信管环境概率统计复习试题

合集下载

概率统计总复习(含答案)

概率统计总复习(含答案)

概率统计总复习一填空选择题考点1 掌握事件的关系与运算,会写样本空间1.试验E 为抛一枚硬币,观察正面H ,反面T 出现的情况,则E 的样本空间S = .2.设,,A B C 为随机事件,则,,A B C 中至少有一个发生可表示为 ,,A B C 同时发生可表示为考点2古典概型的计算;1.同时抛掷3枚均匀的硬币,则恰好有2枚正面朝上的概率是2.袋中有5个球,其中3个新球,2个旧球,每次取一个,无放回地取两次,则两次取到的均为新球的概率为 .3.一袋中装有6个球,其中3个白球,3个红球,依次从中取出2个球(不放回),则两次取到的均为白球的概率为 15。

4.从1,2,3,4,5五个数中任意取两个数,则这两个数中含偶数的概率是 考点3 概率的计算A 概率的性质和事件的独立性综合计算1.已知(),()0.2,()0.96P A a P B P A B ==⋃=,若事件AB 相互独立,则 a =1/20 2 设()0.4,()0.3P A P B ==,,A B 独立,则()P AB = ()____P A B -=. 3.设事件A 与B 相互独立,已知()0.5,()0.8P A P A B == , ()P AB = . B 条件概率相关计算1.设事件A 与B 独立,且()0.4P A =,(|)0.5P B A =,则()P AB = 2.设()0.3P AB =,(|)0.4P B A =,则()P A = .3.已知()0.5,()0.6,()0.4P A P B P B A ===,那么()P AB = __0.2_____,()P AB =_0.4____, ()P A B ⋃=_______0.7_____.C 正态分布概率相关计算1.设随机变量~(1,1)X N ,则{02}P X <<= .((1)0.8413Φ=)2.已知2~(1,)X N σ,{12}0.3P X <<=,则{0}P X <=____0.2_____.3 设随机变量(1,4)X N ,则(13)P X -<<= ;若()0.5,P X a >= 则a = .0.6826,14.随机变量),2(~2σN X ,(04)0.3,<<=P X 则(0)<=P X 。

概率统计试卷复习资料

概率统计试卷复习资料

总复习一、填空题(每题3分)1、已知事件A 与B 独立,且5.0)(=A P ,7.0)(=B P ,则=)(AUB P2、设X 服从正态分布)3.2(2N ,且21C) X (=≤P ,则=C 3、设每次试验中成功的概率为P )1(<<P o ,则在二次重复独立试验中,至少失败一次的概率为 。

4、评价估计量优劣的三条标准是无偏性,一致性和 性。

5、已知随机变量X 服从),(2σμN ,则X 的概率密度函数为6、设X 1,…,X n 是总体X 的一个样本,且X 的期望μ=EX 和方差2σ=DX 均未知,则2σ的无偏估计是=∧2σ7、设X 服从二项分布),(p n B ,则)(X E =8、若X 与Y 独立,且6)(=X D ,3)(=Y D ,则)2(Y X D -=9、设X 服从),(2σμN ,则≤≥-)3(σμX P10、一口袋中装有8只球,在这6只球上分别标有-1,1,1,1,1,3,,3,3这样的数字,现从这只口袋中任取一球,用随机变量X 表示取得的球上标明的数字,求:(1)X 的概率分布律;(2)X 的概率分布函数;(3))34(-X E .11.袋中有4个乒乓球, 其中3个是黄球, 1个是白球. 今有两人依次随机地从袋中各取一球, 取后不放回, 则第2个人取得黄球的概率是 . 12、对事件,A B 和C ,已知1()()()5P A P B P C ,()()0P AB P BC ,1()8P AC ,则,A B ,C 中至少有一个发生的概率是_________.13、已知随机变量X 在区间[ 5,15 ]上服从均匀分布,则EX= .14、中心极限定理告诉我们,若随机变量X 服从参数为1000,0.06的二项分布,则X 也近似服从参数为___ __和______的正态分布.15、设(X 1,X 2,...,X n )是取自正态总体N (μ,σ2)的简单随机样本,统计量∑==n i i X n T 121,则T 的数学期望ET=16、设X 表示独立射击目标10次所击中目标的次数,每次击中的概率为0.3,则X 2的数学期望E(X 2)= .17、设随机变量X 服从正态分布N(2,0.22),已知标准正态分布函数值 Φ(2.5)=0.9938,则P{2<X<2.5}=___ .18、设随机变量X 和Y 满足DX =25, DY =9, ρXY =0.4, 则D (X-Y) =19 、设总体X 的概率密度为,,020)(⎩⎨⎧<<=其它x Ax x f 则A=20、若随机变量X 服从参数为1=λ的分布,则大数定律告诉我们:∑=ni i X n 11依概率收敛于21 ,设总体X 服从),(2σμN 分布,X 1,…,X n 是X 的一个样本,则统计量n / X σμ- 服从分布;)(1_1222X XS nni i-=∑=οο 服从 分布;212)(1μο-∑=ni iX服从 分布二,单选1 .若随机变量X 具有性质)()(X D X E =,则X 服从 分布 a 、正态 b 、二项 c 、泊松 d 、均匀2、若)()(1)(B P A P B A P -=+,则A 与B a 、互不相容 b 、独立c 、为对立事件d 、为任意事件3、设随机变量X 服从)2,1(2N ,12-=X Y ,则Y 服从 分布 a 、)4,2(2N b 、)4,1(2N c 、)4,1(N d 、)4,2(N4、设A 与B 为两个随机事件,若0)(=AB P ,则下列命题正确的是 a 、A 、B 互不相容 b 、AB 未必是不可能事件 c 、A ,B 独立 d 、0)(=A P 或0)(=B P5、从总体X 中抽取样本X ,X 2,若X 服从)1,(θN 分布,则θ的估计量中,最有效的是a 、217671X X + b 、212121X X + c 、215451X X + d 、216561X X +6、“A 、B 、C 三事件恰有一个发生”可表为 a 、C U B U A b 、C B Ac 、ABCd 、C B A C B A C B U U A7、5.0)(=A P ,8.0)(=B P ,9.0)(=AUB P ,则B A 与的关系是 a 、互不相容 b 、独立 c 、B A ⊃ d 、A B ⊃8、设随机变量X 服从分布, 则2)] X [E() X (=D a 、均匀 b 、标准正态 c 、二项 d 、泊松9、设),(y x F 是随机变量Y), X (的分布函数,则下列式子 成立。

概率论与数理统计(经管类) 复习题及答案

概率论与数理统计(经管类) 复习题及答案
A.p2(1-p)3 B.4p(1-p)3 C.5p2(1-p)3 D.4p2(1-p)3 答案:D 7.设A, B 是任意两个的互不相容事件, 则必有( )。 A.P(AB)=P(A)P(B) B.P(A-B)=P(A) C. 与 互不相容 D. 与 相容 答案:B 8.设某人向一个目标射击, 每次击中目标的概率为 0.8 , 现独立射击 3 次, 则 3 次中恰 好有 2 次击中目标的概率是( )。 A.0.384 B.0.64 C.0.32 D.0.128 答案:A 9.对掷一枚硬币的试验, “出现正面”称为( )。 A.样本空间 B.必然事件 C.不可能事件 D.随机事件 答案:D
D.n = 24,p = 0.1
答案:B
45.设随机变量X 的分布密度 A.-2;
,则D(2-X)=( )。
B.2 ; C.-4; D.4; 答案:B 46.设 X 为服从正态分布 N(-1, 2)的随机变量, 则 E(2X-1)= (
)。
A.9
B.6
C.4
D.-3
答案:D 47.设随机向量(X , Y)满足 E(XY) = EX·EY,则 ( )。
答案:
3、某市有 50%住户订日报,有 65%住户订晚报,有 85%住户至少订这两种报纸中的一种, 求 同时订这两种报纸的住户的概率。 答案:解:假设:A={订日报},B={订晚报},C=A+B 由 已知 P(A)=0.5,P(B)=0.65 ,P(C)=0.85 所以 P(AB)=P(A)+ P(B)-P(A+B)=0.5+0.65-0.85=0.3 即 同时订这两种报纸的住户的概率为 0.3。
)。
3.从装有2 只红球,2 只白球的袋中任取两球,记:A=“取到2 只白球”则 =( )。

信管、环境概率统计复习测试卷

信管、环境概率统计复习测试卷

信管、环境概率统计复习测试卷————————————————————————————————作者:————————————————————————————————日期:概率论与数理统计复习题一、选择题1. 设事件A 与事件B 互不相容,则( ) (A )()0P A B = (B )()()()P AB P A P B = (C) ()1()P A P B =- (D )()1P A B ⋃=2.对于任意二事件A 和B ,则下列成立的是( )(A )若AB ≠Φ,则A 和B 一定独立 (B )若AB ≠Φ,则A 和B 可能独立 (C) 若AB =Φ,则A 和B 一定独立 (D )若AB =Φ,则A 和B 一定不独立 3.某人向同一目标独立重复射击,每次击中目标的概率为(01)p p <<,则此人第4次射击恰好是第2次命中目标的概率为( )(A )23(1)p p - (B )26(1)p p - (C) 223(1)p p - (D )226(1)p p - 4.设随机变量X 服从[1,1]-上的均匀分布,事件{01}A X =<<,1{}4B X =<,则( ) (A )()0P AB = (B )()()P AB P A = (C) ()()1P B P A += (D )()()()P AB P A P B =5.设1X ,2X ,3X 是随机变量,且1~(0,1)X N ,22~(0,2)X N ,23~(5,3)X N ,{}22j j P P X =-≤≤(1,2,3)j =,则( )(A )123P P P >> (B )213P P P >> (C) 312P P P >> (D )132P P P >>6.设随机变量X 服从正态分布211(,)N μσ,随机变量Y 服从正态分布222(,)N μσ,且{}{}1211P X P Y μμ-<>-<,则必有( )(A )12σσ< (B) 12σσ> (C) 12μμ< (D) 12μμ>7.设1()f x 为标准正态分布的概率密度函数,2()f x 为[1,3]-上均匀分布的概率密度。

概率论与数理统计(经管类)复习试题及答案

概率论与数理统计(经管类)复习试题及答案

概率论和数理统计真题讲解(一)单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则()A.P(B|A)=0B.P(A|B)>0C.P(A|B)=P(A)D.P(AB)=P(A)P(B)『正确答案』分析:本题考察事件互不相容、相互独立及条件概率。

