储层砂体构型建模
储层地质建模
第八章储层地质建模油藏描述和模拟是现代油藏管理的两大支柱。
油藏描述的最终结果是要建立油藏地质模型。
油藏地质建模是近年来兴起的一项对油藏类型、油藏几何形态、规模大小、厚度及储层参数空间分布等特征进行高度概括的新技术。
油藏地质模型的核心是储层地质模型。
高精度的三维储层地质模型不仅能深刻揭示储层岩石物理性质、空间分布的非均质性,而且对油田开发中油水运动规律有着十分重要的意义。
可以说,一个好的储层地质模型是成功进行油藏开发及部署的关键。
一、地质建模方法及其评述(一)地质建模方法在油田不同的勘探开发阶段,由于资料占有程度的不同、勘探目的与任务的不同,因而所建模型的精度及作用亦不同。
据此,可将储层地质模型分为三类,即概念模型、静态模型和预测模型(表8-1)。
表8-1 不同阶段的地质模型(据穆龙新,2000)建模的核心问题是井间储层预测。
在给定资料的前提下,提高储层模型精细度的主要方法即是提高井间预测精度。
利用井资料开展的储层地质模型是建模技术中的关键点,是如何根据已知控制点的资料,通过内插与外推从而了解资料点间及其外围油藏的特性。
根据这一特点,建立定量储层地质模型方法基于两点,即确定性的和随机性的。
1.确定性建模确定性建模方法认为,资料控制点间的差值是唯一的解,是确定性的。
传统地质工作的内插编图,就属于这一类。
克里金作图和一些数学地质方法作图也属于这一类建模方法。
开发地震的储层解释成果和水平井沿层直接取得的数据或测井解释成果,都是确定性建模的重要依据。
井间插值方法很多,大致可分为传统的统计学插值方法和地质统计学估值方法(主要是克里金方法)。
由于传统的数理统计插值方法只考虑观测点与待估点之间的距离,而不考虑地质规律所造成的储层参数在空间上的相关性,因此插值精度很低。
实际上,这种插值方法不适用于地质建模。
为了提高对储层参数的估值精度,人们广泛应用克里金方法来进行井间插值。
克里金法是地质统计学的核心,它以变差函数为基本工具,研究区域化变量的空间分布规律。
储层建模概念
储层建模概念1.1 储层建模概念三维储层建模,即建立储层特征三维分布的数字化模型,其本质是基于三维网格表征储层特征的分布,其成果是三维数据体。
这一技术是上世纪80年代随着计算机技术的发展而发展起来的。
基于计算机存储和显示技术,将储层三维网块化(3D griding)后,对各个网块(grid)赋以各自的储层参数值,并按三维空间分布位置存入计算机内,形成了三维数据体,这样就可以进行储层的三维显示,可以任意切片和切剖面(不同层位、不同方向剖面),以及进行各种运算和分析。
值得注意的是,三维地质建模的概念有狭义和广义之分。
狭义的三维地质建模是以单井解释和平面地质研究(包括地质规律研究)为基础,应用三维插值(或模拟)的方法建立三维地质模型;而广义的三维地质建模则涵盖了单井解释、平面地质研究、地质规律(模式)研究等,最终建立三维地质模型。
1.2 储层建模意义从本质上讲,三维储层建模是从三维的角度对储层进行定量的研究,其核心是对井间储层进行多学科综合一体化、三维定量化及可视化的预测。
与传统的二维储层研究相比,三维储层建模具有以下明显的优势:(1)能更客观地描述储层,克服了用二维图件描述三维储层的局限性(层内非均质性的侧向变化),可从三维空间上定量地表征储层的非均质性,从而有利于油田勘探开发工作者进行合理的油藏评价及开发管理。
(2)可更精确地计算油气储量。
在常规的储量计算时,储量参数(含油面积、油层厚度、孔隙度、含油饱和度等)均用平均值来表示。
显然,应用平均值计算储量忽视了储层非均质因素,例如,油层厚度在平面上并非等厚,孔隙度和含油饱和度在空间上也是变化的。
应用三维储层模型计算储量时,储量的基本计算单元是三维空间上的网格,其计算精度比基于平均值的储量计算精度高得多。
同时,由于可得到基于网格的储量分布模型,因此,可方便地进行储量查询,如方便地求出不同断块、不同微相、不同流动单元、或任一指定区域的储量值,从而十分有利于储量评价和油藏管理。
基于辫状河砂体构型分析的储层建模研究--以孤东油田七区西馆上段为例
( 中 国石 化 胜 利 油 田 分 公 司 孤 东 采 油 厂 , 山东 东 营 2 5 7 2 3 7 )
