2018-2019学年度立体几何难题大汇总
2018届高考数学立体几何(理科)专题03 折叠与探究性问题
2018届高考数学立体几何(理科)专题03 折叠与探究性问题1.如图,四棱柱1111ABCD A B C D -的底面为菱形, 0120BAD ∠=, 2AB =, ,E F 为1,CD AA 中点. (1)求证: //DF 平面1B AE ;(2)若1AA ⊥底面ABCD ,且直线1AD 与平面1B AE 所成线面角的正弦值为34,求1AA 的长.2.如图,在四棱锥P ABCD -中,底面ABCD 为正方形, PD DA ⊥, PD DC ⊥. (Ⅰ)若E 是PA 的中点,求证: //PC 平面BED ;(Ⅱ)若PD AD =, 2PE AE =,求直线PB 与平面BED 所成角的正弦值.3.如图,在棱长为1的正方体1111ABCD A B C D -中,点E 是棱AB 上的动点. (1)求证: 11DA ED ⊥;(2)若直线1DA 与平面1CED 所成的角是45o ,请你确定点E 的位置,并证明你的结论.4.如图所示,在四棱台ABCDA1B1C1D1中,AA1⊥底面ABCD,四边形ABCD为菱形,∠BAD=120°,AB=AA1=2A1B1=2.(1)若M为CD中点,求证:AM⊥平面AA1B1B;(2)求直线DD1与平面A1BD所成角的正弦值.5.如图,在直角梯形中,.直角梯形通过直角梯形以直线为轴旋转得到,且使得平面平面. (Ⅰ)求证:平面平面;(Ⅱ)延长至点,使为平面内的动点,若直线与平面所成的角为,且,求点到点的距离的最小值.AD BC,6.已知如图,PA⊥平面ABCD,四边形ABCD为等腰梯形,// ====.BC AB AD PA2224(1)求证:平面PAC⊥平面PAB;(2)已知E为PC中点,求AE与平面PBC所成角的正弦值.1.如图,四棱柱1111ABCD A B C D -的底面为菱形, 0120BAD ∠=, 2AB =, ,E F 为1,CD AA 中点. (1)求证: //DF 平面1B AE ;(2)若1AA ⊥底面ABCD ,且直线1AD 与平面1B AE所成线面角的正弦值为34,求1AA 的长. 【答案】(1)证明见解析;(2)2.所以//DF 平面1B AE .(2)因为ABCD 是菱形,且060ABD ∠=,所以ABC ∆是等边三角形取BC 中点G ,则AG AD ⊥,因为1AA ⊥平面ABCD ,所以1AA AG ⊥, 1AA AD ⊥ 建立如图的空间直角坐标系,令1(0)AA t t =>,则()330n AE x y ⋅=+=u u uv v 且130n AB x y tz ⋅=-+=u u u v v , 取()3,,4n t t =-v,设直线1AD 与平面1B AE 所成角为θ,则()12163sin 424n AD t t n AD θ⋅===+⋅u u u u v v u u u u v v ,解得2t =,故线段1AA 的长为2. 2.如图,在四棱锥P ABCD -中,底面ABCD 为正方形, PD DA ⊥, PD DC ⊥. (Ⅰ)若E 是PA 的中点,求证: //PC 平面BED ;(Ⅱ)若PD AD =, 2PE AE =,求直线PB 与平面BED 所成角的正弦值. 【答案】(Ⅰ)证明见解析;(Ⅱ)2.(Ⅱ)设2CD =,则2AB BC AD PD ====,且23PE PA =.分别以,,DA DC DP 为,,x y z 轴的正方向建立坐标系,则()()()()()420,0,0,2,0,0,,0,,0,2,0,2,2,0,0,0,233D A E C B P ⎛⎫⎪⎝⎭ ∴()()422,2,0,,0,,2,2,233DB DE PB ⎛⎫===- ⎪⎝⎭u u u v u u u v u u u v ,设平面BED 的一个法向量为(),,n x y z =v,则2200{ { 420033x y n DB x z n DE +=⋅=⇒+=⋅=u u uv v u u u v v ,令1x =-,则1y =,∴2z =∴()1,1,2n =-v设直线PB 与平面BED 所成的角为α,则2sin cos ,PB n n PB PB nα⋅===⋅u u u v v u u uv v u u u v v 所以PB 与平面BED 所成角的正弦值为23.如图,在棱长为1的正方体1111ABCD A B C D -中,点E 是棱AB 上的动点. (1)求证: 11DA ED ⊥;(2)若直线1DA 与平面1CED 所成的角是45o,请你确定点E 的位置,并证明你的结论. 【答案】(1)见解析(2) 直线1DA 与平面1CED 所成的角是45o时,点E 在线段AB 中点处所以DA 1⊥ED 1另解: 1AE ADA ⊥平面,所以1AE A D ⊥.又A D AD ⊥,所以A D D AE ⊥平面. 所以DA ED ⊥所以()10,0,1A 、()0,1,0D 、()1,1,0C 、()10,1,1D ,设AE t =,则(),0,0E t 设平面CED 1的法向量为(),,n x y z =v,由10{ 0n CD n CE ⋅=⋅=u u u u v v u u u v v 可得()0{10x z t x y -+=--=, 所以(){1z x y t x==-,因此平面CED 1的一个法向量为()1,1,1t -由直线1DA 与平面1CED 所成的角是45o,可得11sin45DA nDA n ⋅︒=u u u u v v u u u u v v 可得()211222111t t -+=⋅+-+,解得12t = 由于AB =1,所以直线1DA 与平面1CED 所成的角是45o 时,点E 在线段AB 中点处4.如图所示,在四棱台ABCD A 1B1C 1D 1中,AA 1⊥底面ABCD ,四边形ABCD 为菱形,∠BAD =120°,AB =AA 1=2A 1B 1=2.(1)若M 为CD 中点,求证:AM ⊥平面AA 1B 1B ; (2)求直线DD 1与平面A 1BD 所成角的正弦值. 【答案】(1)见解析(2)15∵四边形ABCD 为菱形,∠BAD =120°,∴△ACD 为等边三角形, 又M 为CD 中点,∴AM ⊥CD ,由CD ∥AB 得,AM ⊥AB .∵AA 1⊥底面ABCD ,AM ⊂平面ABCD ,∴AM ⊥AA 1.又AB ∩AA 1=A ,∴AM ⊥平面AA 1B 1B . (2)∵四边形ABCD 为菱形,∠BAD =120°,AB =AA 1=2A 1B 1=2,∴DM =1,AM =,∴∠AMD =∠BAM =90°,设平面A 1BD 的法向量为n =(x ,y ,z ),则即令x =1,则n =(1,,1),∴|cos〈n ,〉|===.∴直线DD 1与平面A 1BD 所成角的正弦值为.5.如图,在直角梯形中,.直角梯形通过直角梯形以直线为轴旋转得到,且使得平面平面.(Ⅰ)求证:平面平面;(Ⅱ)延长至点,使为平面内的动点,若直线与平面所成的角为,且,求点到点的距离的最小值. 【答案】(1)见解析(2)试题解析:(Ⅰ)直角梯形中,,直角梯形通过直角梯形以直线为轴旋转得到,,又平面平面,平面,平面平面.,得.设的坐标为,则,由,得,,,,所以,当时,,点到点的距离的最小值为.6.已知如图, PA ⊥平面ABCD ,四边形ABCD 为等腰梯形, //AD BC , 2224BC AB AD PA ====. (1)求证:平面PAC ⊥平面PAB ;(2)已知E 为PC 中点,求AE 与平面PBC 所成角的正弦值. 【答案】(1)见解析;(2)217试题解析:(1)连接AC ,过A 作AG BC ⊥于G ,过D 作DH BC ⊥于H . 在等腰梯形ABCD 中,∵24BC AD ==,∴1BG CH ==.∴60ABC DCB ∠=∠=o,则120ADC BAD ∠=∠=o, 30ACD DAC ∠=∠=o,∴90BAC ∠=o即AC B ⊥A , ∵PA ⊥平面ABCD , AC ⊂平面ABCD ,∴PA AC ⊥,∴AC ⊥平面PAB , 又AC ⊂平面PAC ,∴平面PAC ⊥平面PAB .11 /11 即1143232⨯⨯ 11221432h =⨯⨯,∴221h =. ∴AE 与平面PBC 所成角的正弦值等于2212172=。
专题3.1 以立体几何中探索性问题为背景的解答题——新高考数学专项练习题附解析
专题三压轴解答题第一关以立体几何中探索性问题为背景的解答题【名师综述】利用空间向量解决探索性问题立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如.1.以“平行”为背景的存在判断型问题典例1 (2019·山东省实验中学高考模拟)如图所示的矩形ABCD中,AB=12AD=2,点E为AD边上异于A,D两点的动点,且EF//AB,G为线段ED的中点,现沿EF将四边形CDEF折起,使得AE与CF的夹角为60°,连接BD,FD.(1)探究:在线段EF上是否存在一点M,使得GM//平面BDF,若存在,说明点M的位置,若不存在,请说明理由;(2)求三棱锥G—BDF的体积的最大值,并计算此时DE的长度.【名师指点】本题是直线和平面平行的存在性问题,这种问题可以利用空间直角坐标系,通过建系设点,利用空间向量求解,如果利用传统立体几何的方法,就需利用分析法,利用直线和平面平行的性质定理寻求点的位置.【举一反三】如图所示,在四棱锥中,四边形是正方形,点分别是线段的中点.(1)求证:;(2)线段上是否存在一点,使得面面,若存在,请找出点并证明;若不存在,请说明理由.类型2 以“垂直”为背景的存在判断型问题典例2 如图,在四棱锥中,四边形为平行四边形,,为中点,(1)求证:平面;(2)若是正三角形,且.(Ⅰ)当点在线段上什么位置时,有平面?(Ⅱ)在(Ⅰ)的条件下,点在线段上什么位置时,有平面平面?【名师指点】以直线和平面垂直、直线和直线垂直为背景的垂直问题,可以通过建立空间直角坐标系,通过直线的方向向量与平面的法向量共线或者直线方向向量垂直求得,也可以利用传统立体几何知识利用分析的方法,确定线、面垂直关系来求解.【举一反三】【北京市通州区2018-2019学年第一学期高三年级期末考试】如图,在三棱柱中,底面,△ABC是边长为的正三角形,,D,E分别为AB,BC的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在一点M ,使平面?说明理由.类型3 以“角”为背景的探索性问题典例3 (2019·山东高三月考)如图,在四棱锥S ABCD -中,四边形ABCD 是矩形,SAD ∆是等边三角形,平面SAD ⊥平面ABCD ,1AB =,E 为棱SA 上一点,P 为AD 的中点,四棱锥S ABCD -的体积为233.(1)若E 为棱SA 的中点,F 是SB 的中点,求证:平面∥PEF 平面SCD ; (2)是否存在点E ,使得平面PEB 与平面SAD 所成的锐二面角的余弦值为30?若存在,确定点E 的位置;若不存在,请说明理由.【名师指点】与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题的强有力的方法.【举一反三】(2019·山东枣庄八中高三月考(理))如图,直三棱柱111-ABC A B C 中,120ACB ∠=且12AC BC AA ===,E 是棱1CC 上动点,F 是AB 中点.(Ⅰ)当E 是中点C 1C 时,求证:CF 平面 AE 1B ;(Ⅱ)在棱1CC 上是否存在点E ,使得平面AE 1B 与平面ABC 所的成锐二面角为6π,若存在,求CE 的长,若不存在,请说明理由.【精选名校模拟】1. (·山东高考模拟(理))如图,在四棱锥P ABCD -中,,AD PCD PD CD ⊥⊥平面,底面ABCD 是梯形,//,1,2,AB DC AB AD PD CD AB Q ====为棱PC 上一点. (Ⅰ)若点Q 是PC 的中点,证明://PQ PAD 平面; (Ⅱ)PQ PC λ=试确定λ的值使得二面角Q BD P --为60°. 2. (2019·夏津第一中学高三月考)如图所示,等腰梯形ABCD 中,AB CD ∥,2AD AB BC ===,4CD =,E 为CD 中点,AE 与BD 交于点O ,将ADE 沿AE 折起,使点D 到达点P 的位置(P ∉平面ABCE ).(1)证明:平面POB ⊥平面ABCE ; (2)若6PB =,试判断线段PB 上是否存在一点Q (不含端点),使得直线PC 与平面AEQ 所成角的正弦值为15,若存在,求出PQ OB 的值;若不存在,说明理由.3. (2018·山东济南外国语学校高三月考(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60,90DAB ADP ∠=︒∠=︒,平面ADP ⊥平面ABCD ,点F 为棱PD 的中点.(Ⅰ)在棱AB 上是否存在一点E ,使得AF 平面PCE ,并说明理由;(Ⅱ)当二面角D FC B --的余弦值为24时,求直线PB 与平面ABCD 所成的角. 【答案】(1)见解析(2)60︒4. (2019·北京北师大实验中学高三月考)如图所示,在四棱锥P ABCD -中,底面四边形ABCD 为正方形,已知PA ⊥平面ABCD ,2AB =,2PA =.(1)证明:BD PC ⊥;(2)求PC 与平面PBD 所成角的正弦值;(3)在棱PC 上是否存在一点E ,使得平面BDE ⊥平面BDP ?若存在,求PEPC的值并证明,若不存在,说明理由.5.【黑龙江省哈尔滨市第六中学2019届高三上学期期末考试】如图,在棱长为2的正方体中,点分别是棱上的动点,且.(1)求证:;(2)当三棱锥的体积取得最大值时,求二面角的正切值. 6. 【湖北省2019届高三联考测试】如图,在四棱锥中,,,,且PC=BC=2AD=2CD=2,.(1)平面;(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.7. 【福建省龙岩市2019届高三第一学期期末教学质量检查】如图,四边形是边长为2的正方形,平面平面,且.(1)证明:平面平面;(2)当,且与平面所成角的正切值为时,求二面角的正弦值.8. 【福建省厦门市2019届高三年级第一学期期末质检】如图,在四棱锥中,平面,四边形为平行四边形,且,.(1)证明:平面;(2)当直线与平面所成角的正切值为时,求二面角的余弦值.9. 【北京市朝阳区2018-2019高三数学期末考试】如图,三棱柱的侧面是平行四边形,,平面平面,且分别是的中点.(1)求证:平面;(2)当侧面是正方形,且时,(ⅰ)求二面角的大小;(ⅱ)在线段上是否存在点,使得?若存在,指出点的位置;若不存在,请说明理由.10. 如图,在多面体ABCDMN 中,四边形ABCD 为直角梯形, //AB CD , 22AB =, BC DC ⊥,2BC DC AM DM ====,四边形BDMN 为矩形.