解析:A:,因为A与B互不相容,,P(AB)=0,正确;显然,B,C不正确;D:A与B相互独立。

故选择A。

提示:① 注意区别两个概念:事件互不相容与事件相互独立;② 条件概率的计算公式:P(A)>0时,。

2.设随机变量X~N(1,4),F(x)为X的分布函数,Φ(x)为标准正态分布函数,则F(3)=()A.Φ(0.5)B.Φ(0.75)C.Φ(1)D.Φ(3)『正确答案』分析:本题考察正态分布的标准化。

解析:,故选择C。

提示:正态分布的标准化是非常重要的方法,必须熟练掌握。

3.设随机变量X的概率密度为f(x)=则P{0≤X≤}=()『正确答案』分析:本题考察由一维随机变量概率密度求事件概率的方法。

第33页解析:,故选择A。

提示:概率题目经常用到“积分的区间可加性”计算积分的方法。

4.设随机变量X的概率密度为f(x)=则常数c=()A.-3B.-1C.-D.1『正确答案』分析:本题考察概率密度的性质。

解析:1=,所以c=-1,故选择B。

提示:概率密度的性质:1.f(x)≥0;4.在f(x)的连续点x,有F′(X)=f(x);F(x)是分布函数。

课本第38页5.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是()A.f(x)=-e-xB. f(x)=e-xC. f(x)=D.f(x)=『正确答案』分析:本题考察概率密度的判定方法。

解析:① 非负性:A不正确;② 验证:B:发散;C:,正确;D:显然不正确。

《概率统计》 试题试卷及答案(B卷)

《概率统计》 试题试卷及答案(B卷)

2 页,共 )5)p - (C) C ),(2σμ∑=-n i i X X n12)(1 )2(μ已知)的下列估计量中,为无偏估计量的是 。

B )=-=ni n 2211σ(D )-=i n 2411σ (B )114X (D)115X 4.0)=B ,则P }4=,则(X D +2(X D 3,假如该厂中2.设(),(),()P AB P AB P AB P A B P A B ===,求概率(),(),(),(),() P A p P B q P A B r第 3 页,共10 页3.设随机变量X的概率密度为232, ()0,xXx e x f xx-⎧⎪=⎨⎪⎩4.二维随机变量(,)X Y的联合密度为(,)f x y 密度()f x y及()f y x.第 4 页,共10第 5 页,共 10 页5.设随机变量Y 是随机变量X 的线性函数,65+=X Y ,且3)(=X D ,求Cov()X ,Y 和XY ρ..6.设总体X 服从参数为λ的泊松分布,即 ,2,1,0 ,!}{===-x e x x X P xλλ.n X X X ,,,21 是来自X 的样本,求参数λ的最大似然估计.第 6 页,共 10四、综合应用题:(13分)设连续型随机变量X 的分布函数为()1,F x A B ⎧⎪⎪=+⎨⎪⎪⎩(1)参数,A B ;(2)X 的概率密度函数()f x ;(3《概率统计》 参 考 答 案 与 评 分 标 准一、单项选择题(每小题3分,共30分) 1~5:BBBAB ;6~10:BBDBB 。

二、填空(每小题3分,共15分)1、0.52; 2、 3、=-)13(X E 2;=+)52(X D 36; 4、27; 5、02()0,Yy f y others<<=⎩三、计算题(每小题7分,共42分)1.解:(1)设事件B 表示“新工人参加了培训”,则B 就表示“新工人没有参加培训”,从而B 与B 构成一完备文件组。

概率统计期末考试试题及答案

概率统计期末考试试题及答案

概率统计期末考试试题及答案试题一:随机变量的概率分布某工厂生产的产品合格率为0.9,不合格率为0.1。

假设每天生产的产品数量为100件,求下列事件的概率:1. 至少有80件产品是合格的。

2. 至多有5件产品是不合格的。

试题二:连续型随机变量的概率密度函数设随机变量X的概率密度函数为f(x) = 2x,0 ≤ x ≤ 1,0 其他,求:1. X的期望E(X)。

2. X的方差Var(X)。

试题三:大数定律与中心极限定理假设某银行每天的交易量服从均值为100万元,标准差为20万元的正态分布。

求:1. 该银行连续5天的总交易量超过500万元的概率。

2. 根据中心极限定理,该银行连续20天的总交易量的平均值落在90万元至110万元之间的概率。

试题四:统计推断某工厂生产的零件长度服从正态分布,样本数据如下:95, 96, 97, 98, 99, 100, 101, 102, 103, 104求:1. 零件长度的平均值和标准差。

2. 零件长度的95%置信区间。

试题五:假设检验某公司对两种不同品牌的打印机进行了效率测试,测试结果如下:品牌A:平均打印速度为每分钟60页,标准差为5页。

品牌B:平均打印速度为每分钟55页,标准差为4页。

样本量均为30台打印机。

假设两种打印机的平均打印速度没有显著差异,检验假设是否成立。

答案一:1. 至少有80件产品是合格的,即不合格的产品数少于或等于20件。

根据二项分布,P(X ≤ 20) = Σ[C(100, k) * (0.1)^k *(0.9)^(100-k)],k=0至20。

2. 至多有5件产品是不合格的,即不合格的产品数不超过5件。

根据二项分布,P(X ≤ 5) = Σ[C(100, k) * (0.1)^k * (0.9)^(100-k)],k=0至5。

答案二:1. E(X) = ∫[2x * x dx],从0到1,计算得 E(X) = 2/3。

2. Var(X) = E(X^2) - [E(X)]^2 = ∫[2x^2 * x dx] - (2/3)^2,从0到1,计算得 Var(X) = 1/18。

概率统计试题及答案

概率统计试题及答案

概率统计试题及答案概率统计是数学中的一个重要分支,它在自然科学、社会科学、工程技术等多个领域都有着广泛的应用。

本文将提供一套概率统计的试题及答案,以供学习和复习之用。

一、选择题1. 概率论中,如果事件A和B是互斥的,那么P(A∪B)等于:A. P(A) + P(B)B. P(A) - P(B)C. P(A) / P(B)D. 1 - (1 - P(A))(1 - P(B))答案:A2. 以下哪项不是随机变量的典型性质?A. 可测性B. 有界性C. 随机性D. 独立性答案:D3. 标准正态分布的数学期望和方差分别是:A. 0和1B. 1和0C. 1和1D. 0和0答案:A4. 若随机变量X服从参数为λ的指数分布,其概率密度函数为f(x) = λe^(-λx), x > 0,则λ的值为:A. E(X)B. Var(X)C. E(X)^2D. 1 / Var(X)答案:D5. 在贝叶斯定理中,先验概率是指:A. 基于经验或以往数据得到的概率B. 基于主观判断得到的概率C. 事件实际发生的概率D. 事件未发生的概率答案:B二、填空题1. 事件的空间是指包含所有可能发生的事件的集合,其记作______。

答案:Ω2. 若随机变量X服从均匀分布U(a,b),则X在区间[a, b]上的概率密度函数是______。

答案:1 / (b - a)3. 两个事件A和B相互独立的必要不充分条件是P(A∩B) = ______。

答案:P(A)P(B)4. 若随机变量X服从正态分布N(μ, σ^2),则其概率密度函数为f(x) = (1 / (σ * √(2π))) * e^(- (x - μ)^2 / (2σ^2)),其中μ是______,σ^2是______。

答案:数学期望,方差5. 拉普拉斯定理表明,对于独立同分布的随机变量序列,当样本容量趋于无穷大时,样本均值的分布趋近于______分布。

答案:正态三、简答题1. 请简述条件概率的定义及其计算公式。

环境统计学考题

环境统计学考题

一、 加权平均数对于样本含量 n ≥30 以上且已分组的资料,可以在次数分布表的基础上采用加权法计算平均数,计算公式为:式中: —第i 组的组中值;—第i 组的次数;—分组数第i 组的次数fi 是权衡第i 组组中值xi 在资料中所占比重大小的数量,因此将fi 称为是xi 的“权”,加权法也由此而得名。

【例3.2】 将100头长白母猪的仔猪一月窝重(单位:kg )资料整理成次数分布表如下,求其加权数平均数。

即这100头长白母猪仔猪一月龄平均窝重为45.2kg 。

二、 已分组中位数若资料已分组,编制成次数分布表,则可利用次数分布表来计算中位数,其计算公式为:(3—5)式中: L — 中位数所在组的下限;i — 组距;f — 中位数所在组的次数;n — 总次数;c — 小于中数所在组的累加次数。

【例3.6】 某奶牛场68头健康母牛从分娩到第一次发情间隔时间 整理成次数分布表如表∑∑∑∑==++++++===f fx f x f f f f x f x f x f x k i i k i i i k k k 11212211 )(2.451004520kg f f x x ===∑∑)2(c n f i L M d -+=3—2 所示,求中位数。

表3—2 68头母牛从分娩到第一次发情间隔时间次数分布表由表3—2可见:i =15,n =68,因而中位数只能在累加头数为36所对应的“57—71”这一组,于是可确定L =57,f =20,c=16,代入公式(3—5)得:即奶牛头胎分娩到第一次发情间隔时间的中位数为70.5天。

三、几何平均数为了计算方便,可将各观测值取对数后相加除以n ,得lgG ,再求lgG 的反对数,即得G 值,即例.某水泥生产企业1995年的水泥产量为100万吨,1996年与1995年相比增长率为9%,1997年与1996年相比增长率为16%,1998年与1997年相比增长率为20%(环比)。

概率统计大题综合(解析版)

概率统计大题综合(解析版)

