人教A版高中数学必修五2.2等差数列(二)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d an an1 d an a1
n1
复习引入
3. 有几种方法可以计算公差d:
d an an1 d an a1
n1
d an am nm
练习
4. {an}是首项a1=1,公差d=3的等差 数列,若an=2005,则n=( ) A. 667 B. 668 C. 669 D. 670
首项a1=p+q 公差d=p.
总结:
如果一个数列的通项公式是关于 正整数n的一次型函数,那么这个 数列必定是等差数列.
探究:
1. 在直角坐标系中,画出通项公式为 an=3n-5的数列的图象.这个图象有 什么特点?
探究:
2. 在同一个直角坐标系中,画出函数 y=3x-5的图象,你发现了什么?据 此说一说等差数列an=pn+q与一次 函数y=px+q的图象之间有什么关系.
7. 已知四个数成等差数列,它们的和为 28,中间两项的积为40,求这四个数.
讲授新课
1. 性质
在等差数列{an}中, 若m+n=p+q,则am+an=ap+aq. 特别地, 若m+n=2p,则am+an=2ap.
讲解范例:
例1. 在等差数列{an}中 (1) 若a5=a, a10=b, 求a15; (2) 若a3+a8=m, 求a5+a6.
复习引入
1. 等差数列定义: 即an-an-1 =d (n≥2).
2. 等差数列通项公式: an=a1+(n-1)d (n≥1). 推导出公式:an=am+(n-m)d . 或an=pn+q (p、q是常数)
复习引入
3. 有几种方法可以计算公差d:
d an an1
复习引入
3. 有几种方法可以计算公差d:
►1Our destiny offers not the cup of despair, but the chalice of opportunity. ►So let us seize it, not in fear, but in gladness. · 命运给予我们的不是失望之酒,而是机会之杯。 因此,让我们毫无畏惧,满心愉悦地把握命运
总结:
2. 判断数列是否为等差数列的常用方法:
(1) 定义法: 证明an-an-1=d (常数) (2) 中项法: 利用中项公式,若2b=a+c,
则a, b, c成等差数列. (3) 通项公式法: 等差数列的通项公式是
关于n的一次函数.
讲解范例:
例3. 已知数列{an}的通项公式为 an=pn+q,其中p、q为常数, 且p≠0,那么这个数列一定是 等差数列吗?
课堂小结
1. 等差数列的性质; 2. 判断数列是否为等差数列
常用的方法.
湖南省长沙市一中卫星远程学校
课后作业
1. 阅读教材P.36到P.39; 2. 《习案》作业十二.
湖南省长沙市一中卫星远程学校
►Suffering is the most powerful teacher of life. 苦难是人生最伟大的老师。 ►For man is man and master of his fate. 人就是人,是自己命运的主人。 ►A man can't ride your back unless it is bent. 你的腰不弯,别人就不能骑在你的背上。
2.2 等差数列(二)
复习引入
1. 等差数列定义: 即an-an-1 =d (n≥2).
复习引入
1. 等差数列定义: 即an-an-1 =d (n≥2).
2. 等差数列通项公式: an=a1+(n-1)d (n≥1).
Baidu Nhomakorabea
复习引入
1. 等差数列定义: 即an-an-1 =d (n≥2).
2. 等差数列通项公式: an=a1+(n-1)d (n≥1). 推导出公式:an=am+(n-m)d .
总结:
2. 判断数列是否为等差数列的常用方法: (1) 定义法: 证明an-an-1=d (常数)
总结:
2. 判断数列是否为等差数列的常用方法: (1) 定义法: 证明an-an-1=d (常数) (2) 中项法: 利用中项公式,若2b=a+c,
则a, b, c成等差数列.
讲解范例:
例2. 已知数列{an}的前n项和为 Sn=3n2-2n,求证数列{an}成 等差数列,并求其首项、公差、 通项公式.
练习
4. {an}是首项a1=1,公差d=3的等差 数列,若an=2005,则n=( ) A. 667 B. 668 C. 669 D. 670
5. 在3与27之间插入7个数,使它们成 为等差数列,则插入的7个数的第四 个数是( ) A. 18 B. 9 C. 12 D. 15
练习
6. 三个数成等差数列,它们的和为18, 它们的平方和为116,求这三个数.
讲解范例:
例3. 已知数列{an}的通项公式为 an=pn+q,其中p、q为常数, 且p≠0,那么这个数列一定是 等差数列吗?
这个等差数列的首项与公差分 别是多少?
讲解范例:
例3. 已知数列{an}的通项公式为 an=pn+q,其中p、q为常数, 且p≠0,那么这个数列一定是 等差数列吗?
