重庆南开中学2020学年度高2020级数学理科6月考前猜题卷
2020年重庆市高考数学模拟试卷(理科)(6月份)
2020年重庆市高考数学模拟试卷(理科)(6月份)一、选一择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)已知集合{|31}A x x =-<„,2{|()}B x y lg x x ==-,则(A B =I ) A .(0,1]B .(0,1)C .[0,1]D .[3-,1)2.(5分)在复平面内,复数z 对应点(,)Z x y ,若||||z i z i -=+,则( ) A .0y =B .0y =,[0x ∈,1]C .0x =D .0x =,[0y ∈,1]3.(5分)命题:p x N ∀∈,|2|3x +…的否定为( ) A .x N ∀∈,|2|3x +< B .x N ∀∉,|2|3x +< C .x N ∃∈,|2|3x +…D .x N ∃∈,|2|3x +<4.(5分)已知 2.122312log ,(),()225a b c -===,则( )A .a b c <<B .c a b <<C .a c b <<D .b a c <<5.(5分)设等差数列{}n a 的公差为d ,前n 项和为n S ,若27927a a a ++=,且89S S =,则(d = )A .3-B .1-C .1D .36.(5分)若随机变量X 服从正态分布(N μ,2)(0)σσ>,则(||)0.6806P X μσ-≈„,(||2)0.9544P X μσ-≈„,(||3)0.9974P X μσ-≈„.已知某校1000名学生某次数学考试成绩服从正态分布(10,100)N ,据此估计该校本次数学考试成绩在130分以上的学生人数约为() A .159B .46C .23D .137.(5分)已知向量(1,2),(3,4)a b =-=r r ,若向量c r 与a r 共线,且c r在b r ,则||(c =r)A .1B .2CD .58.(5分)设α,β是空间中的两个平面,l ,m 是两条直线,则使得//αβ成立的一个充分条件是( )A .l α⊂,m β⊂,//l mB .l m ⊥,//l α,m β⊥C .l α⊂,m α⊂,//l β,//m βD .//l m ,l α⊥,m β⊥9.(5分)音乐是用声音来表达人的思想感情的一种艺术,明代的律学家朱载堉创建了十二平均律,并把十二平均律计算得十分精确,与当今的十二平均律完全相同,其方法是将一个八度音程(即相邻的两个具有相同名称的音之间,如图中88键标准钢琴键盘的一部分中,c 到1c 便是一个八度音程)均分为十二等分的音律,如果用正式的音乐术语称呼原来的7个音符,分别是c ,d ,e ,f ,g ,a ,b ,则多出来的5个音符为#c (读做“升c ” ),#d ,#f ,#g ,#a ;12音阶为:c ,#c ,d ,#d ,e ,f .#f ,g ,#g ,a ,#a ,b ,相邻音阶的频率之比为121:2.如图,则键盘c 和d 的频率之比为2121:(2)即61:2,键盘e 和f 的频率之比为121:2,键盘c 和1c 的频率之比为1:2,由此可知,图中的键盘1b 和2f 的频率之比为( )A .32B .2C 32D 210.(5分)已知函数2()sin 2cos 2cos sin sin f x x x ϕϕϕ=+-,若对任意x R ∈,5()()6f x f x π=-,则实数ϕ中的取值可以是( ) A .3π-B .6π-C .6π D .3π 11.(5分)已知点(2,0)Q -与抛物线22(0)y px p =>,过抛物线焦点的直线与抛物线交于A ,B 两点,与y 轴交于点P ,若3AB BP =u u u r u u u r,且直线QA 的斜率为1,则(p = )A .2B .4C .222+D .4212.(5分)已知2(2,1),(,0),,3A B C D 四点均在函数2()log ax f x x b=+的图象上,若四边形ABCD为平行四边形,则四边形ABCD 的面积是( ) A .265B .263C .525D .523二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)直线2y x =-与圆22450x y x ++-=交于A ,B 两点,则||AB = . 14.(5分)曲线2()sin (1)f x x a x =+-在点(0,(0))f 处的切线方程为3y x b =-+,则a b += .15.(5分)已知25()(21)()x x a x a R -+-∈的展开式中各项系数之和为1-,则展开式中x 的系数为 .16.(5分)已知ABC ∆的三边长a ,b ,c 成等差数列,且222105a b c ++=,则b 的取值范围是 .三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.第17\~21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知等比数列{}n a 的前n 项和为n S ,11a =,且4n S ,13n S +,22n S +成等差数列. (1)求{}n a 的通项公式;(2)若数列{}n b 满足10b =,11n n b b +-=,设,,n n na n cb n ⎧=⎨⎩为奇数为偶数,求数列{}nc 的前2n 项和.18.(12分)某项数学竞赛考试共四道题,考察内容分别为代数、几何、数论、组合,已知前两题每题满分40分,后两题每题满分60分,题目难度随题号依次递增,已知学生甲答题时,若该题会做则必得满分,若该题不会做则不作答得0分,通过对学生甲以往测试情况的统计,得到他在同类模拟考试中各题的得分率,如表所示:假设学生甲每次考试各题的得分相互独立.(1)若此项竞赛考试四道题的顺序依次为代数、几何、数论、组合,试预测学生甲考试得160分的概率;(2)学生甲研究该项竞赛近五年的试题发现第1题都是代数题,于是他在赛前针对代数版块进行了强化训练,并取得了很大进步,现在,只要代数题是在试卷第1、2题的位置,他就一定能答对,若今年该项数学竞赛考试四道题的顺序依次为代数、数论、组合、几何,试求学生甲此次考试得分X 的分布列.19.(12分)如图,三棱柱111ABC A B C -中,1AA ⊥平面ABC ,90BAC ∠=︒,2AB BC ==,D ,E 分别为1AA ,1B C 的中点.(1)证明:DE ⊥平面11BCC B ;(2)若直线BE 与平面11AA B B 所成角为30︒,求二面角C BD E --的大小.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>,将其左、右焦点和短轴的两个端点顺次连接得到一个面积为4的正方形. (1)求椭圆C 的方程;(2)直线:(0,0)l y kx m k m =+>>与椭圆C 交于P ,Q 两点(均不在y 轴上),点(0,)2mA -,若直线AP ,PQ ,AQ 的斜率成等比数列,且OPQ ∆6O 为坐标原点),求直线l 的方程.21.(12分)已知函数21(),2x f x x ae lnx a R =+-∈. (1)若12x =是函数()f x 的极值点,求a 的值; (2)当1a …时,证明:13()28f x ln >+. (二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy 中,曲线C 的参数方程为cos (1sin x y θθθ=⎧⎨=+⎩为参数),直线l 经过点(2,0)且倾斜角为α,02πα<<,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)过原点O 作直线l 的垂线1l ,垂足为P ,1l 交曲线C 于另一点B ,当α变化时,求ABP ∆的面积的最大值及相应的α的值. [选修4-5:不等式选讲](10分)。
重庆南开中学2020学年度高2020级高三数学理科半期考试卷
重庆南开中学2020学年度高2020级半期考试数学试题(理科)一、选择题(每小题5分,共50分) 1.已知函数xx f -=21)(,其图象是下图中的 ( )2.不等式0)3)(2)(1(2>+-+x x x 的解集是 ( )A .}21|{<<-x xB .φC .RD .}12|{-<>x x x 或3.若1||||,>+∈b a R b a ,则使成立的充分不必要条件是( ) A .1||≥+b a B .21||21||≥≥b a 且C .1||≥aD .b<-14.若△ABC 的内角A 满足sinA+cosA>0, tanA -sinA<0,则角A 的取值范围是 ( )A .)4,0(π B .)1,0[ C .)43,2(ππ D .),4(ππ5.已知b a ,是非零向量且满足b a b a b a b a 与,则⊥-⊥-)2(,)2(的夹角是 ( )A .6πB .3π C .32π D .65π 6.数列1,n ++++++ΛΛ211,,3211,211的前n 项和为 ( )A .122+n nB .12+n nC .12++n nD .12+n n7.在直线y=-2上有一点P ,它到点A (-3,1)和点B (5,-1)的距离之和最小,则点P 的坐标是 ( )A .(3,-2)B .(1,-2)C .(419,-2) D .(9,-2) 8.实数x ,y 满足不等式1102200+-=⎪⎩⎪⎨⎧≥--≥-≥x y y x y x y ω,则的取值范围是( )A .[-1,31] B .]31,21[-C .),21[+∞-D .)1,21[-9.对于0<a<1,给出下列四个不等式:(1))11(log )1(log aa a a +<+ (2)a a aa a a a a a aaa 111111)4(;)3();11(log )1(log ++++><+>+其中成立的是 ( )A .(1)和(3)B .(1)和(4)C .(2)和(3)D .(2)和(4)10.已知xy y x N y x ,则,且19939319*,≤+∈的最大值是 ( )A .559B .560C .561D .562二、填空题(每题4分,共24分)11.函数)23(log 221+-=x x y 的递增区间为12.如果数列{a n }满足a 1,a 2-a 1,a 3-a 2,…,a n -a n -1是首项是1,公比为3的等比数列,则a n = 13.函数]2,0[|,sin |3sin )(π∈+=x x x x f 的图象与直线y=m 有且仅有两个不同的交点,则m 的取值范围是14.已知圆的方程为1)1(22=++y x ,如果直线0=++a y x 与该圆无公共点,那么实数a 的取值范围是15.方程6log 71)sin(21<<--=x x 在π的条件下解有 个.16.点O 在△ABC 内部,且满足22=++,则△ABC 面积与凹四边形ABOC的面积之比为三、解答题(共76分) 17.(13分)解关于x 的不等式:)0(,113)1(><--+a x x a18.(13分)圆822=+y x 内一点P (-1,2),过点P 的直线l 的倾斜角为α,直线l 交圆于A ,B 两点.(1)求当43πα=时,弦AB 的长; (2)当弦AB 被点P 平分时,求直线l 的方程.19.(13分)已知△ABC 的面积为3, 且满足60≤⋅≤AC AB ,设AC AB 和的夹角θ. (1)求θ的取值范围; (2)求函数θθπθ2cos 3)4(sin 2)(2-+=f 的最大值与最小值.20.(13分)已知数列{a n }的前n 项和为S n ,a 1=2,na n+1=S n +n (n+1)(n *N ∈). (1)求数列{a n }的通项公式; (2)设n nn s b 2=,如果对一切正整数n 都有t b n ≤,求t 的最小值.21.(12分)在沙坪坝交通拥挤地段,为了确保交通安全,规定机动车相互之间的距离m (米)与车速v (千米/小时)须遵守的关系是225001kv m ≥(其中k (米)是车身长,常数),同时规定.2k m ≥ (1)当m=2k时,求机动车的速度变化范围; (2)设机动车每小时流量2250011000kv m m k v P =+=,此时,应规定怎样的车速,每小时的机动车流量P 最大?22.(12分)数列{a n },a 1=1,*)(3221N n n n a a n n ∈+-=+,(1)求a 2,a 3的值;(2)是否存在常数μλ,,使得数列}{2n n a n μλ++是等比数列,若存在,求出μλ,的值;若不存在,说明理由;(3)设n n n n n b b b b S n a b ++++=-+=-Λ3211,21, 证明:当.35)12)(1(62<<++≥n S n n n n 时,参考答案一、选择题(每小题5分,共60分)1—5 BADCB 6—10 BADDC 选解:10.22)21993()29319(9319*,≤+≤⋅⇒∈y x y x N y x 561*,561]93195.996[93195.99622≤⇒∈=⨯⨯≤∴xy N y x xy ,又,而而561=3×11×17=33×17=51×11,20,100≤≤y x⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==∴115111511733y x y x y x ,经检验或满足题意,故5611151=⨯=xy 二、填空题(每小题4分,共16分) 11.(2,4) 12.)1,(-∞ 13.)13(21-n14.),21()21,(+∞+--∞Y 15.64 16.5:4三、解答题(共74分) 17.解:0)1)(2(012113)1(<--⇔<--⇔<--+x ax x ax x x a①当,时,1220><<a a 不等式的解为)2,1(ax ∈ ②当a=2时,a 2=1,不等式的解集为φ; ③当a>2时,a 2<1,不等式的解为)1,2(ax ∈时综上,不等式的解为:①0<a<2时,)2,1(a x ∈;②a=2时,φ∈x ;③a>2时,)1,2(ax ∈.18.解:(1)当43πα=时,直线AB 方程为:01=-+y x ,圆心到直线AB 的距离为222|100|=-+,∴弦AB 的长为:30)22(822=-(2)当弦AB 被点P 平分时,PO ⊥AB ,直线l 的斜率为21,其方程为052=+-y x 19.解:(1)设△ABC 中角A ,B ,C 的对边分别为a ,b ,c 则由,,可得,1cot 06cos 03sin 21≤≤≤≤=θθθbc bc ∴]2,4[ππθ∈ (2)θθπθθπθ2cos 3)]22cos(1[2cos 3)4(sin 2)(2-+-=-+=f .1)32sin(212cos 32sin 2cos 3)2sin 1(+-=+-=-+=πθθθθθ31)32sin(22],32,6[32]2,4[≤+-≤∴∈-∈πθπππθππθ,Θ 即当.2)(4;3)(125min max ====θπθθπθf f 时,当时,20.解:(1)由 )1()1( )1(11n n S a n n n s na n n n n -+=-⇒++=-+两式作差得:2n;2,2 2111=∴=+=+=++n n n n n a a a a n na na ,又即 (2)由(1)易得n n n n n n n S b n n S 2)1(2)1(+==⇒+=, ∴112)2)(1(-+-+=-n n n n n b b ∴b 1<b 2=b 3>b 4>……,∴b n 最大值23,32即b b ,对一切正整数n 都有,t b n ≤即t 大于或等于b n 的最大值,∴t 的最小值是23. 21.解(1)2252500122≤∴≥=Θv kv k m ,故当22502≤<=v km 时,(千米/小时) (2)当231000225k vP v =≤时,P 是v 的一次函数,v=225,P 最大为k3250000,当k v v k kvk v P v 25000|25001|1000250010002252≤+=+=>时,, 当且仅当v=50时,P 最大为k25000, kk 325000025000>Θ∴当v=50(千米/小时)时,每小时机动车流量P 最大. 22.解:(1)10,432==a a(2)设)(2)1()1(3222121n n a n n a n n a a n n n n μλμλ++=+++++-=++可化为,即 μλλμλ---++=+n n a a n n )2(221故 ⎩⎨⎧=-=⎪⎩⎪⎨⎧=--=--=110321μλμλλμλ解得∴)(2)1()1(3222121n n a n n a n n a a n n n n +-=+++-+-=++可化为 又1,1 01121=-=≠+-μλ故存在a 使得数列 }{2n n a n μλ++是等比数列 (3)证明:由(1)得12122)11(-⋅+-=+-n n a n n a ∴n n a n n -+=-212故21121n n a b n n n =-+=-∵122122144441222+--=-<==n n n n n b n ∴)122122()7252()5232(12321+--++-+-+<++++=≥n n L b L b b b S n n n 时,35122321<+-+=n 现证)2()12)(1(6≥++>n n n nS n当n=2时,5445545312)12)(1(64541121>=⨯=++=+=+=,,而n n n b b S n , 故n=2时不等式成立, 当111)1(1132+-=+>=≥n n n n n b n n 时,由得 1261 6121111 )111()4131()3121()211(321+>>++=+-=+-+Λ+-+-+->+Λ+++=n n n n n n n b b b b S n n 得,且由∵)12)(1(61++>+>n n n n n S n。