(1)求证:平面ADM ⊥平面ABCD ;(2)线段MN 上是否存在点H ,使得二面角H AD M --的大小为4π?若存在,确定点H 的位置并加以证明.11. 在三棱锥P ABC -中, AB AC =, D 为BC 的中点, PO ⊥平面ABC ,垂足O 落在线段AD 上,已知4,3,2,1BC PO AO OD ====. (1)证明: AP BC ⊥;(2)在线段AP 上是否存在一点M ,使得二面角A MC B --为直二面角?若存在,求出AM 的长;若不存在,请说明理由.12 【安徽省江南十校2019届高三第二次大联考】如图,已知四边形中,对角线,,为等边三角形.(1)求面积的最大值;(2)当的面积最大时,将四边形沿折起成直二面角,在上是否存在点使直线与平面所成的角满足:,若不存在,说明理由;若存在,指出点的位置.13. 【云南省昆明市2019届高三1月复习诊断测试】如图,在四棱锥中,底面是平行四边形,平面,,,是棱上的一点.(1)若平面,证明:;(2)在(1)的条件下,棱上是否存在点,使直线与平面所成角的大小为?若存在,求的值;若不存在,请说明理由.14. 【河南省开封市2019届高三上学期第一次模拟考试】如图所示,是边长为2的正方形,平面,且.(Ⅰ)求证:平面平面;(Ⅱ)线段上是否存在一点,使二面角所成角的余弦值为?若存在,请找出点的位置;若不存在,请说明理由.15.如图,五面体11A BCC B -中,14AB =,底面ABC 是正三角形,2AB =,四边形11BCC B 是矩形,二面角1A BC C --为直二面角.(1)D 在AC 上运动,当D 在何处时,有1//AB 平面1BDC ,并说明理由; (2)当1//AB 平面1BDC 时,求二面角1C BC D --余弦值.专题三压轴解答题第一关以立体几何中探索性问题为背景的解答题【名师综述】利用空间向量解决探索性问题立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如.2.以“平行”为背景的存在判断型问题典例1 (2019·山东省实验中学高考模拟)如图所示的矩形ABCD中,AB=12AD=2,点E为AD边上异于A,D两点的动点,且EF//AB,G为线段ED的中点,现沿EF将四边形CDEF折起,使得AE与CF的夹角为60°,连接BD,FD.(1)探究:在线段EF上是否存在一点M,使得GM//平面BDF,若存在,说明点M的位置,若不存在,请说明理由;(2)求三棱锥G—BDF的体积的最大值,并计算此时DE的长度.【答案】(1)见解析;(2)33,2【解析】(1)取线段EF的中点M,有GM∥平面BDF.证明如下:如图所示,取线段EF的中点M,∵G为线段ED的中点,M为线段EF的中点,∴GM为△EDF的中位线,故GM∥DF,又GM⊄平面BDF,DF⊂平面BDF,故GM∥平面BDF;(2)∵CF ∥DE ,且AE 与CF 的夹角为60°,故AE 与DE 的夹角为60°,即60AED ∠=︒, 过D 作DP ⊥AE 交AE 于P ,由已知得DE ⊥EF ,AE ⊥EF ,∴EF ⊥平面AED , EF ⊥DP,又AE EF=E,∴DP ⊥平面AEFB , 即DP 为点D 到平面ABFE 的距离,且3DP x =, 设DE =x ,则AE =BF =4﹣x , 由(1)知GM ∥DF ,G BDF M BDF D MBF V V V ---===11131(4)3322MBF S DP x x ⎡⎤⋅⋅=⨯⨯⨯-⨯⎢⎥⎣⎦()24333(4)x x x x -+=-⋅=,当且仅当4﹣x =x 时等号成立,此时x =DE =2. 故三棱锥G ﹣BDF 的体积的最大值为33,此时DE 的长度为2. 【名师指点】本题是直线和平面平行的存在性问题,这种问题可以利用空间直角坐标系,通过建系设点,利用空间向量求解,如果利用传统立体几何的方法,就需利用分析法,利用直线和平面平行的性质定理寻求点的位置.【举一反三】如图所示,在四棱锥中,四边形是正方形,点分别是线段的中点.(1)求证:;(2)线段上是否存在一点,使得面面,若存在,请找出点并证明;若不存在,请说明理由. 【解析】(1)证明:由四边形为正方形可知,连接必与相交于中点故∵面∴面(2)线段上存在一点满足题意,且点是中点理由如下:由点分别为中点可得:∵面∴面由(1)可知,面且故面面类型2 以“垂直”为背景的存在判断型问题典例2 如图,在四棱锥中,四边形为平行四边形,,为中点,(1)求证:平面;(2)若是正三角形,且.(Ⅰ)当点在线段上什么位置时,有平面?(Ⅱ)在(Ⅰ)的条件下,点在线段上什么位置时,有平面平面?【解析】(1)证明:连接,,=,因为ABCD是平行四边形,则为中点,连接,又为中点,面,面平面.(2)解(Ⅰ)当点在线段中点时,有平面取中点,连接,又,又,,平面,又是正三角形,平面(Ⅱ)当时,有平面平面过作于,由(Ⅰ)知,平面,所以平面平面易得【名师指点】以直线和平面垂直、直线和直线垂直为背景的垂直问题,可以通过建立空间直角坐标系,通过直线的方向向量与平面的法向量共线或者直线方向向量垂直求得,也可以利用传统立体几何知识利用分析的方法,确定线、面垂直关系来求解.【举一反三】【北京市通州区2018-2019学年第一学期高三年级期末考试】如图,在三棱柱中,底面,△ABC是边长为的正三角形,,D,E分别为AB,BC的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在一点M,使平面?说明理由.【解析】(Ⅰ)证明:在三棱柱中,因为底面,CD⊂平面ABC,所以.又为等边三角形,为的中点,所以.因为,所以平面;(Ⅱ)取中点,连结,则因为,分别为,的中点,所以.由(Ⅰ)知,,如图建立空间直角坐标系.由题意得,,,,,,,,,.设平面法向量,则即令,则,.即.平面BAE法向量.因为,,,所以由题意知二面角为锐角,所以它的余弦值为.(Ⅲ)解:在线段上不存在点M,使平面.理由如下.假设线段上存在点M,使平面.则,使得.因为,所以.又,所以.由(Ⅱ)可知,平面法向量,平面,当且仅当,即,使得.所以 解得.这与矛盾.所以在线段上不存在点M ,使平面.类型3 以“角”为背景的探索性问题典例3 (2019·山东高三月考)如图,在四棱锥S ABCD -中,四边形ABCD 是矩形,SAD ∆是等边三角形,平面SAD ⊥平面ABCD ,1AB =,E 为棱SA 上一点,P 为AD 的中点,四棱锥S ABCD -的体积为23.(1)若E 为棱SA 的中点,F 是SB 的中点,求证:平面∥PEF 平面SCD ; (2)是否存在点E ,使得平面PEB 与平面SAD 30E 的位置;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在,点E 位于AS 的靠近A 点的三等分点. 【解析】(1)证明:因为E 、F 分别是SA 、SB 的中点, 所以EF AB ∥,在矩形ABCD 中,AB CD ∥, 所以EF CD ∥,又因为E 、P 分别是SA 、AD 的中点, 所以∥EP SD ,又因为EF CD ∥,EF EP E ⋂=,,EF EP ⊂平面PEF ,,SD CD ⊂平面SCD ,所以平面∥PEF 平面SCD .(2)解:假设棱SA 上存在点E 满足题意. 在等边三角形SAD 中,P 为AD 的中点, 于是SP AD ⊥,又平面SAD ⊥平面ABCD , 平面SAD ⋂平面ABCD AD =,SP ⊂平面SAD ,所以SP ⊥平面ABCD ,所以SP 是四棱锥S ABCD -的高, 设AD m =,则SP =,ABCD S m =矩形,所以1133S ABCD ABDD V S SP m -=⋅==矩形 所以2m =,以P 为坐标原点,PA 所在直线为x 轴,过点P 与AB 平行的直线为y 轴,PS 所在直线为z 轴,建立如图所示的空间直角坐标系.则()0,0,0P ,()1,0,0A ,()1,1,0B,(S ,设(()()01AE AS λλλλ==-=-≤≤,()()1,0,0PE PA AE λ=+=+-()1λ=-,()1,1,0PB =,设平面PEB 的一个法向量为()1,,n x y z =,有()1110n PE x z n PB x y λ⎧⋅=-+=⎪⎨⋅=+=⎪⎩, 令3x λ=,则()13,,1n λλ=-,易知平面SAD 的一个法向量()20,1,0n =,所以12122123cos ,721n n n n n n λλλ-⋅==-+30=, 因为01λ≤≤, 所以13λ=, 所以存在点E ,位于AS 的靠近A 点的三等分点.【名师指点】与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题的强有力的方法.【举一反三】(2019·山东枣庄八中高三月考(理))如图,直三棱柱111-ABC A B C 中,120ACB ∠=且12AC BC AA ===,E 是棱1CC 上动点,F 是AB 中点.(Ⅰ)当E 是中点C 1C 时,求证:CF 平面 AE 1B ;(Ⅱ)在棱1CC 上是否存在点E ,使得平面AE 1B 与平面ABC 所的成锐二面角为6π,若存在,求CE 的长,若不存在,请说明理由.【答案】(1)见解析;(2)1CE =.【解析】(1)取1AB 中点G ,连结EG FG 、,则FG ∥1BB 且112FG BB =. 因为当E 为1CC中点时,CE ∥1BB 且112CE BB =, 所以FG ∥CE 且FG = CE .所以四边形CEGF 为平行四边形,CF ∥EG , 又因为1CF AEB ⊄平面,1EG AEB ⊂平面, 所以//CF 平面1AEB ;(2)假设存在满足条件的点E ,设()01CE λλ=≤≤.以F 为原点,向量1FB FC AA 、、方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系. 则()3,0,0A -,()13,0,2B ,()0,1,E λ,平面ABC 的法向量()0,0,1m =,平面1AEB 的法向量()333,3n λ=--,,()23cos 23991m n m n m nλ⋅===++-,,解得1λ=,所以存在满足条件的点E ,此时1CE =.【精选名校模拟】1. (·山东高考模拟(理))如图,在四棱锥P ABCD -中,,AD PCD PD CD ⊥⊥平面,底面ABCD 是梯形,//,1,2,AB DC AB AD PD CD AB Q ====为棱PC 上一点. (Ⅰ)若点Q 是PC 的中点,证明://PQ PAD 平面; (Ⅱ)PQ PC λ=试确定λ的值使得二面角Q BD P --为60°. 【答案】(1)见解析(2)36【解析】 (Ⅰ)取PD 的中点M ,连接AM ,M Q ,Q PC点是的中点,∴M Q∥CD,1.2MQ CD=又AB∥CD,1,2AB CD QM=则∥AB,QM=AB,则四边形ABQM是平行四边形.BQ∴∥AM.又AM⊂平面PAD,BQ⊄平面PAD,BQ∴∥平面PAD.(Ⅱ)解:由题意可得DA,DC,DP两两垂直,以D为原点,DA,DC,DP所在直线为,,x y z轴建立如图所示的空间直角坐标系,则P(0,1,1),C(0,2,0),A(1,0,0),B(1,1,0).令()()()000000,,,,,1,0,2,1.Q x y z PQ x y z PC=-=-则()()000,,,10,2,1,PQ PC x y zλλ=∴-=-()0,2,1.Qλλ∴-又易证BC⊥平面PBD,()1,1,0.n PBD∴=-是平面的一个法向量设平面QBD的法向量为(),,,m x y z=(),0,0,2210,.0,1x yx ym DBy z z ym DQλλλλ=-⎧+=⎧⎧⋅=⎪⎨⎨⎨+-==⋅=⎩⎩⎪-⎩则有即解得令21,1,1,.1y mλλ⎛⎫==-⎪-⎝⎭则60Q BD P 二面角为--,21cos,,22221m n m n m nλλ⋅∴===⎛⎫⋅+ ⎪-⎝⎭解得3 6.λ=±Q 在棱PC 上,01,3 6.λλ<<∴=-2. (2019·夏津第一中学高三月考)如图所示,等腰梯形ABCD 中,AB CD ∥,2AD AB BC ===,4CD =,E 为CD 中点,AE 与BD 交于点O ,将ADE 沿AE 折起,使点D 到达点P 的位置(P ∉平面ABCE ).(1)证明:平面POB ⊥平面ABCE ; (2)若6PB =PB 上是否存在一点Q (不含端点),使得直线PC 与平面AEQ 所成角的正弦值为155,若存在,求出PQ OB 的值;若不存在,说明理由.【答案】(1)证明见解析(215【解析】(1)证明:连接BE ,在等腰梯形中ABCD ,2AD AB BC ===,4CD =,E 为中点, ∴四边形ABED 为菱形,∴BD AE ⊥,∴OB AE ⊥,OD AE ⊥,即OB AE ⊥,OP AE ⊥,且OBOP O =,OB ⊂平面POB ,OP ⊂平面POB ,∴AE ⊥平面POB .又AE ⊂平面ABCE ,∴平面POB ⊥平面ABCE . (2)由(1)可知四边形ABED 为菱形,∴2AD DE ==, 在等腰梯形ABCD 中2AE BC ==,∴PAE △正三角形, ∴3OP =3OB =∵6PB =,∴222OP OB PB +=,∴OP OB ⊥.由(1)可知OP AE ⊥,OB AE ⊥,以O 为原点,OE ,OB ,OP 分别为x 轴,y 轴,为z 轴,建立空间直角坐标系O xyz -, 由题意得,各点坐标为()0,0,3P ,()1,0,0A -,()0,3,0B,()2,3,0C ,()1,0,0E ,∴(3,3PB =-,(3,3PC =-,()2,0,0AE =,设()01PQ PB λλ=<<,()1,333AQ AP PQ AP PB λλλ=+=+=, 设平面AEQ 的一个法向量为(),,n x y z =,则00n AE n AQ ⎧⋅=⎨⋅=⎩,即()203330x x y λλ=⎧⎪⎨++=⎪⎩,取0x =,1y =,得1z λλ=-,∴0,1,1n λλ⎛⎫= ⎪-⎝⎭,设直线PC 与平面AEQ 所成角为θ,π0,2θ⎡⎤∈⎢⎥⎣⎦, 则15sin cos ,5PC nPC n PC nθ⋅===,即2331511011λλλλ+-=⎛⎫+ ⎪-⎝⎭化简得:24410λλ-+=,解得12λ=, ∴存在点Q 为PB 的中点时,使直线PC 与平面AEQ 所成角的正弦值为155. 3. (2018·山东济南外国语学校高三月考(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60,90DAB ADP ∠=︒∠=︒,平面ADP ⊥平面ABCD ,点F 为棱PD 的中点.(Ⅰ)在棱AB 上是否存在一点E ,使得AF 平面PCE ,并说明理由; (Ⅱ)当二面角D FC B --的余弦值为2时,求直线PB 与平面ABCD 所成的角. 【答案】(1)见解析(2)60︒ 【解析】(Ⅰ)在棱AB 上存在点E ,使得//AF 平面PCE ,点E 为棱AB 的中点. 