概率统计大题综合知识点总结1.数字样本特征(1)众数:在一组数据中出现次数最多的数(2)中位数:将一组数据按从小到大(或从大到小)的顺序排列,如果为奇数个,中位数为中间数;若为偶数个,中位数为中间两个数的平均数(3)平均数:x =x 1+x 2+⋯⋯+x nn ,反映样本的平均水平(4)方差:s 2=(x 1−x )2+(x 2−x )2+⋯⋯(x n −x )2n反映样本的波动程度,稳定程度和离散程度;s 2越大,样本波动越大,越不稳定;s 2越小,样本波动越小,越稳定;(5)标准差:σ=s 2,标准差等于方差的算术平方根,数学意义和方差一样(6)极差:等于样本的最大值−最小值2.求随机变量X 的分布列的步骤:(1)理解X 的意义,写出X 可能取得全部值;(2)求X 取每个值的概率;(3)写出X 的分布列;(4)根据分布列的性质对结果进行检验.还可判断随机变量满足常见分布列:两点分布,二项分布,超几何分布,正态分布.3.求随机变量的期望和方差的基本方法:(1)已知随机变量的分布列,直接利用期望和方差公式直接求解;(2)已知随机变量X 的期望、方差,求aX +b a ,b ∈R 的期望与方差,利用期望和方差的性质E aX +b =aE X +b ,D aX +b =a 2D X 进行计算;(3)若能分析出所给的随机变量服从常用的分布(如:两点分布、二项分布等),可直接利用常用分布列的期望和方差公式进行计算,若ξ~B (n ,p ),则Eξ=np ,Dξ=np (1-p ).4.求解概率最大问题的关键是能够通过P ξ=k ≥P ξ=k +1P ξ=k ≥Pξ=k -1构造出不等关系,结合组合数公式求解结果5.线性回归分析解题方法:(1)计算x ,y,ni =1x i 2 ,ni =1x i y i 的值;(2)计算回归系数a ,b ;(3)写出回归直线方程y =b x +a.线性回归直线方程为:y =b x +a ,b=ni =1x i −x y i −yni =1x i −x2=ni =1x i y i −nx yni =1x i 2−nx2,a =y −b x其中x ,y为样本中心,回归直线必过该点(4)线性相关系数(衡量两个变量之间线性相关关系的强弱)r =n i =1x i −x y i −y n i =1x i −x 2 n i =1y i −y 2 =ni =1x i y i −nx yn i =1x i 2−nx 2ni =1y i 2−ny2r >0,正相关;r <0,负相关r ≤1,且r 越接近于1,线性相关性越强;r 越接近于0,线性相关性越弱,几乎不存在线性相关性6.独立性检验解题方法:(1)依题意完成列联表;(2)用公式求解;(3)对比观测值即可得到所求结论的可能性独立性检验计算公式:K 2=n ad -bc 2a +b c +d a +c b +d模拟训练一、解答题1.(2023·福建三明·统考三模)在二十大报告中,体育、健康等关键词被多次提及,促进群众体育和竞技体育全面发展,加快建设体育强国是全面建设社会主义现代化国家的一个重要目标.某校为丰富学生的课外活动,加强学生体质健康,拟举行羽毛球团体赛,赛制采取3局2胜制,每局都是单打模式,每队有5名队员,比赛中每个队员至多上场一次且是否上场是随机的,每局比赛结果互不影响.经过小组赛后,最终甲、乙两队进入最后的决赛,根据前期比赛的数据统计,甲队种子选手M 对乙队每名队员的胜率均为34,甲队其余4名队员对乙队每名队员的胜率均为12.(注:比赛结果没有平局)(1)求甲队最终2:1获胜且种子选手M 上场的概率;(2)已知甲队2:1获得最终胜利,求种子选手M 上场的概率.【答案】(1)740(2)711【分析】(1)设事件A i =“种子选手M 第i 局上场”i =1,2,3 ,事件B =“甲队最终2:1获胜且种子选手M 上场”,求出P A i 、P B A i i =1,2,3 的值,利用全概率公式可求得P B 的值;(2)设事件A 0=“种子选手M 未上场”,事件C =“甲队2:1获得胜利”,计算出P C 、P A 0C 的值,利用贝叶斯公式可求得P A 0C 的值.【详解】(1)解:设事件A i =“种子选手M 第i 局上场”i =1,2,3 ,事件B =“甲队最终2:1获胜且种子选手M 上场”.由全概率公式知,P B =P B A 1 ⋅P A 1 +P B A 2 ⋅P A 2 +P B A 3 ⋅P A 3因为每名队员上场顺序随机,故P A i =15i =1,2,3 ,P B A 1 =34×12×12+14×12×12=14,P B A 2 =12×34×12+12×14×12=14,P B A 3 =C 12⋅12×12×34=38.所以P B =∑3i =1P B A i P A i =14×15+14×15+38×15=740,所以甲队最终2:1获胜且种子选手M 上场的概率为740.(2)解:设事件A 0=“种子选手M 未上场”,事件C =“甲队2:1获得胜利”,P A 0 =A 34A 35=25,P A 0 =1-25=35,P C A 0 =C 12×12×12×12=14,P C =P B +P C A 0 ⋅P A 0 =740+14×25=1140,因为P A 0 C =P A 0CP C.由(1)知P A 0 C =P B =740,所以P A 0 C =P A 0 C P C =7401140=711.所以,已知甲队2:1获得最终胜利,种子选手M 上场的概率为711.2.(2023·湖北武汉·统考模拟预测)“英才计划”最早开始于2013年,由中国科协、教育部共同组织实施,到2022年已经培养了6000多名具有创新潜质的优秀中学生,为选拔培养对象,某高校在暑假期间从武汉市的中学里挑选优秀学生参加数学、物理、化学、信息技术学科夏令营活动.(1)若化学组的12名学员中恰有5人来自同一中学,从这12名学员中选取3人,ξ表示选取的人中来自该中学的人数,求ξ的分布列和数学期望;(2)在夏令营开幕式的晚会上,物理组举行了一次学科知识竞答活动.规则如下:两人一组,每一轮竞答中,每人分别答两题,若小组答对题数不小于3,则取得本轮胜利,假设每轮答题结果互不影响.已知甲、乙两位同学组成一组,甲、乙答对每道题的概率分别为p 1,p 2,且p 1+p 2=43,如果甲、乙两位同学想在此次答题活动中取得6轮胜利,那么理论上至少要参加多少轮竞赛?【答案】(1)分布列见解析,E (ξ)=54(2)11轮【分析】(1)根据超几何分布列分布列计算数学期望即可;(2)先求每轮答题中取得胜利的概率的最大值,再应用独立重复实验数学期望的范围求出最少轮数.【详解】(1)由题意可知ξ的可能取值有0、1、2、3,P (ξ=0)=C 37C 312=744,P (ξ=1)=C 15C 27C 312=2144,P (ξ=2)=C 17C 25C 312=722,P (ξ=3)=C 35C 312=122所以,随机变量ξ的分布列如下表所示:ξ0123P7442144722122所以E (ξ)=0×744+1×2144+2×722+3×122=54.(2)他们在每轮答题中取得胜利的概率为Q =C 12p 11-p 1 C 22p 22+C 22p 21C 12p 21-p 2 +C 22p 21C 22p 22=2p 1p 2p 1+p 2 -3p 1p 2 2=83p 1p 2-3p 1p 2 2,由0≤p 1≤1,0≤p 2≤1,p 1+p 2=43,得13≤p 1≤1,则p1p2=p143-p1=43p1-p21=-p1-232+49,因此p1p2∈13,49,令t=p1p2∈13,49,Q=83t-3t2=-3t-492+1627,于是当t=49时,Q max=1627.要使答题轮数取最小值,则每轮答题中取得胜利的概率取最大值16 27.设他们小组在n轮答题中取得胜利的次数为X,则X∼B n,16 27,E(X)=1627n,由E(X)≥6,即1627n≥6,解得n≥10.125.而n∈N*,则n min=11,所以理论上至少要进行11轮答题.3.(2023·福建宁德·校考二模)某科研团以为了考察某种药物预防疾病的效果,进行动物实验,得到如下列联表.患病未患病总计服用药物1045末服用药物50总计30(1)请将上面的列联表补充完整.(2)认为“药物对预防疾病有效”犯错误的概率是多少?(3)为了进一步研究,现按分层抽样的方法从未患病动物中抽取10只,设其中未服用药物的动物数为ξ,求ξ的分布列与期望.下面的临界值表供参考:P(K2≥k)0.150.100.050.0250.0100.0050.001k 2.0722706 3.841 5.024 6.6357.87910.828(参考公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d)【答案】(1)列联表见解析(2)2.5%(3)分布列见解析,数学期望为1.6【分析】(1)根据表中的数据完成列联表即可;(2)由公式K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)计算K2,然后根据临界值表进行判断;(3)由题意可得ξ的值可能为0,1,2,3,4,求出相应的概率,从而可求得ξ的分布列与期望.【详解】(1)列联表补充如下:患病末患病总计服用药物104555末服用药物203050总计3075105(2)K2=105×(10×30-20×45)230×75×55×50=33655≈6.109>5.024.∵P K2≥5.024=0.025,∴认为“药物对预防疾病有效”犯错误的概率是2.5%.(3)根据题意,10只未患病动物中,有6只服用药物,4只未服用药物,所以ξ的值可能为0,1,2,3,4,则P (ξ=0)=C 46C 410=15210,P (ξ=1)=C 36C 14C 410=80210,P (ξ=2)=C 26C 24C 410=90210,P (ξ=3)=C 16C 34C 410=24210,P (ξ=4)=C 44C 410=1210,ξ的分布列如下:ξ01234P152108021090210242101210则E (ξ)=0×15210+1×80210+2×90210+3×24210+4×1210=1.6.4.(2023·江苏常州·校考一模)设X ,Y 是一个二维离散型随机变量,它们的一切可能取的值为a i ,b j ,其中i ,j ∈N *,令p ij =P X =a i ,Y =b j ,称p ij i ,j ∈N * 是二维离散型随机变量X ,Y 的联合分布列,与一维的情形相似,我们也习惯于把二维离散型随机变量的联合分布列写成下表形式;X ,Yb 1b 2b 3⋅⋅⋅a 1p 11p 12p 13⋅⋅⋅a 2p 21p 22p 23⋅⋅⋅a 3p 31p 32p 33⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅现有n n ∈N * 个球等可能的放入编号为1,2,3的三个盒子中,记落入第1号盒子中的球的个数为X ,落入第2号盒子中的球的个数为Y .(1)当n =2时,求X ,Y 的联合分布列,并写成分布表的形式;(2)设p k =nm =0P X =k ,Y =m ,k ∈N 且k ≤n ,求nk =0kp k 的值.(参考公式:若X ~B n ,p ,则nk =0kC k n p k1-p n -k =np )【答案】(1)答案见解析(2)n 3【分析】(1)X 的取值为0,1,2,Y 的取值为0,1,2,分别计算概率即可;(2)计算得p k =Ckn13k23n -k,则n k =0kp k =nk =0kC k n 13k23n -k,最后利用二项分布的期望公式即可得到答案.