重庆市南开中学2020届高三数学第三次教学质量检测考试试题 理(含解析)
重庆南开中学2020届高三第三次教学质量检测考试数学(理科)2020.4第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.()A. B. C. D.【答案】D【解析】【分析】利用复数的除法的运算法则化简复数为的形式即可.【详解】复数.故选:D【点睛】本题主要考查复数的除法运算,意在考查学生对该知识的理解掌握水平和分析推理计算能力.2.设集合,,则()A. B. C. D.【答案】C【解析】【分析】先化简集合A和B,再求得解.【详解】由题得A=[-4,1],B=(0,1 ],所以.故选:C【点睛】本题主要考查集合的化简和运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.等差数列的前7项和为28,,则()A. 6B. 7C. 9D. 14【答案】A【解析】【分析】先根据已知得到关于的方程组,解方程组得的值,再求的值.【详解】由题得.故选:A【点睛】本题主要考查等差数列的通项的基本量的计算,考查等差数列的前n项和的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.4.若双曲线的一条渐近线方程为,则()A. B. 1 C. 2 D. -8【答案】A【解析】【分析】先根据已知求出a,b,再由题得,解方程即得m的值.【详解】由题得,所以.故选:A【点睛】本题主要考查双曲线的简单几何性质,考查双曲线的渐近线方程,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.5.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. 42B. 45C. 46D. 48【答案】C【解析】【分析】先通过三视图找到几何体原图,再求几何体的体积.【详解】由三视图可知原几何体为如图所示的多面体ABEHM-CDGF,所以该几何体的体积为.故选:C【点睛】本题主要考查三视图找几何体原图,考查几何体的体积的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.重庆奉节县柑桔栽培始于汉代,历史悠久.奉节脐橙果皮中厚、脆而易剥,酸甜适度,汁多爽口,余味清香,荣获农业部优质水果、中国国际农业博览会金奖等荣誉.据统计,奉节脐橙的果实横径(单位:)服从正态分布,则果实横径在的概率为()附:若,则;;A. 0.6826B. 0.8413C. 0.8185D. 0.9544 【答案】C【解析】【分析】先计算出和,再求果实横径在的概率.【详解】由题得=5,由题得,所以,由题得,所以,所以P(85<X<90=,所以果实横径在的概率为+0.1359=0.8185.故选:C【点睛】本题主要考查正态分布,考查指定区间概率的计算,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.7.设,满足约束条件,则的最小值是()A. 4B. 5C. 8D. 9【答案】A【解析】【分析】先作出不等式组对应的可行域,再利用数形结合分析得解.【详解】由题得不等式组对应的可行域为如图所示的△ABC,由题得y=-2x+z,当直线经过点A时,直线的纵截距最小,z最小.联立得A(1,2),所以的最小值是2×1+2=4.故选:A【点睛】本题主要考查利用线性规划求最值,意在考查学生对该知识的理解掌握水平和数形结合分析推理能力.8.如图,给出的是求的值的一个程序框图,则判断框内填入的条件是()A. B. C. D.【答案】D【解析】【分析】由已知中程序的功能是计算的值,根据已知中的程序框图,我们易分析出进行循环体的条件,进而得到答案.【详解】模拟程序的运行,可知程序的功能是计算的值,即,时,进入循环,当时,退出循环,则判断框内填入的条件是.故选:.【点睛】本题考查的知识点是循环结构的程序框图的应用,解答本题的关键是根据程序的功能判断出最后一次进入循环的条件,属于基础题.9.记,则()A. 81B. 365C. 481D. 728 【答案】B【解析】【分析】令x=0得求出的值,令x=-2得的值,再求的值.【详解】令x=0得1=,令x=-2得,所以.故选:B【点睛】本题主要考查二项式定理展开式的系数和求值问题,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.10.已知函数的最小正周期为,且是函数图象的一条对称轴,则的最大值为()A. 1B.C.D. 2【答案】D【解析】【分析】利用辅助角公式化简,根据最小正周期为,可得的值,一条对称轴是建立关系即可求解.【详解】由题得函数,其中.最小正周期为,即.那么.一条对称轴是,可得:则.即..的最大值为.故选:.【点睛】本题主要考查三角恒等变换,考查三角函数的图像和性质,考查三角函数的最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.11.已知函数,若不等式对任意上恒成立,则实数的取值范围为()A. B. C. D.【答案】C【解析】【分析】对x分三种情况讨论,当x∈(0,1时,求得;当x∈时,求得;当x∈时,求得a≥3,综合即得解.【详解】由题得,取特值代入上面的不等式得a≥3,所以,(1)在x∈(0,1上,0<x≤1<,恒有a≤3+2x-lnx成立,记g(x)=2x-lnx+3(0<x≤1)所以,所以所以.(2)在x∈上,,恒有,所以x∈上恒成立,又在x∈上,的最小值为5,所以.(3)在x∈时,x≥,恒有.综上.故选:C【点睛】本题主要考查分段函数和不等式的恒成立问题,考查绝对值不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力.12.如图,抛物线:,圆:,过焦点的直线从上至下依次交,于点,,,.若,为坐标原点,则()A. -2B. 1C. 4D.【答案】B【解析】【分析】由题可设A,其中a>0,d<0.根据得,再利用平面向量的数量积运算化简得解.【详解】由题可设A,其中a>0,d<0.又焦点F(1,0),所以|FD|=1+,所以|AB|=|FA|-|OB|=,由题得.所以,所以1.故选:B【点睛】本题主要考查抛物线的简单几何性质和定义,考查平面向量的数量积的运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.请将答案填写在答题卡相应的位置.13.已知向量,且,则实数__________.【答案】-2【解析】14.已知函数,则不等式的解集为__________.【答案】【解析】【分析】先求出函数的奇偶性和单调性,再利用函数的奇偶性和单调性解不等式得解.【详解】由题得函数的定义域为R,由题得=-f(x),所以函数f(x)是奇函数,因为,所以函数f(x)是定义域上的增函数,所以=f(x-4),所以2x+1<x-4,所以x<-5.故答案:【点睛】本题主要考查函数的奇偶性和单调性的判断和应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.15.在正三棱柱中,,,分别为,的中点,则异面直线与所成角的余弦值为__________.【答案】【解析】【分析】如图,连接,则所以异面直线与所成的角就是直线和所成锐角或直角.再解三角形利用余弦定理求出异面直线与所成角的余弦值.【详解】如图,连接,则所以异面直线与所成的角就是直线和所成锐角或直角.由题得,在△中,由余弦定理得.所以异面直线与所成角的余弦值为.故答案为:【点睛】本题主要考查异面直线所成的角的计算,考查空间几何体的性质,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.16.在正项递增等比数列中,,记,,则使得成立的最大正整数为__________.【答案】9【解析】【分析】先化简得,再根据得到,再解不等式得解.【详解】由题得,因为数列是正项递增等比数,所以,所以.因为,所以,所以.所以使得成立的最大正整数为9.故答案为:9【点睛】本题主要考查等比数列的前n项和,考查等比数列的通项,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题:本大题共6小题,共计70分.解答应写出必要的文字说明、证明过程或演算步骤.17.在中,角,,所对的边分别是,,,且.(1)求角;(2)若,求.【答案】(1);(2).【解析】【分析】(1)利用正弦定理化简即得;(2)由正弦定理得,再结合余弦定理可得.【详解】解:(1)由正弦定理得:,又,,得.(2)由正弦定理得:,又由余弦定理:,代入,可得.【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.随着电子商务的兴起,网上销售为人们带来了诸多便利.商务部预计,到2020年,网络销售占比将达到.网购的发展同时促进了快递业的发展,现有甲、乙两个快递公司,每位打包工平均每天打包数量在范围内.为扩展业务,现招聘打包工.两公司提供的工资方案如下:甲公司打包工每天基础工资64元,且每天每打包一件快递另赚1元;乙公司打包工无基础工资,如果每天打包量不超过240件,则每打包一件快递可赚1.2元;如果当天打包量超过240件,则超出的部分每件赚1.8元.下图为随机抽取的打包工每天需要打包数量的频率分布直方图,以打包量的频率作为各打包量发生的概率.(同一组中的数据用该组区间的中间值作代表).(1)(i)以每天打包量为自变量,写出乙公司打包工的收入函数;(ii)若打包工小李是乙公司员工,求小李一天收入不低于324元的概率;(2)某打包工在甲、乙两个快递公司中选择一个公司工作,如果仅从日平均收入的角度考虑,请利用所学的统计学知识为该打包工作出选择,并说明理由.【答案】(1)(i);(ii)0.4;(2)建议该打包工去甲快递公司工作.【解析】【分析】(1)(i)乙公司打包工的收入函数;(ii)由,解得,再求小李一天收入不低于324元的概率;(2)设打包工在甲、乙两个快递公司工作的日平均收入为,,先列出打包工在甲、乙两个快递公司工作的收入情况表,再求,,比较它们的大小即得解.【详解】解:(1)(i)当时,y=1.2x当时,y=12×240+(x-240)×1.8=1.8x-144所以,(ii)由,解得,∴小李一天收入不低于324元的概率为.(2)设打包工在甲、乙两个快递公司工作的日平均收入为,,用频率估计概率,则打包工在甲、乙两个快递公司工作的收入情况为故,.因为,故从日平均收入的角度考虑,建议该打包工去甲快递公司工作.【点睛】本题主要考查函数解析式的求法,考查平均值的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.已知,是椭圆:上两点.(1)求椭圆的标准方程;(2)设为坐标原点,为椭圆上一动点,点,线段的垂直平分线交轴于点,求的最小值.【答案】(1);(2).【解析】【分析】(1)代点A,B的坐标到椭圆的方程,得到关于a,b的方程组,解方程组即得椭圆的标准方程;(2)设坐标为,求出,再利用基本不等式求得的最小值为.【详解】解:(1)代入,两点:,,,所以椭圆的标准方程为:.(2)设坐标为,则①线段的中点,,所以:.令,并结合①式得,,当且仅当,时取等,所以的最小值为.【点睛】本题主要考查椭圆的标准方程的求法,考查直线和椭圆的位置关系,考查椭圆中的最值问题和基本不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.如图,在四棱锥中,底面为菱形,顶点在底面的射影恰好是菱形对角线的交点,且,,,,其中.(1)当时,求证:;(2)当与平面所成角的正弦值为时,求二面角的余弦值.【答案】(1)详见解析;(2).【解析】【分析】(1)先证明面,再证明;(2)以为坐标原点,为轴正方向,为轴正方向,为轴正方向,建立空间直角坐标系,由与面所成角的正弦值为得到.再利用向量法求二面角的余弦值.【详解】解:(1)∵顶点在底面的射影是,∴面,由面,∴.∵,,,连,∴,,,,∴,则,∴.由,,∴面,由面,∴,∵菱形,,∴.(2)以为坐标原点,为轴正方向,为轴正方向,为轴正方向,建立空间直角坐标系,则,,,,∵,则,∴.∵,则,∴,设面的法向量为,由,解得.由与面所成角的正弦值为,即有,解得.设面的法向量为,由,解得.∴二面角的余弦值.【点睛】本题主要考查空间几何元素的垂直关系,考查空间线面角和二面角的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.21.已知函数,其中.(1)若函数仅在处取得极值,求实数的取值范围;(2)若函数有三个极值点,,,求证:.【答案】(1);(2)详见解析.【解析】【分析】(1),因为仅在处取得极值,则.再对a 分类讨论,利用数形结合分析得到a的取值范围;(2)由题得,由题意则有三个根,则有两个零点,有一个零点,,再利用分析法证明.【详解】解:(1)由,得,由仅在处取得极值,则,即.令,则,当单调递减,单调递增,则,∴当时,,此时仅一个零点,则仅一个为极值点,当时,与在同一处取得零点,此时,,,,∴仅一个零点,则仅一个为极值点,所以a=e.当a>e时,显然与已知不相符合.∴.(2)由,则.由题意则有三个根,则有两个零点,有一个零点,,令,则,∴当时取极值,时单调递增,∴,则时有两零点,,且,若证:,即证:,由,,则,即证:,由在上单调递增,即证:,又,则证,令,,∴.∴恒成立,则为增函数,∴当时,,∴得证.【点睛】本题主要考查利用导数研究函数的极值问题,考查分析法证明,意在考查学生对这些知识的理解掌握水平和分析推理能力.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目的题号涂黑.22.在直角坐标系中,直线的参数方程为(为参数,),以原点为极点,轴的正半轴为极轴,建立极坐标系.曲线的极坐标方程为:.(1)求曲线的直角坐标方程;(2)设直线与曲线相交于,两点,当到直线的距离最大时,求.【答案】(1);(2)16.【解析】【分析】(1)直接利用极坐标和直角坐标互化的公式求曲线的直角坐标方程;(2)设,当到直线的距离最大时,得到,故.再利用直线的参数方程的弦长公式求.【详解】解:(1)曲线:,即:.∴曲线的标准方程为:.(2)设,当到直线的距离最大时,,故.∴的参数方程为(为参数),将直线的参数方程代入得:.∴,∴.【点睛】本题主要考查极坐标方程与直角方程坐标的互化,考查直线参数方程t的几何意义的应用,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.23.已知函数的最小值为.(1)求;(2)若正实数,,满足,求证:.【答案】(1);(2)详见解析.【解析】【分析】(1)先化简函数的解析式,再通过函数的图像得到当时,取得最小值;(2)由题得,再利用均值不等式证明不等式.【详解】解:(1),由于函数y=,减函数,y=,是减函数,y=,是增函数,故当时,取得最小值(2).【点睛】本题主要考查分段函数的图像和性质,考查分段函数的最值和不等式的证明,意在考查学生对这些知识的理解掌握水平和分析推理能力.。
重庆市南开中学2020年高三下期中数学试题及答案(理科)
A﹒ 3 2
B﹒ 2
C﹒ 9 4
8
D﹒
3
二、填空题 :本 大题共 4 小题,每小题 5分,共 20 分。
13.已知 a , b 均为单位向量,且 (3a b) (a 2b) ,则向量 a 与 b 夹角的余弦值为
﹒
14.已知 (x 2 )n( n N * )的展开式中第 3 项与第 6 项的二项式系数相等,则展开式中 x 的系数为
A﹒ 2
B﹒ 1
C﹒ 0
D﹒ 1 2
8.抛物线 C:y2 2 px ( p 0) 的焦点为 F , A,B 是抛物线 C 上两点,
且 | AF | | BF | 10 , O 为坐标原点,若 OAB 的重心为 F ,则 p
A﹒1
B﹒ 2
C﹒ 3
D﹒ 4
开始
输入 x 1,s 0
x 2x
则 P0,0,1, D 2 2,1,0 ,C 2 2,1,0 , M 2,1,0 ,CP 2 2,1,1 , MD 2,2,0 , MP
2,1,1 ,
设平面
PMD
的法向量为
m
x,
y,
z ,则由
m
MP
0
m
2,1,3 ,设直线 PC 与平面 PMD 所成角
m MD 0
(1)若函数 y f (x) g(x) 在其定义域内单调递增,求实数 a 的取值范围; (2)是否存在实数 a ,使得函数 y f (x) g (x) 的图像与 x 轴相切?若存在,求满足条件的 a 的个数,
请说明理由.
