点(3,0)-和(2,0)-之间,其部分图象如图,则以下结论:
①240b ac -<;②0a b c ++<;③2c a -=;④方程220ax bx c ++-=有两个相等的实数根. 其中正确结论的个数为( )
A .1个
B .2个
C .3个
D .4个
二、填空题(每小题5分,共30分)
11.(5分)(2019秋•椒江区校级月考)2y x =过(1,)A a ,(2,)B b ,则a b (填>,<或)=
12.(5分)(2008•泰州)一种药品经过两次降价,药价从原来每盒60元降至现在的48.6元,则平均每次降价的百分率是 %.
13.(5分)(2019秋•闵行区月考)已知抛物线21y x x =--与x 轴的一个交点为(,0)m ,则代数式22019m m -+的值为
14.(5分)(2015•石家庄校级模拟)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为1S ,2S ,则12S S +的值为 .
15.(5分)(2007•南宁)已知二次函数2y ax bx c =++的图象如图所示,则点(,)P a bc 在第 象限.
16.(5分)(2013•自贡)已知关于x 的方程2()10x a b x ab -++-=,1x 、2x 是此方程的两个实数根,现给
出三个结论:①12x x ≠;②12x x ab <;③22
2212x x a b +<+.则正确结论的序号是 .(填上你认为正
确结论的所有序号)
三、简答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分)
17.(8分)(2019秋•椒江区校级月考)计算: (1)3(1)22x x x -=-; (2)23740x x -+=
18.(8分)(2013•泰安校级模拟)在ABC ∆中,30C ∠=︒,4AC cm =,3AB cm =,求BC 的长.
19.(8分)(2019•台州)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h (单位:)m 与下行时间x (单位:)s 之间具有函数关系3
610
h x =-+,乙离一楼地面的高度y (单位:)m 与下行时间x (单位:)s 的函数关系如图2所示.
(1)求y 关于x 的函数解析式;
(2)请通过计算说明甲、乙两人谁先到达一楼地面.
20.(8分)(2016•南充)已知关于x 的一元二次方程26(21)0x x m -++=有实数根. (1)求m 的取值范围;
(2)如果方程的两个实数根为1x ,2x ,且1212220x x x x ++…,求m 的取值范围.
21.(10分)(2013•贵港)如图,在直角梯形ABCD 中,//AD BC ,90B ∠=︒,//AG CD 交BC 于点G ,点E 、F 分别为AG 、CD 的中点,连接DE 、FG . (1)求证:四边形DEGF 是平行四边形;
(2)当点G 是BC 的中点时,求证:四边形DEGF 是菱形.
22.(12分)(2014•宁波)如图,已知二次函数2y ax bx c =++的图象过(2,0)A ,(0,1)B -和(4,5)C 三点. (1)求二次函数的解析式;
(2)设二次函数的图象与x 轴的另一个交点为D ,求点D 的坐标;
(3)在同一坐标系中画出直线1y x =+,并写出当x 在什么范围内时,一次函数的值大于二次函数的值.
23.(12分)(2014•资阳)某商家计划从厂家采购空调和冰箱两种产品共 20 台, 空调的采购单价1y (元/台) 与采购数量1x (台)满足111201500(020y x x =-+<…,1x 为整数) ;冰箱的采购单价2y (元/台) 与采购数量2x (台)满足222101300(020y x x =-+<…,2x 为整数) .
(1) 经商家与厂家协商, 采购空调的数量不少于冰箱数量的11
9
,且空调采购单价不低于 1200 元, 问该商家共有几种进货方案?
(2) 该商家分别以 1760 元/台和 1700 元/台的销售单价售出空调和冰箱, 且全部售完 . 在 (1) 的条件下, 问采购空调多少台时总利润最大?并求最大利润 .
24.(14分)(2019•杭州)设二次函数121()()(y x x x x x =--,2x 是实数). (1)甲求得当0x =时,0y =;当1x =时,0y =;乙求得当12x =时,1
2
y =-.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.
(2)写出二次函数图象的对称轴,并求该函数的最小值(用含1x ,2x 的代数式表示).
(3)已知二次函数的图象经过(0,)m 和(1,)n 两点(m ,n 是实数),当1201x x <<<时,求证:1016
mn <<.。

相关文档
最新文档