【详解】(1)若n =2,X 的取值为0,1,2,Y 的取值为0,1,2,则P X =0,Y =0 =132=19,P X =0,Y =1 =C 12×13×13=29,P X =0,Y =2 =132=19,P X =1,Y =0 =C 12×13×13=29,P X =1,Y =1 =C 12×13×13=29,P X =2,Y =0 =132=19,P X =1,Y =2 =P X =2,Y =1 =P X =2,Y =2 =0,故X ,Y 的联合分布列为X ,Y 0120192919129290219(2)当k +m >n 时,P X =k ,Y =m =0,故p k =nm =0P X =k ,Y =m =n -km =0P X =k ,Y =m =n -km =0P C k n C m n -k ⋅13n=C k n 3n n -k m =0C m n -k =C kn 3n 2n -k =C k n13 k23n -k所以nk =0kp k =nk =0kC k n13k23n -k,由二项分布的期望公式可得nk =0kp k =n 3.5.(2023·江苏南京·南京市第九中学校考模拟预测)某种疾病可分为A ,B 两种类型,为了解该疾病的类型与患者性别是否相关,在某地区随机抽取了若干名该疾病的患者进行调查,发现女性患者人数是男性患者的2倍,男性患A 型疾病的人数占男性患者的56,女性患A 型疾病的人数占女性患者的13.A 型病B 型病合计男女合计(1)填写2×2列联表,若本次调查得出“在犯错误的概率不超过0.005的前提下认为‘所患疾病的类型'与‘性别'有关”的结论,求被调查的男性患者至少有多少人?(2)某团队进行预防A 型疾病的疫苗的研发试验,试验期间至多安排2个周期接种疫苗,每人每个周期接种3次,每次接种费用为m m >0 元.该团队研发的疫苗每次接种后产生抗体的概率为p 0<p <1 ,如果一个周期内至少2次出现抗体,则该周期结束后终止试验,否则进入第二个周期.若p =23,试验人数为1000人,试估计该试验用于接种疫苗的总费用.K 2=n ad -bc 2a +b c +d a +c b +d,P K 2≥k 0 0.100.050.010.0050.001k 02.7063.8416.6357.87910.828【答案】(1)列联表见解析,被调查的男性患者至少有12;(2)340009m 元【分析】(1)设男性患者有x 人,结合题设写出列联表,应用卡方公式求卡方值,根据独立检验的基本思想列不等式求x 范围,再由x 6∈Z ,x3∈Z 确定x 最小值;(2)由题意试验每人的接种费用为ξ的可能取值为3m ,6m ,独立事件乘法公式求出对应概率,进而求出期望,根据总人数求出总费用的期望即可.【详解】(1)设男性患者有x 人,则女性患者有2x 人,2×2列联表如下:A 型病B 型病合计男5x6x 6x 女2x 34x 32x 合计3x 23x 23x假设H 0:患者所患疾病类型与性别之间无关联,根据列联表中的数据K 2=3x 5x 6⋅4x 3-x 6⋅2x 3 23x 2⋅3x 2⋅2x ⋅x =2x 3,要使在犯错误的概率不超过0.005的前提下认为“所患疾病类型”与“性别”有关,则2x 3>7.879,解得x >11.8185,因为x 6∈Z ,x3∈Z ,所以x 的最小整数值为12,因此,男性患者至少有12人.(2)设该试验每人的接种费用为ξ元,则ξ的可能取值为3m ,6m .则P ξ=3m =C 23p 21-p +p 3=-2p 3+3p 2,P ξ=6m =1+2p 3-3p 2,所以E ξ =3m ⋅-2p 3+3p 2 +6m ⋅1+2p 3-3p 2 =3m 2p 3-3p 2+2 ,因为p =23,试验人数为1000人,所以该试验用于接种疫苗的总费用为1000E ξ ,所以1000×3m 2×23 3-3×23 2+2 =340009m 元.6.(2023·安徽蚌埠·统考三模)某校为了丰富学生课余生活,组建了足球社团.为了解学生喜欢足球是否与性别有关,随机抽取了男、女同学各100名进行调查,部分数据如表所示:喜欢足球不喜欢足球合计男生40女生30合计(1)根据所给数据完成上表,依据α=0.001的独立性检验,能否认为该校学生喜欢足球与性别有关?(2)社团指导老师从喜欢足球的学生中抽取了2名男生和1名女生示范点球射门.已知这两名男生进球的概率均为23,这名女生进球的概率为12,每人射门一次,假设各人射门相互独立,求3人进球总次数X 的分布列和数学期望.附:χ2=n ad -bc 2a +b c +d a +c b +dα0.10.050.010.0050.001x α2.7063.8416.6357.87910.828【答案】(1)有99.9%的把握认为该校学生喜欢足球与性别有关;(2)分布列见解析,数学期望为116.【分析】(1)完善列联表,计算χ2的观测值,再与临界值表比对作答.(2)求出X 的可能值,求出各个值对应的概率,列出分布列并求出期望作答.【详解】(1)依题意,2×2列联表如下:喜欢足球不喜欢足球合计男生6040100女生3070100合计90110200零假设H 0:该校学生喜欢足球与性别无关,χ2的观测值为χ2=200(60×70-30×40)2100×100×90×110≈18.182>10.828=x 0.001,根据小概率值α=0.001的独立性检验,推断H 0不成立,所以有99.9%的把握认为该校学生喜欢足球与性别有关.(2)依题意,X 的可能值为0,1,2,3,P (X =0)=1-23 2×1-12 =118,P (X =1)=C 12×231-23 ×1-12 +1-23 2×12=518,P (X =2)=C 12×231-23 ×12+23 2×1-12 =818=49,P (X =3)=23 2×12=29,所以X 的分布列为:X0123P1185184929数学期望E (X )=0×118+1×518+2×49+3×29=116.7.(2023·海南海口·海南华侨中学校考模拟预测)在以视觉为主导的社交媒体时代,人们常借助具有美颜功能的产品对自我形象进行美化.移动端的美颜拍摄类APP 主要有两类:A 类是以自拍人像、美颜美妆为核心功能的APP ;B 类是图片编辑、精修等图片美化类APP .某机构为调查市民对上述A ,B 两类APP 的使用情况,随机调查了部分市民.已知被调查的市民中使用过A 类APP 的占60%,使用过B 类APP 的占50%,设个人对美颜拍摄类APP 类型的选择及各人的选择之间相互独立.(1)从样本人群中任选1人,求该人使用过美颜拍摄类APP 的概率;(2)从样本人群中任选5人,记X 为5人中使用过美颜拍摄类APP 的人数,设X 的数学期望为E X ,求P X =E X ;(3)在单独使用过A ,B 两类APP 的样本人群中,按类型分甲、乙两组,并在各组中随机抽取8人,甲组对A 类APP ,乙组对B 类APP 分别评分如下:甲组评分9486929687939082乙组评分8583859175908380记甲、乙两组评分的平均数分别为x 1 ,x 2 ,标准差分别为s 1,s 2,试判断哪组评价更合理.(设V i =s ix i (i =1,2),V i 越小,则认为对应组评价更合理.)参考数据:0.1925≈0.439,0.2325≈0.482.【答案】(1)0.8(2)256625(3)甲组对A 类APP 的评价更合理.【分析】(1)求出“使用过A 类APP ”和“使用过B 类APP ”的概率,再由对立事件的概率公式求解即可.(2)题意知X ∼B 5,45,由二项分布的数学期望公式可求出E X ,再由二项分布的概率公式即可求出P X =E X .(3)由平均数和方差的公式求解即可得出答案.【详解】(1)设事件A 表示“使用过A 类APP ”,事件B 表示“使用过B 类APP ”,由题意知P A =0.6,P B =0.5.任选一人,该人使用过美颜拍摄类APP 的概率:P =1-P A B=1-0.4×0.5=0.8.(2)由题意知X ∼B 5,45,则X 的数学期望E X =5×45=4.P X =E X =P X =4 =C 4545 4×15=256625.(3)x 1 =94+86+92+96+87+93+90+828=90,x 2 =85+83+85+91+75+90+83+808=84,s 1=1842+-4 2+22+62+-3 2+32+02+-8 2 =19.25≈4.39,s 2=1812+-1 2+12+72+-9 2+62+-1 2+-4 2 =23.25≈4.82,V 1=s 1x 1=4.3990<V 2=s 2x 2=4.8284,故甲组对A 类APP 的评价更合理.8.(2023·广东·统考模拟预测)某工厂车间有6台相同型号的机器,各台机器相互独立工作,工作时发生故障的概率都是14,且一台机器的故障由一个维修工处理.已知此厂共有甲、乙、丙3名维修工,现有两种配备方案,方案一:由甲、乙、丙三人维护,每人负责2台机器;方案二:由甲乙两人共同维护6台机器,丙负责其他工作.(1)对于方案一,设X 为甲维护的机器某一时刻发生故障的台数,求X 的分布列与数学期望E (X );(2)在两种方案下,分别计算某一时刻机器发生故障时不能得到及时维修的概率,并以此为依据来判断,哪种方案能使工厂的生产效率更高?【答案】(1)分布列见解析,12(2)7214096,3472048,方案二能让故障机器更大概率得到及时维修,使得工厂的生产效率更高.【分析】(1)根据题意得到随机变量X ~B 2,14,结合独立重复试验的概率计算公式求得相应的概率,列出分布列,结合期望的公式,即可求解;(2)根据题意,分别求得方案一和方案二中,结合对立事件和独立重复试验的概率计算公式,分别求得机器发生故障时不能及时维修的概率P 1和P 2,根据大小关系,即可得到结论.【详解】(1)解:由题意,车间有6台相同型号的机器,各台机器相互独立工作,工作时发生故障的概率都是14,可得方案一中,随机变量X ~B 2,14,则P X=0=342=916,P X=1=C12⋅14⋅34=38,P X=2=142=116,所以随机变量X的分布列为:X012P 91638116所以期望为E X=2×14=12.(2)解:对于方案一:“机器发生故障时不能及时维修”等价于“甲、乙、丙三人中,至少有一人负责的2台机器同时发生故障”,设机器发生故障时不能及时维修的概率为P1,则其概率为P1=1-1-P X=23=1-1-1 163=7214096.对于方案二:设机器发生故障时不能及时维修的概率为P2,则P2=1-346-C16⋅14⋅34 5-C26⋅14 2⋅34 4=1-36+6×35+15×344096=3472048,可得P2<P1,即方案二能让故障机器更大概率得到及时维修,使得工厂的生产效率更高.9.(2023·福建福州·福建省福州第一中学校考模拟预测)相关统计数据显示,中国经常参与体育锻炼的人数比例为37.2%,城乡居民达到《国民体质测定标准》合格以上的人数比例达到90%以上.某健身连锁机构对其会员的年龄等级和一个月内到健身房健身次数进行了统计,制作成如下两个统计图.图1为会员年龄分布图(年龄为整数),其中将会员按年龄分为“年轻人”(20岁-39岁)和“非年轻人”(19岁及以下或40岁及以上)两类;图2为会员一个月内到健身房次数分布扇形图,其中将一个月内到健身房锻炼16次及以上的会员称为“健身达人”,15次及以下的会员称为“健身爱好者”,且已知在“健身达人”中有56是“年轻人”.(1)现从该健身连锁机构会员中随机抽取一个容量为100的样本,根据图表数据,补全2×2列联表,并依据小概率值α=0.05的独立性检验,是否可以认为“健身达人”与年龄有关?年轻人非年轻人合计健身达人健身爱好者合计(2)该健身机构在今年年底将针对全部的150名会员举办消费返利活动,预设有如下两种方案.方案1:按分层抽样从健身爱好者和健身达人中总共抽取20位“幸运之星”给予奖励.其中,健身爱好者和健身达人中的“幸运之星”每人分别奖励500元和800元.方案2:每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球.若摸到红球的总数为2,则可获得100元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励.