21.(12
分)已知椭圆 :
x2 a2
y2 b2
1(a
b
0 )的离心率为
1 恒成立,令 mx
2020年重庆市高考数学模拟试卷(理科)(6月份) (解析版)
2020年高考数学模拟试卷(理科)(6月份)一、选择题(共12小题).1.已知集合A={x|﹣3≤x<1},B={x|y=lg(x﹣x2)},则A∩B=()A.(0,1]B.(0,1)C.[0,1]D.[﹣3,1)2.在复平面内,复数z对应点Z(x,y),若|z﹣i|=|z+i|,则()A.y=0B.y=0,x∈[0,1]C.x=0D.x=0,y∈[0,1] 3.命题p:∀x∈N,|x+2|≥3的否定为()A.∀x∈N,|x+2|<3B.∀x∉N,|x+2|<3C.∃x∈N,|x+2|≥3D.∃x∈N,|x+2|<34.已知a=log232,b=(12)2.1,c=(25)−2,则()A.a<b<c B.c<a<b C.a<c<b D.b<a<c5.设等差数列{a n}的公差为d,前n项和为S n,若a2+a7+a9=27,且S8=S9,则d=()A.﹣3B.﹣1C.1D.36.若随机变量X服从正态分布N(μ,σ2)(σ>0),则P(|X﹣μ|≤σ)≈0.6806,P (|X﹣μ|≤2σ)≈0.9544,P(|X﹣μ|≤3σ)≈0.9974.已知某校1000名学生某次数学考试成绩服从正态分布N(10,100),据此估计该校本次数学考试成绩在130分以上的学生人数约为()A.159B.46C.23D.137.已知向量a→=(−1,2),b→=(3,4),若向量c→与a→共线,且c→在b→方向上的投影为√5,则|c→|=()A.1B.2C.√5D.58.设α,β是空间中的两个平面,l,m是两条直线,则使得α∥β成立的一个充分条件是()A.l⊂α,m⊂β,l∥m B.l⊥m,l∥α,m⊥βC.l⊂α,m⊂α,l∥β,m∥βD.l∥m,l⊥α,m⊥β9.音乐是用声音来表达人的思想感情的一种艺术,明代的律学家朱载堉创建了十二平均律,并把十二平均律计算得十分精确,与当今的十二平均律完全相同,其方法是将一个八度音程(即相邻的两个具有相同名称的音之间,如图中88键标准钢琴键盘的一部分中,c 到c1便是一个八度音程)均分为十二等分的音律,如果用正式的音乐术语称呼原来的7个音符,分别是c,d,e,f,g,a,b,则多出来的5个音符为c#(读做“升c”),d#,f #,g #,a #;12音阶为:c ,c #,d ,d #,e ,f .f #,g ,g #,a ,a #,b ,相邻音阶的频率之比为1:√212.如图,则键盘c 和d 的频率之比为1:(√212)2即1:√26,键盘e 和f 的频率之比为1:√212,键盘c 和c 1的频率之比为1:2,由此可知,图中的键盘b 1和f 2的频率之比为( )A .1:√23B .1:√2C .√23:1D .√2:110.已知函数f (x )=sin2x cos φ+2cos 2x sin φ﹣sin φ,若对任意x ∈R ,f(x)=f(5π6−x),则实数φ中的取值可以是( ) A .−π3B .−π6C .π6D .π311.已知点Q (﹣2,0)与抛物线y 2=2px (p >0),过抛物线焦点的直线与抛物线交于A ,B 两点,与y 轴交于点P ,若AB →=3BP →,且直线QA 的斜率为1,则p =( ) A .2B .4C .2+2√2D .4√212.已知A(2,1),B(23,0),C ,D 四点均在函数f (x )=log 2ax x+b的图象上,若四边形ABCD为平行四边形,则四边形ABCD 的面积是( ) A .265B .263C .525D .523二、填空题:本大题共4小题,每小题5分,共20分.13.直线y =2﹣x 与圆x 2+y 2+4x ﹣5=0交于A ,B 两点,则|AB |= .14.曲线f (x )=sin x +a (x ﹣1)2在点(0,f (0))处的切线方程为y =﹣3x +b ,则a +b = .15.已知(x 2﹣x +a )(2x ﹣1)5(a ∈R )的展开式中各项系数之和为﹣1,则展开式中x 的系数为 .16.已知△ABC 的三边长a ,b ,c 成等差数列,且a 2+b 2+c 2=105,则b 的取值范围是 . 三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.第17\~21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17\~2117.已知等比数列{a n }的前n 项和为S n ,a 1=1,且4S n ,3S n +1,2S n +2成等差数列. (1)求{a n }的通项公式;(2)若数列{b n }满足b 1=0,b n +1﹣b n =1,设c n ={a n ,n 为奇数b n ,n 为偶数,求数列{c n }的前2n 项和.18.某项数学竞赛考试共四道题,考察内容分别为代数、几何、数论、组合,已知前两题每题满分40分,后两题每题满分60分,题目难度随题号依次递增,已知学生甲答题时,若该题会做则必得满分,若该题不会做则不作答得0分,通过对学生甲以往测试情况的统计,得到他在同类模拟考试中各题的得分率,如表所示:代数 几何 数论 组合 第1题 0.6 0.8 0.7 0.7 第2题 0.5 0.7 0.7 0.6 第3题 0.4 0.5 0.5 0.3 第4题0.20.30.30.2假设学生甲每次考试各题的得分相互独立.(1)若此项竞赛考试四道题的顺序依次为代数、几何、数论、组合,试预测学生甲考试得160分的概率;(2)学生甲研究该项竞赛近五年的试题发现第1题都是代数题,于是他在赛前针对代数版块进行了强化训练,并取得了很大进步,现在,只要代数题是在试卷第1、2题的位置,他就一定能答对,若今年该项数学竞赛考试四道题的顺序依次为代数、数论、组合、几何,试求学生甲此次考试得分X 的分布列.19.如图,三棱柱ABC ﹣A 1B 1C 1中,AA 1⊥平面ABC ,∠BAC =90°,AB =BC =2,D ,E 分别为AA 1,B 1C 的中点. (1)证明:DE ⊥平面BCC 1B 1;(2)若直线BE 与平面AA 1B 1B 所成角为30°,求二面角C ﹣BD ﹣E 的大小.20.已知椭圆C :x 2a +y 2b =1(a >b >0),将其左、右焦点和短轴的两个端点顺次连接得到一个面积为4的正方形. (1)求椭圆C 的方程;(2)直线l :y =kx +m (k >0,m >0)与椭圆C 交于P ,Q 两点(均不在y 轴上),点A(0,−m 2),若直线AP ,PQ ,AQ 的斜率成等比数列,且△OPQ 的面积为√62(O 为坐标原点),求直线l 的方程.21.已知函数f (x )=12x 2+ae x −lnx ,a ∈R .(1)若x =12是函数f (x )的极值点,求a 的值; (2)当a ≥1时,证明:f (x )>138+ln 2. (二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,曲线C 的参数方程为{x =cosθy =1+sinθ(θ为参数),直线l经过点(2,0)且倾斜角为α,0<α<π2,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)过原点O 作直线l 的垂线l 1,垂足为P ,l 1交曲线C 于另一点B ,当α变化时,求△ABP 的面积的最大值及相应的α的值. [选修4-5:不等式选讲]23.已知函数f (x )=|2x ﹣1|﹣3|x +1|,设f (x )的最大值为M . (1)求M ;(2)若正数a ,b 满足1a 3+1b 3=Mab ,证明:a 4b +ab 4≥43.参考答案一、选一择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.已知集合A ={x |﹣3≤x <1},B ={x |y =lg (x ﹣x 2)},则A ∩B =( ) A .(0,1]B .(0,1)C .[0,1]D .[﹣3,1)【分析】可以求出集合B ,然后进行交集的运算即可. 解:∵A ={x |﹣3≤x <1},B ={x |x ﹣x 2>0}={x |0<x <1}, ∴A ∩B =(0,1). 故选:B .2.在复平面内,复数z 对应点Z (x ,y ),若|z ﹣i |=|z +i |,则( ) A .y =0B .y =0,x ∈[0,1]C .x =0D .x =0,y ∈[0,1]【分析】由题意,z =x +yi (x ,y ∈R ),代入|z ﹣i |=|z +i |,写出复数的模,整理后得答案. 解:由题意,z =x +yi (x ,y ∈R ),代入|z ﹣i |=|z +i |,得|x +(y ﹣1)i |=|x +(y +1)i |, 即√x 2+(y −1)2=√x 2+(y +1)2, 整理得:y =0. 故选:A .3.命题p :∀x ∈N ,|x +2|≥3的否定为( ) A .∀x ∈N ,|x +2|<3 B .∀x ∉N ,|x +2|<3C .∃x ∈N ,|x +2|≥3D .∃x ∈N ,|x +2|<3【分析】直接利用全称命题的否定是特称命题,写出结果即可. 解:因为全称命题的否定是特称命题,所以,命题p :“∀x ∈N ,|x +2|≥3”的否定为:∃x ∈N ,|x +2|<3. 故选:D .4.已知a =log 232,b =(12)2.1,c =(25)−2,则( )A .a <b <cB .c <a <bC .a <c <bD .b <a <c【分析】可以得出14<log 232<1,(12)2.1<14,(25)−2>1,从而可得出a ,b ,c 的大小关系.解:∵14=log2214<log232<log22=1,(12)2.1<(12)2=14,(25)−2>(25)0=1,∴b<a<c.故选:D.5.设等差数列{a n}的公差为d,前n项和为S n,若a2+a7+a9=27,且S8=S9,则d=()A.﹣3B.﹣1C.1D.3【分析】利用等差数列的通项公式与前n项和的定义,即可求出公差d的值.解:等差数列{a n}中,a2+a7+a9=(a1+d)+(a1+6d)+(a1+8d)=3(a1+5d)=3a6=27,所以a6=9;又S8=S9,所以a9=0;所以a9﹣a6=3d=﹣9,解得d=﹣3.故选:A.6.若随机变量X服从正态分布N(μ,σ2)(σ>0),则P(|X﹣μ|≤σ)≈0.6806,P (|X﹣μ|≤2σ)≈0.9544,P(|X﹣μ|≤3σ)≈0.9974.已知某校1000名学生某次数学考试成绩服从正态分布N(10,100),据此估计该校本次数学考试成绩在130分以上的学生人数约为()A.159B.46C.23D.13【分析】由题意,μ=110,σ=10,结合2σ原则可得P(X>130),乘以1000得答案.解:由题意,μ=110,σ=10,故P(X>130)=P(X>μ+2σ)=1−0.95442=0.0228.∴估计该校本次数学考试成绩在130分以上的学生人数约为1000×0.0228=22.8≈23.故选:C.7.已知向量a→=(−1,2),b→=(3,4),若向量c→与a→共线,且c→在b→方向上的投影为√5,则|c→|=()A.1B.2C.√5D.5【分析】根据平面向量的共线定理和投影的定义,求出向量c→,再求模长.解:向量a→=(﹣1,2),向量c→与a→共线,设c→=(﹣λ,2λ),由b→=(3,4),所以c→在b→方向上的投影为|c→|cosθ=c→⋅b→|b→|=−3λ+8λ5=√5,解得λ=√5,所以c→=(−√5,2√5),所以|c→|=√(−√5)2+(2√5)2=5.故选:D.8.设α,β是空间中的两个平面,l,m是两条直线,则使得α∥β成立的一个充分条件是()A.l⊂α,m⊂β,l∥m B.l⊥m,l∥α,m⊥βC.l⊂α,m⊂α,l∥β,m∥βD.l∥m,l⊥α,m⊥β【分析】由空间中直线与直线、直线与平面的位置关系分析四个选项中能够推出α∥β的条件即可得答案.解:对于A,由l⊂α,m⊂β,l∥m,不一定得到α∥β,α与β也可能相交;对于B,由l⊥m,l∥α,m⊥β,不一定得到α∥β,α与β也可能相交,如图,对于C,l⊂α,m⊂α,l∥β,m∥β,不一定得到α∥β,只有添加条件l与m相交时,才有α∥β;对于D,由l∥m,l⊥α⇒m⊥α,又m⊥β,可得α∥β.∴使得α∥β成立的一个充分条件是D.故选:D.9.音乐是用声音来表达人的思想感情的一种艺术,明代的律学家朱载堉创建了十二平均律,并把十二平均律计算得十分精确,与当今的十二平均律完全相同,其方法是将一个八度音程(即相邻的两个具有相同名称的音之间,如图中88键标准钢琴键盘的一部分中,c 到c 1便是一个八度音程)均分为十二等分的音律,如果用正式的音乐术语称呼原来的7个音符,分别是c ,d ,e ,f ,g ,a ,b ,则多出来的5个音符为c #(读做“升c ”),d #,f #,g #,a #;12音阶为:c ,c #,d ,d #,e ,f .f #,g ,g #,a ,a #,b ,相邻音阶的频率之比为1:√212.如图,则键盘c 和d 的频率之比为1:(√212)2即1:√26,键盘e 和f 的频率之比为1:√212,键盘c 和c 1的频率之比为1:2,由此可知,图中的键盘b 1和f 2的频率之比为( )A .1:√23B .1:√2C .√23:1D .√2:1【分析】根据所给定义,由图推得f 2是b 1后的第6个音阶即可得到答案解:根据题意,因为相邻音阶的频率之比为1:√212,而键盘f 2是b 1后的第6个音阶, 故频率之比为1:(√212)6=1:√2, 故选:B .10.已知函数f (x )=sin2x cos φ+2cos 2x sin φ﹣sin φ,若对任意x ∈R ,f(x)=f(5π6−x),则实数φ中的取值可以是( ) A .−π3B .−π6C .π6D .π3【分析】先根据三角函数公式化简解析式,再由条件得到函数f (x )的图象关于直线x =5π12对称;进而求得结论.解:因为函数f (x )=sin2x cos φ+2cos 2x sin φ﹣sin φ=sin2x cos φ+(2cos 2x ﹣1)sin φ=sin2x cos φ+cos2x sin φ=sin (2x +φ), ∵对任意x ∈R ,f(x)=f(5π6−x), ∴函数f (x )的图象关于直线x =5π12对称; 故2×5π12+φ=k π+π2(k ∈Z ),即φ=kπ−π3,k∈Z,故选:A.11.已知点Q(﹣2,0)与抛物线y2=2px(p>0),过抛物线焦点的直线与抛物线交于A,B两点,与y轴交于点P,若AB→=3BP→,且直线QA的斜率为1,则p=()A.2B.4C.2+2√2D.4√2【分析】判断A、B的位置,结合向量关系,推出A、B横坐标与纵坐标的关系,通过直线的斜率关系,转化求解即可.解:由题意可知A在第一象限,B在第四象限,由AB→=3BP→,可知:x A=4x B,则y A=﹣2y B,又A、F、B三点共线,可得y A−y Bx A−x B=y Bx B−p2,即2py A+y B=y By B22p−p2,可得y A y B=﹣P2,∴−12y A2=﹣p2,即y A=√2p,x A=p,由QA斜率为1可得:y Ax A+2=1,即√2pp+2=1,则p=2(√2+1).