理由如下:取PC 的中点Q ,连结EQ 、FQ ,由题意,//FQ DC 且12FQ CD =, //AE CD 且12AE CD =,故//AE FQ 且AE FQ =.所以,四边形AEQF 为平行四边形.所以,//AF EQ ,又EQ ⊥平面PEC ,AF ⊥平面PEC ,所以,//AF 平面PEC . (Ⅱ)由题意知ABD ∆为正三角形,所以ED AB ⊥,亦即ED CD ⊥,又90ADP ∠=︒,所以PD AD ⊥,且平面ADP ⊥平面ABCD ,平面ADP ⋂平面ABCD AD =, 所以PD ⊥平面ABCD ,故以D 为坐标原点建立如图空间直角坐标系,设FD a =,则由题意知()0,0,0D ,()0,0,F a ,()0,2,0C ,)3,1,0B,()0,2,FC a =-,()3,1,0CB =-,设平面FBC 的法向量为(),,m x y z =,则由m FCm CB⎧⋅=⎨⋅=⎩得2030y azx y-=⎧⎪⎨-=⎪⎩,令1x=,则3y=,23z=,所以取231,3,m⎛⎫= ⎪⎪⎝⎭,显然可取平面DFC的法向量()1,0,0n=,由题意:22cos,41213m na==++,所以3a=.由于PD⊥平面ABCD,所以PB在平面ABCD内的射影为BD,所以PBD∠为直线PB与平面ABCD所成的角,易知在Rt PBD∆中,tan3PDPBD aBD∠===,从而60PBD∠=︒,所以直线PB与平面ABCD所成的角为60︒.4. (2019·北京北师大实验中学高三月考)如图所示,在四棱锥P ABCD-中,底面四边形ABCD为正方形,已知PA⊥平面ABCD,2AB=,2PA=.(1)证明:BD PC⊥;(2)求PC与平面PBD所成角的正弦值;(3)在棱PC上是否存在一点E,使得平面BDE⊥平面BDP?若存在,求PEPC的值并证明,若不存在,说明理由.【答案】(1)证明见解析;(210;(3)存在,23PEPC=,理由见解析【解析】(1)如图,连接AC交BD于点O,由于PA⊥平面ABCD,BD⊂平面ABCD所以PA BD⊥,即BD PA⊥由于BD PA ⊥,BD AC ⊥,PA AC A =,所以BD ⊥平面PAC又因为PC ⊂平面PAC ,因此BD PC ⊥ (2)由于PA ⊥平面ABCD ,AB平面ABCD ,AD ⊂平面ABCD ,所以PA AB ⊥,PA AD ⊥又AB AD ⊥,所以PA ,AB ,AD 两两垂直, 因比,如图建立空间直角坐标系A xyz -(2,0,0)B ,(2,2,0)C ,(0,2,0)D,P因此(2,2,PC =,(2,0,PB =,(0,2,PD =设平面PBD 的法向量为(,,)m x y z =,则00m PB m PD ⎧⋅=⎨⋅=⎩即2020x y ⎧=⎪⎨=⎪⎩ 取1x =,1y =,z =,则(1,1,2)m =设直线PC 与平面PBD 所成角为θ,10sin |cos ,|=||10||||m PC m PC m PC θ⋅=<>=⋅(3)存在,设[0,1]PEPCλ=∈,则(2,2))E λλλ- 则(22,2))BE λλλ=--,(2,2,0)BD =-设平面BDE 的法向量为(,,)n a b c =,则0n BE n BD ⎧⋅=⎨⋅=⎩,即2(1)2(1)0220a b a bλλλ⎧-+-=⎪⎨-+=⎪⎩,即1a λ=-,1b λ=-,2)c λ=-则(1,12))n λλλ=---,若平面BDE ⊥平面BDP ,则0m n ⋅=即1(1)1(1)2)0λλλ⋅-+⋅-+-=,则2[0,1]3λ=∈ 因此在棱PC 上存在点E ,使得平面BDE ⊥平面BDP ,23PE PC =5.【黑龙江省哈尔滨市第六中学2019届高三上学期期末考试】如图,在棱长为2的正方体中,点分别是棱上的动点,且.(1)求证:;(2)当三棱锥的体积取得最大值时,求二面角的正切值.【解析】设AE=BF=x.以D为原点建立空间直角坐标系,得下列坐标:D(0,0,0),A(2,0,0),B (2,2,0),C(0,2,0),D1(0,0,2),A1(2,0,2),B1(2,2,2),C1(0,2,2),E(2,x,0),F(2﹣x,2,0).(1)因为,,所以.所以A1F⊥C1E.(2)因为,所以当S△BEF取得最大值时,三棱锥B1﹣BEF的体积取得最大值.因为,所以当x=1时,即E,F分别是棱AB,BC的中点时,三棱锥B1﹣BEF的体积取得最大值,此时E,F坐标分别为E(2,1,0),F(1,2,0).设平面B1EF的法向量为,则得取a=2,b=2,c=﹣1,得.显然底面ABCD的法向量为.设二面角B1﹣EF﹣B的平面角为θ,由题意知θ为锐角.因为,所以,于是.所以,即二面角B1﹣EF﹣B的正切值为.6. 【湖北省2019届高三联考测试】如图,在四棱锥中,,,,且PC=BC=2AD=2CD=2,.(1)平面;(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.【解析】(1)∵在底面中,,且∴,∴又∵,,平面,平面∴平面又∵平面∴∵,∴又∵,,平面,平面∴平面(2)方法一:在线段上取点,使则又由(1)得平面∴平面又∵平面∴作于又∵,平面,平面∴平面又∵平面∴又∵∴是二面角的一个平面角设则,这样,二面角的大小为即即∴满足要求的点存在,且方法二:取的中点,则、、三条直线两两垂直∴可以分别以直线、、为、、轴建立空间直角坐标系且由(1)知是平面的一个法向量设则,∴,设是平面的一个法向量则∴令,则,它背向二面角又∵平面的法向量,它指向二面角这样,二面角的大小为即即∴满足要求的点存在,且7. 【福建省龙岩市2019届高三第一学期期末教学质量检查】如图,四边形是边长为2的正方形,平面平面,且.(1)证明:平面平面;(2)当,且与平面所成角的正切值为时,求二面角的正弦值.【解析】(1)由题设知,平面平面,交线为.因为,平面,所以平面,因此,又,,所以平面.而平面,所以平面平面.(2)以为坐标原点,的方向为轴正方向建立如图所示的直角坐标系,则有,过点作于,设,则.因为,所以,,由题设可得,即,解得或,因为,所以,所以,.由,知是平面的法向量,,.设平面的法向量为,则取得,设二面角为,则,因为,.综上,二面角的正弦值为.8. 【福建省厦门市2019届高三年级第一学期期末质检】如图,在四棱锥中,平面,四边形为平行四边形,且,.(1)证明:平面;(2)当直线与平面所成角的正切值为时,求二面角的余弦值. 【解析】(1)证明:由已知,得,在中,,∴,即,∵平面,平面,∴,又∵,平面,平面,∴平面(2)∵平面,∴为直线与平面所成角,∴,∴,在中,,取的中点,连结,则,∵平面,平面,∴,又∵,平面,平面,∴平面,以点为坐标原点,建立如图空间直角坐标系,则,,,,∴,,设平面的法向量为,则,取,解得,又平面的法向量为,∴.∴二面角的余弦值为.9. 【北京市朝阳区2018-2019高三数学期末考试】如图,三棱柱的侧面是平行四边形,,平面平面,且分别是的中点.(1)求证:平面;(2)当侧面是正方形,且时,(ⅰ)求二面角的大小;(ⅱ)在线段上是否存在点,使得?若存在,指出点的位置;若不存在,请说明理由.【解析】证明:(1)取中点,连,连.在△中,因为分别是中点,所以,且.在平行四边形中,因为是的中点,所以,且.所以,且.所以四边形是平行四边形.所以.又因为平面,平面,所以平面.(2)因为侧面是正方形,所以.又因为平面平面,且平面平面,所以平面.所以.又因为,以为原点建立空间直角坐标系,如图所示. 设,则,.(ⅰ)设平面的一个法向量为.由得即令,所以. 又因为平面,所以是平面的一个法向量.所以.由图可知,二面角为钝角,所以二面角的大小为. (ⅱ)假设在线段上存在点,使得.设,则.因为,又,所以.所以.故点在点处时,有10. 如图,在多面体ABCDMN 中,四边形ABCD 为直角梯形, //AB CD , 22AB =, BC DC ⊥,2BC DC AM DM ====,四边形BDMN 为矩形.(1)求证:平面ADM ⊥平面ABCD ;(2)线段MN 上是否存在点H ,使得二面角H AD M --的大小为4π?若存在,确定点H 的位置并加以证明.【解析】(1)证明:由平面几何的知识,易得2BD =, 2AD =,又22AB =,所以在ABD ∆中,满足222AD BD AB +=,所以ABD ∆为直角三角形,且BD AD ⊥. 因为四边形BDMN 为矩形,所以BD DM ⊥. 由BD AD ⊥, BD DM ⊥, DM AD D ⋂=, 可得 BD ADM ⊥平面. 又BD ABD ⊂平面,所以平面ADM ⊥平面ABCD .(2)存在点H ,使得二面角H AD M --为大小为,点H 为线段AB 的中点.事实上,以D 为原点, DA 为x 轴, DB 为y 轴,过D 作平面ABCD 的垂线为z 轴,建立空间直角坐标系D xyz -,则()()()0,0,0,2,0,0,0,2,0D A B , ()1,0,1M , 设(),,H x y z ,由MH MN DB λλ==,即()()1,,10,2,0x y z λ--=,得()1,2,1H λ. 设平面ADH 的一个法向量为()1111,,n x y z =,则,即,不妨设11y =,取()10,1,2n λ=-. 平面ADM 的一个法向量为()20,1,0n =. 二面角H AD M --为大小为于是.解得 或(舍去).所以当点H 为线段MN 的中点时,二面角H AD M --为大小为.11. 在三棱锥P ABC -中, AB AC =, D 为BC 的中点, PO ⊥平面ABC ,垂足O 落在线段AD 上,已知4,3,2,1BC PO AO OD ====. (1)证明: AP BC ⊥;(2)在线段AP 上是否存在一点M ,使得二面角A MC B --为直二面角?若存在,求出AM 的长;若不存在,请说明理由.法二:如图,以O 为原点,分别以过O 点与DB 共线同向的向量, OD , OP 方向上的单位向量为单位正交基建立空间直角坐标系O xyz -,则()()()()()0,0,0,0,2,0,2,1,0,2,1,0,0,0,3,O A B C P --()()()0,2,3,4,0,0,2,3,0AP BC AC ==-=-∴0AP BC ⋅= ∴AP BC ⊥ ∴AP BC ⊥(2)假设M 点存在,设AM AP λ=, (),,M x y z ,则(),2,AM x y z =+,∴()(),2,0,2,3x y z λ+=,∴0{22 3x y z λλ=+==,∴()0,22,3M λλ-, ∴()2,23,3BM λλ=--设平面MBC 的法向量为()1111,,n x y z =,平面APC 的法向量为()2222,,n x y z = 由110{n BM n BC ⋅=⋅=得()111122330{40x y z x λλ-+-+=-=,令11y =,可得1320,1,3n λλ-⎛⎫= ⎪⎝⎭, 由220{n AC n AP ⋅=⋅=得2222230{230x y y z -+=+=,令16y =,可得()29,6,4n =-,若二面角A MC B --为直二面角,则120n n ⋅=,得326403λλ--⋅=, 解得613λ=,∴613AM =故线段AP 上是否存在一点M ,满足题意, AM 的长为613. 12 【安徽省江南十校2019届高三第二次大联考】如图,已知四边形中,对角线,,为等边三角形.(1)求面积的最大值; (2)当的面积最大时,将四边形沿折起成直二面角,在上是否存在点使直线与平面所成的角满足:,若不存在,说明理由;若存在,指出点的位置. 【解析】(1)在中,记,,则由余弦定理:,(当且仅当时,上式取等号)此时,,的面积的最大值为.(2)由(1)知,,,设存在,在三棱锥中,取的中点,连接,易知.作于,由平面平面平面.故在平面上的投影为.与平面所成的角为,由.设,得,,故.故存在,且,满足题意.(2)另解:由(1),,设存在,则在三棱锥中,取的中点,连接,易求.以为坐标原点,为轴,为轴,为轴建立空间直角坐标系,平面的法向量为,设,得,得,又.由.故存在,且,满足题意.13. 【云南省昆明市2019届高三1月复习诊断测试】如图,在四棱锥中,底面是平行四边形,平面,,,是棱上的一点.(1)若平面,证明:;(2)在(1)的条件下,棱上是否存在点,使直线与平面所成角的大小为?若存在,求的值;若不存在,请说明理由.【解析】(1)连接交于,连接,则是平面与平面的交线.因为平面,平面,所以.又因为是中点,所以是的中点.所以.(2)由已知条件可知,所以,以为原点,为轴,为轴,为轴建立空间直角坐标系.。
立体几何经典大题(各个类型的典型题目)
1.如图,已知△ABC 是正三角形,EA ,CD 都垂直于平面ABC ,且EA =AB =2a ,DC =a ,F 是BE 的中点.(1)FD ∥平面ABC ;(2)AF ⊥平面EDB .2.已知线段PA ⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点。
(1)求证:MN //平面PAD ; (2)当∠PDA =45°时,求证:MN ⊥平面PCD ;F CBAEDA B C D EF 3.如图,在四面体ABCD 中,CB=CD,BD AD ⊥,点E ,F 分别是AB,BD 的中点.求证: (1)直线EF// 面ACD ; (2)平面⊥EFC 面BCD .4.在斜三棱柱A 1B 1C 1—ABC 中,底面是等腰三角形,AB =AC ,侧面BB 1C 1C ⊥底面ABC (1)若D 是BC 的中点,求证 AD ⊥CC 1;(2)过侧面BB 1C 1C 的对角线BC 1的平面交侧棱于M ,若AM =MA 1, 求证 截面MBC 1⊥侧面BB 1C 1C ;(3)AM =MA 1是截面MBC 1⊥平面BB 1C 1C 的充要条件吗?请你叙述判断理由]立体几何大题训练(3)C15. 如图,在正方体ABCD —A 1B 1C 1D 1中,M 、N 、G 分别是A 1A ,D 1C ,AD 的中点. 求证:(1)MN//平面ABCD ; (2)MN ⊥平面B 1BG .6. 如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 为棱AD 、AB 的中点. (1)求证:EF ∥平面CB 1D 1;(2)求证:平面CAA 1C 1⊥平面CB 1D 1.立体几何大题训练(4)7、如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB=4,BC=CD=2,AA 1=2,_ G_ M _ D_1_ C_1_ B_1_ A_1_ N_ D _ C_ B _ ABA 1FE、E1分别是棱AD、AA1的中点(1)设F是棱AB的中点,证明:直线EE1∥面FCC1;(2)证明:平面D1AC⊥面BB1C1C。
立体几何题型汇总及详细答案
(2)若 , , ,试求该几何体的体积V.