这个等差数列的首项与公差分 别是多少?
n1
复习引入
3. 有几种方法可以计算公差d:
d an an1 d an a1
n1
d an am nm
练习
4. {an}是首项a1=1,公差d=3的等差 数列,若an=2005,则n=( ) A. 667 B. 668 C. 669 D. 670
首项a1=p+q 公差d=p.
总结:
如果一个数列的通项公式是关于 正整数n的一次型函数,那么这个 数列必定是等差数列.
探究:
1. 在直角坐标系中,画出通项公式为 an=3n-5的数列的图象.这个图象有 什么特点?
探究:
2. 在同一个直角坐标系中,画出函数 y=3x-5的图象,你发现了什么?据 此说一说等差数列an=pn+q与一次 函数y=px+q的图象之间有什么关系.
7. 已知四个数成等差数列,它们的和为 28,中间两项的积为40,求这四个数.
讲授新课
1. 性质
在等差数列{an}中, 若m+n=p+q,则am+an=ap+aq. 特别地, 若m+n=2p,则am+an=2ap.
讲解范例:
例1. 在等差数列{an}中 (1) 若a5=a, a10=b, 求a15; (2) 若a3+a8=m, 求a5+a6.
复习引入
1. 等差数列定义: 即an-an-1 =d (n≥2).
2. 等差数列通项公式: an=a1+(n-1)d (n≥1). 推导出公式:an=am+(n-m)d . 或an=pn+q (p、q是常数)
复习引入
3. 有几种方法可以计算公差d:
d an an1
复习引入
3. 有几种方法可以计算公差d:
►1Our destiny offers not the cup of despair, but the chalice of opportunity. ►So let us seize it, not in fear, but in gladness. · 命运给予我们的不是失望之酒,而是机会之杯。 因此,让我们毫无畏惧,满心愉悦地把握命运
总结:
2. 判断数列是否为等差数列的常用方法:
(1) 定义法: 证明an-an-1=d (常数) (2) 中项法: 利用中项公式,若2b=a+c,
则a, b, c成等差数列. (3) 通项公式法: 等差数列的通项公式是
关于n的一次函数.
讲解范例:
例3. 已知数列{an}的通项公式为 an=pn+q,其中p、q为常数, 且p≠0,那么这个数列一定是 等差数列吗?
课堂小结
1. 等差数列的性质; 2. 判断数列是否为等差数列
常用的方法.
湖南省长沙市一中卫星远程学校
课后作业
1. 阅读教材P.36到P.39; 2. 《习案》作业十二.
湖南省长沙市一中卫星远程学校
►Suffering is the most powerful teacher of life. 苦难是人生最伟大的老师。 ►For man is man and master of his fate. 人就是人,是自己命运的主人。 ►A man can't ride your back unless it is bent. 你的腰不弯,别人就不能骑在你的背上。
2.2 等差数列(二)
复习引入
1. 等差数列定义: 即an-an-1 =d (n≥2).
复习引入
1. 等差数列定义: 即an-an-1 =d (n≥2).
2. 等差数列通项公式: an=a1+(n-1)d (n≥1).
Baidu Nhomakorabea
复习引入
1. 等差数列定义: 即an-an-1 =d (n≥2).
2. 等差数列通项公式: an=a1+(n-1)d (n≥1). 推导出公式:an=am+(n-m)d .
总结:
2. 判断数列是否为等差数列的常用方法: (1) 定义法: 证明an-an-1=d (常数)
总结:
2. 判断数列是否为等差数列的常用方法: (1) 定义法: 证明an-an-1=d (常数) (2) 中项法: 利用中项公式,若2b=a+c,
则a, b, c成等差数列.
讲解范例:
例2. 已知数列{an}的前n项和为 Sn=3n2-2n,求证数列{an}成 等差数列,并求其首项、公差、 通项公式.
练习
4. {an}是首项a1=1,公差d=3的等差 数列,若an=2005,则n=( ) A. 667 B. 668 C. 669 D. 670
5. 在3与27之间插入7个数,使它们成 为等差数列,则插入的7个数的第四 个数是( ) A. 18 B. 9 C. 12 D. 15
练习
6. 三个数成等差数列,它们的和为18, 它们的平方和为116,求这三个数.
讲解范例:
例3. 已知数列{an}的通项公式为 an=pn+q,其中p、q为常数, 且p≠0,那么这个数列一定是 等差数列吗?
这个等差数列的首项与公差分 别是多少?
讲解范例:
例3. 已知数列{an}的通项公式为 an=pn+q,其中p、q为常数, 且p≠0,那么这个数列一定是 等差数列吗?
这个等差数列的首项与公差分 别是多少?