故选:C.12.已知A(2,1),B(23,0),C,D四点均在函数f(x)=log2axx+b的图象上,若四边形ABCD 为平行四边形,则四边形ABCD的面积是()A.265B.263C.525D.523【分析】把点A,B的坐标代入函数f(x)的解析式,求出a,b的值,再利用BA→=CD→得到x2=x1+43,由f(x2)﹣f(x1)=1得x1x2=2x2﹣4x1,把x2=x1+43代入即可得到点C的坐标,从而求出BA→,BC→,得到平行四边形ABCD的面积.解:∵函数f(x)=log2axx+b,由f(2)=1可得2a2+b=2,∴a=b+2,由f(23)=0可得23a23+b=1,∴a=1+32b,解得:a=4,b=2,∴f(x)=log24xx+2,设点C ,D 的横坐标分别为x 1,x 2,由题意可知BA →=CD →,则x 2−x 1=43,∴x 2=x 1+43,由f (x 2)﹣f (x 1)=1得:log 2x 2(x 1+2)x 1(x 2+2)=1,∴x 2(x 1+2)x 1(x 2+2)=2,∴x 1x 2=2x 2﹣4x 1,把x 2=x 1+43代入解得x 1=23或﹣4,又∵点C 不与B 重合,∴x 1=﹣4,∴C (﹣4,3), ∴BA →=(43,1),BC →=(−143,3),故平行四边形ABCD 的面积S =|43×3−1×(−143)|=263,故选:B .二、填空题:本大题共4小题,每小题5分,共20分.13.直线y =2﹣x 与圆x 2+y 2+4x ﹣5=0交于A ,B 两点,则|AB |= 2 .【分析】根据题意,分析圆的圆心与半径,进而求出圆心到直线的距离,结合直线与圆的位置关系分析可得答案.解:根据题意,圆x 2+y 2+4x ﹣5=0即(x +2)2+y 2=9,其圆心为(﹣2,0),半径r =3, 圆心到直线y =2﹣x 的距离d =|−2−2|1+1=2√2, 则弦长|AB |=2×√r 2−d 2=2×√9−8=2; 故答案为:2.14.曲线f (x )=sin x +a (x ﹣1)2在点(0,f (0))处的切线方程为y =﹣3x +b ,则a +b = 4 .【分析】先对f (x )求导,然后求出f (x )在(0,f (0))处的切线斜率,再根据在点(0,f (0))处的切线方程为y =﹣3x +b 和切线过切点(0,a ),得到关于a ,b 的方程,进一步求出a +b 的值.解:由f (x )=sin x +a (x ﹣1)2,得f ′(x )=cos x +2a (x ﹣1), ∴f (x )在(0,f (0))处的切线斜率k =f '(0)=1﹣2a , ∵f (x )在点(0,f (0))处的切线方程为y =﹣3x +b , ∴1﹣2a =﹣3,∴a =2,又y =﹣3x +b 过(0,a ),∴b =a =2, ∴a +b =4. 故答案为:4.15.已知(x 2﹣x +a )(2x ﹣1)5(a ∈R )的展开式中各项系数之和为﹣1,则展开式中x 的系数为 ﹣9 .【分析】先求出a 的值,再利用二项展开式的通项公式的特点,求出展开式中x 的系数. 解:∵令x =1,可得(x 2﹣x +a )(2x ﹣1)5展开式的各项系数之和为a •15=﹣1, ∴a =﹣1,∴(x 2﹣x +a )(2x ﹣1)5=(x 2﹣x ﹣1)(2x ﹣1)5=x 2•(2x ﹣1)5﹣x •(2x ﹣1)5﹣(2x ﹣1)5;显然这三项展开后,只有后面两项有x ;即(﹣x )•(﹣1)5−∁54•2x •(﹣1)4=﹣9x ;故展开式中x 的系数为﹣9; 故答案为:﹣9.16.已知△ABC 的三边长a ,b ,c 成等差数列,且a 2+b 2+c 2=105,则b 的取值范围是 (√30,√35] .【分析】设等差数列的公差为d ,用b 和d 表示a 和c ,结合题意列出不等式求出b 的取值范围.解:设等差数列的公差为d ,则a =b ﹣d ,c =b +d ; 所以a 2+b 2+c 2=(b ﹣d )2+b 2+(b +d )2=3b 2+2d 2=105; 不妨设d ≥0,由a +b >c ,得b ﹣d +b >b +d ,解得d <b2; 所以3b 2≤105<3b 2+b 22,解得30<b 2≤√35, 即√30<b ≤√35;所以b 的取值范围是(√30,√35]. 故答案为:(√30,√35].三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.第17\~21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17\~2117.已知等比数列{a n }的前n 项和为S n ,a 1=1,且4S n ,3S n +1,2S n +2成等差数列. (1)求{a n }的通项公式;(2)若数列{b n }满足b 1=0,b n +1﹣b n =1,设c n ={a n ,n 为奇数b n ,n 为偶数,求数列{c n }的前2n 项和.【分析】(1)运用等差数列的中项性质和等比数列的定义、通项公式可得所求; (2)由等差数列的定义和通项公式,可得b n ,求得c n ={2n−1,n 为奇数n −1,n 为偶数,运用数列的分组求和,以及等差数列和等比数列的求和公式,可得所求和. 解:(1)由4S n ,3S n +1,2S n +2成等差数列, 可得6S n +1=4S n +2S n +2,即3S n +1=2S n +S n +2, 即2(S n +1﹣S n )=S n +2﹣S n +1,即2a n +1=a n +2,所以等比数列{a n }的公比为2, 又a 1=1,可得a n =2n ﹣1,n ∈N*;(2)由b 1=0,b n +1﹣b n =1,可得{b n }是首项为0,公差为1的等差数列, 则b n =n ﹣1,n ∈N*,c n ={a n ,n 为奇数b n ,n 为偶数={2n−1,n 为奇数n −1,n 为偶数,所以{c n }的前2n 项和为c 1+c 2+…+c 2n =(a 1+a 3+…+a 2n ﹣1)+(b 2+b 4+…+b 2n )=(1+4+16+…+22n ﹣2)+(1+3+…+2n ﹣1)=1−4n 1−4+1+2n−12•n =4n 3−13+n 2. 18.某项数学竞赛考试共四道题,考察内容分别为代数、几何、数论、组合,已知前两题每题满分40分,后两题每题满分60分,题目难度随题号依次递增,已知学生甲答题时,若该题会做则必得满分,若该题不会做则不作答得0分,通过对学生甲以往测试情况的统计,得到他在同类模拟考试中各题的得分率,如表所示:代数 几何 数论 组合 第1题 0.6 0.8 0.7 0.7 第2题 0.5 0.7 0.7 0.6 第3题 0.4 0.5 0.5 0.3 第4题0.20.30.30.2假设学生甲每次考试各题的得分相互独立.(1)若此项竞赛考试四道题的顺序依次为代数、几何、数论、组合,试预测学生甲考试得160分的概率;(2)学生甲研究该项竞赛近五年的试题发现第1题都是代数题,于是他在赛前针对代数版块进行了强化训练,并取得了很大进步,现在,只要代数题是在试卷第1、2题的位置,他就一定能答对,若今年该项数学竞赛考试四道题的顺序依次为代数、数论、组合、几何,试求学生甲此次考试得分X的分布列.【分析】(1)学生甲得160分,即第1,2题做对一道,第3、4题都做对,由此能预测学生甲考试得160分的概率.(2)由题知学生甲第1题必得40分,只需考虑另三道题的得分情况,从而X的所有可能取值为40,80,100,140,160,200,分别求出相应的概率,能求出X的分布列.解:(1)学生甲得160分,即第1,2题做对一道,第3、4题都做对,∴P=(0.6×0.3+0.4×0.7)×0.5×0.2=0.046.(2)由题知学生甲第1题必得40分,只需考虑另三道题的得分情况,故X的所有可能取值为40,80,100,140,160,200,P(X=40)=0.3×0.7×0.7=0.147,P(X=80)=0.7×0.7×0.7=0.343,P(X=100)=0.3×C32×0.3×0.7=0.126,P(X=140)=0.7×C21×0.3×0.7=0.294,P(X=160)=0.3×0.3×0.3=0.027,P(X=200)=0.7×0.3×0.3=0.063.∴X的分布列为:X4080100140160200P0.1470.3430.1260.2940.0270.063 19.如图,三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,∠BAC=90°,AB=BC=2,D,E 分别为AA1,B1C的中点.(1)证明:DE⊥平面BCC1B1;(2)若直线BE与平面AA1B1B所成角为30°,求二面角C﹣BD﹣E的大小.【分析】(1)取BC的中点F,连结AF,EF,推导出DE∥AF,且DE=AF,AF⊥BC,由A1A⊥面ABC,且A1A∥B1B,从而B1B⊥面ABC,进而B1B⊥AF,由此能证明AF ⊥平面BCC1B1,从而DE⊥面BCC1B.(2)过F作FH⊥AB,由题意得FH=1,推导出FH⊥面AA1B1B,即点F到平面AA1B1B 的距离为1,EF∥面AA1B1B,E到平面AA1B1B的距离d=1,求出BE=2,EF=√2,BB1=2√2,以F为原点,FA为x轴,FB为y轴,FE为z轴,建立空间直角坐标系,利用向量法能求出二面角C﹣BD﹣E的大小.解:(1)证明:取BC的中点F,连结AF,EF,则EF∥B1B∥DA,且EF=12B1B=DA,∴DE∥AF,且DE=AF,又△ABC是等腰直角三角形,∴AF⊥BC,由A1A⊥面ABC,且A1A∥B1B,∴B1B⊥面ABC,∴B1B⊥AF,B1B∩BF=B,∴AF⊥平面BCC1B1,∴DE⊥面BCC1B.(2)解:过F作FH⊥AB,由题意得FH=1,由A1A⊥面ABC,知A1A⊥面ABC,知A1A⊥FH,∴FH⊥面AA1B1B,即点F到平面AA1B1B的距离为1,又EF∥B1B,EF⊄平面AA1B1B,∴EF∥面AA1B1B,∴点E与点F到平面AA1B1B的距离相等,∴E到平面AA1B1B的距离d=1,∴sin30°=dBE=1BE,解得BE=2,∴EF=√2,BB1=2√2,以F为原点,FA为x轴,FB为y轴,FE为z轴,建立空间直角坐标系,则B(0,√2,0),C(0,−√2,0),D(√2,0,√2),E(0,0,√2),∴CB→=(0,2√2,0),BD→=(√2,−√2,√2),BE→=(0,−√2,√2),设平面CBD和平面BDE的法向量分别为m→=(x1,y1,z1),n→=(x2,y2,z2),则{m →⋅CB →=2√2y 1=0m →⋅BD →=√2x 1−√2y 1+√2z 1=0,取x 1=1,得m →=(1,0,﹣1), {n →⋅BD →=√2x −√2y +√2z =0n →⋅BE →=−√3y +√3z =0,取y 2=1,得n →=(0,1,1), ∴cos <m →,n →>=m →⋅n →|m →|⋅|n →|=−12,由图知二面角C ﹣BD ﹣E 是锐二面角, ∴二面角C ﹣BD ﹣E 的大小为π3.20.已知椭圆C :x 2a +y 2b =1(a >b >0),将其左、右焦点和短轴的两个端点顺次连接得到一个面积为4的正方形. (1)求椭圆C 的方程;(2)直线l :y =kx +m (k >0,m >0)与椭圆C 交于P ,Q 两点(均不在y 轴上),点A(0,−m 2),若直线AP ,PQ ,AQ 的斜率成等比数列,且△OPQ 的面积为√62(O 为坐标原点),求直线l 的方程.【分析】(1)根据正方形面积为4可得b =c =√2,椭圆方程可求;(2)设P (x 1,y 1),Q (x 2,y 2),由题意直线l 的方程为:l :y =kx +m ,(k >0,m ≠0,±1)根据韦达定理和直线的斜率以及等比数列的性质,可求出k ,再根据弦长公式,点到直线的距离公式,和三角形的面积公式即可求出m 的值,则直线PQ 的方程即可求出.解:(1)由题知b =c =√2,a =2, 故C 的方程为:x 24+y 22=1;(2)联立{x 24+y 22=1y =kx +m,整理得(1+2k 2)x 2+4km +2m 2﹣4=0,则△=8(2﹣m 2+4k 2)>0得4k 2+2>m 2,设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=−4km 1+2k2,x 1x 2=2m 2−42k 2+1,由直线AP ,PQ ,AQ 的斜率成等比数列,则k 2=y 1+m 2x 1•y 2+m2x 2=kx 1+32m x 1•kx 2+32m x 2, 即k 2x 1x 2=k 2x 1x 2+32mk (x 1+x 2)+94m 2,又m >0,所以k (x 1+x 2)=−32m , 即−4k 2m 2k 2+1=−32m ,则k 2=32,又S △OPQ =12•|m |•|x 1﹣x 2|,所以√62=|m|2•√8(2−m 2+4k 2)2k 2+1=|m|2•√8(8−m 2)4,即m 4﹣8m 2+12=0,解得m 2=2或6,均满足△>0. 又k >0,m >0,且P 、Q 均不在y 轴上,所以k =√62,m =√6,故直线l 的方程为y =√62x +√6.21.已知函数f (x )=12x 2+ae x −lnx ,a ∈R .(1)若x =12是函数f (x )的极值点,求a 的值; (2)当a ≥1时,证明:f (x )>138+ln 2. 【分析】(1)求出函数的导数,得到关于a 的方程,解出验证即可; (2)问题转化为只需证明12x 2+e x ﹣lnx >138+ln 2,令g (x )=12x 2+e x ﹣lnx ,根据函数的单调性怎么即可.解:(1)f ′(x )=x +ae x −1x,由题意知f ′(12)=0,即12+a √e −2=0,解得:a =2e,又f ″(x )=1+ae x +1x 2>0, ∴f ′(x )在(0,+∞)上递增, 故当a =32√e 时,有x ∈(0,12)时,f ′(x )<0, x ∈(12,+∞)时,f ′(x )>0,∴x =12是f (x )的极小值点;(2)当a ≥1时,对于∀x >0有ae x ≥e x , 即f (x )≥12x 2+e x ﹣lnx , 故要证明f (x )>138+ln 2,只需证明12x 2+e x ﹣lnx >138+ln 2, 令g (x )=12x 2+e x ﹣lnx ,则g ′(x )=x +e x −1x,g ″(x )=1+e x +1x 2>0, ∴g ′(x )在(0,+∞)递增,又g ′(12)=√e −32>0,g ′(13)=√e 3−83<0, 故存在x 0∈(13,12),使得g ′(x 0)=0,则g (x )在(0,x 0)递减,在(x 0,+∞)递增,∴g (x )≥g (x 0)=12x 02+e x 0−lnx 0,又x 0+e x 0−1x 0=0,∴g (x 0)=12x 02−x 0+1x 0−lnx 0,令h (x )=12x 2﹣x +1x −lnx (13<x <12),则h ′(x )=x ﹣1−1x 2−1x<0, ∴h (x )在(13,12)递减,∴h (x )>h (12)=138+ln 2, 故g (x 0)>138+ln 2,故g (x )>138+ln 2, 原不等式得证. 