9.在长方体 中, ,
(1) 求证: ∥面 ;
(2)证明: ;
(3)一只蜜蜂在长方体 中飞行,求它飞入三棱锥 内的概率.
10. 如图甲,在平面四边形ABCD中,已知
, ,现将四边形ABCD沿BD折起,
使平面ABD 平面BDC(如图乙),设点E、F分别为棱
10.(2008江苏模拟)一个多面体的直观图和三视图如图所示,其中M、N分别是AB、AC的中点,G是DF上的一动点.
(1)求证:
(2)当FG=GD时,在棱AD上确定一点P,使得GP//平面FMC,并给出证明.
立体几何中的动点问题
1.(2011五校联考)已知四边形 为矩形, 、 分别是线段 、
的中点, 平面
17.如图6,已知正三棱柱ABC—A1B1C1中,D是BC的中点。
(1)求证:平面AB1D⊥平面B1BCC1;
(2)求证:A1C//平面AB1D。
18.如图,已知 平面 , 平面 ,△ 为等边三角形,
, 为 的中点.
(1)求证: 平面 ;
(2)求证:平面 平面 ;
19.如图:直三棱柱ABC-A1B1C1中,AC=BC=AA1=2,∠ACB=90.E为BB1的中点,D点在AB上且DE= .
39.(2008中山市)如图,四棱锥P—ABCD中, PA 平面ABCD,底面ABCD是直角梯形,AB⊥AD,CD⊥AD,CD=2AB,E为PC中点.
(I) 求证:平面PDC 平面PAD;
(II) 求证:BE//平面PAD.
40.(2008华南师大附中) 如图,已知棱柱ABCD—A1B1C1D1的底面是菱形,且AA1⊥面ABCD,∠DAB=60°,AD=AA1,F为棱AA1的中点,M为线段BD1的中点。
2018年高考数学立体几何试题汇编
2018 年全国一卷(文科):9.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N 在左视图上的对应点为 B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A.2 17 B.2 5 C.3 D.218.如图,在平行四边形ABCM 中,AB AC 3 ,∠ACM 90 ,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P为线段BC 上一点,且2BP DQ DA ,求三棱锥Q ABP 的体积.3全国1 卷理科理科第7 小题同文科第9 小题18. 如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点ABCD E, F AD ,BC DF △DFC C P 的位置,且PF BF .(1)证明:平面PEF 平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.全国 2 卷理科:9.在长方体ABCD A1B1C1D1 中,AB BC 1 ,AA1 3 ,则异面直线A D 与DB1 所成角的余弦值为1A.15B.56C.55D.2220.如图,在三棱锥P ABC 中,AB BC 2 2 ,PA PB PC AC 4 ,O 为AC 的中点.(1)证明:PO 平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C 为30 ,求PC 与平面PAM 所成角的正弦值.全国3 卷理科3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是19.(12 分)如图,边长为 2 的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点.ABCD CD M CD C D (1)证明:平面AMD⊥平面BMC ;(2)当三棱锥M ABC 体积最大时,求面MAB 与面MCD 所成二面角的正弦值.2018 年江苏理科:10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为▲.15.(本小题满分14 分)在平行六面体A BCD A B C D 中,AA1 AB, AB1 B1C1.1 1 1 1求证:(1)A B∥平面A B C ;1 1(2)ABB A A BC平面平面.1 1 12018 年北京:(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A)1 (B)2 (C)3 (D)4(16)(本小题14 分)如图,在三棱柱ABC - A1 B1 C1 中,C C 平面ABC,D,E,F,G 分别为1 AA ,AC,1AC ,1 1BB中点,AB=BC = 5 ,AC= AA =2.1(Ⅰ)求证:AC⊥平面BEF;(Ⅱ)求二面角B-CD -C1 的余弦值;(Ⅲ)证明:直线FG 与平面BCD 相交.2018 年浙江:3)是3.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cmA .2 B.4 C.6 D.819.(本题满分15 分)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C 均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB =BC =B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1 与平面ABB1 所成的角的正弦值.2018 年上海19.已知圆锥的顶点为P , 底面圆心为O, 半轻为 21. 设圆锥的母线长为 4 , 求圆锥的体积o2. 设PO 4, OA,OB 是底面半径, 且AOB 90 , M 为线段AB 的中点, 如图, 求异面直线PM 与OB 所成的角的大小。
立体几何难题解析附有答案详解
立体几何难题解析(附有答案详解)一、解答题1.如图1,直角梯形ABCD 中,//,90AB CD ABC ∠=︒,42==AB CD ,2=BC .//AE BC 交CD 于点E ,点G ,H 分别在线段DA ,DE 上,且//GH AE .将图1中的AED ∆沿AE 翻折,使平面ADE ⊥平面ABCE (如图2所示),连结BD 、CD ,AC 、BE .HEGDCBA图1图2ABCG EHD(Ⅰ)求证:平面⊥DAC 平面DEB ;(Ⅱ)当三棱锥GHE B -的体积最大时,求直线BG 与平面BCD 所成角的正弦值.2.如图,在直三棱柱111ABC A B C -中,点D E 、分别在边11BC B C 、上,1CD B E AC ==,60ACD ∠︒=.求证:(1)BE 平面1AC D ;(2)平面1ADC ⊥平面11BCC B .3.如图,在直角梯形CD AB 中,D//C A B ,DC 90∠A = ,AE ⊥平面CD AB ,F//CD E ,1C CD F D 12B ==AE =E =A =.(1)求证:C //E 平面F AB ;(2)在直线C B 上是否存在点M ,使二面角D E -M -A 的大小为6π?若存在,求出C M 的长;若不存在,说明理由.4.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 为直角梯形,90CDA BAD ∠=∠= ,1AD DC ==,2AB =,E 、F 分别为PD 、PB 的中点.(1)求证:平面PCB ⊥平面PAC ;(2)若平面CEF 与底面ABCD 所成的锐二面角为4π,求PA 的长.5.如图,两个相同的正四棱锥底面重合组成一个八面体,可放入棱长为2的正方体中,重合的底面与正方体的某一个面平行,各顶点均在正方体的表面上,将满足上述条件的八面体称为正方体的“正子体”.(1)若正子体的六个顶点分别是正方体各面的中心,求该八面体的表面积.(2)此正子体的表面积S 是否为定值?若是,求出该定值;若不是,求出表面积的取值范围.6.如图1,已知四边形ABCD 满足//AD BC ,12BA AD DC BC a ====,E 是BC 的中点,将BAE 沿着AE 翻折成1B AE △,形成四棱锥1B AECD -,F 为1B D 的中点,M 为AE 的中点,如图2所示.(1)求证:面1B DM ⊥面1B AE ;(2)当平面1B AE 与平面1B DC 所成角的余弦值为5时,求1B D 的长度;(3)当面1B AE ⊥面AECD 时,求平面1ADB 与平面1ECB 所成角的正弦值.7.在棱长均为2的正三棱柱111ABC A B C -中,E 为11B C 的中点.过AE 的截面与棱1BB ,11A C 分别交于点F ,G.(1)若F 为1BB 的中点,求三棱柱被截面AGEF 分成上下两部分的体积比12V V ;(2)若四棱雉1A AGEF -求截面AGEF 与底面ABC 所成二面角的正弦值;(3)设截面AFEG 的面积为0S ,AEG ∆面积为1S ,AEF 面积为2S ,当点F 在棱1BB 上变动时,求2012S S S的取值范围.8.如图,在四棱锥B ACDE -中,平面ABC ⊥平面ACDE ,ABC 是等边三角形,在直角梯形ACDE 中,//AE CD ,AE AC ⊥,1AE =,2AC CD ==,P 是棱BD 的中点.(1)求证:EP ⊥平面BCD ;(2)设点M 在线段AC 上,若平面PEM 与平面EAB求MP 的长.9.如图,ABCD是块矩形硬纸板,其中2AB AD ==E 为DC 中点,将它沿AE 折成直二面角D AE B --.(1)求证:AD ⊥平面BDE ;(2)如果()0AH HB λλ=> ,求二面角H AD E --的余弦值.10.如图1,在边长为2的正方形ABCD 中,P 为CD 中点,分别将△PAD,△PBC 沿PA,PB 所在直线折叠,使点C 与点D 重合于点O,如图2.在三棱锥P-OAB 中,E 为PB 中点.(Ⅰ)求证:PO⊥AB;(II)求直线BP 与平面POA 所成角的正弦值;(Ⅲ)求二面角P-AO-E 的大小.11.如图,在四棱锥P −ABCD 中,PA⊥平面Q 在PB 上,且满足PQ∶QB=1∶3,求直线CQ 与平面PAC 所成角的正弦值.12.已知四棱锥中平面,点在棱上,且,底面为直角梯形,分别是的中点.(1)求证://平面;(2)求截面与底面所成二面角的大小.13.如图,已知四边形ABCD由Rt ABC∆拼接而成,其中∆和Rt BCDBAC BCD∠=∠=︒,3090∆沿着BC折起.=,BC=ABC∠=︒,AB ACDBC(1)若AD=,求异面直线AB与CD所成角的余弦值;(2)当四面体ABCD的表面积的最大时,求二面角A BC D--的余弦值.14.如图,ABCD与ADEF是两个边长为1的正方形,它们所在的平面互相垂直.(1)求异面直线AE 与BD 所成角的大小;(2)在线段BD 上取点M ,在线段AE 上取点N ,且BMx BD=,EN y EA =,试用x ,y 来表示线段MN 的长度;(3)在(2)的条件下,求MN 长度的最小值,并判断当MN 最短时,MN 是否是异面直线AE 与BD 的公垂线段?15.(本题满分14分)如图所示,正方形ABCD 所在的平面与等腰ABE ∆所在的平面互相垂直,其中顶120BAE ∠= ,4AE AB ==,F 为线段AE 的中点.(1)若H 是线段BD 上的中点,求证://FH 平面CDE ;(2)若H 是线段BD 上的一个动点,设直线FH 与平面ABCD 所成角的大小为θ,求tan θ的最大值.16.如图所示,正方体ABCD A B C D -''''的棱长为1,E F 、分别是棱AA CC ''、的中点,过直线EF 的平面分别与棱BB DD ''、交于M N 、,设[]01BM x x =∈,,,求:(1)求EF 与面A B BA ''所成的角的大小;(2)求四棱锥C MENF '-的体积()V h x =,并讨论它的单调性;(3)若点P 是正方体棱上一点,试证:满足'2PA PC +=成立的点的个数为6.17.如图,在斜三棱柱111ABC A B C -中,AC BC =,D 为AB 的中点,1D 为11A B 的中点,平面111A B C ⊥平面11ABB A ,异面直线1BC 与1AB 互相垂直.(1)求证:平面1//A DC 平面11BD C ;(2)若1CC 与平面11ABB A 的距离为x ,116AC AB ==,三棱锥1AACD -的体积为y ,试写出y 关于x 的函数关系式;(3)在(2)的条件下,当1CC 与平面11ABB A 的距离为多少时,三棱锥1A ACD -的体积取得最大值?并求出最大值.18.如图,四棱锥P ABCD -的底面为菱形且∠ABC=120°,PA ⊥底面ABCD,AB=1,PA E 为PC 的中点.(1)求直线DE 与平面PAC 所成角的大小;(2)求二面角E-AD-C 平面角的正切值;(3)在线段PC 上是否存在一点M ,使PC ⊥平面MBD 成立.如果存在,求出MC 的长;如果不存在,请说明理由参考答案1.(Ⅰ)见解析;(Ⅱ)BG 与平面BCD所成角的正弦值为6.【解析】(Ⅰ)由已知CD AB //,︒=∠90ABC ,42==AB CD 及BC AE //交CD 于点E .得到四边形ABCE 是边长为2的正方形.BE AC ⊥,AE DE ⊥.再据平面ADE ABCE ⊥平面,平面ADE ABCE AE ⋂=平面,得到DE ABCE ⊥平面,DE AC ⊥,AC DBE ⊥平面,得证.(Ⅱ)由(Ⅰ)知DE ABCE ⊥平面,EC AE ⊥,以E 为原点,ED EC EA ,,的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.)0,0,2(A ,)0,2,2(B ,(0,2,0)C ,)2,0,0(D 设x EH =,则x DH GH -==2(20<<x )由CE AB //,得到DAE AB 面⊥,从而2)]2(21[3131⨯-=⋅=∆-x x AB S V GHE GHE B ]1)1([31)2(3122+--=+-=x x x ,根据1=x 时,三棱锥GHE B -体积最大,此时,H 为ED 中点.G 也是AD 的中点,求得)1,0,1(G ,)1,2,1(--=BG .设),,(z y x n =是面BCD 的法向量.由⎪⎩⎪⎨⎧=-=-⋅=⋅=-=-⋅=⋅022)2,2,0(),,(02)0,0,2(),,(z y z y x DC n x z y x BC n ,令1=y ,得)1,1,0(=n ,设BG 与面BCD 所成角为θ,由||sin ||||BG n BG n θ⋅=即得.试题解析:(Ⅰ)∵CD AB //,︒=∠90ABC ,42==AB CD 又BC AE //交CD 于点E .∴四边形ABCE 是边长为2的正方形∴BE AC ⊥,AE DE ⊥.又∵平面ADE ABCE ⊥平面平面ADE ABCE AE = 平面∴DE ABCE⊥平面∵AC ABCE ⊂平面,∴DE AC ⊥又E BE DE = ∴AC DBE ⊥平面∵AC DAC ⊂平面∴平面DAC DEB⊥平面(Ⅱ)由(Ⅰ)知DE ABCE ⊥平面,ECAE ⊥以E 为原点,ED EC EA ,,的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.则)0,0,2(A ,)0,2,2(B ,(0,2,0)C ,)2,0,0(D 设x EH =,则x DH GH -==2(20<<x )∵CE AB //,∴DAE AB 面⊥∴2)]2(21[3131⨯-=⋅=∆-x x AB S V GHE GHE B ]1)1([31)2(3122+--=+-=x x x ∵20<<x ,∴1=x 时,三棱锥GHE B -体积最大,此时,H 为ED 中点.∵AE GH //,∴G 也是AD 的中点,∴)1,0,1(G ,)1,2,1(--=BG .设),,(z y x n =是面BCD 的法向量.