如果每位健身爱好者均可参加1次摸奖游戏;每位健身达人均可参加3次摸奖游戏(每次摸奖的结果相互独立).以方案的奖励金的数学期望为依据,请你预测哪一种方案投资较少?并说明理由.附:χ2=n(ad-bc)2a+bc+da+cb+d.α0.100.050.0250.0100.0050.001χα 2.706 3.841 5.024 6.6357.87910.828【答案】(1)列联表见解析,“健身达人”与年龄无关(2)施行方案1投资较少,理由见解析【分析】(1)根据题意计算相关数据填好列联表,利用公式计算χ2,对照参考数据得出结论;(2)按分层抽样计算方案1奖励的总金额ξ1;方案2中,设η表示参加一次摸奖游戏所获得的奖励金,则η的可能取值为0,100,300,计算对应概率,得出分布列,数学期望Eη ,进而计算按照方案2奖励的总金额ξ2,比较ξ1,ξ2即可得出答案.【详解】(1)根据年轻人标准结合图1可得年轻人占比为80%,则年轻人人数为100×80%=80,非年轻人为20人,根据图2表格得健身达人所占比60%,所以其人数为100×60%=60,根据其中年轻人占比56,所以健身达人中年轻人人数为60×56=50,非年轻人为10人;健身爱好者人数为100-60=40,再通过总共年轻人合计为80人,则健身爱好者中年轻人人数为80-50=30,根据非年轻人总共为20人,健身爱好者中非年轻人人数为20-10=10,所以列联表为:年轻人非年轻人合计健身达人501060健身爱好者301040合计8020100零假设为H0:“健身达人”与年龄无关联,根据列联表中的数据,可得χ2=100×(50×10-30×10)280×20×60×40=2524≈1.042<3.841,依据小概率值α=0.05的独立性检验,没有充分证据推断H0不成立,因此可以认为H0成立,即“健身达人”与年龄无关.(2)方案1:按分层抽样从健身爱好者和健身达人中总共抽取20位“幸运之星”,则“幸运之星”中的健身爱好者和健身达人的人数分别为18.2%+21.8%×20=8,30.1%+19.2%+10.7%×20=12,按照方案1奖励的总金额为ξ1=8×500+12×800=13600(元).方案2:设η表示参加一次摸奖游戏所获得的奖励金,全部的150名会员中的健身爱好者和健身达人的人数分别为18.2%+21.8%×150=60,30.1%+19.2%+10.7%×150=90,则η的可能取值为0,100,300.由题意,每摸球1次,摸到红球的概率为P =C 12C 15=25,所以P η=0 =C 0335 325 0+C 1335 225 1=81125,P η=100 =C 2335 125 2=36125,P η=300 =C 3335 025 3=8125.所以η的分布列为:η0100300P81125361258125数学期望为E η =0×81125+100×36125+300×8125=48(元),按照方案2奖励的总金额为ξ2=60+3×90 ×48=15840(元),因为由ξ1<ξ2,所以施行方案1投资较少.10.(2023·云南昭通·校联考模拟预测)为了检测某种抗病毒疫苗的免疫效果,需要进行临床人体试验.研究人员将疫苗注射到200名志愿者体内,一段时间后测量志愿者的某项指标值,按0,20 ,20,40 ,40,60 ,60,80 ,80,100 分组,绘制频率分布直方图如图所示.试验发现志愿者体内产生抗体的共有160人,其中该项指标值不小于60的有110人.假设志愿者注射疫苗后是否产生抗体相互独立.(1)填写下面的2×2列联表,并根据列联表及小概率值α=0.05的独立性检验,判断能否认为注射疫苗后志愿者产生抗体与指标值不小于60有关.抗体指标值合计小于60不小于60有抗体没有抗体合计(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40名志愿者进行第二次注射疫苗,结果又有m 名志愿者产生抗体.(i )用频率估计概率,已知一名志愿者注射2次疫苗后产生抗体的概率p =0.9,求m 的值;(ⅱ)以(i )中的概率p 作为人体注射2次疫苗后产生抗体的概率,再进行另一组人体接种试验,记110名志愿者注射2次疫苗后产生抗体的数量为随机变量X,求P X=k最大时的k的值.参考公式:χ2=n ad-bc2a+bc+da+cb+d(其中n=a+b+c+d为样本容量).α0.500.400.250.150.1000.0500.025xα0.4550.708 1.323 2.072 2.706 3.841 5.024【答案】(1)列联表见解析,认为注射疫苗后志愿者产生抗体与指标值不小于60有关;(2)(i)20;(ⅱ)99.【分析】(1)完善列联表,计算χ2的观测值,再与临界值表比对作答.(2)(i)利用对立事件、相互独立事件的概率公式求解作答;(ⅱ)利用二项分布的概率公式,列出不等式组并求解作答.【详解】(1)由频率分布直方图,知200名志愿者按指标值分布为:在[0,20)内有0.0025×20×200=10 (人),在[20,40)内有0.00625×20×200=25(人),在[40,60)内有0.00875×20×200=35(人),在[60,80)内有0.025×20×200=100(人),在80,100内有0.0075×20×200=30(人),依题意,有抗体且指标值小于60的有50人,而指标值小于60的志愿者共有10+25+35=70人,则指标值小于60且没有抗体的志愿者有20人,指标值不小于60且没有抗体的志愿者有20人,所以2×2列联表如下:抗体指标值合计小于60不小于60有抗体50110160没有抗体202040合计70130200零假设H0:注射疫苗后志愿者产生抗体与指标值不小于60无关联,根据列联表中数据,得χ2=200×(50×20-20×110)2160×40×70×130≈4.945>3.841,根据小概率值α=0.05的独立性检验,推断H0不成立,即认为注射疫苗后志愿者产生抗体与指标值不小于60有关,此推断犯错误的概率不大于0.05.(2)(i)令事件A=“志愿者第一次注射疫苗产生抗体”,事件B=“志愿者第二次注射疫苗产生抗体”,事件C=“志愿者注射2次疫苗后产生抗体”,记事件A,B,C发生的概率分别为P(A),P(B),P(C),则P A=160200=0.8,P B =m40,P C =1-P AP B=1-0.2×1-m40=0.9,解得:m=20,所以m=20.(ⅱ)依题意,随机变量X∼B(110,0.9),P(X=k)=C k110×0.9k×0.1110-k(k∈N,k≤110),显然P(X=0),P(X=110)不是最大的,即当P(X=k)最大时,k∈N∗,k<110,于是P(X=k)≥P(X=k-1)P(X=k)≥P(X=k+1),即C k110×0.9k×0.1110-k≥C k-1110×0.9k-1×0.1111-kC k110×0.9k×0.1110-k≥C k+1110×0.9k+1×0.1109-k,则110!k!(110-k)!×0.9≥110!(k-1)!(111-k)!×0.1110!k!(110-k)!×0.1≥110!(k+1)!(109-k)!×0.9,整理得9(111-k)≥kk+1≥9(110-k),解得98910≤k≤99910,因此k=99,所以P(X=k)最大时,k的值为99.11.(2023·湖南长沙·长沙市实验中学校考二模)首批全国文明典范城市将于2023年评选,每三年评选一次,2021年长沙市入选为全国文明典范城市试点城市,目前我市正全力争创首批全国文明典范城市,某学校号召师生利用周末从事创建志愿活动.高一(1)班一组有男生4人,女生2人,现随机选取2人作为志愿者参加活动,志愿活动共有交通协管员、创建宣传员、文明监督员三项可供选择,每名女生至多从中选择参加2项活动,且选择参加1项或2项的可能性均为12;每名男生至少从中选择参加2项活动,且选择参加2项或3项的可能性也均为12,每人每参加1项活动可获得综合评价10分,选择参加几项活动彼此互不影响,求:(1)在有女生参加活动的条件下,恰有一名女生的概率;(2)记随机选取的两人得分之和为X,求X的期望.【答案】(1)8 9(2)E X =1303【分析】(1)根据条件概率求解即可;(2)先求出参加人数的分布列及期望,再根据参加人数与得分的关系求出得分的期望即可.【详解】(1)设事件A为:“至少有一名女生参加活动”,设事件B为:“恰有一名女生参加活动”.则P AB=C14⋅C12C26=815,P A =1-C24C26=35.所以在有女生参加活动的条件下,恰有一名女生的概率为:P B A=P ABP A=89;(2)因为女生参加活动得分为12×10+12×20=15;男生参加活动得分为12×20+12×30=25.设恰有Y名女生参加活动,则有2-Y名男生参加活动,所以P Y=0=C24C26=25,P Y=1=C14⋅C12C26=815,P Y=2=C22C26=115,所以E Y=1×815+2×115=23,又X=15Y+252-Y=50-10Y,所以E X=50-10E Y=50-10×23=1303.12.(2023·江苏南京·南京市第一中学校考模拟预测)为了宣传航空科普知识,某校组织了航空知识竞赛活动.活动规定初赛需要从8道备选题中随机抽取4道题目进行作答.假设在8道备选题中,小明正确完成每道题的概率都是34且每道题正确完成与否互不影响,小宇能正确完成其中6道题且另外2道题不能完成.(1)求小明至少正确完成其中3道题的概率;(2)设随机变量X表示小宇正确完成题目的个数,求X的分布列及数学期望;(3)现规定至少完成其中3道题才能进入决赛,请你根据所学概率知识,判断小明和小宇两人中选择谁去参加市级比赛(活动规则不变)会更好,并说明理由.【答案】(1)189256(2)分布列见解析,3(3)选择小宇,理由见解析【分析】(1)小明至少正确完成其中3道题包含两种情况:一是小明正确完成3道题,二是小明正确完成4道题,然后由互斥事件的概率公式求解即可;(2)由题意得X 的可能取值为2,3,4,然后求各自对应的概率,从而可求出X 的分布列及数学期望;(3)分别计算出他们两人至少完成其中3道题的概率,通过比较概率的大小可得答案.【详解】(1)记“小明至少正确完成其中3道题”为事件A ,则P A =C 3434 314+C 4434 4=189256.(2)X 的可能取值为2,3,4P X =2 =C 22C 26C 48=1570=314,P X =3 =C 12C 36C 48=4070=47,P X =4 =C 02C 46C 48=1570=314,X 的分布列为;X 234P31447314数学期望E X =2×314+3×47+4×314=3.(3)由(1)知,小明进入决赛的概率为P A =189256;记“小宇至少正确完成其中3道题”为事件B ,则P B =47+314=1114;因为P B >P A ,故小宇进决赛的可能性更大,所以应选择小宇去参加比赛.13.(2023·广东·校联考模拟预测)某商场在五一假期间开展了一项有奖闯关活动,并对每一关根据难度进行赋分,竞猜活动共五关,规定:上一关不通过则不进入下一关,本关第一次未通过有再挑战一次的机会,两次均未通过,则闯关失败,且各关能否通过相互独立,已知甲、乙、丙三人都参加了该项闯关活动.(1)若甲第一关通过的概率为23,第二关通过的概率为56,求甲可以进入第三关的概率;(2)已知该闯关活动累计得分服从正态分布,且满分为450分,现要根据得分给共2500名参加者中得分前400名发放奖励.①假设该闯关活动平均分数为171分,351分以上共有57人,已知甲的得分为270分,问甲能否获得奖励,请说明理由;②丙得知他的分数为430分,而乙告诉丙:“这次闯关活动平均分数为201分,351分以上共有57人”,请结合统计学知识帮助丙辨别乙所说信息的真伪.附:若随机变量Z ∼N μ,σ2 ,则P μ-σ≤X ≤μ+σ ≈0.6827;P μ-2σ≤X ≤μ+2σ ≈0.9545;P μ-3σ≤X ≤μ+3σ ≈0.9973.【答案】(1)7081。