一、选择题22.在平面直角坐标系xOy 中,曲线C 的参数方程为{x =cosθy =1+sinθ(θ为参数),直线l经过点(2,0)且倾斜角为α,0<α<π2,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)过原点O 作直线l 的垂线l 1,垂足为P ,l 1交曲线C 于另一点B ,当α变化时,求△ABP 的面积的最大值及相应的α的值.【分析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换. (2)利用三角函数关系式的恒等变换和正弦型函数的性质的应用及二次函数的性质的应用求出结果.解:(1)曲线C 的参数方程为{x =cosθy =1+sinθ(θ为参数),转换为直角坐标方程为x 2+(y ﹣1)2=1,根据{x =ρcosθy =ρsinθx 2+y 2=ρ2转换为极坐标方程为ρ=2sin θ.(2)由题意知直线l 1的极坐标方程为θ=α+π2,则:{ρ=2sinθθ=α+π2,所以ρB =2sin(α+π2)=2cosα.故:|OP |=2sin α,|AP |=2cos α,所以|BP |=2cos α+2sin α. 所以S △ABP =12×2(cosα+sinα)2cosα=√2sin(2α+π4)+1. 当2α+π4=π2,即α=π8时,面积的最大值为√2+1. [选修4-5:不等式选讲]23.已知函数f (x )=|2x ﹣1|﹣3|x +1|,设f (x )的最大值为M . (1)求M ;(2)若正数a ,b 满足1a 3+1b 3=Mab ,证明:a 4b +ab 4≥43.【分析】(1)由f (x )=|2x ﹣1|﹣3|x +1|=|2x ﹣1|﹣|2x +2|﹣|x +1|,结合绝对值不等式的性质和绝对值的几何意义,可得所求最大值; (2)由(1)可得1a 3+1b 3=3ab ,a 4b +ab 4=ab (a 3+b 3)=13(1a 3+1b 3)(a 3+b 3),再由基本不等式即可得证.解:(1)函数f (x )=|2x ﹣1|﹣3|x +1|=|2x ﹣1|﹣|2x +2|﹣|x +1|≤|2x ﹣1﹣2x ﹣2|﹣|﹣1+1|=3, 当x =﹣1时,f (x )取得最大值3,即M =3; (2)证明:正数a ,b 满足1a +1b =3ab ,故a 4b +ab 4=ab (a 3+b 3)=13(1a 3+1b3)(a 3+b 3)=13(1+1+a 3b3+b3a3) ≥13(2+2√a 3b3⋅b 3a3)=43,当且仅当a =b =√235时等号成立,故a 4b +ab 4≥43.。
重庆2020届高三高考考前适应性考试数学(理)试题Word版含答案及解析
重庆2020届高三高考考前适应性考试数学(理)试题满分150分。
考试时间120分钟★祝考试顺利★注意事项:1.答题前,请考生认真阅读答题卡上的注意事项。
务必将自己的姓名、考号填写在答题卡上指定位置,贴好考号条形码或将考号对应数字涂黑。
用2B铅笔将试卷类型A填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B铅笔把对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试题卷、草稿纸上无效。
3.非选择答题用0.5毫米黑色墨水签字笔直接答在答题卡上每题对应的答题区域内,答在试题卷、草稿纸上无效。
4.考生必须保持答题卡的清洁。
考试结束后,监考人员将答题卡和试卷一并收回。
第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集,集合,,则集合()A. B. C. D.2.在复平面内,复数对应的点是,则复数的共轭复数()A. B. C. D.3.从1,3,5,7,9中任取3个数字,从2,4,6,8中任取2个数字,组成没有重复数字的五位数,则组成的五位数中偶数的个数为()A. 7200B. 2880C. 120D. 604.已知向量,,则的最大值为()A. 1B.C. 3D. 95.执行如图所示的程序框图,则输出的值为()A. -1B. 0C.D. 16.几何体的三视图如图所示,该几何体的体积为()A. 729B. 428C. 356D. 2437.下列说法中错误的是()A. 先把高二年级的1000多学生编号为1到1000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为,然后抽取编号为,,……的学生,这样的抽样方法是系统抽样法B. 正态总体在区间和上取值的概率相等C. 若两个随机变量的线性相关性越强,则相关系数的值越接近于1D. 若一组数据1、、2、3的平均数是2,则该组数据的众数和中位数均是28.,是:上两个动点,且,,到直线:的距离分别为,,则的最大值是()A. 3B. 4C. 5D. 69.已知四面体外接球的球心恰好在上,等腰直角三角形的斜边为2,,则这个球的表面积为()A. B. C. D.10.已知函数的最小正周期为,其图象向左平移个单位后所得图象关于轴对称,则的单调递增区间为()A. ,B. ,C. ,D. ,11.在数列中,已知,且对于任意的,都有,则()A. B. C. D.12.已知定义在上的函数关于轴对称,其导函数为.当时,不等式.若对,不等式恒成立,则正整数的最大值为()A. 1B. 2C. 3D. 4第Ⅱ卷(非选择题共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.已知向量满足,则向量的夹角的大小为__________.14.已知实数满足不等式组的最大值为___________.15.在平面直角坐标系中,已知,点是角终边上一点,则的值是___________.16.如图,已知圆锥的顶点为S,底面圆O的两条直径分别为AB和CD,且AB⊥CD,若平面平面.现有以下四个结论:①AD∥平面SBC;②;③若E是底面圆周上的动点,则△SAE的最大面积等于△SAB的面积;④与平面SCD所成的角为45°.其中正确结论的序号是__________.三、解答题:共70分。
重庆市南开中学2020届高三数学上学期第一次教学质量检测考试试题 理(含解析)
重庆市南开中学2020届高三数学上学期第一次教学质量检测考试试题 理(含解析)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的。
1.已知集合{}2|230A x x x =--≤,{}|21xB y y ==+,则A B =I () A. ∅ B. (]1,3C. (]0,3D. ()1,+∞【答案】B 【解析】 【分析】根据一元二次不等式的解集和指数函数的值域求得. 【详解】由已知解得[]()1,3,1,A B =-=+∞, 所以(]1,3A B =I ,故选B.【点睛】本题考查一元二次不等式的解集、指数函数的值域和集合的交集运算,属于基础题.2.已知复数z 满足()()12z i i i -+=,则z =() A. 12i + B. 12i -C. 12i -+D. 12i --【答案】B 【解析】 【分析】根据复数的除法运算和复数的共轭复数的概念求得. 【详解】由已知得21i z i i-=+,所以()()()211211i i z i i i i -=+=++-,所以12.z i =- 故选B.【点睛】本题考查复数的除法运算和复数的共轭复数的概念,属于基础题.3.命题“若220x y +=,则0x =,0y =”的否命题为()A. 若220x y +=,则0x ≠,0y ≠B. 若220x y +=,则0x ≠或0y ≠ C. 若x y +≠220,则0x =,0y =D. 若x y +≠220,则0x ≠或0y ≠【答案】D 【解析】 【分析】根据否命题是对命题的条件和结论均要否定求得. 【详解】否命题是对命题的条件和结论均要否定,故选D.【点睛】本题注意区分“否命题”和“命题的否定”,属于基础题.4.关于函数()y f x =与()ln y f x =,下列说法一定正确的是() A. 定义域相同 B. 值域相同C. 单调区间相同D. 奇偶性相同 【答案】B 【解析】 【分析】根据函数的定义域、值域、单调性和奇偶性的判断解得.【详解】对于A 答案:()y f x =的定义域是R ,而()ln y f x =的定义域是()0,∞+,故A 错误;对于C 答案:()ln y f x =是复合函数,其单调需遵循“在定义域上,同增异减”的原则,故C 错误;对于D 答案:()ln y f x =的定义域是()0,∞+的子集,故()ln y f x =不具有奇偶性,故D 错误;因为ln y x =的值域是R ,故B 正确.【点睛】本题考查函数的的定义域、值域、单调性和奇偶性,属于基础题.5.下列函数既是偶函数,又在(),0-∞上单调递减的是()A. 12xy ⎛⎫= ⎪⎝⎭B. 23y x -=C. 1y x x=- D.()2ln 1y x =+【答案】D 【解析】 【分析】根据函数的奇偶性和单调性求解.【详解】由函数的奇偶性的判定方法,知C 选项是奇函数,所以排除C 选项, 又因为在(),0-∞上单调递减,在,,A C D 选项中,只有D 选项符合, 故选D .【点睛】本题考查函数的奇偶性和单调性,属于基础题.6.已知函数()()1,022,0xx f x f x x ⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪+<⎩,则21log 5f ⎛⎫= ⎪⎝⎭()A.516B.54C.52D. 5【答案】A 【解析】 【分析】先判断自变量的范围是分段函数的某一段,再代入相应的解析式中求函数的值.【详解】22221114log 0,log log 2log 5555f f f ⎛⎫⎛⎫⎛⎫<∴=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Q ,222244416log 0,log log 2log 5555f f f ⎛⎫⎛⎫⎛⎫<∴=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Q ,()22216log 516log 5log 116522161615log 0,log 2255216f⎛⎫ ⎪-⎝⎭⎛⎫⎛⎫>∴====⎪ ⎪⎝⎭⎝⎭Q , 故选A.【点睛】本题考查分段函数和对数运算,属于基础题.7.黎曼函数是一个特殊的函数,由德国数学家黎曼发现提出,在高等数学中有着广泛的应用.黎曼函数()R x 定义在[]0,1上,且()()1,,,0,010,1q q x p q p p p R x x ⎧⎛⎫=⎪ ⎪=⎨⎝⎭⎪=⎩当为正整数为既约真分数当或或内的无理数,则以下说法:①()R x 的值域为[]0,1;②方程()R x x =有无穷多个解;③()R x 的图像关于直线12x =对称;其中正确的个数为() A. 0 B. 1C. 2D. 3【答案】C 【解析】 【分析】由函数的定义判断选项,可以选取特殊的值验证求解. 【详解】由黎曼函数的定义可知()R x 的值域为1110,,,,,23p ⎧⎫⎨⎬⎩⎭L L (其中p 是大于或等于2的自然数),故①错误;方程()R x x =的解有:11111,,,,,,234pL L ,(其中p 是大于或等于2的自然数),故②正确; 对于任何的自然数2p ≥,根据()()f f 1x x =-,所以()R x 的图像关于直线12x =对称,故③正确; 故选C.【点睛】本题考查新定义函数,思考时牢牢抓住函数的定义,属于中档题.8.设0.30.2a =,0.3log 0.2b =,0.20.4c =,则() A. a b c <<B. a c b <<C. c a b <<D.b ac <<【答案】B 【解析】 【分析】运用中介值“1 ”,和指数的同指或同底时的大小比较得解. 【详解】0.30.3log 0.2log 0.31b =>=Q , 0.30.20.20.20.20.41a =<<<,b c a ∴>>故选B.【点睛】本题考查指数、对数的大小比较,属于中档题.9.若函数()()213log 28f x ax x =++的值域为[)2,-+∞,则()f x 的单调递增区间为() A. (),2-∞- B. (]2,1- C. [)1,4D. ()4,+∞【答案】C 【解析】 【分析】根据函数的值域得真数的最大值,从而求出参数的值,再根据复合函数的单调性的判断求解. 【详解】由已知得令228t ax x =++的最大值是9,所以解得1a =-,所以()()213log 28f x x x =-++, 又因为228t ax x =++在()2,4-上0,t >且在(],1-∞上单调递增,在[)1,∞上单调递减, 根据复合函数的单调性得C 选项正确. 故选C.【点睛】本题考查对数函数的值域和单调性,属于中档题.10.下图可能是下列哪个函数的图像()A. ()221x x y x -=- B. ()2ln 1x x y x -=-C. 2ln 1y x x =- D. ()tan ln 1y x x =⋅+【答案】C 【解析】 【分析】可考虑用排除法,从函数的定义域和特殊点的函数的正负着手.【详解】由图像可知,()tan ln 1y x x =⋅+在02π⎛⎫⎪⎝⎭,上单调递增,故可排除D ;当13x =时,A 、B 选项中的0,y >C 选项中的0,y < 故选C.【点睛】本题考查函数的定义域和特殊点的函数值辨别图像,属于基础题.11.已知()'f x 是奇函数()()f x x R ∈的导函数,()20f =,当0x ≠时,()()2'f x f x x>,则不等式()()10x f x -<的解集为() A. ()(),20,2-∞-U B. ()()2,02,-+∞U C. ()(),21,2-∞-U D. ()()2,01,2-U【答案】D 【解析】 【分析】将已知的含导函数的不等式构造成某个函数的导函数,得这个函数的单调性,再根据奇偶性得这个函数的大致图像趋势,并且得出其函数值的正负,从而得出()f x 的函数值的正负求解. 【详解】当0x >时,由()()2'f x f x x >得()()2'0f x f x x ->,即()()'20xf x f x x->,所以()()24'20x f x xf x x ->,即()'20f x x ⎛⎫> ⎪⎝⎭, 所以令()()2f x g x x=,则()g x 在()0,∞+上单调递增,且()20g =, 又因为()f x 上奇函数,所以()g x 也是奇函数,且在()()2,02,-+∞U 时()0g x >,在()()2,0,2-+∞⋃时()0g x <, 又因为20x >,所以在()()2,02,-+∞U 时()0f x >,在()()2,0,2-+∞⋃时()0f x < 解不等式()()10x f x -<中,当1x >时,()0f x <,所以其解集为()1,2; 当1x <时,()0f x >,所以其解集为()2,0-. 故得解.【点睛】本题的关键在于构造函数分析其单调性、奇偶性和函数值的正负,从而得出()f x 的函数值的正负的取值范围,属于难度题.12.已知函数()f x 对x R ∀∈满足:()()2f x f x +=-,()()()12f x f x f x +=⋅+,且()0f x >,若()14f =,则()()20192020f f +=()A.34B. 2C.52D. 4【答案】A 【解析】 【分析】由抽象函数关系式赋值得特殊点的函数值,找出其函数值的周期规律得解. 【详解】因为()()()12f x f x f x +=⋅+, ∴()()()213f x f x f x +=+⋅+,又()0f x > 故()()13f x f x +=,即()()6f x f x += 所以函数的周期为6, 由已知可得当0x =时,()()20f f =,()()()102f f f =⋅,又()0f x >,所以()()202f f ==,并且()()()()1113,4,5,62242f f f f ====, 所以()()()()1132019202034244f f f f +=+=+=,故选A.【点睛】本题考查抽象函数的求值,考查函数的周期性,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。