[ 摘 要] 在岩心观察和动态分析的基础上, 对孤东油田七区西馆上段砂体进行层次界面的识别和划分,
建立适合孤 东油田辫状河砂 体构型沉积模 式。根据构 型沉积 模式 , 确定好 的心 滩坝 内部 夹层 展布 模式 , 对地 质参
[ 文章编 号 ] 1 6 7 3 — 5 9 3 5 ( 2 0 1 3 ) 0 4 — 0 0 0 8 — 0 4
外 均 被断层 切割 , 研究 区东 与七 区 中相 连 , 地层 发育
Mi a l l ( 1 9 8 5 ) 提 出了储 层构 型 ( Re s e r v o i r a r c h i — t e e t u r e ) , 并 定 义为不 同级 次储 层构成 单元 的几何 形
第2 7卷
第4 期
Vo 1 . 2 7 No . 4
d o i l 1 0 . 3 9 6 9 / J . i s s n . 1 6 7 3 - 5 9 3 5 . 2 0 1 3 . 0 4 . 0 0 3
基于辫状河砂体构 型分析 的储层建模研究
以孤东 油 田七 区西 馆 上段 为例
辫状 河 地 质 营力 强 , 沉 积环 境 有水 浅 流急 的 特 征, 河道 频繁迁 移 , 导致不 同期 次 的储 层 构型单 元 在
空 间上叠 加 、 切割 , 形 成 了大 面积 结 构 复 杂 、 强 非 均
为后 期剩 余 油分 布研究 提供 坚实 的地质依 据 。
1 研 究 区 概 况
流相 沉积 , 主要 发育 有两种 储层 类型 , 即连 片大 面积 分 布储层及 规模 较小 的 土豆状 一条带 状储 层 。 由于 辫状 河频 繁改 道 , 不 同期 次 河 道砂 体 在 空 间 上 叠置
《储层表征与建模》储层构型课件 (一)
《储层表征与建模》储层构型课件 (一)
最近,我认真学习了一门叫做“《储层表征与建模》储层构型课件”的课程,今天我想和大家分享一下我的学习体会。
首先,储层构型是石油地质学中的重要概念,它是指由各种不同地层构成的地质单元形成的整体地质结构。
储层构型的研究可以帮助我们充分了解地质构造、储层特征及储量分布等重要参数。
在《储层表征与建模》储层构型课件中,我们首先介绍了储层构型的基本概念、分类及特征。
我们通过对真实案例的分析,并结合地球物理信息、岩石学、沉积学等相关知识,了解了不同类型的储层构型的形成机理及其特征。
例如:沙岩储层的构型比砂岩储层更加透水性好且具有更高的渗透性,因为沙岩的颗粒更大,空隙度也更大,更适合油气储藏。
其次,该课程中,我们深入学习了储层的表征和建模。
储层表征是其他储层研究工作的基础,简言之,就是用各种方法和工具分析储层研究中得到的各类数据,来建立构造、岩性、成岩作用、孔隙结构等方面的三维数值模型。
而储层建模是在储层表征的基础上,针对具体的储层类型,对储层流体性质、流体流动规律以及地质反演等进行模拟模型的建立,为石油工业调查、勘探、开发和生产等提供重要的理论基础。
最后,在该课程中,我们还了解了储层结构的细节,包括构造刻画、流体地球化学、碳酸盐岩的孔隙空间结构等。
这些细节使我们更好地理解储层构型的形成机理,更准确地把握石油勘探和开发中出现的挑战。
总之,本次学习让我对储层构型的认识更加深入,更加清楚了解了储层表征和建模的基础及其重要性。
对于石油行业工作者和研究人员来说,这门课程具有极高的实践应用价值,在未来的石油勘探和开发工作中将发挥重要作用。
4储层沉积相与储层砂体内部结构
1-227 W51-102
XP3-70 3-70
PC2-149 2-431
2-149
2-213
3-170 3-169
2-433
2-299
PC3-35 3-35
3-184 P48
3-262
2-435
2-353
XP2-299 2-437
2-48
3-271
3-264 3-36
2-90
3-412 3-171
XP3-95
3-89
3-184
2-437 2-48
2-419
3-182 3-200
pj1
PJ1
2-421
2-421
2-295
2-295
P48
3-262 2-435
2-353
2-355 PC2-355
2-425
PC3-37
3-37
2-153
3-283
PC2-303
PC2-153
3-271
3-264 3-36
2-413 2-84