环境统计学试题及答案

环境统计学试题及答案

题号一二三四五六七八九十总分阅卷人签字得分一、已知某地地下水COD浓度X ~N(4,3.52),求随机打一口井,其COD浓度落的(3,5)的概率。

(10分)解:由题知均值μ=4,标准差σ=3.5,运用spss软件进行计算如下:在转换-计算变量,窗口中目标变量输入a,函数组选项框里选择CDF与非中心CDF,然后在函数和转换变量选项框里选择Cdf.Normal,并使之出现在数字表达式窗口中,如下图所示依次代入相应数值,点击确定,得出P(A)=a=0.22。

答:随机打一口井,其COD浓度落在(3,5)的概率为0.22。

二、欲评估某聚磷菌株去除两地湖泊中磷的效果。

在投放聚磷菌后分别抽选一个两地湖泊的随机样本,并测定除磷是否有效。

若想以10%的误差范围和95%的置信水平估计两地湖泊除磷有效率的比例之差,抽取的两个样本分别应包括多少湖泊?(假定两个样本量相等) 。

(10分)解:假设在一地抽取n1个湖泊,在另一地抽取n2个湖泊,则n1= n2根据公式则:[]222112221)1()1()(Ez n n ππππα-+-⋅===(1.96)^2*[0.5(1-0.5)+0.5(1-0.5)]/0.1^2=192.08由于没有π的信息,所以用0.5代替。

答:抽取的两个样本应分别都包括193个湖泊。

三、某地对地下水进行除氟试验,对10眼水井除氟前后井水中含氟量测定结果如下(mg/L )。

问除氟后井水含氟量是否有显著差异? (10分)除氟前:1.71, 1.62, 1.63, 165, 1.55, 1.60, 1.65, 1.5, 1.46, 1.65 除氟后:1.55, 1.45, 1.60, 1.52, 1.51, 1.48, 1.55, 1.4, 1.25, 1.51解:运用配对样品T 检验,假设除氟后井水含氟量与除氟前井水含氟量没有显著差异,则H 0:μ1=μ2;H 1:μ1≠μ2,运用spss 软件计算如下:首先将数据录入spss 中,然后点击分析-比较均值-配对样品t 检验,在配对样品t 检验窗口中将除氟前和除氟后的数据选进去, 点击确定,计算结果如下图所示:从图中可以看出P=0<0.05,所以否定原假设,接受备择假设,即除氟后井水含氟量与除氟前井水含氟量差异显著。

概率统计练习题库

概率统计练习题库

数理统计练习题一、填空题1、设A 、B 为随机事件,且P (A)=0.5,P (B)=0.6,P (B A)=0.8,则P (A+B)=__ 0.7 __。

2、某射手对目标独立射击四次,至少命中一次的概率为8180,则此射手的命中率32。

3、设随机变量X 服从[0,2]上均匀分布,则2)]([)(X E X D 1/3 。

4、设随机变量X 服从参数为的泊松(Poisson )分布,且已知)]2)(1[(X X E =1,则___1____。

5、一次试验的成功率为p ,进行100次独立重复试验,当p 1/2_____时,成功次数的方差的值最大,最大值为 25 。

6、(X ,Y )服从二维正态分布),,,,(222121N ,则X 的边缘分布为),(211N 。

7、已知随机向量(X ,Y )的联合密度函数其他,010,20,23),(2y x xy y x f ,则E (X )=34。

8、随机变量X 的数学期望EX,方差2DX,k 、b 为常数,则有)(b kX E = ,k b ;)(b kX D =22k。

9、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独立。

设Z =2X -Y +5,则Z ~ N(-2,25)。

10、是常数21?,的两个无偏估计量,若)?()?(21D D ,则称1?比2?有效。

1、设A 、B 为随机事件,且P (A )=0.4, P (B )=0.3, P (A ∪B )=0.6,则P (B A )=_0.3__。

2、设X B (2,p ),Y B (3,p ),且P {X ≥ 1}=95,则P {Y ≥ 1}=2719。

3、设随机变量X 服从参数为2的泊松分布,且Y =3X -2,则E (Y )=4 。

4、设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。

5、设随机变量X 的概率密度是:其他0103)(2x x x f ,且784.0X P ,则=0.6 。

概率统计试题及答案

概率统计试题及答案

概率统计试题及答案在概率统计学中,试题和答案的准确性和清晰度非常重要。

下面将给出一系列关于概率统计的试题和详细的解答,以帮助读者更好地理解和应用概率统计的基本概念和技巧。

试题一:基础概率计算某餐厅有3个主菜,每个主菜又有4种不同的配菜。

如果顾客在选择主菜和配菜时是随机的,那么一个顾客会选择哪种搭配的概率是多少?解答一:根据概率统计的基本原理,计算顾客选择搭配的概率可以使用“事件数除以样本空间”的方法。

在这个问题中,总共有3个主菜和4种配菜,所以样本空间的大小为3 × 4 = 12。

而一个顾客选择一种特定的搭配可以有1种选择,因此事件数为1。

因此,顾客选择某种搭配的概率为1/12。

试题二:概率的加法规则某班级有25名男生和15名女生。

从中随机选择一名学生,那么选择一名男生或选择一名女生的概率分别是多少?解答二:根据概率统计的加法规则,选择一名男生或选择一名女生的概率可以通过计算每个事件的概率然后相加来得到。

在这个问题中,男生和女生分别属于两个互斥事件,因此可以直接相加。

男生的概率为25/40,女生的概率为15/40。

因此,选择一名男生或选择一名女生的概率为25/40 + 15/40 = 40/40 = 1。

试题三:条件概率计算某电子产品的退货率是0.05,而该产品是有瑕疵的情况下才会退货。

对于一台已经退货的产品,有0.02的概率是有瑕疵的。

那么一台被退货且有瑕疵的电子产品占所有退货产品的比例是多少?解答三:根据条件概率的定义,求一台被退货且有瑕疵的电子产品占所有退货产品比例的问题,可以用有瑕疵且被退货的产品数除以所有被退货的产品数来得到。

假设有1000台电子产品被退货,根据退货率的定义,有5%的产品会被退货,即退货的产品数为0.05 * 1000 = 50台。

而在这50台退货产品中,有2%有瑕疵,即有瑕疵且被退货的产品数为0.02 * 50 = 1台。

因此,一台被退货且有瑕疵的电子产品占所有退货产品的比例为1/50,即0.02。

概率统计习题集(含答案)

概率统计习题集(含答案)