重庆南开中学2020级高三第四次教学质量检测考试数学理科试卷+解析
绝密★启用前重庆南开中学2020级高三第四次教学质量检测考试理科数学本卷满分150分,考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1. 已知复数z 满足i i z 2)1(=+,其中i 为虚数单位,则复数z 的模=||z ( )A. 1B.C. 2D. 2. 抛物线y x 22=的焦点到准线的距离为( )A. 4B. 2C. 1D.143. 已知全集R U =,集合{}0)4(<-=x x x A ,{}1)1(log 2>-=x x B ,图中阴影部分所表示的集合为 ( )A. {}21<<x xB. {}32<<x xC. {}30≤<x xD. {}40<<x x 4. 已知b a ,均为实数,则下列说法一定成立的是( )A.若a b >,c d >,则cd ab >B. 若ba 11>,则b a < C.若b a >,则22b a >D. 若b a <||,则0>+b a5. 已知函数)(x f 是定义在R 上的奇函数,当0≥x 时,a x x f x -+=22)(,则=-)1(f ( )A. 3B. 3-C. 2-D. 1-6. 已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为 ( )A. 22230x y x +--=B. 2240x y x ++=C. 22230x y x ++-=D. 2240x y x +-=7. 诗歌是一种抒情言志的文学载体,用高度凝练的语言、形象表达作者丰富的情感,诗歌也可以反映数量关系的内在联系和规律,人们常常把数学问题和算法理论编成朗朗上口的诗歌词赋,是抽象理性的数学问题诗词化,比如诗歌:“十里长街闹盈盈,庆祝祖国万象新;佳节礼花破长空,长街灯笼胜繁星;七七数时余两个,八个一数恰为零;三数之时剩两盏,灯笼几盏放光明”,则此诗歌中长街灯笼最少几盏( )A.70B.128C.140D.1508. 若等边ABC ∆的边长为1,点M 满足CA CB CM 2+=,则=⋅MB MA ( )B.2C.D.39.已知),(y x P 为不等式组(2)(2)00y x y x x a -+≤⎧⎨≤≤⎩表示的平面区域内任意一点,当该区域的面积为2时,函数y x z +=的最大值是( )A.3B.2C.1D.010. 如图,ABC ∆内角C B A ,,所对的边分别为c b a ,,,且1c o s 2b c a C -=,延长BA 至D ,是B C D ∆是以BC 为底边的等腰三角形,6π=∠ACD ,当2=c 时,边=CD( )A. 3B. 2C. 42+D.23+11. 已知曲线x ae x f =)()0(>a 与曲线)0()(2>-=m m x x g 有公共点,且在该点处的切线相同,则当m 变化时,实数a 的取值范围是( )A. 24(0,)e B. 6(1,)e C. )4,0(e D. )8,1(2e12. 如图,已知双曲线)0(12222>>=-a b by a x 的左、右焦点分别为21,F F ,过右焦点作平行于一条渐近线的直线交双曲线于点A ,若21F AF ∆的内切圆半径为4b,则双曲线的离心率为( )A.3B.54C.53D.2二、填空题(本大题共4小题,每小题5分,共20分) 13. 已知3tan =α,则=++ααααsin 3cos sin cos 2__________.14. 已知椭圆)0(1:2222>>=+b a b y a x C 的上顶点为B ,右焦点为)0,2(F ,)0,22(aM -,且满足BM BF ⊥,则椭圆C 的标准方程为__________.15. 已知实数1,>b a ,且满足5=--b a ab ,则b a 32+的最小值为__________.16. 在学习导数和微积分是,应用到了“极限”的概念,极限分为函数极限和数列极限,其中数列极限的概念为:对数列{}n a ,若存在常数A ,对于任意0>ε,总存在正整数0N ,使得当0N n ≥时,ε<-||A a n 成立,那么称A 是数列{}n a 的极限,已知数列{}n b 满足:1211+=+n n b b ,31=b ,*N n ∈,由以上信息可得{}n b 的极限=A __________,且001.0=ε时,0N 的最小值为__________. 三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤) 17. (本小题满分12分)已知数列{}n a 的前n 项和为n S ,且n n S a ,,2成等差数列,令*2,log N n a b n n ∈=.(1)求数列{}n a ,{}n b 的通项公式;(2)令n n n b a c ⋅=,求数列{}n c 的前n 项和.n T18.(本小题满分12分)已知向量)3,(sin -=x ,)cos ,1(x =,且函数().f x m n = (1)若]2,0[π∈x ,且32)(=x f ,求x sin 的值; (2)若将函数)(x f 的图像上的点的纵坐标不变,横坐标缩小为原来的21,再将所得图像向左平移4π个单位,得到)(x g 的图像,求函数)(x g 在]2,0[π∈x 的值域。
重庆南开中学2020级高三第四次教学质量检测考试数学理科-含答案
重庆南开中学2020级高三第四次教学质量检测考试数学理科注意事项:1. 答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚。
2. 每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效。
3. 考试结束后,请将本试卷和答题卡一并交回。
满分150分,考试用时120分钟。
一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知复数z 满足i i z 2)1(=+,其中i 为虚数单位,则复数z 的模=||zA.1B.2C.2D.222. 抛物线y x 22=的焦点到准线的距离为A.4B.2C.1D.41 3. 已知全集R U =,集合{}0)4(<-=x x x A ,{}1)1(log 2>-=x x B ,图中阴影部分所表示的集合为A.{}21<<x x B.{}32<<x x C.{}30≤<x xD.{}40<<x x4. 已知b a ,均为实数,则下列说法一定成立的是A.若d c b a >>,,则cd ab >B.若ba 11>,则b a < C 若b a >,则22b a >D.若b a <||,则0>+b a5. 已知函数)(x f 是定义在R 上的奇函数,当0≥x 时,a x x f x-+=22)(,则=-)1(fA.3B.3-C.2-D.1-6. 已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为 A.03222=--+x y x B.0422=++x y x C.03222=-++x y xD.0422=-+x y x7. 诗歌是一种抒情言志的文学载体,用高度凝练的语言、形象表达作者丰富的情感,诗歌也可以反映数量关系的内在联系和规律,人们常常把数学问题和算法理论编成朗朗上口的诗歌词赋,是抽象理性的数学问题诗词化,比如诗歌:“十里长街闹盈盈,庆祝祖国万象新;佳节礼花破长空,长街灯笼胜繁星;七七数时余两个,八个一数恰为零;三数之时剩两盏,灯笼几盏放光明”,则此诗歌中长街灯笼最少几盏 A.70 B.128 C.140 D.150 8. 若等边ABC ∆的边长为1,点M 满足CM 2+=,则=⋅A.3B.2C.32D.39. 已知),(y x P 为不等式组⎩⎨⎧≤≤≤+-a x x y x y 00)2)(2(表示的平面区域内任意一点,当该区域的面积为2时,函数y x z +=的最大值是 A.3B.2C.1D.010. 如图,ABC ∆内角C B A ,,所对的边分别为c b a ,,,且C a c b c o s 21==,延长BA 至D ,是BCD ∆是以BC 为底边的等腰三角形,6π=∠ACD ,当2=c 时,边=CDA.33+B.23+C.2423+ D.362+ 11. 已知曲线xae x f =)()0(>a 与曲线)0()(2>-=m m x x g 有公共点,且在该点处的切线相同,则当m 变化时,实数a 的取值范围是A.)4,0(2eB.)6,1(eC.)4,0(eD.)8,1(2e12. 如图,已知双曲线)0(12222>>=-a b by a x 的左、右焦点分别为21,F F ,过右焦点作平行于一条渐近线的直线交双曲线于点A ,若21F AF ∆的内切圆半径为4b,则双曲线的离心率为A.332 B.45 C.35 D.223 二、填空题(本大题共4小题,每小题5分,共20分) 13. 已知3tan =α,则=++ααααsin 3cos sin cos 2__________.14. 已知椭圆)0(1:2222>>=+b a by a x C 的上顶点为B ,右焦点为)0,2(F ,)0,22(a M -,且满足BM BF ⊥,则椭圆C 的标准方程为__________.15. 已知实数1,>b a ,且满足5=--b a ab ,则b a 32+的最小值为__________. 16. 在学习导数和微积分是,应用到了“极限”的概念,极限分为函数极限和数列极限,其中数列极限的概念为:对数列{}n a ,若存在常数A ,对于任意0>ε,总存在正整数0N ,使得当0N n ≥时,ε<-||A a n 成立,那么称A 是数列{}n a 的极限,已知数列{}n b 满足:1211+=+n n b b ,31=b ,*N n ∈,由以上信息可得{}n b 的极限=A __________,且001.0=ε时,0N 的最小值为__________.三、解答题(共70分。
2020届重庆市南开中学高考冲刺预测卷(全国III卷) 数学理 (word版)
2020届重庆市南开中学高考冲刺★预测卷理科数学(全国Ⅲ卷)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A ={x |x 2≤x },B ={x |1x≥1},则A ∩B = A .(1]-∞, B .[01],C .(01],D .(1]-∞,∪(01],2.已知i 为虚数单位,则2i1i+-= A .31i 22- B .31i 22+C .13i 22- D .13i 22+ 3.“0<x <1”是“sin x 2<sin x ”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.运行如图所示的程序框图,设输出的数据构成集合A ,从集合A 中任取一个元素a ,则函数a y x =在(0,+∞)上是增函数的概率为A .12 B .35 C .45 D .345.若函数()x f x a =(a >0,且a ≠1)在区间[2,4]上的最大值与最小值之差为2,则实数a =A .22B .2C .12D .26.我国古代木匠精于钻研,技艺精湛,常常设计出巧夺天工的建筑,如图.在一座宫殿中,有一件特别的“柱脚”的三视图如右图所示.则其体积为 A .83+4π B .83+8π C .8+4πD .8+8π7.已知斜率为2的直线l 过抛物线C :y 2=2px (p >0)的焦点F ,且与抛物线交于A ,B 两点,若线段AB 的中点M 的纵坐标为1,则p = A .1B .2C .2D .48.将函数()sin 23cos 2f x x x =+的图象向右平移ϕ(ϕ>0)个单位,再向上平移1个单位,所得图象经过点(8π,1),则ϕ的最小值为 A .512πB .712π C .524πD .724π 9.已知双曲线22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1作x 2+y 2=a 2的切线,交双曲线右支于点M ,若∠F 1MF 2=45º,则双曲线的离心率为A .2B .3C .2D .3 10.有一个长方体木块,三个侧面积分别为8,12,24,现将其削成一个正四面体模型,则该正四面体模型棱长的最大值为 A .2B .22C .4D .4211.已知在平面直角坐标系xOy 中,O 为坐标原点,A (0,2),|OB |2+|OA |2=20,若平面内点P 满足3PB PA =u u u r u u u r,则|PO |的最大值为A .4B .5C .6D .712.已知A 、B 是函数2e ()e x a x x a f x x a --⎧≥⎪=⎨<⎪⎩,,,(其中a >0)图象上的两个动点,点P (a ,0),若主视图左视图俯视图4 22 2PA PB ⋅u u u r u u u r的最小值为0,则函数()f x 的最小值为A .21e -B .1e -C .21eD .1e 二、填空题:本大题共4小题 每小题5分,共20分。
重庆南开中学2020级高三第四次教学质量检测考试数学理科解析
绝密★启用前重庆南开中学2020级高三第四次教学质量检测考试理科数学本卷满分150分,考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1. 已知复数z 满足i i z 2)1(=+,其中i 为虚数单位,则复数z 的模=||z ( )A. 1B.C. 2D.【答案】B.【解析】2222(1)222211(1)(1)12i i i i i i z i i i i i --+=====+++--,∴z =B . 【点评】本题考查了复数的运算,复数的模。
属于简单题. 2. 抛物线y x 22=的焦点到准线的距离为( )A. 4B. 2C. 1D.14【答案】 C.【解析】由y x 22=可知焦点为1(0,)2,准线为12y =,∴焦点到准线的距离1d =,故选C .【点评】本题考查了抛物线焦点坐标和准线方程。