则(,,)(2,0,0)20(,,)(0,2,2)220n BC x y z x n DC x y z y z ⎧⋅=⋅-=-=⎪⎨⋅=⋅-=-=⎪⎩ 令1=y ,得)1,1,0(=n 设BG 与面BCD 所成角为θ则||sin 6||||BG n BG n θ⋅===∴BG 与平面BCD所成角的正弦值为6.2.(1)见详解;(2)见详解.【分析】(1)通过1BE C D 来证明BE 平面1AC D ;(2)通过AD ⊥平面11BCC B 来证明平面1ADC ⊥平面11BCC B .【详解】证明:(1)由三棱柱111ABC A B C -是直三棱柱,得11BC B C .因为点D E 、分别在边11BC B C 、上,1CD B E =,所以1BD C E =,1BD C E .所以四边形1BDC E 是平行四形,所以1BE C D 因为1C D ⊂平面1AC D ,BE ⊄平面1AC D 所以BE 平面1AC D .(2)由三棱柱111ABC A B C -是直三棱柱,得1CC ⊥平面ABC ,因为AD ⊂平面ABC ,所以1AD CC ⊥,在ACD ∆中,由12CD AC =,60ACD ∠︒=,得32AD AC ==,所以222AD CD AC +=,所以90ADC ∠︒=,即:AD BC ⊥,因为BC ⊂平面11BCC B ,1CC ⊂平面11BCC B ,1BC CC C = ,所以AD ⊥平面11BCC B ,因为AD ⊂平面1ADC ,所以平面1ADC ⊥平面11BCC B .3.(1)详见解析(2)C 3M =【解析】(1)证明线面平行,一般利用线面平行判定定理进行论证,即从平几出发,寻找线线平行:根据题意先将图形补全,再利用平行四边形得线线平行(2)研究二面角,一般方法为利用空间向量:先建立坐标系,利用坐标求二面角两个平面的法向量,因为AE ⊥平面D AM ,所以AE 为平面D AM 的一个法向量,而平面D EM 的一个法向量,则需联立方程组解出,再利用向量数量积求两法向量的夹角的余弦值,最后根据二面角与法向量夹角相等或互补关系,列等量关系确定点M ,同时根据向量的模求出C M 的长.解:(1)如图,作FG//EA ,G//F A E ,连接G E 交F A 于H ,连接BH ,G B ,F//CD E 且F CD E =,∴G//CD A ,即点G 在平面CD AB 内.由AE ⊥平面CD AB ,知G AE ⊥A ,∴四边形FG AE 为正方形,四边形CD G A 为平行四边形,∴H 为G E 的中点,B 为CG 的中点,∴//C BH E .BH ⊂平面F AB ,C E ⊄平面F AB ,∴C //E 平面F AB .(4分)(2)法一:如图,以A 为原点,G A 为x 轴,D A 为y 轴,AE 为z 轴,建立空间直角坐标系xyz A -.则()0,0,0A ,()0,0,1E ,()D 0,2,0,设()01,,0y M ,∴()D 0,2,1E =- ,()0D 1,2,0y M =-,设平面D EM 的一个法向量为(),,n x y z = ,则()0D 20D 20n y z n x y y ⎧⋅E =-=⎪⎨⋅M =+-=⎪⎩,令1y =,得2z =,02x y =-,∴()02,1,2n y =-.(10分)又 AE ⊥平面D AM ,∴()0,0,1AE =为平面D AM 的一个法向量,∴cos ,cos62n πAE ==,解得023y =±,∴在直线C B 上存在点M ,且33C 2233⎛M =-±= ⎝⎭.方法二:作D S A⊥M ,则SA ,由等面积法,得D 3M =,∴C 3M =.【分析】(1)本题首先可根据题意求出AC 、BC 的长度,然后根据222AC BC AB +=得出BC AC ⊥,再然后根据PA ⊥底面ABCD 得出PA BC ⊥,即可得出BC ⊥平面PAC ,最后根据BC ⊂平面PCB 即可证得平面PCB ⊥平面PAC ;(2)本题首先可结合图像构造空间直角坐标系,然后设PA a =,写出平面ABCD的法向量1n u r 以及平面CEF 的法向量2n u u r,最后根据平面CEF 与底面ABCD 所成的锐二面角为4π即可求出PA 的长.【详解】(1)因为1AD DC ==,2AB =,90CDA BAD ∠=∠=,所以AC BC ==因为222AC BC AB +=,所以BC AC ⊥,因为PA ⊥底面ABCD ,BC ⊂平面ABCD ,所以PA BC ⊥,因为AC PA A ⋂=,所以BC ⊥平面PAC ,因为BC ⊂平面PCB ,所以平面PCB ⊥平面PAC .(2)如图,以A 为坐标原点,分别以AD 、AB 、AP 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设(0)PA a a =>,则()0,2,0B =,()1,1,0C ,()1,0,0D ,()0,0,P a ,因为E 、F 分别为PD 、PB 的中点,所以1,0,22a E ⎛⎫ ⎪⎝⎭,0,1,2a F ⎛⎫ ⎪⎝⎭,1,1,22a CE ⎛⎫=-- ⎪⎝⎭ ,1,0,2a CF ⎛⎫=- ⎪⎝⎭ ,易知平面ABCD 的一个法向量1(0,0,1)n =,设平面CEF 的法向量为2(,,)n x y z =,则220,0,CE n CF n ⎧⋅=⎪⎨⋅=⎪⎩ ,即10,220,2az x y az x ⎧--+=⎪⎪⎨⎪-+=⎪⎩,不妨取4z =,则2x a =,y a =,即2(2,,4)a a n=,因为平面CEF 与底面ABCD 所成的锐二面角为4π,所以121212cos,nnn nnn⋅=⋅解得a=,即PA【点睛】利用空间向量解决立体几何问题,关键是依托图形建立空间直角坐标系,将相关向量用坐标表示,通过向量运算判断或证明空间元素的位置关系及探究空间角、空间距离问题.建立空间直角坐标系的三种方法:(1)以几何体中共顶点且互相垂直的三条棱所在的直线作为坐标轴建系;(2)利用线面垂直关系找到三条互相垂直的直线建系;(3)利用面面垂直关系找到三条互相垂直的直线建系.5.(1).【分析】(1)根据题意,正子体的所有棱都是正方体相邻两个面中心的连线,则正子体每个面都是正三角形,进而求出表面积;(2)设平面ABCD截正方体所得截面为A B C D'''',设(01)AA x x'=≤≤,进而算出ADE的面积,从而算出正子体的表面积即可判断.【详解】(1)依题意,正子体任一棱都是正方体相邻两个面中心的连线,所以正子体所有棱的长均相等.因为AB=所以242ABES=⨯,故该八面体的表面积8=.(2)正子体的表面积S不是定值.如图1,设平面ABCD截正方体所得截面为A B C D'''',且A B C D''''的中心为O,过点O作OG A B''⊥,垂足为G.设(01)AA x x '=≤≤,则1AG x =-,222222(1)1123AE DE AO OE x x x ==+=-++=-+,()2222(2)224AD x x x x =-+=-+.设AD 的中点为H ,如图2,则()22212122AD AH x x ⎛⎫==-+ ⎪⎝⎭,()22221222EH AE AH x x =-=-+,所以()()()2222211122422442ADE S AD EH x x x x ⎡⎤⎡⎤=⋅=-+-+⎢⎥⎣⎦⎣⎦ ()()2221322242x x x x =-+-+.因为01x ≤≤,所以2120x x -≤-≤,则()()2223132222442x x x x ≤-+-+≤,ADE S ≤≤ S ≤≤,所以此正子体的表面积S 的取值范围为.6.(1)证明见解析;(2)5a ;(3)45.【分析】(1)要证面1B DM ⊥面1B AE ,只需证AE ⊥面1B DM 即可;(2)根据已知条件可知,1MB D ∠即为面1B AE 与面1B DC 所成角的平面角,进而可得1B D 的长度;(3)建立适当的空间直角坐标系进行求解即可.【详解】(1)证明:因为12BA AD DC BC a ====,E 是BC 的中点,所以AD CE a ==,又因为//AD BC ,所以四边形AECD 为菱形,所以ABE △为正三角形,又因为M 为AE 的中点,所以1B M AE ⊥,DM AE ⊥,又因为1B M DM M ⋂=,所以AE ⊥面1B DM ,又因为AE ⊆面1B AE ,所以面1B DM ⊥面1B AE ,(2)由(1)知:DM AE ⊥,1B M AE ⊥,又因为//AE CD ,所以1B M CD ⊥,CD DM ⊥,所以CD ⊥面1B DM ,所以面1B DC ⊥面1B DM ,又因为面1B DM ⊥面1B AE ,所以1MB D ∠即为面1B AE 与面1B DC所成角的平面角,即1cos 5MB D ∠=,在1MB D △中,1B M =,DM =,由余弦定理得:22211111cos 25B M B D DM MB D B M B D +-∠=⋅,解得:15B D =.(3)因为面1B AE ⊥面AECD ,1B M AE ⊥,所以1B M ⊥面AECD ,所以以M 为坐标原点,以向量ME,MD ,1MB 的方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系,由题可得:,0,02aA ⎛⎫- ⎪⎝⎭,1B ⎛⎫⎪ ⎪⎝⎭,0,,02D ⎛⎫⎪ ⎪⎝⎭,,0,02aE ⎛⎫⎪⎝⎭,,,02C a ⎛⎫⎪ ⎪⎝⎭,则有:1,0,22a B A ⎛⎫=-- ⎪ ⎪⎝⎭,10,,22B D ⎛⎫=- ⎪ ⎪⎝⎭,1,0,22a B E ⎛⎫=- ⎪ ⎪⎝⎭ ,133,22B C a a a ⎛⎫= ⎪ ⎪⎝⎭,设平面1ADB 与平面1ECB 的法向量分别为()1111,,x n y z =,()2222,,n x y z = ,由111100n B A n B D ⎧⋅=⎪⎨⋅=⎪⎩,得11110220a x z y z ⎧--=⎪⎪=,令11z =,则1x =11y =,所以()1n =,由212100n B E n B C ⎧⋅=⎪⎨⋅=⎪⎩,得222220220ax z ax y z ⎧-=⎪⎪⎨⎪+=⎪⎩,令21z =,则1x =21y =-,所以)21,1n =-,设平面1ADB 与平面1ECB 所成角的平面角为θ,则:12123cos 5n n n n θ⋅==⋅ 所以4sin 5θ=.7.(1)121323V V =;(2)45;(3)94,2⎡⎤⎢⎣⎦.【分析】(1)连结EF ,并延长分别交1CC ,CB 于点M ,N ,连结AM 交11A C 于点G ,连结AN ,GE ,利用比例关系确定G 为11A C 靠近1C 的三等分点,然后先求出棱柱的体积,连结1A E ,1A F ,由11111A EFB G AA E F AA E V V V V ---=++和21V V V =-进行求解,即可得到答案;(2)求出点G 到平面1A AE 的距离,得到点G 为11A C 靠近1C 的四等分点,通过面面垂直的性质定理可得1AGA ∠即为截面AGEF 与底面ABC 所成的二面角,在三角形中利用边角关系求解即可;(3)设1GC m =,则[0m ∈,1],先求出12S S 的关系以及取值范围,然后将2012S S S 转化为1S ,2S 表示,求解取值范围即可.【详解】解:(1)连接EF ,并延长分别交1CC ,CB 延长线于点M ,N ,连接AM 交11A C 于点G ,连接AN ,GE .易得11113GC MC C E AC MC CN ===.故G 为11A C 靠近1C 的三等分点.11MC =,123GC =.下面求三棱柱被截面分成两部分的体积比.三棱柱111ABC A B C -的体积2224V =⨯=连接1A E ,1A F .由1//BB 平面1A AE 知,1F AA E V -为定值.11121323F AA E V -=⨯⨯=.11111A EFB G AA E F AA E V V V V ---=++1111211232323=⨯⨯⨯⨯⨯+=21V V V =-=121323V V =.(2)由111A AGEF G AA E F AA E V V V ---=+及1F AA E V -=1G AA E V -=又1113G AA E AA E V S h -=⨯⨯△,所以34h =.即点G 到1A E 的距离为34,G 为11A C 靠近1C 的四等分点.因为平面111//A B C 平面ABC ,所以截面AGEF 与平面ABC 所成角即为截面AGEF 与平面111A B C 所成角,在1GC E △中,112GC =,11C E =,故1EG GC ⊥.又因为平面11ACC A ⊥平面111A B C ,且平面11ACC A 平面11111A B C AC =,所以EG ⊥平面11ACC A .则1AGA ∠即为截面AGEF 与底面ABC 所成的二面角.在1Rt AGA △中,132A G =,12AA =,52AG =.故114sin 5AA A GA AG ∠==.因此,截面AGEF 与平面ABC 所成二面角的正弦值为45.(3)设1GC m =,则[]0,1m ∈,2MG mGA m=-.设MGE 的面积为S ,所以12S m S m=-.又因为21S S S =+,所以1222S mS -=.且1221,122S m S -⎡⎤=∈⎢⎥⎣⎦.令12S t S =则1,12t ⎡⎤∈⎢⎥⎣⎦故()21201212122212S S SS S S S S S S S +==++.令12S t S =则1,12t ⎡⎤∈⎢⎥⎣⎦,所以()12g t t t =++在1,12t ⎡⎤∈⎢⎥⎣⎦上单调递减,所以()()min 14g t g ==,()max 1922g t g ⎛⎫== ⎪⎝⎭,所以()94,2g t ⎡⎤∈⎢⎥⎣⎦,所以20121221924,2S S S S S S S ⎡⎤=++∈⎢⎥⎣⎦8.(1)证明见解析;(2)2M P =.【分析】(1)取BC 的中点Q ,连接PQ 、AQ ,由线面垂直判定定理可证AQ ⊥面BCD ,即可得证;(2)以Q 为原点建立坐标系,利用向量法建立关系可求出.【详解】(1)证明:如图,取BC 的中点Q ,连接PQ 、AQ ,因为ABC 是等边三角形,所以AQ BC ⊥,又平面ABC ⊥平面ACDE ,AE AC ⊥,平面ABC 平面ACDE =AC ,所以AE ⊥面ABC ,又AQ ⊂面ABC ,所以AE AQ ⊥,又//AE CD ,所以CD AQ ⊥,又CD BC C ⋂=,所以AQ ⊥面BCD ,因为2BP PD =,又P 是棱BD 的中点,所以112PQ DC ==,//PQ DC ,又//AE CD ,1AE =,所以//AE PQ ,AE PQ =,即四边形AEPQ 是一个平行四边形,所以//EP AQ ,所以EP ⊥平面BCD ;(2)由(1)得PQ ⊥平面ABC ,所以以点Q 为坐标原点,建立如图所示的空间直角坐标系,则()0,0,0Q ,)A ,()0,1,0B ,)E ,()0,0,1P ,设平面EAB 的法向量为()111,,m x y z =,由()111+00m AB y m m AE z ⎧⋅==⎪⇒=⎨⋅==⎪⎩,因为点M 在线段AC上,设其坐标为),0M t -,其中01t ≤≤,所以(),,1EM t =--,()EP = 设平面PEM 的法向量为()222,,n x y z =,由()222200,1,0n EM ty z n t n EP ⎧⋅=--=⎪⇒=-⎨⋅==⎪⎩,由题意,设平面PEM 与平面EAB 所成的锐二面角为θ,则1cos 2m n t m n θ⋅=⇒=-⋅或12t =,因为01t ≤≤,所以1,02M ⎫-⎪⎪⎝⎭,所以M P =.【点睛】向量法求二面角的步骤:建、设、求、算、取.1、建:建立空间直角坐标系.以三条互相垂直的垂线的交点为原点,没有三垂线时需做辅助线;建立右手直角坐标系,让尽量多的点落在坐标轴上。
立体几何专题复习(自己精心整理)
专题一证明平行垂直问题题型一证明平行关系(1)如图所示,在正方体ABCD-A1B1C1D1中,M,N分别是C1C,B1C1的中点.求证:MN∥平面A1BD。