3-269 PC53 P53
3-133
2-82
2-415
3-183
2-179
2-297 3-56
3-181 2-34 3-95
3-177 2-80
3-198
3-88
XP3-61
2-351
3-415 PC3-181
XP3-95
3-89
XP36 P36
2-419
3-182 3-200
2-249
2-144 PC2-144
3-172
PC3-96
2-44 3-123
2-329
3-256
《储层表征与建模》储层构型模式
3st BS within a sandstone-dominated lateral-accretion deposits
Allen(1977)在第一届国际河流沉积学会议(卡尔 加里)明确提出了Fluvial architecture的概念,描述河流
层序中河道和溢岸沉积的几何形态(geometry)及内部组合 (internal arrangement )。
Reservoir architecture
不同级次储层构成 单元的几何形态、大小 、方向及其相互关系。
第二章
储层构型
Reservoir architecture
储层构型基本概念 储层构型模式(河流相) 储层构型分析
储层沉积类型
回顾内容
•冲积扇砂砾岩体 •河流砂体
滩坝 浊积岩 冲积扇
1.5 4.5
6
•湖泊砂体 •风成砂体 •海岸 砂体 •海洋三角洲砂体
42
三角洲
46
河流
我国陆相储油砂体成因类型
•陆棚(浅海)砂体
碳酸盐岩台地-盆地
第一代模式
First generation model
第二代模式
Second generation model 内部构型
第一节 储层构型基本概念
Reservoir architecture
Architecture:
日常用语: 建筑学、建筑结构、 体系结构、结构格式
地质学用语: 构型、构形、结构、 建筑结构、构成单元
构型界面 构型规模 构型要素 岩相分类
储层建模基本概念
储层建模基本概念1、什么是储层地质模型?为什么要建立三维储层地质模型?答:储层地质模型是指能定量表示地下地质特征和各种储层(油藏)三维空间分布的数据体,一个完整的储层地质模型应包括构造模型、沉积模型、储层模型和流体模型等。
三维储层地质建模是从三维的角度对储层的各种属性进行定量的研究并建立相应的三维地质模型,其核心是对井间储层进行三维定量化及可视化的预测,与传统的二维储层研究相比具有以下的优势:1)更客观地描述并展现储层各种属性的空间分布,克服了用二维图件描述三维储层的局限性。
三维储层建模可以从三维空间上定量的表征储层的非均质性,从而有利于油藏工程师进行合理的油藏评价及开发管理。
2)更精确地计算油气储量。
在常规的储量计算时,储层参数(含油面积、有层厚度、孔隙度、含有饱和度等)均用平均值表示,这显然忽视了储层非均质性的影响。
应用三维储层模型计算储量时,储量的基本计算单元是三维空间上的网格(分辨率比二维高得多),因为每一个网格均附有储集体(相)类型的孔、渗、饱等参数。
因此,通过三维空间运算,可计算出实际的含油储集体(砂体)体积、孔隙体积及油气体积,其计算精度比二维储量计算高得多。
3)有利于三维油藏数值模拟。
三维油藏数值模拟要求有一个把油藏各项特征参数在三维空间上定量表征出来的地质模型。
粗化的三维储层地质模型可以直接作为油藏数值模拟的输入器,而油藏数值模拟成败的关键在很大程度上取决于三维储层地质模型的准确性。
2、如何理解储层概念模型、静态模型和预测模型?它们有何异同?答:储层概念模型是指把所描述油藏的各种地质特征,特别是储层,典型化、概念化,抽象成具有代表性的地质模型。
只追求油藏(储层)总的地质特征和关键性地质特征的描述,基本符合实际,并不追求所有局部的客观描述。
静态模型也称实体模型,是把一个具体研究对象(一个油田、一个开发区块或一套层系)的储层,依据资料控制点实测的数据将其储层表征在三维空间的变化和分布如实的描述出来而建立的地质模型,并不追求控制点间的预测精度。
5储层建模
实例1 实例 岩相模型对物性模型的约束效果
岩石物性模型
• •
计算物性模型时用岩相模型进行了约束。 与没用岩相模型进行约束的计算结果比较可以看出,有约束的模型其物性分布与 岩相分布有较好的相似性,这更符合地质规律。