属于简单题.3. 已知全集R U =,集合{}0)4(<-=x x x A ,{}1)1(log 2>-=x x B ,图中阴影部分所表示的集合为 ( )A. {}21<<x xB. {}32<<x xC. {}30≤<x xD. {}40<<x x 【答案】C.【解析】由{}{}(4)004A x x x A x x =-<⇒=<<,{}{}2log (1)13B x x B x x =->⇒=>, 而阴影部分表示的为}{()03A C A B x x =<≤I ,故选C 【点评】本题考查了Venn 图集合的简单表示。
重庆南开中学2020学年度高2020级数学理科6月考前猜题卷
重庆南开中学2020学年度高2020级数学理科6月考前猜题卷第I 卷(选择题 50分)一、选择题(每小题5分,10小题,共50分,每小题只有一个选项符合要求)1. 定义{|,}A B x x A x B -=∈∉且为两个集合A ,B 的差集,若全集I N =,{}{}2,4,6,1,2,3,4,5,6A B ==,则A B -=( )A. φB. AC. BD. {}1,3,5 2.200711i i+=-( ) A. 2i B. 2i - C. 1 D. i 3. {}n a 为正项等比数列,且354657225a a a a a a ++=,则46a a +=( )A. 25B. 20C. 15D. 54. ()y f x =是定义在R 上的函数,则()y f x =为奇函数的必要不充分.....条件是( ) A. ()f x 的图像过原点,且()f x 单调递增B. 对任意的x R ∈,()()0f x f x --=都成立C. 对任意x R ∈,()()0f x f x +-=都成立D. 存在0x R ∈,使得00()()0f x f x +-=成立5. 已知函数()sin cos ()f x a x x x R =+∈的一条对称轴方程3x π=,则a 的一个可能取值是( )3 D. 3-6. 不等式组2142x a x a⎧->⎨-<⎩有解,则实数a 的取值范围是( )A. (1,3)-B. (3,1)-C. (,1)(3,)-∞+∞UD. (,3)(1,)-∞-+∞U7. 在二项式12)nx -(的展开式中,偶数项二项式系数和为32,则展开式的中间项为( ) A. 2120x B. 3120x - C. 3160x - D. 3160x 8. 设是(,)P x y 椭圆22194x y +=上一点,12,F F 是两个焦点,若120F P F P ⋅<u u u r u u u u r ,则点P 的横坐标x 的取值范围是( )A.35353,,355⎛⎫⎛⎫--⎪⎪⎪ ⎪⎝⎭⎝⎭U B.3535,55⎛⎫-⎪⎪⎝⎭C.35353,,355⎛⎫⎛⎤--⎪ ⎥⎪⎝⎭⎝⎦U D.3535,55⎡⎤-⎢⎥⎣⎦9. 如图,点P是球O的直径AB上的动点,设PA=x,过点P且与AB垂直的截面面积记为()f x,则函数1()2y f x=的大致图象是()10. 已知1,1m n>>,则2211m nn m+--的最小值为()A. 9B. 8C. 7D. 6第II卷(非选择题共100分)二、填空题(每小题4分,6小题,共24分,请将答案填在答题卡相应位置的横线上)11. 某中学有高一学生400人,高二学生300人,高三学生300人,现通过分层抽样抽取一样本容量为n的样本,已知每个学生被抽到的概率为0.2,则n=。
2020届重庆市南开中学高考冲刺预测卷(全国I卷) 数学理 (word版)
2020届重庆市南开中学高考冲刺★预测卷理科数学(全国I 卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
全卷满分150分,考试用时120分钟。
注意事项:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3.考试结束,请将试题卷、答题卡一并收回。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,则3i(1i )-=(A )1i -- (B )1i -+ (C )1i - (D )1i +2.已知集合{|lg 2}A x x =>,{|}B x x a =≥,且A B =R R U ð,则实数a 的取值范围是 (A )2a > (B )2a ≥ (C )100a > (D )100a ≥3.已知数列{}n a 的首项为1,且11n n n n a a a a +--=-对于所有大于1的正整数n 都成立,3592S S a +=,则612a a +=(A )34 (B )17 (C )36 (D )18 4.有关数据表明,2018年我国固定资产投资(不含农户,下同)635636亿元,增长5.9%.其中,第一产业投资22413亿元,比上年增长12.9%;第二产业投资237899亿元,增长6.2%;第三产业投资375324亿元,增长5.5%.另外,2014—2018年,我国第一产业、第二产业、第三产业投资占固定资产投资比重情况如下图所示.根据以上信息可知,下列说法中:①2014—2018年,我国第一产业投资占固定资产投资比重逐年增加;②2014—2018年,我国第一产业、第三产业投资之和占固定资产投资比重逐年增加;③224135%635636≈;④23789937532496.5%635636+≈.不正确的个数为(A )1 (B )2 (C )3 (D )45.已知π()sin(2)3f x x =+,π()cos(2)3g x x =+,则下列说法中,正确的是 (A )x ∀∈R ,π()()2f x g x =- (B )x ∀∈R ,π()()4f x g x =+(C )x ∀∈R ,π()()2g x f x =- (D )x ∀∈R ,π()()4g x f x =+6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为(A )(45)π+ (B )(55)π (C )(55)π+ (D )(535)π+7.已知点P 为△ABC 所在平面内一点,且23PA PB PC ++=0u u u r u u u r u u u r,如果E 为AC 的中点,F 为BC 的中点,则下列结论中:①向量PA u u u r与PC u u u r 可能平行;②向量PA u u u r与PC u u u r 可能垂直; ③点P 在线段EF 上;④::21PE PF =. 正确的个数为 (A )1(B )2(C )3(D )48.已知椭圆22221x y a b+=(0a b >>)经过点2(1,)2,过顶点(,0)a ,(0,)b 的直线与圆2223x y +=相切,则椭圆的方程为(A )2212x y += (B )223142x y += (C )224133x y += (D )228155x y += 9.已知某品牌的手机从1米高的地方掉落时,第一次未损坏的概率为0.3,在第一次未损坏的情况下第二次也未损坏的概率为0.1.则这样的手机从1米高的地方掉落两次后仍未损坏的概率为(A )0.25 (B )0.15 (C )0.1 (D )0.0310.如果2(25)310x a x a +-+-=在区间(1,3)内有且只有一个实数解,则实数a 的取值范围是(A )716a << (B )716a ≤<或1621425a +=(C )716a <≤ (D )716a <<或1621425a +=11.《九章算术》是中国古典数学最重要的著作.《九章算术》的“商功”一章中给出了很多几何体的体积计算公式.如图所示的几何体,上底面1111A B C D 与下底面ABCD 相互平行,且ABCD 与1111A B C D 均为长方形.《九章算术》中,称如图所示的图形为“刍童”.如果AB a =,BC b =,11A B c =,11B C d =,且两底面之间的距离为h ,记“刍童”的体积为V ,则(A )[(2)(2)]6h V c a d a c b =+++ (B )[(2)(2)]3hV c a d a c b =+++ (C )[(2)(2)]6h V c a d a c b =+++ (D )[(2)(2)]3hV c a d a c b =+++12.已知数列{}n a 的前n 项的和为n S ,且11a =-,22a =,37a =.又已知当2n >时,112332n n n n S S S S +--=-++恒成立.则使得12111722()11155k k a a a -+++≥+++L 成立的正整数k 的取值集合为(A ){|9,}k k k ≥∈N(B ){|10,}k k k ≥∈N (C ){|11,}k k k ≥∈N (D ){|12,}k k k ≥∈N第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.在了解全校学生每年平均阅读了多少本文学经典名著时,甲同学抽取了一个容量为10的样本,并算得样本的平均数为6;乙同学抽取了一个容量为15的样本,并算得样本的平均数为5.已知甲、乙两同学抽取的样本合在一起正好组成一个容量为25的样本,则合在一起后的样本的平均数为_____________.14.已知α是第四象限角,且π3sin()35α+=,则πsin()12α+=_____________. 15. 在平面直角坐标系xOy 中,过点(1,0)的一条直线与函数3()1f x x =-的图像交于P ,Q 两点,则线段PQ 长的最小值是 .16.双曲线22221x y a b-=的左、右焦点分别为1F ,2F ,左、右顶点分别为1A ,2A ,P 为双曲线上一点,已知直线1PA ,2PA 的斜率之积为2425,1260F PF ∠=o,1F 到一条渐近线的距离为6,则:(1)双曲线的方程为_______________;(2)△12PF F 的内切圆半径与外接圆半径之比为_______________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17题~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答.(一)必考题:共60分.17.(12分)已知△ABC 中,C ∠为钝角,而且8AB =,3BC =,AB 边上的高为332. (1)求B ∠的大小;(2)求cos 3cos AC A B +的值.18.(12分)如图,AB ,CD 分别是圆柱1OO 下底面、上底面的直径,AD ,BC 分别是圆柱的母线,ABCD 是一个边长为2的正方形,E ,F 都是下底面圆周上的点,且30EAB ∠=o,45FAB ∠=o,点P 在上底面圆周上运动.(1)判断直线AF 是否有可能与平面PBE 平行,并说明理由;(2)判断直线BE是否有可能与平面PAE垂直,并说明理由;(3)设平面PAE与平面ABCD所成夹角为θ(90θ≤o),求cosθ的取值范围.19.(12分)为了了解青少年的创新能力与性别的联系,某研究院随机抽取了若干名青少年进行测试,所得结果如图1所示.图1更进一步,该研究院对上述测试结果为“优秀”的青少年进行了知识测试,得到了每个人的知x 31 33 35 38 39 42 45 45 47 49 52 54 57 57 60y 6 6 7 9 9 9 10 12 12 12 13 15 16 18 19 x 63 65 65 68 71 71 73 75 77 80 80 80 83 83 84 y 21 24 25 27 31 33 36 40 42 44 46 49 51 57 54 x 84 85 86 87 90 90 91 92 93 95y 59 62 64 68 71 75 80 88 83 90图2(1)通过计算说明,能否有95%的把握认为性别与创新能力是否优秀有关.附:22(),()()()()n ad bcKa b c d a c b d-=++++2()0.0500.0100.001.3.841 6.63510.828P K kk≥(2)从测试结果为“优秀”的青少年中,随机抽取2人,用X表示抽得的人中,知识测试得分和创新能力得分都超过70分的人数,求(1)P X=.(3)根据前述表格中的数据,可以计算出y关于x的回归方程为ˆ 1.2747.92y x=-:①根据回归方程计算:当[50,70]x∈时,ˆy的取值范围.②在图2中作出回归直线方程,并尝试给出描述y与x关系的更好的方案(只需将方案用文字描述即可,不需要进行计算).20.(12分)已知抛物线24y x=的焦点为F,倾斜角为锐角的直线l与抛物线交于A,B两点,且直线l过点(2,0)-,||13AB=(1)求直线l的方程;(2)如果C是抛物线上一点,O为坐标原点,且存在实数t,使得()OC OF t FA FB=++u u u r u u u r u u u r u u u r,求||FC.21.(12分)已知函数sin ()xf x x =. (1)求曲线()y f x =在ππ(,())22f 处的切线方程;(2)求证:2()16x f x >-;(3)求证:当0 1.1x <≤时,ln(1)()x f x x+>.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)已知直线l 的参数方程为2cos 2sin x t y t θθ=-+⎧⎨=-+⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为1ρ=,且直线l 与曲线C 相交于A ,B 两点.(1)写出曲线C 与直线l 的一般方程,并求直线l 的斜率的取值范围; (2)设(2,2)P --,且::||||57PA PB =,求直线l 的斜率.23.[选修4-5:不等式选讲](10分) 已知函数()|21||1|f x x x =+--. (1)求不等式()3f x >的解集; (2)如果“x ∀∈R ,25()2f x t t ≥-”是真命题,求t 的取值范围.2019年相阳教育“黉门云”高考等值试卷★预测卷理科数学(全国I 卷)参考答案及评分标准一、选择题:(每小题5分,共60分)1.B 2.C 3.A 4.B 5.D 6.D 7.C 8.A 9.D 10.B 11.A 12.B 二、填空题:(每小题5分,共20分)13. 27514. 10-15. 16. (1)2241256x y -=,(2)27. 三、解答题:(一)必考题:共60分.17.(12分) (1)由三角形面积可知11838sin 22B ⨯=⨯⨯⨯, ………………………………2分sin B =,又因为B ∠是锐角,所以π3B ∠=. ………………………………5分(2)由(1)可知2222cos 6492449AC AB BC AB BC B =+-⨯⨯=+-=,所以7AC =.………………………………7分又因为2226449913cos 228714AB AC BC A AB AC +-+-===⨯⨯⨯,………………………………9分因此113cos 3cos 378214AC A B +=⨯+⨯=.………………………………12分18.