(2)在正方体AC1中,M,N,E,F分别是A1B1,A1D1,B1C1,C1D1的中点,求证:平面AMN∥平面EFDB.思考题1(1)如图所示,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点,求证:平面EFG∥平面PBC.(2)如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=22,M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.求证:PQ∥平面BCD。
题型二证明垂直关系(微专题)微专题1:证明线线垂直(1)已知空间四边形OABC中,M为BC中点,N为AC中点,P为OA中点,Q为OB中点,若AB=OC。
求证:PM⊥QN.(2)(2019·山西太原检测)如图,直三棱柱ABC-A1B1C1中,AA1=AB=AC=1,E,F分别是CC1,BC的中点,AE⊥A1B1,D为棱A1B1上的点,求证:DF⊥AE。
微专题2:证明线面垂直(3)在正方体ABCD-A1B1C1D1中,求证:BD1⊥平面ACB1.(4)(2019·河南六市一模)在如图所示的几何体中,ABC-A1B1C1为三棱柱,且AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,∠ADC=60°.若AA1=AC,求证:AC1⊥平面A1B1CD。
微专题3:证明面面垂直(5)已知正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点,求证:平面DEA⊥平面A1FD1.(6)如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=错误!PD,求证:平面PQC⊥平面DCQ。
思考题2(1)(2019·北京东城区模拟)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥BP交BP于点F,求证:PB⊥平面EFD。
立体几何难题
学霸专题22:立体几何难题1.已知四面体ABCD 的三组对棱的长分别相等,依次为3,4,x ,则x 的取值范围是( )A .B .)C .)D .()4,72.在棱长均为ABCD 中,M 为AC 中点,E 为AB 中点,P 是DM 上的动点,Q 是平面ECD 上的动点,则AP PQ +的最小值是( )A .2 B C D .3.如图,一张纸的长、宽分别为,四条边的中点分别是A ,B ,C ,D ,现将其沿图中虚线折起,使得1M ,2M ,3M ,4M 四点重合为一点M ,从而得到一个多面体,关于该多面体有下述四个结论:①该多面体是六面体;②点M 到棱AC 的距离为2a ; ③BD ⊥平面AMC ;④该多面体外接球的直径为2a , 其中所有正确结论的序号是( )A .①④B .③④C .②③D .②③④4.已知正方体1111ABCD A B C D -的棱长为M ,N 为体对角线1BD 的三等分点,动点P 在三角形1ACB 内,且三角形PM N 的面积3PMN S =△则点P 的轨迹长度为( )A .9B .9C .3D .35.侧棱长为的正三棱锥V -ABC 的侧棱间的夹角为40°,过顶点A 作截面AEF ,截面AEF 的最小周长为( )A .B .6aC .4aD . a 6.已知一圆锥底面圆的直径是3,圆锥的母线长为3,在该圆锥内放置一个棱长为a 的正四面体(每条棱长都为a 的三棱锥),并且正四面体可以在该圆锥内任意转动,则a 的最大值为( )A .1 BC D .2 7.如图,已知ABC 的顶点C ∈平面α,点,A B 在平面α的同一侧,且|||2AC BC ==.若,AC BC 与平面α所成的角分别为5,124ππ,则ABC 面积的取值范围是( )A .[6,3]B .[3,3]C .[3,23]D .[6,23] 8.已知正方体1111ABCD A B C D -的棱长为1,P 是空间中任意一点,下列说法错误的个数是( )①若P 为棱1CC 中点,则异面直线AP 与CD 所成角的正切值为52;②若P 在线段1A B 上运动,则1AP PD +的最小值为622+;③若P 在半圆弧CD 上运动,当三棱锥P ABC -的体积最大时,三棱柱P ABC -外接球的表面积为2π;④若过点P 的平面α与正方形每条棱所成角相等,则α截此正方体所得截面面积的最大值为334A .1个B .2个C .3个D .4个9.如图,在正方体````ABCD A B C D -中,平面垂直于对角线AC ,且平面截得正方体的六个表面得到截面六边形,记此截面六边形的面积为S ,周长为l ,则( )A .S 为定值,l 不为定值B .S 不为定值,l 为定值C .S 与l 均为定值D .S 与l 均不为定值10.如图,三棱柱111ABC A B C -的所有棱长都为4,侧棱1AA ⊥底面ABC ,P ,Q ,R 分别在棱1AA ,AB ,11B C 上,2AP AQ ==,13B R =,过P ,Q ,R 三点的平面将三棱柱分为两部分,下列说法错误的是( )A .截面是五边形B .截面面积为C .截面将三棱柱体积平分D .截面与底面所成的锐二面角大小为π311.半径为R 的球的内部装有4个半径相同的小球,则小球半径r 的可能最大值为( )AB RC .2)R -D R12.长方体1111ABCD A B C D -中,P 是对角线1AC 上一点,Q 是底面ABCD 上一点,若AB =11BC AA ==,则1PB PQ +的最小值为( )A .32BCD .213.如图正方体1111ABCD A B C D -,棱长为1,P 为BC 中点,Q 为线段1CC 上的动点,过,,A P Q 的平面截该正方体所得的截面记为S ,则下列命题正确的是( )①当102CQ <<时,S 为四边形; ②当12CQ =时,S 为等腰梯形; ③当34CQ =时,S 与11C D 交点R 满足1113C R =; ④当314CQ <<时,S 为六边形;⑤当1CQ =时,S 的面积为2. A .①③④ B .②④⑤ C .①②④ D .①②③⑤ 14.如图,在四棱锥P ABCD -中,底面ABCD 为矩形,侧棱AP ⊥平面ABCD ,1AB =,AP =点M 在线段BC 上,且AM MD ⊥,则当PMD ∆的面积最小时,线段BC 的长度为( )A B .2 C .2 D .15.正三棱柱111ABC A B C -中,所有棱长均为2,点,E F 分别为棱111,BB AC 的中点,若过点,,A E F 作一截面,则截面的周长为( )A .B .C.D .16.过棱长为1的正方体的一条体对角线作截面,则截得正方体的截面面积的最小值是A .1 BC D .2 17.现有两个半径为2的小球和两个半径为3的小球两两相切,若第五个小球和它们都相切,则这个小球的半径是 ( ) A .611 B .311 C .411 D .511 18.已知球O 与棱长为4的正方形1111ABCD A B C D -的所有棱都相切,点M 是球O 上一点,点N 是1ACB 的外接圆上的一点,则线段MN 的取值范围是 ( )A .B .22⎤⎦C .⎡⎣D .19.如图,正方体的棱长为,以顶点A 为球心,2为半径作一个球,则图中球面与正方体的表面相交所得到的两段弧长之和等于( )A .B .C .D .20.设四面体的六条棱的长分别为1,1,1,1和a ,且长为a 的的棱异面,则a 的取值范围是( )A .B .C .D .21.如图所示,边长为1的正方形网络中粗线画出的是某几何体的三视图,则该几何体的体积为( )A .13 B .3 C .3 D .2322.如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某四棱锥的三视图,则该四棱锥各个侧面中,最大的侧面面积为( )A .2B .√5C .3D .423.某几何体的三视图均为如图所示的五个小正方形构成,则该几何体与其外接球的表面积之比为( )A .153πB .163πC .3011πD .3211π 24.在棱长为2的正方体1111ABCD A B C D -中,点M 是对角线1AC 上的点(点M 与A 、1C 不重合),则下列结论正确的个数为( )①存在点M ,使得平面1A DM ⊥平面1BC D ;②存在点M ,使得//DM 平面11CB D ;③若1A DM 的面积为S ,则3S ⎛∈ ⎝; ④若1S 、2S 分别是1A DM 在平面1111D C B A 与平面11BB C C 的正投影的面积,则存在点M ,使得12S S . A .1个 B .2个 C .3个 D .4个 25.某几何体的三视图如图所示,则该几何体的体积是( )A .133B .143C .5D .16326.如图,网格纸上小正方形边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为( )A .43 B .83 C .4 D .16327.某几何体的三视图如右图所示,则该几何体的体积为A B .3 C .3 D .628.如图,在一个正方体内放入两个半径不相等的球12,O O ,这两个球相外切,且球1O 与正方体共顶点A 的三个面相切,球2O 与正方体共顶点1B 的三个面相切,则两球在正方体的面11AAC C 上的正投影是( )A .B .C .D . 29.如图,在棱长为3的正方体1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足12DP PB +=,则直线1B P 与直线1AD 所成角的余弦值的取值范围为( )A .10,2⎡⎤⎢⎥⎣⎦B .10,3⎡⎤⎢⎥⎣⎦C .12⎡⎢⎣⎦D .12⎡⎢⎣⎦30.已知矩形,4,2,ABCD A AD E B ==为AB 中点,沿直线DE 将ADE 翻折成PDE △,直线PB 与平面BCDE 所成角最大时,线段PB 长是( )A .743B .543C .742D .54231.如图,正方体1111ABCD A B C D -的棱长为,,a E F 分别是棱1AA ,1CC 的中点,过点,E F 的平面分别与棱1BB ,1DD 交于点,G H ,设,[0,]BG x x a =∈.给出以下四个命题:①平面EGFH 与平面ABCD 所成角的最大值为45°; ②四边形EGFH 的面积的最小值为2a ; ③四棱锥1C EGFH-的体积为36a ;④点1B 到平面EGFH .其中命题正确的序号为( )A .②③④B .②③C .①②④D .③④32.如图,在矩形ABCD 中,2AB =,1BC =,E 、N 分别为边AB 、BC 的中点,沿DE 将ADE ∆折起,点A 折至1A 处(1A 与A 不重合),若M 、K 分别为线段1A D 、1AC 的中点,则在ADE ∆折起过程中()A .DE 可以与1AC 垂直B .不能同时做到//MN 平面1A BE 且//BK 平面1A DEC .当1MN AD ⊥时,MN ⊥平面1A DED .直线1AE 、BK 与平面BCDE 所成角分别为1θ、2θ,1θ、2θ能够同时取得最大值33.正方体中1111ABCD A B C D -,过1D 作直线l ,若直线l 与平面ABCD 中的直线所成角的最小值为6π,且直线l 与直线1BC 所成角为4π,则满足条件的直线l 的条数为( ) A .1B .2C .3D .434.如图,正四面体ABCD 的顶点C 在平面α内,且直线BC 与平面α所成的角为45°,顶点B 在平面α内的射影为O ,当顶点A 与点O 的距离最大时,直线CD 与平面α所成角的正弦值等于( )A .12B .15C .4D .512+ 35.如图,正方体1111ABCD A B C D -中, E 是棱BC 的中点,F 是侧面11BCC B 上的动点,且 1//A F 平面1AD E ,则 1A F 与平面11BCC B 所成角的正切值 t 构成的集合是( )A .B .{|2t t ≤<C .D .36.如图,在正四棱台1111ABCD A B C D -中,上底面边长为4,下底面边长为8,高为5,点,M N 分别在1111,A B D C 上,且111A M D N ==.过点,M N 的平面α与此四棱台的下底面会相交,则平面α与四棱台的面的交线所围成图形的面积的最大值为A .B .C .D .37.已知三棱锥的三视图如图所示,则该三棱锥内切球的半径为( )AB C D 38.如图,直三棱柱111ABC A B C -中,侧棱长为2,AC =1BC =,90ACB ∠=︒,点D 是11A B 的中点,F 是 侧面11AA B B (含边界)上的动点.要使1AB ⊥平面1C DF , 则线段1C F 的长的最大值为( )AB C D39.在棱长为4的正方体1111ABCD A B C D -中,M 是BC 中点,点P 是正方形11DCC D 内的动点(含边界),且满足APD MPC ∠=∠,则三棱锥P BCD -的体积最大值是( )A .649B .CD 40.如图,在正四棱柱1111ABCD A B C D -中, 13,4,AB AA P ==是侧面11BCC B 内的动点,且1,AP BD ⊥记AP 与平面1BCC B 所成的角为θ,则tan θ的最大值为A .43B .53C .2D .25941.如图所示,在长方体1111ABCD A B C D -中,11,2,AB BC AA P ===是1A B 上的一动点,则下列选项正确的是( )A .DP 的最小值为5B .DPC .1AP PC +D .1AP PC +的最小值为542.点M 为正方体1111ABCD A B C D -的内切球O 球面上的动点,点N 为11B C 上一点,112,NB NC DM BN =⊥,若球O 的体积为,则动点M 的轨迹的长度为__________.43.如图,在透明塑料制成的长方体容器内灌进一些水,将容器底面一边固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:①水的部分始终呈棱柱状; ②水面四边形的面积不改变;③棱始终与水面平行; ④当时,是定值.其中正确说法是 .44.如图,正方体1111ABCD A B C D -的棱长为a ,动点P 在对角线1BD 上,过点P 作垂直于1BD 的平面γ,记这样得到的截面多边形(含三角形)的周长为y ,设BP x =,则当]x ∈时,函数()y f x =的值域为______.45.如图正方体1AC 中,M 为AB 中点,N 为BC 中点,P 为线段1CC 上一动点(不含C ),过M N P 、、与正方体的截面为α,则下列说法正确的是___________.①当112CP CC ≤时,α为五边形 ②截面α为四边形时,α为等腰梯形 ③截面α过1D 时,113CP CC =④α为六边形时在底面投影面积1,S α为五边形时在底面投影面积2S ,则12S S >46.《九章算术》是西汉张苍等辑撰的一部数学巨著,被誉为人类数学史上的“算经之首”.书中“商功”一节记录了一种特殊的锥体,称为鳖臑(biēnào ).如图所示,三棱锥P ABC -中,PA ⊥平面ABC ,AB BC ⊥,则该三棱锥即为鳖臑.若2AB =且三棱锥外接球的体积为36π,则PB AC +长度的最大值是______.47.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面n 边形(其中*3,n n N >∈)的周长的范围是_________.48.以棱长为O 为球心,以(13)R R <<为半径的球面与正四面体的表面相交得到若干个圆(或圆弧)的总长度的取值范围是____________.49.正四面体A BCD -的各个点在平面M 同侧,各点到平面M 的距离分别为1,2,3,4,则正四面体的棱长为__________.50.水平桌面α上放有4个半径均为2R 的球,且相邻的球都相切(球心的连线构成正方形).