实例1 实例
岩石物性模型
Ed2III油组 小层砂岩平均孔隙度图 油组4小层砂岩平均孔隙度图 油组
实例
储层岩相、沉积岩相模型 储层岩相、
•
从岩相模型中可以很方便的提取出 小层砂体分布图、 小层砂体分布图、小层储集砂体等 厚图等各种地质研究基础图件。 厚图等各种地质研究基础图件。
Ed2I油组8小层纯砂岩等厚图
反映了古河道的 展布
反映了具有储集能 力的砂岩的分布 Ed2I油组8小层孔隙砂岩等厚图
实例
实例
储层岩相、沉积岩相模型 储层岩相、
LC油田 油田Ed3I油组地层剖面图 油田 油组地层剖面图
泥岩 砂岩 泥质砂岩界面做构造约束,井间插值的合理性得到较好的保障。 由于有小层界面做构造约束,井间插值的合理性得到较好的保障。 由于小层内部纵向网格单元的划分十分细致,使模型有了很高的纵向分辩率。 由于小层内部纵向网格单元的划分十分细致,使模型有了很高的纵向分辩率。 将三维模型中提取出的连井剖面投影到二维窗口内,可以直接得到地层剖面图。 将三维模型中提取出的连井剖面投影到二维窗口内,可以直接得到地层剖面图。
Ed2III油组 小层砂岩平均渗透率图 油组4小层砂岩平均渗透率图 油组
根据模型可以很方便的提取出各种地质研究基础图件。例如岩石物性剖面图、 根据模型可以很方便的提取出各种地质研究基础图件。例如岩石物性剖面图、小 层孔隙砂岩的平均孔隙度图、平均渗透率图等等。 层孔隙砂岩的平均孔隙度图、平均渗透率图等等。由于采用了岩相模型作为约束 条件,物性的分布更符合沉积相带的分布特征。 条件,物性的分布更符合沉积相带的分布特征。
扇三角洲储层构型建模方法优选
质模型至今还未建立。
因此,需要探索出一套扇三角洲储层构型建模方法,建立研究区扇三角洲前缘精细地质模型,并用于数模分析剩余油分布,为下步油田调整提供可靠的地质依据。
2 方法概述为建立研究区扇三角洲储层构型模型,优选目前应用最广泛的构型建模方法,包括序贯指示、基于目标模拟和多点地质统计方法。
2.1 序贯指示模拟序贯指示模拟通过一系列门槛值,估计某一类型变量或离散化的连续变量低于某一门槛值的概率,以此确定随机变量的分布。
序贯指示模拟实现的关键技术是指示变换、指示克里金和序贯模拟。
在进行模拟计算之前,首先要进行指示变换,即根据不同的门槛值把原始数据编码成0或1的过程。
在模拟不同的网格节点时各变量的比例是不变的。
当存在局部变化时,可应用具有趋势的序贯指示模拟方法。
具有趋势的序贯指示模拟方法通过从地震资料和其他数据中提取信息从而为每一个模拟节点提供一个局部的各变量比例,各变量的比例之和为1。
本次研究采用的带趋势的序贯指示模拟技术流程如下,在单井相数据离散化的基础上通过数据分析获取模拟的方位、主变程、次变程和垂向变程。
以单井累计概率的方式求取垂向比例,用前期研究的沉积微相作为平面约束,共同作为约束条件通过多次概率优选来求取。
2.2 基于目标模拟基于目标方法主要描述各种离散性地质特征(沉积微相、岩相、流动单元等)的空间分布,利用标点过程法建立又离散代码表示的离散性模型。
标点过程法是根据点过程的概率定律,按照空间中几何物体的分布规律产生这些物体的中心点的空0 引言三维构型建模能够刻画储层内部各构型单元间的空间接触关系,表征储层内部复合砂体,单砂体和非储层间的相对空间关系,包括不同构型单元的的三维空间形态、平面和垂向上的分布范围、不同单元的延伸方向、各单元之间的叠置关系。
并在此基础上刻画出各构型单元内部孔隙度、渗透率等物性参数的三维空间展布特征及各个构型单元之间的连通程度、油水运动特征。
储层构型方法自1985年储层构型概念的提出至今[1],取得了多方面的发展。
储层地质建模方法
中外科技情报储层地质建模方法摘要:储层地质建模是为了定量地表征各种储层的空间几何形态及物 性特征,最终为计算机模拟提供一个客观的、切合实际的储层地质模型。
当前国内外储层地质建模的总体思路和方法基本上是一致的,即在广泛收 集地质(包括露头、钻井及综合测试) 、地震及测井资料的基础上,利用沉 积学、储层地质学和一系列数学方法(包括地质统计学、分形几何学、随 机数学、模糊数学等)来定量表征二维或三维储层的宏观几何形态及内部 特性参数的空间变化,最终利用计算机来动态地模拟储层的空间变化特征。
一、储层地质建模方法 目前建立储层地质模型的方法主要有确定性建模、随机建模。