(12分)(1)直线AF 不可能与平面PBE 平行,理由如下:假设直线AF //平面PBE ,则因为AF ⊂平面ABE ,平面ABE I 平面PBE BE =,所以AF //BE ,从而可知45EBA FAB ∠=∠=o ,但是ABE ∆是个直角三角形,而且9060EBA FAB ∠=-∠=o o ,矛盾,因此假设不成立.………………………………3分(2)当PA 或者PE 是圆柱的母线时,直线BE 与平面PAE 垂直,理由如下: 因为E 是圆周上一点,所以BE AE ⊥.又因为PA AE A =I ,因此当PA 是圆柱的母线时,有PA BE ⊥,从而可知BE ⊥平面PAE .………………………………5分类似地,因为PE EB E =I ,因此当PE 是圆柱的母线时,有PE BE ⊥,从而可知BE ⊥平面PAE .………………………………7分(3)以O 为坐标原点,OB 所在直线为y 轴,1OO 所在直线为z 轴,建立如图所示空间直角坐标系,则(0,1,0)A -,(0,1,0)B ,31(,,0)22E -,33(,,0)22AE =-u u u r ,而且(1,0,0)=m 是平面ABCD 的一个法向量.………………………………8分设(cos ,sin ,2)P t t ,则(cos ,sin 1,2)AP t t =+u u u r,设(,,)x y z =n 是平面PAE 的一个法向量,则cos (sin 1)203302AP x t y t z AE x y ⎧⋅=+++=⎪⎨⋅=-+=⎪⎩u u u ru u u r n n 因此可取(23,2,3cos sin 1)t t =--++n .………………………………10分从而可知2||23cos ||||163cos sin 1t t θ⋅==+++()n m n m ,又因为3cos sin 2sin(60)[2,2]t t t +=+∈-o ,所以233cos 52θ≤≤. ………………………………12分19.(12分)(1)由题意可知22(24321624)(24241632)(2432)(1624)(2416)(3224)χ+++⨯⨯-⨯=+⨯+⨯+⨯+960.0781225=≈. ………………………………2分又因为195%5%-=,而且查表可得2( 3.841)0.05P χ≥=,因为0.078 3.841<,因此没有95%的把握认为性别与创新能力是否优秀有关.………………………………3分(2)因为测试结果为“优秀”的青少年共有40人,且知识测试得分和创新能力得分都超过70分的人只有6人,因此11346240C C 17(1)C 65P X ===.………………………………6分(3)○1因为1.275047.9215.58⨯-=,1.277047.9240.98⨯-=,所以ˆy 的取值范围是[15.5840.98,].………………………………9分○2图如下.描述y 与x 关系的更好的方案之一是:借助非线性函数进行描述.………………………………12分20.(12分)(1)设直线l 的方程为2x my =-,11(,)A x y ,22(,)B x y . 则221212()()13x x y y -+-=,2212(1)()13m y y +-=.………………………………2分由242y xx my ⎧=⎨=-⎩可得2480y my -+=,因此 222121212()()4=1632y y y y y y m -=+--,因此22(1)(1632)13m m +-=,421616450m m --=,22(49)(45)0m m -+=,294m =,解得32m =.从而所求直线方程为322x y =-,即2340x y -+=.………………………………5分(2)设AB 的中点为M ,则由()OC OF t FA FB =++u u u r u u u r u u u r u u u r可知2FC tFM =u u u r u u u u r ,因此F ,C ,M三点共线.………………………………7分设00(,)M x y ,则由(1)知12032y y y +==,0353222x =⨯-=.………………………………9分因此直线FC 的方程为3(1)2(1)512y x x =-=--.由242(1)y x y x ⎧=⎨=-⎩可得2310x x -+=,因此32x ±=,从而可知35||122FC ±=+=. ………………………………12分21.(12分)(1)因为2cos sin ()x x x f x x -'=,所以2π4()2πf '=-. 又因为π2()2πf =,所以切线方程为2224π42()ππ2ππy x x -=--=-+, 即244ππy x =-+.………………………………3分(2)22sin ()1166x x x f x x >-⇔>-. 注意到()f x 与216x y =-都是偶函数,因此只需证明0x >时2sin 16x x x >-成立,即3sin 6x x x >-成立即可.………………………………5分设3()sin 6x g x x x =-+,0x ≥,则2()cos 12x g x x '=-+.………………………………6分设2()cos 12x h x x =-+,则()sin 0h x x x '=-≥,因此()h x 在0x ≥时递增,因此()(0)0h x h ≥=恒成立.从而可知()g x 在0x ≥时递增,因此()(0)0g x g ≥=,且等号只在0x =成立.因此当0x >时,3sin 06x x x -+>,即2sin 16x x x >-. ………………………………8分(3)当0 1.1x <≤时,ln(1)sin ln(1)()sin ln(1)x x x f x x x x x x++>⇔>⇔>+. 由(2)可知,当0 1.1x <≤时,3sin 6x x x >-恒成立,因此只需证明当0 1.1x <≤时,3ln(1)6x x x ->+即可.………………………………10分设3()ln(1)6x g x x x =--+,0 1.1x ≤≤,则2221(2)(1)(2)()121122(1)2(1)x x x x x x x x x g x x x x x ---+'=--=-==++++,因此当01x ≤≤,()g x 递增;1 1.1x ≤≤,()g x 递减.………………………………11分又因为(0)0g =,31.1(1.1) 1.1ln2.16g =--,而且 331.1 1.11.1 1.10.833865->-=.又因为42.119.4481=,32.719.683=,所以4332.1 2.7e <<,从而342.1e <,因此3ln 2.10.754<=,从而 (1.1)0.83380.750g >->.因此可知,当0 1.1x <≤,()0g x >恒成立,即3ln(1)6x x x ->+. ………………………………12分(二)选考题:22.(10分) (1)曲线C 的一般方程为221x y +=.………………………………2分又因为直线l 过点(2,2)--且与圆C 相交,因此直线l 的斜率一定存在,因此其一般方程为2tan (2)y x θ+=+.………………………………3分设直线的斜率为tan k θ=,则直线方程为2(2)y k x +=+1<可知23830k k -+<k <<. ………………………………5分(2)设A ,B 两点对应的参数分别为1t ,2t ,由P 在圆C 外可知这两个参数均为正数,且12::57t t =.………………………………6分由2cos 2sin x t y t θθ=-+⎧⎨=-+⎩与221x y +=可得22(2cos )(2sin )1t t θθ-++-+=,24(cos sin )70t t θθ-++=,因此12124(cos sin )7t t t t θθ+=+⎧⎨=⎩………………………………7分从而121124(cos sin )5775t t θθ⎧=+⎪⎪⎨⎪=⎪⎩因此cos sin θθ+=可解得sin θ==………………………………9分因此12k =或2k =,即所求斜率为12或2.………………………………10分23.(10分)(1)因为 2,11()3,1212,2x x f x x x x x ⎧⎪+≥⎪⎪=-<<⎨⎪⎪--≤-⎪⎩………………………………2分当1x ≥时,由()3f x >可得23x +>,1x >,此时1x >. 当112x -<<时,由()3f x >可得33x >,1x >,此时无解. 当12x ≤-时,由()3f x >可得23x -->,5x <-,此时5x <-. ………………………………4分综上可知所求解集为(,5)(1,)-∞-+∞U .………………………………5分(2)由(1)可算出()f x 的最小值为13()22f -=-. ………………………………7分因此23522t t -≥-. ………………………………8分22530t t -+≤,(23)(1)0t t --≤,解得312t ≤≤. ………………………………10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆南开中学2020学年度高2020级数学理科6月考前猜题卷
第I 卷(选择题 50分)
一、选择题(每小题5分,10小题,共50分,每小题只有一个选项符合要求)
1. 定义{|,}A B x x A x B -=∈∉且为两个集合A ,B 的差集,若全集I N =,
{}{}2,4,6,1,2,3,4,5,6A B ==,则A B -=( )
A. φ
B. A
C. B
D. {}1,3,5 2.
200711i i
+=-( ) A. 2i B. 2i - C. 1 D. i 3. {}n a 为正项等比数列,且354657225a a a a a a ++=,则46a a +=( )
A. 25
B. 20
C. 15
D. 5
4. ()y f x =是定义在R 上的函数,则()y f x =为奇函数的必要不充分.....
条件是( ) A. ()f x 的图像过原点,且()f x 单调递增
B. 对任意的x R ∈,()()0f x f x --=都成立
C. 对任意x R ∈,()()0f x f x +-=都成立
D. 存在0x R ∈,使得00()()0f x f x +-=成立
5. 已知函数()sin cos ()f x a x x x R =+∈的一条对称轴方程3x π
=,则a 的一个可能取值是( )
3 D. 3
-6. 不等式组2
142x a x a
⎧->⎨-<⎩有解,则实数a 的取值范围是( )
A. (1,3)-
B. (3,1)-
C. (,1)(3,)-∞+∞U
D. (,3)(1,)-∞-+∞U
7. 在二项式
12)n
x -(的展开式中,偶数项二项式系数和为32,则展开式的中间项为( ) A. 2120x B. 3120x - C. 3160x - D. 3160x 8. 设是(,)P x y 椭圆22
194
x y +=上一点,12,F F 是两个焦点,若120F P F P ⋅<u u u r u u u u r ,则点P 的横坐标x 的取值范围是( )
A.
3535
3,,3
55
⎛⎫⎛⎫-
-
⎪
⎪
⎪ ⎪
⎝⎭⎝⎭
U B.
3535
,
55
⎛⎫
-
⎪
⎪
⎝⎭
C.
3535
3,,3
55
⎛⎫⎛⎤
-
-
⎪ ⎥
⎪
⎝⎭⎝⎦
U D.
3535
,
55
⎡⎤
-⎢⎥
⎣⎦
9. 如图,点P是球O的直径AB上的动点,设PA=x,过点P且与AB垂直的截面面积记为()
f x,则函数
1
()
2
y f x
=的大致图象是()
10. 已知1,1
m n
>>,则
22
11
m n
n m
+
--
的最小值为()
A. 9
B. 8
C. 7
D. 6
第II卷(非选择题共100分)
二、填空题(每小题4分,6小题,共24分,请将答案填在答题卡相应位置的横线上)
11. 某中学有高一学生400人,高二学生300人,高三学生300人,现通过分层抽样抽取一样本容量为n的样本,已知每个学生被抽到的概率为0.2,则n=。
12. 已知向量a
r
与b
r
的夹角为θ,规定向量的新运算“×”,sin
a b a bθ
⋅=⋅
r r r r
,若向量(1,1),(2,2)
m n
==-
u r r
,则m n
⨯=
u r r。
13. ABC
∆的三个内角A,B,C依次成等差数列,且AB=2,BC=4,则AC边上的高线长为
14. 过点(2,1)
P作曲线C:
5
2cos
2
5
4sin
2
x
y
θ
θ
⎧
=+
⎪⎪
⎨
⎪=-+
⎪⎩
[)
(0,2)
θπ
∈的切线为PA,PB,其中A,B为切点,则tan APB
∠=
15. ,,,,
A B C D E5个人站成一排,A与B不相邻且A不在两端的概率为
16. 连结正多面体各个面的中心,得到一个新的正多面体,我们称这个新多面体为原多面体的正子体。
一正四面体1A 的表面积为1163S =,它的正子体为2A 的表面积为2S ,2A 的正子体3A 的表面积为3S ,……,如此下去,记第n 个正子体的表面积为n S ,则12lim()n n S S S →∞
+++=K 三、解答题(本大题共6小题,76分,请在答题卡相应位置作答,解答应写出文学说明,证明过程或演算步骤)
17.(13分)先后抛掷一枚骰子两次,设ξ表示第一次的点数减去第二次的点数之差,求: ⑴0ξ=的概率; ⑵求ξ的概率分布列和期望。
18.(13分)已知,αβ满足
sin cos 21,tan()1cos 23
αααβα⋅=-=--,求tan(2)βα-的值。
19.(13分)如图,直三棱柱ABC -111A B C 满足AC=BC=1CC =2,90ACB ∠=o
⑴证明:直线1BC ⊥平面1ACB ;
⑵求点B 到平面11AB C 的距离;
⑶求二面角111A AB C --的大小。
20. (13分)已知二次函数()y f x =的图象过点(0,10),其导函数()25f x x '=-,当(],1()x n n n N *∈+∈时,()f x 的取值为整数的个数为n a
⑴求数列{}n a 的通项公式; ⑵令1
4n n n b a a +=
,求数列{}n n a b +的前n 项和(3)n ≥。
21.(12分)动直线m 的倾斜角是45o ,若m 与抛物线22(0)y px p =>交于A ,B 两点,且A ,B 两点的纵坐标之和为2
⑴求抛物线的方程;
⑵设直线1//m m ,直线1m 过抛物线的准线与x 轴的交点,M 为抛物线上一动点,求M 到直线1m 的最小距离;
⑶线段AB 的中垂线交x 轴于P 点,当P 关于直线m 的对称点落在抛物线上时,求直线m 的方程。
22. (12分)已知432()(,,,,)f x ax bx cx dx e a b c d e R =++++∈是定义在R 上的奇函数,且()f x
在x =
()f x '表示()f x 的导函数。
定义数列{}n a
满足:2()n a f n N *'=+∈
⑴求数列{}n a 的通项公式n a ;
⑵对任意,m n N *∈,若m n ≤,证明:1113m n n m a a ⎛⎫+≤+< ⎪⎝⎭
; ⑶试比较111n n a +⎛⎫+ ⎪⎝
⎭与2111n n a ++⎛⎫+ ⎪⎝⎭的大小。
[参考答案]。