在这4个球的上面放1个半径为R 的小球,它和下面的4个球恰好都相切,则小球的球心到水平桌面α的距离是________.51.将一块边长为6cm 的正方形纸片,先按如图1所示的阴影部分截去4个相等的等腰三角形,然后将剩余部分沿虚线折叠成一个正四棱锥模型(底面是正方形,从顶点向底面作垂线,垂足是底面中心的四棱锥),将该四棱锥如图2放置,若其正视图为正三角形,则其体积为_______3cm .52.平面α以任意角度截正方体,所截得的截面图形可以是_____(填上所有你认为正确的序号)①正三边形 ②正四边形 ③正五边形 ④正六边形 ⑤钝角三角形 ⑥等腰梯形 ⑦非矩形的平行四边形53.一个半径为1的小球在一个内壁棱长为的正四面体容器内可向各个方向自由运动,则该小球永远不可能接触到的容器内壁的面积是________.54.如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点A ,P ,Q 的平面截该正方体所得的截面记为S ,则下列命题正确的是__________(写出所有正确命题的编号). ①当102CQ时,S 为四边形; ②当12CQ时,S 为等腰梯形; ③当23CQ =时,S 与11C D 的交点R 满足112C R =;④存在点Q ,S 为六边形.55.在侧棱长为S ABC -中,40ASB BSC CSA ∠=∠=∠=︒,过A 作截面AEF ,交SB 于E ,交SC 于F ,则截面AEF 周长的最小值为__________.56.已知四边形ABCD 为矩形, 24AB AD ==,M 为AB 的中点,将ADM ∆沿DM 折起,得到四棱锥1A DMBC -,设1AC 的中点为N ,在翻折过程中,得到如下有三个命题:①//BN 平面1A DM ,且BN ;②三棱锥N DMC -的最大体积为3; ③在翻折过程中,存在某个位置,使得1DM AC ⊥.其中正确命题的序号为__________.(写出所有正确结论的序号) 57.已知四面体ABCD 的四个顶点均在球O 的表面上,AB 为球O 的直径,4,2AB AD BC ===,四面体ABCD 的体积最大值为____ 58.在三棱锥ABCD 中,已知AD ⊥BC ,AD=6,BC=2,AB+BD=AC+CD=7,则三棱锥ABCD 体积的最大值是_____. 59.现介绍祖暅原理求球体体积公式的做法:可构造一个底面半径和高都与球半径相等的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,用这样一个几何体与半球应用祖暅原理(图1),即可求得球的体积公式.请研究和理解球的体积公式求法的基础上,解答以下问题:已知椭圆的标准方程为221254y x += ,将此椭圆绕y 轴旋转一周后,得一橄榄状的几何体(图2),其体积等于______.60.棱长为2的正方体在平面α上的射影的面积最大值等于________________.61.如图,已知正四棱锥V ABCD -可绕着AB 任意旋转,CD ∥平面α.若2AB =,VA =则正四棱锥V ABCD -在面α内的投影面积的取值范围是_______.62.某几何体的三视图如图所示(小正方形的边长为1),则该几何体外接球的表面积__________.63.已知用“斜二测”画图法画一个水平放置的圆时,所得图形是椭圆,则该椭圆的离心率为_______64.如图,在四面体ABCD 中,E 、F 分别是AB 、CD 的中点,G 、H 分别是BC 和AD 上的动点,且EH 与GF 相交于点K .下列判断中:①直线BD 经过点K ;②EFC EFH S S =;③E 、F 、G 、H 四点共面,且该平面把四面体ABCD 的体积分为相等的两部分.所有正确的序号为__________.65.如图,AB 是平面α的斜线段,A 为斜足,点C 满足()0BC AC λλ=>,且在平面α内运动,则有以下几个命题:①当1λ=时,点C 的轨迹是抛物线;②当1λ=时,点C 的轨迹是一条直线;③当2λ=时,点C 的轨迹是圆;④当2λ=时,点C 的轨迹是椭圆;⑤当2λ=时,点C 的轨迹是双曲线.其中正确的命题是__________.(将所有正确的命题序号填到横线上)66.如图,已知正方体1111ABCD A B C D -的棱长为4,点E 、F 分别是线段11AB C D 、上的动点,点P 是上底面1111D C B A 内一动点,且满足点P 到点F的距离等于点P 到平面11ABB A 的距离,则当点P 运动时,PE 的最小值是__________.67.如图,在四面体ABCD 中,2AB CD ==,AC BD ==AD BC ==,E F 分别是,AD BC 的中点若用一个与直线EF 垂直,且与四面体的每个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积的最大值为______.68.将直角三角形ABC 沿斜边上的高AD 折成120的二面角,已知直角边AB AC =_________.(1) 平面ABC ⊥平面ACD(2)四面体D ABC -(3)二面角A BC D --3(4)BC 与平面ACD 所成角的正弦值是14 69.在三棱锥S ABC -中,ABC ∆是边长为3的等边三角形,SA SB ==S AB C --的大小为120°,则此三棱锥的外接球的表面积为__________.70.已知球O 的半径为1,A 、B 是球面上的两点,且AB =P 是球面上任意一点,则PA PB ⋅的取值范围是__________. 71.在棱长为6的正方体空盒内,有四个半径为r 的小球在盒底四角,分别与正方体底面处交于某一顶点的三个面相切,另有一个半径为R 的大球放在四个小球之上,与四个小球相切,并与正方体盒盖相切,无论怎样翻转盒子,五球相切不松动,则小球半径r 的最大值为________;大球半径R 的最小值为________.72.已知正方体1111ABCD A B C D -的棱长为1,动点P 在正方体的表面上运动,且与点A 的距离为3.动点P 的集合形成一条曲线,这条曲线在平面11 ABB A 上部分的形状是__________;此曲线的周长是_______.73.金石文化,时中国悠久文化之一.“金”是指“铜”,“石”是指“石头”,“金石文化”是指在铜器或石头上刻有文字的器件.在一千多年前,有一种凸多面体工艺品,是金石文化的代表作,此工艺品的三视图是三个全等的正八边形(如图),若一个三视图(即一个正八边形)的面积是2(8)dm +,则该工艺品共有___个面,表面积是_____74.三棱锥P ABC -中,顶点P 在底面ABC 的投影恰好是ABC 的内心,三个侧面的面积分别为12,16,20,且底面的面积为24,则该三棱锥P ABC -的体积是________;它的外接球的表面积是________.75.如果四面体的四条高交于一点,则该点称为四面体的垂心,该四面体称为垂心四面体.(1)证明:如果四面体的对棱互相垂直,则该四面体是垂心四面体;反之亦然.(2)给出下列四面体①正三棱锥;②三条侧棱两两垂直;③高在各面的射影过所在面的垂心;④对棱的平方和相等.其中是垂心四面体的序号为.。
立体几何大题重难点突破(1)
2 在线段 PC 上是否存在点 M , 使得平面 ABM 与平面 PBD 所
成的锐二面角为
π 3
?
若存在,求
CM CP
的值;若不存在,请说明理由.
答案:CCMP
=
2 3
P
A D
B C
重庆邓丁瑞数学
八、已知一个二面角大小
例 13:2018 全国 ΙΙ 如图,在三棱锥 P - ABC 中,AB = BC =
D
P
C
E
O
A
B
重庆邓丁瑞数学 例 6:如图,四边形 ABCD 为菱形,∠ABC = 120°,E,F 是平面 ABCD 内同一侧的两点,BE ⏊ 平面 ABCD,DF ⏊ 平面 ABCD, DF ⏊ 平面 ABCD,BE = 2DF,AE ⏊ EC. 证明:平面 AFC ⏊ 平面 AEC.
E
F
A B
2
若
AB =
2,AD
=
1,AA1
=
3,
求二面角
A
-
EF
-
A1
的正弦值.
答案:742
C
B
D
A
F
E
C1
B1
D1
A1
重庆邓丁瑞数学
例 4:在直三棱柱 ABC - A1B1C1 中,点 D 为 BB1 的中点,点 E 为 A1C1 的中点,点 F 为 B1C1 的三等分点 靠近 B1 . 证明:A,D,E,F 四点共面.
=
2 2
P
D
C
A
B
重庆邓丁瑞数学
九、体积问题
例
15:斜三棱柱 ABC
-
A1B1C1
中,底面
2018—2019学年第二学期备战高考数学二轮专题复习 立体几何(理文)
立体几何(理/文)一、单选题1.(2018•卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如右图。
圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A. B. C. D.2【解析】解:画出圆柱侧面展开图如图:,故答案为:B。
【答案】B2.(2018•卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为()A. B. C. D.【解析】解:如图截面,S=6 ,故答案为:A. 【答案】A3.(2018•卷Ⅰ)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A. B.12π C. D.【解析】解:设上下半径为r,则高为2r,∴。
则圆柱表面积为,故答案为:B.【答案】B4.(2018•卷Ⅰ)在长方体ABCD-A1B1C1D1中,AB=BC=2,AC1与平面BB1CC1所成的角为30°,则该长方体的体积为()A.8B.6C.8D.8【解析】解:AC1与面BB1C1C所成角平面角为,∴BC1=2 ∴CC1=2 .长方体体积为22 2 =8 ,故答案为:C.【答案】C5.(2018•浙江)已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则()A. θ1≤θ2≤θ3B. θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ1【解析】详解:设O为正方形ABCD的中心,M为AB中点,过E作BC的平行线EF,交CD于F,过O作ON垂直EF于N,连接SO,SN,OM,则SO垂直于底面ABCD,OM垂直于AB,因此从而因为,所以即,故答案为:D.【答案】D6.(2018•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A. 2B. 4C. 6D. 8【解析】详解:根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1,2,梯形的高为2,因此几何体的体积为故答案为:C.【答案】C二、填空题7.(2018•天津)已知正方体的棱长为1,除面外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥的体积为________【解析】解:∵四凌锥M-EFGH为所有棱长均为的正四棱锥.∴【答案】8.(2018•天津)如图,已知正方体ABCD–A1B1C1D1的棱长为1,则四棱柱A1–BB1D1D的体积为________.【解析】解:【答案】9.(2018•卷Ⅱ)已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30°,若的面积为8,则该圆锥的体积为________【解析】依题意可画图如图:S A=S B=S C=l∠SAC=30°,AC=∴l=4∴AC=4r=2 h=∴故答案为:【答案】设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则 |AB →|=x 1-x 22+y 1-y 22+z 1-z 22.考点一:空间几何体的结构例1:(2018•上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA₁是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA₁为底面矩形的一边,则这样的阳马的个数是()A.4B.8C.12D.16【解析】以AA1取矩形分别讨论,找到AA1所在矩形个数,并根据每个矩形可做4个阳马的基本位置关系,可得阳马个数为16个。
2018-2019年高考分类汇编:立体几何
2018-2019年高考立体几何真题1.(2018浙江)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值2.(2018浙江)已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则( ) A . θ1≤θ2≤θ3 B . θ3≤θ2≤θ1 C . θ1≤θ3≤θ2 D . θ2≤θ3≤θ13.(2018江苏)在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥.求证:(1) AB //平面11A B C ;(2) 平面11ABB A ⊥平面1A BC .4.(2018全国1)如图,四边形ABCD 为正方形,E 、F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成的角的正弦值.5.(2018全国2)如图,在三棱锥P-ABC中=4AB BC PA PB PC AC =====,O 为AC 中点。
(1)证明:PO ABC ⊥平面(2)若点M 在棱BC 上,且二面角M-AP-C 为030,C 1B 1A 1CBA(D 11B 1A 1DCBA求PC与平面PAM所成角的正弦值。
6.(2019全国1)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A-MA1-N 的正弦值.7.(2019全国2)如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE ⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.9.(2019浙江)如图,已知三棱柱ABC-A1B1C1,平面11A AC C⊥平面ABC,,,A1A=A1C=AC,E,F分别是AC,A1B1的中点.(1)证明:(2)求直线EF 与平面 A 1BC 所成角的余弦值10.(2019北京)如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =.(Ⅰ)求证:CD ⊥平面PAD ; (Ⅱ)求二面角F –AE –P 的余弦值;(Ⅲ)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.11.(2019天津)如图,AE ⊥平面A B C D ,,CF AE AD BC ∥∥,,1,2AD AB AB AD AE BC ⊥====.(Ⅰ)求证:BF ∥平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值;(Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长.。
北师大版2018-2019学年高中数学必修2全册习题含解析