其中随 机建模是近年来国内外研究的一个热点。
近几年,又出现了综合确定性建 模和随机建模两种方法的约束建模。
1 确定性建模 确定性建模是对井间未知区给出确定性的预测结果,即从已知确定性 资料的控制点(如井点)出发,推测出点间(如井间)确定的、惟一的和 真实的储层参数。
主要手段是利用地震资料、水平井资料、露头类比资料 和密井网资料。
目前,确定性建模所应用的储层预测方法主要有:储层地 震学建模、储层测井地质建模、水平井建模和露头原型模型建模。
(1)储层地震学建模 储层地震学方法主要是应用地震资料研究储层的几何形态、岩性及参 数的分布,即从已知井点出发,应用地震横向预测技术进行井间参数预测, 并建立储层的三维地质模型。
以高分辨率的三维地震为基础,利用其覆盖 率高的优势,可以直接追踪井间砂体和求取储层参数。
该方法主要包括三 维地震和井间地震方法。
目前遇到的关键问题是分辨率还满足不了油田开 发研究单砂体的要求。
但对其前景大家都寄以很大的厚望。
(2)储层测井地质建模 储层测井地质建模主要是应用储层沉积学方法,在高分辨率等时地层 对比及沉积模式基础上,通过井间砂体对比建立储层结构模型。
井间砂体 对比是在沉积模式和单井相分析的基础上进行的。
传统对比方法主要依据 井间测井曲线的相似性或差异性来进行井间砂体解释。
储层建模步骤.doc
储层建模步骤当前国内外储层地质建模的总体思路和方法基本上是一致的,即在广泛收集地质(包括露头、钻井及综合测试)、地震及测井资料的基础上,利用沉积学、储层地质学和一系列数学方法来定量表征二维或三维储层的宏观几何形态及内部特性参数的空间变化,最终利用计算机来动态地模拟储层的空间变化特征。
三维建模一般遵循从点----面---体的步骤,即首选建立各井点的一维垂向模型,其次建立储层的框架(由一系列叠置的二维层面模型构成),然后在储层框架基础上,建立储层各种属性的三维分布模型。
一般的,广义的三维储层建模主要包含六个环节,即数据准备、构造建模、储层相建模、储层参数建模、储量计算、如果要将储层模型用于油藏数值模拟,应对其进行粗化。
2.1 数据准备储层建模是以数据库作为基础的,数据的丰富程度以及准确性在很大程度上决定着所建模型的精度。
从数据来源看,建模数据包含岩芯、测井、地震、试井、开发动态等方面的数据。
2.1.1 建模数据(1)井数据井数据包括井基本信息、岩心数据、测井及其解释数据、分层数据、断点数据等。
1.基本信息主要指钻井信息,包括井名称、井别、井口坐标、补心海拔、完井深度、完井时间及井身轨迹等。
这些数据可从完井地质报告中得到,目前大部分油田单位已将其建成了数据库。
在建模软件中加载了井信息数据后,应对井信息及轨迹逐一进行细致检查,特别是进行可视化检查。
例如,为了检查井身轨迹的准确性,首先,从三维视窗中查看井轨迹的整体形态;第二,在导入井分层数据后,逐层与现场已有井位底图进行对比检查,确保数据无误。
2.岩心数据岩心数据包括岩心照片、岩心描述以及岩心钻孔分析数据等,是岩性解释、沉积相划分、含油气性解释、储层质量评价以及隔夹层识别等的第一性资料。
建模过程中,岩心数据主要作为测井数据的标定。
3.测井及其解释数据测井作为研究井筒周围地层、岩石及流体特征的重要技术手段,包括电法测井、声波测井、放射性测井、地层倾角测井、气测井、生产测井以及随钻测井等多个类别,一般数据按每米8个数据点记录。
储层建模步骤(共25张PPT)
A、储层相模型(储层结构模型)
储层内部相单元的三维空间分布。能定量表述储集体大小、几何形态 及三维空间分布,实际为储层结构模型。实践表明:相带分布强烈地影响 地下流体的流动。合理的相模型是精确建立岩石物性模型的必要前提。
B、流动单元模型
流动单元是指根据影响流体流动的地质参数(如:K、φ、Kv/Kh、
②构造建模
构造模型反映储层的空间格架。因此,在建立储层属性的空 间分布之前,应进行构造建模。构造模型由断层模型和层面模 型组成。
断层模型反映的是三维空间上的断层面,主要根据地震解释 及井资料校正的断层文件,建立断层在三维空间的分布。