第一章 随机事件及其概率一、选择题:1.设A 、B 、C 是三个事件,与事件A 互斥的事件是: ( )A .AB AC + B .()A B C + C .ABCD .A B C ++2.设B A ⊂ 则 ( )A .()P AB =1-P (A ) B .()()()P B A P B A -=-C . P(B|A) = P(B)D .(|)()P AB P A =3.设A 、B 是两个事件,P (A )> 0,P (B )> 0,当下面的条件( )成立时,A 与B 一定独立A .()()()P AB P A P B = B .P (A|B )=0C .P (A|B )= P (B )D .P (A|B )= ()P A4.设P (A )= a ,P (B )= b, P (A+B )= c, 则 ()P AB 为: ( )A .a-bB .c-bC .a(1-b)D .b-a5.设事件A 与B 的概率大于零,且A 与B 为对立事件,则不成立的是 ( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 互不独立D .A 与B 互不相容6.设A 与B 为两个事件,P (A )≠P (B )> 0,且A B ⊃,则一定成立的关系式是( )A .P (A|B )=1 B .P(B|A)=1C .(|A)1p B =D .(A|)1p B =7.设A 、B 为任意两个事件,则下列关系式成立的是 ( )A .()AB B A -= B .()A B B A -⊃C .()A B B A -⊂D .()A B B A -=8.设事件A 与B 互不相容,则有 ( )A .P (AB )=p (A )P (B ) B .P (AB )=0C .A 与B 互不相容D .A+B 是必然事件9.设事件A 与B 独立,则有 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (AB )=0D .P (A+B )=110.对任意两事件A 与B ,一定成立的等式是 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (A|B )=P (A )D .P (AB )=P (A )P (B|A )11.若A 、B 是两个任意事件,且P (AB )=0,则 ( )A .A 与B 互斥 B .AB 是不可能事件C .P (A )=0或P (B )=0D .AB 未必是不可能事件12.若事件A 、B 满足A B ⊂,则 ( )A .A 与B 同时发生 B .A 发生时则B 必发生C .B 发生时则A 必发生D .A 不发生则B 总不发生13.设A 、B 为任意两个事件,则P (A-B )等于 ( )A . ()()PB P AB - B .()()()P A P B P AB -+C .()()P A P AB -D .()()()P A P B P AB --14.设A 、B 、C 为三事件,则AB BC AC 表示 ( )A .A 、B 、C 至少发生一个 B .A 、B 、C 至少发生两个C .A 、B 、C 至多发生两个D .A 、B 、C 至多发生一个15.设0 < P (A) < 1. 0 < P (B) < 1. P(|B)+P(A B A )=1. 则下列各式正确的是( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 相互对立D .A 与B 互不独立16.设随机实际A 、B 、C 两两互斥,且P (A )=0.2,P (B )=0.3,P (C )=0.4,则PA B C -= ()( ). A .0.5 B .0.1 C .0.44 D .0.317掷两枚均匀硬币,出现一正一反的概率为 ( )A .1/2B .1/3C .1/4D .3/418.一种零件的加工由两道工序组成,第一道工序的废品率为 1p ,第二道工序的废品率为2p ,则该零件加工的成品率为 ( )A .121p p --B .121p p -C .12121p p p p --+D .122p p --19.每次试验的成功率为)10(<<p p ,则在3次重复试验中至少失败一次概率为( )。

最新概率统计试题及答案(本科完整版)

最新概率统计试题及答案(本科完整版)

一、 填空题(每题2分,共20分)1、记三事件为A ,B ,C . 则用A ,B ,C 及其运算关系可将事件,“A ,B ,C 中只有一个发生”表示为 . 2、匣中有2个白球,3个红球。

现一个接一个地从中随机地取出所有的球。

那么,白球比红球早出现的概率是 2/5 。

3、已知P(A)=0.3,P (B )=0.5,当A ,B 相互独立时,06505P(A B )_.__,P(B |A )_.__⋃==。

4、一袋中有9个红球1个白球,现有10名同学依次从袋中摸出一球(不放回),则第6位同学摸出白球的概率为 1/10 。

5、若随机变量X 在区间 (,)a b 上服从均匀分布,则对a c b <<以及任意的正数0e >,必有概率{}P c x c e <<+ =⎧+<⎪⎪-⎨-⎪+>⎪-⎩e,c e b b ab c ,c e b b a6、设X 服从正态分布2(,)N μσ,则~23X Y -= N ( 3-2μ , 4σ2 ) .7、设1128363X B EX DX ~n,p ),n __,p __==(且=,=,则 8、袋中装有5只球,编号为1,2,3,4,5,在袋中同时取出3只,以X 表示取出3只球中的最大号码。

则X 的数学期望=)(X E 4.5 。

9、设随机变量(,)X Y 的分布律为则条件概率 ===}2|3{Y X P 2/5 .10、设121,,X X 来自正态总体)1 ,0(N , 2129285241⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=∑∑∑===i i i i i i X X X Y ,当常数k = 1/4 时,kY 服从2χ分布。

二、计算题(每小题10分,共70分)1、三台机器因故障要人看管的概率分别为0.1,0.2,0.15,求: (1)没有一台机器要看管的概率 (2)至少有一台机器不要看管的概率 (3)至多一台机器要看管的概率解:以A j 表示“第j 台机器需要人看管”,j =1,2,3,则: ABC ABC ABCP ( A 1 ) = 0.1 , P ( A 2 ) = 0.2 , P ( A 3 ) = 0.15 ,由各台机器间的相互独立性可得()()()()()123123109080850612P A A A P A P A P A ....=⋅⋅=⨯⨯= ()()()12312321101020150997P A A A P A A A ....⋃⋃=-=-⨯⨯= ()()()()()()1231231231231231231231233010808509020850908015090808500680153010806120941P A A A A A A A A A A A A P A A A P A A A P A A A P A A A .................=+++=⨯⨯+⨯⨯+⨯⨯+⨯⨯=+++=2、甲袋中有n 只白球、m 只红球;乙袋中有N 只白球、M 只红球。

概率统计复习题 文档(附标答) (2)

概率统计复习题 文档(附标答) (2)

概率统计复习题〔附标答〕*1.以下是16位学生“概率论与数理统计〞课程的成绩:67, 68, 69, 73, 73, 74, 77, 78, 81, 82, 82, 84, 88, 89, 90, 92〔1〕计算样本均值、样本中位数和样本众数,样本标准差;〔2〕从65开始,每5分1组进展分组,画出16位学生成绩的直方图;解:以下是16位学生“概率论与数理统计〞课程的成绩:67, 68, 69, 73, 73, 74, 77, 78, 81, 82, 82, 84, 88, 89, 90, 92〔1〕计算样本均值、标准差;〔2〕从65开始,每5分1组进展分组,画出16位学生成绩的直方图;〔3〕按第〔2〕小题分组数据计算样本均值,并与第〔1〕小题结果比拟。

x ;解:〔1〕调用A VERAGE计算得:78.47〔2〕y〔相对频率〕65 70 75 80 85 90 95 x〔成绩〕〔3〕取各组区间中点计算有;67.50.1972.50.1977.50.1382.50.2587.50.1992.50.0679.475x ≈⨯+⨯+⨯+⨯+⨯+⨯≈与直接计算比拟接近。

2..某公司员工月工资情况如下:〔1〕计算该公司员工工资的样本均值、样本中位数和样本众数; 〔2〕你认为哪个值更能反映该公司员工工资的实际水平?为什么?解:(1) 样本均值、样本中位数和样本众数分别为:1.072,0.6,0.6〔单位:万元〕⋯⋯⋯3分〔2〕由于绝大多数员工月薪为0.6万元,样本均值为1.072万元,与绝大多数员工月薪差距过大,而样本中位数为0.6万元,所以在这个问题中,样本中位数更能反映该公司员工工资的实际水平.*3. 设A 表示事件“明天下雨〞;B 表示“后天下雨〞,如此事件AB 表示〔 D 〕(A )“明天和后天都不下雨〞(B )“明天或者后天不下雨〞 (C )“明天和后天正好有一天不下雨〞(D )“明天或者后天下雨〞*4..某流行病在A,B,C 三地区爆发。

概率统计试题及答案

概率统计试题及答案

<概率论〉试题一、填空题1.设 A、B、C是三个随机事件。

试用 A、B、C分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设 A、B为随机事件,,,。

则=3.若事件A和事件B相互独立, ,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0。

5,现已知目标被命中,则它是甲射中的概率为6。

设离散型随机变量分布律为则A=______________7. 已知随机变量X的密度为,且,则________ ________8. 设~,且,则 _________9。

一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________10。

若随机变量在(1,6)上服从均匀分布,则方程x2+x+1=0有实根的概率是11.设,,则12。

用()的联合分布函数F(x,y)表示13。

用()的联合分布函数F(x,y)表示14.设平面区域D由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为。

15。

已知,则=16。

设,且与相互独立,则17。

设的概率密度为,则=18。

设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)=19.设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~或~ 。

特别是,当同为正态分布时,对于任意的,都精确有~或~ .21。

设是独立同分布的随机变量序列,且,那么依概率收敛于 .22.设是来自正态总体的样本,令则当时~。

23.设容量n = 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值= ,样本方差=24。

概率统计考试试卷

概率统计考试试卷

概率统计考试试卷一、选择题(每题2分,共20分)1. 某事件的概率为0.5,这意味着:A. 这个事件几乎不可能发生B. 这个事件一定会发生C. 这个事件发生的可能性是50%D. 这个事件是不可能事件2. 以下哪个不是随机变量的类型?A. 离散型B. 连续型C. 确定型D. 混合型3. 期望值E(X)表示:A. 随机变量X的众数B. 随机变量X的中位数C. 随机变量X的平均值D. 随机变量X的方差4. 方差是衡量随机变量的:A. 偏度B. 峰度C. 离散程度D. 相关性5. 以下哪个不是大数定律的内容?A. 随机变量的算术平均数趋近于期望值B. 随机变量的几何平均数趋近于期望值C. 随机变量的加权平均数趋近于期望值D. 随机变量的样本均值趋近于总体均值...二、填空题(每空2分,共20分)1. 如果随机变量X服从二项分布B(n, p),则其期望值E(X)等于______。

2. 标准正态分布的均值为______,方差为______。

3. 随机变量X和Y的协方差衡量了X和Y的______程度。

4. 事件A和B同时发生的概率记作______。

5. 随机变量X的方差公式为______。

...三、简答题(每题10分,共30分)1. 简述什么是条件概率,并给出一个条件概率的例子。

2. 解释什么是中心极限定理,并说明它在统计学中的重要性。

3. 描述什么是泊松分布,并给出其概率质量函数。

...四、计算题(每题15分,共30分)1. 已知随机变量X服从正态分布N(μ, σ²),其中μ=50,σ²=25。

求P(40 < X ≤ 60)。

2. 某工厂生产的零件长度服从均匀分布U(10, 20)。

求该零件长度超过15的概率。

3. 假设有5个独立同分布的随机变量X₁, X₂, ..., X₅,每个随机变量Xᵢ服从泊松分布P(λ)。

求这5个随机变量之和的期望值和方差。

...结束语:请同学们认真审题,仔细作答。

概率统计试题及答案

概率统计试题及答案

概率统计试题及答案一、选择题(每题5分,共20分)1. 在概率论中,如果一个事件的概率为0,那么这个事件:A. 一定会发生B. 可能发生C. 不可能发生D. 无法确定答案:C2. 一组数据的方差是用来衡量:A. 数据的集中程度B. 数据的离散程度C. 数据的平均水平D. 数据的中位数答案:B3. 随机变量X服从标准正态分布N(0,1),那么P(X > 1)的值是:A. 0.8413B. 0.1587C. 0.5D. 0.3446答案:B4. 在统计学中,置信区间是用来:A. 表示总体参数的精确值B. 表示样本统计量的精确值C. 表示总体参数的估计范围D. 表示样本统计量的估计范围答案:C二、填空题(每题5分,共20分)1. 概率论中,一个事件的概率范围是[ , ]。

答案:[0, 1]2. 如果一组数据的平均值为μ,方差为σ²,那么这组数据的标准差是。

答案:σ3. 假设检验中,如果P值小于显著性水平α,那么我们拒绝假设。

答案:零4. 正态分布曲线的对称轴是。

答案:均值三、简答题(每题10分,共30分)1. 请简述什么是大数定律,并给出一个例子。

答案:大数定律是指随着试验次数的增加,事件发生的频率趋近于其概率。

例如,抛硬币时,随着抛掷次数的增加,正面朝上的次数所占的比例会趋近于0.5。

2. 解释什么是中心极限定理,并说明其在实际应用中的意义。

答案:中心极限定理是指,当样本量足够大时,独立同分布的随机变量之和的分布趋近于正态分布。

在实际应用中,它允许我们使用正态分布来近似描述各种不同分布的样本均值的分布,从而进行统计推断。

3. 什么是回归分析?它在数据分析中的作用是什么?答案:回归分析是一种统计学方法,用于研究变量之间的依赖关系。

在数据分析中,它可以帮助我们预测一个变量的值,基于其他一个或多个变量的信息。

四、计算题(每题10分,共30分)1. 已知随机变量X服从二项分布B(n=10, p=0.5),求P(X=5)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计复习题、选择题1.设事件A 与事件B 互不相容,则(2.对于任意二事件 A 和B ,则下列成立的是((A )若AB H ①,则A 和B 一定独立(B ) (C)若AB 二①,则A 和B 一定独立(D ) 3.某人向同一目标独立重复射击,每次击中目标的概率为 恰好是第2次命中目标的概率为((A ) 3p (1 -p)2 ( B) 6p (1-p)2(C) 3p 2(1-p)2(D ) 6p2(1-p)2事件 A={0vX<1} , B={|X|<」},则()4(C) P (B) + P(A) =1( D) P (AB) = P(A) P(B)5.设X 1 , X 2 , X 3是随机变量,且 X 1N(0,1), X 2~N(O,22) , X 3~N(5,32),P =P {—2<X j <2}(j =1,2,3),则((C) F 3 A pA B(D)> P3 > P 26.设随机变量 X 服从正态分布 N (气,crj ),随机变量 Y 服从正态分布 N (卩2,—2),且P {|X -叫| <0> P {|Y -卩2吒仆,则必有((A) 5<貯2 (B) S >—(C) 气 <卩2(D)卩1> 巴f(X)= Ff'xh X -0( a:>0,b>0 )为概率密度,则 a,b 应满足(lbf 2(x),x(A)2a + 3b =4 (B ) 3a+2b=4(C) a +b =1 (D) a +b =28.设随机变量X 和Y 相互独立,且 X 和Y 的概率分布分别为(A) P(AB)=O (B)P (AB)= P(A)P (B) (C) P(A)=1 - P(B)(D) P (AuB)=1(A)P (AB)=0(B)P(AB) =P(A) )AB H ①,则A 和B 可能独立 AB =①,贝U A 和B 一定不独p(0 C pci),则此人第4次射击4.设随机变量X 服从[-1,1]上的均匀分布, 7.设f 1(X)为标准正态分布的概率密度函数, f 2(X)为[-1,3]上均匀分布的概率密度。

若记①(x)为标准正态分布函数,则()Y~ N(11 ), X , Y 相互独立,令 Z = X —3Y ,则 Z ~(B. N(1,7)C. N(—3,10)D. N(—1,4);15.设X 1,X 2,…,X n 独立同分布的随机变量列,且均服从参数为 0 (日>1 )的指数分布。

则 P(X +Y = 2)=() (A )—129.设随机变1(B)8X 和丫相互独立, P(x c Y )=(1(B)3 10.设随机变量 1(D)-21与4的指数分布,2(C)54(D)-5X 和丫相互独立,且都服从区间[0,1]上的均匀分布,则P(X 2 +丫2 <1)=(兀(C)8JI(D);11.随机变量X ,Y 独立同分布且 X 的分布函数为F(x)。

则Z =ma <伙丫 }的分布函数为(A)F 2(x)(B ) F(x)F(y) (C) 1 -[1-F(x)]2(D ) [1-F(x)][1 -F(y)]12.随机变量X ~ N(0,1),Y~ N(1,4),且相关系数 P xY =1,则( )(A)P {丫=—2X-1}=1 (B) P{Y=2X-1}=1 (C) P {Y =—2X +1}=1(D) p {Y =2X +1}=113.将一枚硬币重复掷 关系数等于()n 次, 以X 和丫分别表示正面向上和反面向上的次数,则X 和丫的相(A)-1(B) (C)A . N(—3,3)1(C)6且分别服从参数为(A)lim P<n_^<X > =①(X)” nz X i -n e limP{ iq L F I T n e<x>=e(x)产n日S X i —n(C) limP —F I 麻<X > =①(X)产nZ X i -0lim P< y L Y I后<x>=e(x)16.设随机变量X ~t(n) (n A1),Y= 12X,则((A)Y~ z2(n) (B)Y ~ 72(n-1) (C) Y~ F(n,1) (D) Y~ F(1,n)17.设X1,X2,X3来自标准正态总体的样本,则下列错误的是((A) X1 +X2 +X3服从正态分布N( 0,3). (B) X12,X22,X;都服从正态分布.(C) X i2 +X22 +X32服从72(3)分布.V 2+ V 2X12服从F(2,1)分布.(D)2X118.设随机变量X i,X2,…,X n( n>1)独立同分布,且其方差为2 1 nU >0 ,令Y= —S X i ,n y则((A)2 cCov(X1, Y)n(B)CovgY) "2(C) D(X1 +Y) =^^cr2n(D)DK-Y) =^^cr2n19设(X1,X2)为来自总体X 的样本,且E(X)=巴D(X) =b2下列关于总体均值卩的估计中,其中最有效的是:A. ^^+空^B.3 3)1 +3X27 7+ 3X25二、填空题1.设事件A,B相互独立, A,C 互不相容,且P(A)= —,P (B)二-,P (C)=」,2 3 4P(BC)=丄,则概率p(C|A?B)8(提示:P(C A? B) 1- P(C I A? B)2.设随机变量X的概率分布为P(X =k) =9(1-日)2,k=12…,其中0<9c1,若P(X <2) =5,则P {X =3}=93.设随机变量丫服从参数为1的指数分布,a为常数且大于零,则P{Y <a +1 Y Aa}=4.(2002数1)设随机变量X服从正态分布N(比cr2)(cr >0 ),且二次方程y2+4y+X=01无实根的概率为丄,则4 =25.从数1,2,3,4中任取一个数,记为X ,再从1,…,X中任取一个数,记为丫 ,P{Y =2}=f 6x,6.设二维随机变量(X,Y)的概率密度为f(X, y) - {i 0 0<x<y<1则,其它p{x + 丫兰1}=1-的概率为28.设随机变量X服从参数为1的泊松分布,则P{X=E(X2)} = __________7•在区间(0,1)中随机地取两个数,则两数之差的绝对值小于9.设随机变量X和Y的相关系数为0.5,EX = EY =0,EX 2 = EY2=2 , E(X +Y)210.设D(©)=4, D( n)=1,相关系数P也= 0.7,则D^+^ )=11.某型号螺丝钉的重量是相互独立同分布的随机变量,其期望是则1 0 0个该型号螺丝钉重量不超过1 0______ (答案用标准正态分布函数表示).1U12.设总体X的概率密度为f(x) = —e F(Y,*c),1两,标准差是.2斤的概率0.1近似为-,x n为总体的简单随机样本,其样本方差为S 2,则E (S2)=13.设X 1,X 2,…,X n 为来自总体 N (巴b )的简单随机样本,E(T) =三、计算题1. 袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依次随机地从袋中各取 一球,取后不放回,则第二个人取得黄球的概率是多少?1 n 2统计量 T = —S Xi ,则n irn2.已知男子有5%是色盲患者,女子有0.25%是色盲患者,今从男女人数相等的人群中随机挑选一个人,恰好是色盲患者,问此人是男性的概率是多少?3.已知X〜N(0, 1),求随机变量函数丫 = 2 X的概率密度.4.设二维随机变量(X,Y)的概率密度为『,0vx<d,0vyv2xf(X, y)0 ,其它求:(I) (X,Y)的边缘概率密度f x(x),f Y(y),f x|Y(xy); (n)cov(X 丫)(川)Z =2X -Y的概率密度f z(z);。

5.设随机变量 X 和Y 相互独立,且服从参数为 1的指数分布。

记 U = max{X,Y},V =min {x,Y }。

求(i) V 的概率密度 f v (v);(n) E(U +V)。

X 的分布函数为F(x) =0.3做X)+0.7做X ;1),其中*(x)为标准正态分布的且 P (X 2 =丫2,求(I) (X, Y)的分布;(n) Z=X Y 的分布;(川)P xY 。

6.设随机变量 分布函数,求EX7.设随机变X 和丫的概率分布为8.设总体的概率分布为其中0(0吒日 <-]是未知参数,利用总体X的如下样本值3, 1, 3, 0, 3, 1 , 2, 3,求£I 2丿的矩估计值和最大似然估计值.9.设总体X的分布函数为1 P, x>1其中未知参数P >1, X i ,X 2,…,X n 是来自总体X 的简单随机样本,求:A 的指数分布,其中A >0,抽取样本X i ,X 2,…,X n ,X 是几的无偏估计量,但 X 2却不是A 2的无偏估计量;(I) p 的矩估计量;(n) p 的最大似然估计量。

(2)统计量— n +1X 2是几2的无偏估计量。

10.设总体X 服从参数为 证明:(1)虽然样本均值。

相关文档
最新文档