层模型反映的是地层界面的三维分布。叠合的层面模型即为地层格 架模型。建模的基础资料主要为分层数据,及地震解释的层面数据等。 一般通过插值法(也可应用随机模拟方法),应用分层数据,生成各 个等时层的顶底层面模型(即层面构造模型),然后将各个层面模型 进行空间叠合,建立储层的空间格架。
广义的储层模型(reservoir model)实际上为油藏模型。在国 外的文献中,reservoir一词往往指含有油气的储集体,因此,广义
的储层模型包括构造模型、储层属性分布模型及流体分布模型。从这 个意义上讲,应用各种资料建立广义的储层模型的过程就是油藏描述。
地下储层是在三维空间分布的。长期以来,人们习惯于用二维图件 (各种小层平面图、油层剖面图)及准三维图件(栅状图)来描述三维 储层,如用平面渗透率等值线图来描述一套(或一层)储层的渗透率分 布,显然,这种描述存在一定的局限性,关键是掩盖了储层的层内非均 质性以及平面非均质性。
其二是二维裂缝密度模型,表 征裂缝的发育程度。
裂缝分布模型的建立具有一定的 难度,特别是地下油藏的裂缝网络 模型,因此,需应用多学科方法、 技术,如岩心分析、测井解释、试 井分析、地震多分量研究及地质统 计学随机模拟技术等进行综合研究 和建模。
基于空间矢量的点坝砂体储层构型建模
Ab s t r a c t : Th e s p a t i a l — v e c t o r - b a s e d s t o c h a s t i c mo d e l i n g o f p o i n t — b a r r e s e r v o i r a r c h i t e c t u r e s i s p r o p o s e d i n t h i s p a p e r .C o mp a r e d wi t h
LI Yu pe n g W U She n ghe GENG Li hui Me h r a n M .Ha s a np ou r YI N Se n l i n CHEN Yuku n
( 1 .Co l l e ge o f Ge o s c i e n c e s ,Ch i n a Un i v e r s i t y o f Pe t r o l e u m ,Be i j i n g 1 0 2 2 4 9, Ch i n a;
第3 4卷
第 1 期
石
油
学
报
Vo 1 . 3 4 No .1
2 0 1 3年 1月
A CT A PETR O LEI S I NI CA
J a n .
2 0 1 3
文 章 编 号 :0 2 5 3 — 2 6 9 7 ( 2 0 1 3 ) O 1 _ 0 1 3 3 — 0 7 D OI : 1 0 . 7 6 2 3 / s y x b 2 【 ) 1 3 0 1 【 】 1 6
储层建模概论详解
★建模步骤
动态数据:
★建模步骤
单井测试数据
单井产吸剖面数据
多井测试数据
生产数据
多井测试数据:
储层连通性信息
----储层建模的硬数据;
流动边界信息
----储层建模的软数据;
储层参数数据
----储层建模的软数据
★数据集成与匹配 深度匹配:深度域与时间域 关系匹配:井眼(地质与测井)
构造数据
构造解释
断层多边形文件 地震层面文件
断层多边形文件
31376.84 31453.35 31544.58 31721.67 31916.72 31993.68 32044.01 32100.14 32145.21 32182.18 32275.69 32305.86 32372.63 32443.14
储层数据
井眼数据 地震数据 动态数据
★建模步骤
井眼数据:
(岩心分析和测井解释)
---井间预测的硬数据(hard data)
井模型:砂体(相)、孔隙度、 渗透率、含油饱和度等数据
★建模步骤
地震数据
----井间预测的软数据(soft data)
连续属性:层速度、波阻抗、 振幅、频率等
离散属性:波形结构等
局限性,关键是掩盖 了油藏的层内非均质 性乃至平面非(储层)
油藏建模可从三维空间上定量地表 征油藏的非均质性,因此,可克服用二 维图件描述三维油藏的局限性。
有利于油田勘探开发工作者进行 合理的油藏评价及开发管理
油藏评价及开发设计阶段
目的: 油藏评价、储量计算、 开发可行性评价、 优化油田开发方案
测井信息与解释
地质信息与解释
地震信息与解释
油藏工程信息与解释