北师大版高中数学必修二全册同步习题含解析目录第1章立体几何初步 1.1.1习题第1章立体几何初步 1.1.2习题第1章立体几何初步 1.2习题第1章立体几何初步 1.3.1习题第1章立体几何初步 1.3.2习题第1章立体几何初步 1.4.1习题第1章立体几何初步 1.4.2习题第1章立体几何初步 1.5.1.1习题第1章立体几何初步 1.5.1.2习题第1章立体几何初步 1.5.2习题第1章立体几何初步 1.6.1.1习题第1章立体几何初步 1.6.1.2习题第1章立体几何初步 1.6.2习题第1章立体几何初步 1.7.1习题第1章立体几何初步 1.7.2习题第1章立体几何初步 1.7.3习题第1章立体几何初步习题课习题第1章立体几何初步检测习题第2章解析几何初步 2.1.1习题第2章解析几何初步 2.1.2.1习题第2章解析几何初步 2.1.2.2习题第2章解析几何初步 2.1.3习题第2章解析几何初步 2.1.4习题第2章解析几何初步 2.1.5.1习题第2章解析几何初步 2.1.5.2习题第2章解析几何初步 2.2.1习题第2章解析几何初步 2.2.2习题第2章解析几何初步 2.2.3.1习题第2章解析几何初步 2.2.3.2习题第2章解析几何初步 2.3.1-2.3.2习题第2章解析几何初步 2.3.3习题第2章解析几何初步检测习题模块综合检测习题北师大版2018-2019学年高中数学必修2习题01第一章立体几何初步§1简单几何体1.1简单旋转体1.下列说法正确的是()A.圆锥的母线长等于底面圆直径B.圆柱的母线与轴垂直C.圆台的母线与轴平行D.球的直径必过球心答案:D2.下面左边的几何体是由选项中的哪个图形旋转得到的()解析:选项B中的图形旋转后为两个共底面的圆锥;选项C中的图形旋转后为一个圆柱与一个圆锥的组合体;选项D中的图形旋转后为两个圆锥与一个圆柱的组合体.答案:A3.用一个平面去截一个几何体,得到的截面一定是圆面,则这个几何体是()A.圆锥B.圆柱C.球D.圆台答案:C4.AB为圆柱下底面内任一不过圆心的弦,过AB和上底面圆心作圆柱的一截面,则这个截面是()A.三角形B.矩形C.梯形D.以上都不对解析:如图所示,由于圆柱的上下底面相互平行,故过AB和上底面圆心作圆柱的一截面与上底面的交线CD 必过上底面圆心,且CD∥AB,在圆柱的侧面上,连接A,C(或B,D)两点的线是曲线,不可能是直线.故这个截面是有两条边平行、另两边是曲线的曲边四边形.故选D.答案:D5.以钝角三角形的较短边所在的直线为轴,其他两边旋转一周所得的几何体是()A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个圆锥挖去一个同底的小圆锥解析:如图所示.旋转一周后其他两边形成的几何体为在圆锥AO的底部挖去一个同底的圆锥BO.答案:D6.点O1为圆锥高上靠近顶点的一个三等分点,过O1与底面平行的截面面积是底面面积的()A.13B.23C.14D.19解析:如图所示,由题意知SO1∶SO=1∶3,∴O1B∶OA=1∶3,∴S☉O1∶S☉O=1∶9,故选D.答案:D7.下列说法中错误的是.①过圆锥顶点的截面是等腰三角形;②过圆台上底面中心的截面是等腰梯形;③圆柱的轴截面是过母线的截面中面积最大的一个.答案:②8.若过轴的截面是直角三角形的圆锥的底面半径为r,则其轴截面的面积为.解析:由圆锥的结构特征,可知若过轴的截面为直角三角形,则为等腰直角三角形,其斜边上的高为r,所以S=12×2r2=r2.答案:r29.已知圆锥的母线与旋转轴所成的角为30°,母线的长为2,则其底面面积为.解析:如图所示,过圆锥的旋转轴作截面ABC,设圆锥的底面半径为r,底面圆心为O.∵△ABC为等腰三角形,∴△ABO为直角三角形.又∠BAO=30°,∴BO=r=1AB=2.∴底面圆O的面积为S=πr2=π2.答案:π10.把一个圆锥截成圆台,已知圆台的上、下底面的半径比是1∶4,母线长是10 cm,求这个圆锥的母线长.分析:处理有关旋转体的问题时,一般要作出其过轴的截面,在这个截面图形中去寻找各元素之间的关系.解:设圆锥的母线长为y cm,圆台上、下底面的半径分别为x cm,4x cm.作圆锥过轴的截面如图所示.在Rt△SOA中,O'A'∥OA,则SA'SA =O'A'OA,即y-10y =x4x,解得y=403.故圆锥的母线长为40cm.11.圆锥的底面半径为r,母线长是底面半径的3倍,在底面圆周上有一点A,求一个动点P自点A出发在侧面上绕一周回到点A的最短路程.解:沿圆锥的母线SA将侧面展开,如图所示.则线段AA1就是所求的最短路程.∵弧A1A的长为2πr,SA=3r,设弧A1A所对的圆心角为α,∴απ·3r=2πr,∴α=120°.∴AA1=SA·cos30°×2=3r×3×2=33r,即所求最短路程是33r.1.2简单多面体1.关于棱柱,下列说法正确的是()A.只有两个面平行B.所有的棱都相等C.所有的面都是平行四边形D.两底面平行,侧棱也互相平行解析:正方体可以有六个面平行,故选项A错误;长方体并不是所有的棱都相等,故选项B错误;三棱柱的底面是三角形,故选项C错误;由棱柱的概念知,两底面平行,侧棱也互相平行,故选项D正确.答案:D2.一个正棱锥的底面边长与侧棱长相等,则该棱锥一定不是()A.正三棱锥B.正四棱锥C.正五棱锥D.正六棱锥解析:由于正六边形的中心到顶点的距离与边长都相等,故正六棱锥的侧棱长必大于底面边长.答案:D3.棱台不一定具有的性质是()A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点解析:由棱台的定义可知,棱台是用平行于棱锥底面的平面去截棱锥而得到的,所以A,B,D选项都成立,只有选项C不一定成立.答案:C4.下列图形中,不是三棱柱的展开图的是()解析:根据三棱柱的结构特征知,A,B,D中的展开图都可还原为三棱柱,但是C中展开图还原后的几何体没有下底面,故不是三棱柱的展开图.答案:C5.下列说法正确的个数为()①存在斜四棱柱,其底面为正方形;②存在棱锥,其所有面均为直角三角形;③任意的圆锥都存在两条母线互相垂直;④矩形绕任意一条直线旋转都可以形成圆柱.A.1B.2C.3D.4解析:①存在斜四棱柱,其底面为正方形,正确.②正确.如图所示.③不正确,圆锥轴截面的顶角小于90°时就不存在.④不正确,矩形绕其对角线所在直线旋转,不能围成圆柱.故答案为B.答案:B6.用一个平行于棱锥底面的平面截这个棱锥,截得的棱台上、下底面的面积之比为1∶4,截去的棱锥的高是3 cm,则棱台的高是()A.12 cmB.9 cmC.6 cmD.3 cm解析:棱台的上、下底面的面积之比为1∶4,则截去的棱锥的高与原棱锥的高的比为1∶2,棱台的高是3cm.答案:D7.有下列四个结论:①各侧面是全等的等腰三角形的四棱锥是正四棱锥;②底面是正多边形的棱锥是正棱锥;③三棱锥的所有面可能都是直角三角形;④四棱锥中侧面最多有四个直角三角形.其中正确的有(填正确结论的序号).答案:③④8.如图所示,将装有水的长方体水槽固定底面一边后将水槽倾斜一个小角度,则倾斜后水槽中的水形成的几何体的形状是.解析:如图所示,假设以AB边固定进行倾斜,则几何体BB2C2C-AA2D2D一定为棱柱.答案:棱柱9.在侧棱长为23的正三棱锥P−ABC中,∠APB=40°,E,F分别是PB,PC上的点,过点A,E,F作截面AEF,则△AEF周长的最小值是.解析:将正三棱锥的三个侧面展开,如图所示.则当E,F为AA1与PB,PC的交点时,△AEF的周长最小,最小值为2AP·cos30°=2×23×3=6.答案:610.把右图中的三棱台ABC-A1B1C1分成三个三棱锥.解:如图所示,分别连接A1B,A1C,BC1,则将三棱台分成了三个三棱锥,即三棱锥A-A1BC,B1-A1BC1,C-A1BC1.(本题答案不唯一)11.试从正方体ABCD-A1B1C1D1的八个顶点中任取若干,连接后构成以下空间几何体,并且用适当的符号表示出来.(1)只有一个面是等边三角形的三棱锥.(2)四个面都是等边三角形的三棱锥.(3)三棱柱.解:(1)如图所示,三棱锥A1-AB1D1(答案不唯一).(2)如图所示,三棱锥B1-ACD1(答案不唯一).(3)如图所示,三棱柱A1B1D1-ABD(答案不唯一).★12.如图所示,在正三棱柱ABC-A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上的一点,且由点P沿棱柱侧面经过棱CC1到M的最短路线的长为设这条最短路线与CC1的交点为N.求:(1)该三棱柱的侧面展开图的对角线的长;(2)求PC和NC的长.解:(1)正三棱柱ABC-A1B1C1的侧面展开图是一个长为9,宽为4的矩形,其对角线长为92+42=97.(2)如图所示,将侧面BB1C1C绕棱CC1旋转120°使其与侧面AA1C1C在同一平面上,则点P旋转到点P1的位置,连接MP1交CC1于点N,则MP1的长等于由点P沿棱柱侧面经过棱CC1到点M的最短路线的长.设PC=x,则P1C=x.在Rt△MAP1中,由勾股定理,得(3+x)2+22=29,解得x=2,所以PC=P1C=2,又NCMA =P1CP1A=25,所以NC=45.§2直观图1.关于用斜二测画法所得的直观图,以下说法正确的是()A.等腰三角形的直观图仍是等腰三角形B.正方形的直观图为平行四边形C.梯形的直观图不是梯形D.正三角形的直观图一定为等腰三角形解析:根据斜二测画法的规则知,正方形的直观图为平行四边形.答案:B2.水平放置的△ABC,有一条边在水平线上,它的斜二测直观图是正三角形A'B'C',则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形解析:根据斜二测画法的规则,可知△ABC中有一个角是钝角,所以△ABC是钝角三角形.答案:C3.如图所示为一平面图形的直观图,则此平面图形可能是()答案:C4.对于一条边在x轴上的三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的()A.2倍B.2C.2D.1解析:由于平行于y轴的线段其平行性不变,长度变为原来的一半,又直观图中∠x'O'y'=45°,设原三角形的面积为S,其直观图的面积为S',则S'=1×2S=2S.答案:B5.一个水平放置的三角形的直观图是等腰直角三角形A'B'O',如图所示,若O'B'=1,那么原△ABO的面积是()A.12B.22C.2D.22解析:由斜二测画法,可知原三角形为直角三角形,且∠AOB=90°,OB=1,OA=2O'A'=22,∴S△AOB=12×1×22= 2.故选C.答案:C6.已知△A'B'C'为水平放置的△ABC的直观图,如图所示,则在△ABC的三边及中线AD中,最长的线段是()A.ABB.ADC.BCD.AC解析:由斜二测画法,可知原图形为直角三角形.AC为斜边,D为BC的中点,故AC>AD,故最长线段为AC.答案:D7.一个平面图形的斜二测直观图是腰长为2的等腰直角三角形,如图,则其平面图形的面积为.答案:48.已知正三角形ABC的边长为a,则水平放置的△ABC的直观图△A'B'C'的面积为.解析:图①、图②分别为实际图形和直观图.由图可知A'B'=AB=a,O'C'=1OC=3a,在图②中作C'D'⊥A'B'于点D',则C'D'=2O′C′=6a.所以S△A'B'C'=12A′B′·C'D'=12×a×68a=616a2.答案:616a29.在等腰梯形ABCD中,上底边CD=1,AD=CB=2,下底边AB=3,按平行于上、下底边取x轴,则直观图A′B′C′D′的面积为.解析:等腰梯形ABCD的高为1,且直观图A'B'C'D'仍为梯形,其高为1sin45°=2,故面积为1×(1+3)×2= 2.答案:2210.画出如图所示放置的直角三角形的直观图.解:画法:(1)画x'轴和y'轴,使∠x'O'y'=45°(如图②所示);(2)在原图中作BD⊥x轴,垂足为D(如图①所示);(3)在x'轴上截取O'A'=OA,O'D'=OD,在y'轴上截取O'C'=12OC,过D'作B'D'∥y'轴,使D'B'=1BD;(4)连线成图(擦去辅助线)(如图③所示).11.用斜二测画法得到一水平放置的Rt△ABC,AC=1,∠ABC=30°,如图所示,试求原三角形的面积.解:如图所示,作AD⊥BC于点D,令x'轴与y'轴的交点为E,则DE=AD,在Rt△ABC中,由∠ABC=30°,AC=1,可知BC=2,AB= 3.由AD⊥BC,AD=DE,可知AD=32,AE=62,由斜二测画法可知,原三角形A'B'C'中,B'C'=BC=2,A'E'=2AE=6,且A'E'⊥B'C',所以S△A'B'C'=1B′C′·A'E'=1×2×6= 6.★12.画水平放置的圆锥的直观图.分析用斜二测画法画水平放置的圆锥的直观图,由于圆锥底面可以看作是水平放置的,因此,只需先画轴,再画底面和高即可.解:(1)画轴,如图所示,画x轴、y轴、z轴,使∠xOy=45°,∠xOz=90°;(2)画圆锥的底面,画出底面圆的直观图,与x轴交于A,B两点;(3)画圆锥的顶点,在Oz上截取点P,使得PO等于圆锥的高;(4)连线成图,连接P A,PB,并加以整理(擦去辅助线,将被遮挡的部分改为虚线),得圆锥的直观图.§3三视图3.1简单组合体的三视图1.用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()解析:截去的平面在俯视图中看不到,故用虚线,因此选B.答案:B2.下列各几何体的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④解析:①中正方体的三视图均相同;②中圆锥的主视图和左视图相同;③中三棱台的三视图各不相同;④中正四棱锥的主视图和左视图相同.答案:D3.某几何体的主视图和左视图均如图所示,则该几何体的俯视图不可能是()解析:D选项的主视图为,故不可能是D选项.答案:D4.如图所示,若△A'B'C'为正三角形,与底面不平行,且CC'>BB'>AA',则多面体的主视图为()解析:因为△A'B'C'为正三角形,面A'B'BA向前,所以主视图不可能是A,B,C三个选项,只能是D.答案:D5.“牟台方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图所示,图中四边形是为体现其直观性所作的辅助线.当其主视图和左视图完全相同时,它的俯视图可能是()答案:B6.如图所示,画出四面体AB1CD1三视图中的主视图,若以面AA1D1D为投影面,则得到的主视图为()解析:显然AB1,AC,B1D1,CD1分别投影得到主视图的外轮廓,B1C为可见实线,AD1为不可见虚线.故A正确.答案:A★7.如图所示,在正方体ABCD-A1B1C1D1中,E为棱BB1的中点,若用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的左视图为()设过点A,E,C1的截面与棱DD1相交于点F,且F是棱DD1的中点,该正方体截去上半部分后,剩余几何体如图所示,则它的左视图应选C.答案:C8.如图所示,图①②③是图④表示的几何体的三视图,其中图①是,图②是,图③是(填写视图名称).解析:由三视图可知,①为主视图,②为左视图,③为俯视图.答案:主视图左视图俯视图9.如图(a)所示,在正方体ABCD-A1B1C1D1中,P为正方体的中心,则△P AC在该正方体各个面上的射影可能是图(b)中的(把可能的序号都填上).图(a)图(b)解析:要考虑△P AC在该正方体各个面上的射影,在上、下两个面上的射影是①,在前后左右四个面上的射影是④.答案:①④10.(1)画出如图①所示组合体的三视图;(2)图②所示的是一个零件的直观图,试画出这个几何体的三视图.图①图②解(1)该组合体是由一个四棱柱和一个圆锥拼接而成,其三视图如图所示.(2)作出三视图如图所示.★11.如图是根据某一种型号的滚筒洗衣机抽象出来的几何体,数据如图所示(单位:cm).试画出它的三视图.解这个几何体是由一个长方体挖去一个圆柱体构成的,三视图如图所示.3.2由三视图还原成实物图1.若一个几何体的主视图和左视图都是等腰梯形,俯视图是两个同心圆,则这个几何体可能是()A.圆柱B.圆台C.圆锥D.棱台答案:B2.某几何体的三视图如图所示,则该几何体是()A.棱台B.棱柱C.棱锥D.以上均不对解析:由相似比,可知几何体的侧棱相交于一点.答案:A3.如图所示是底面为正方形、一条侧棱垂直于底面的四棱锥的三视图,则该四棱锥的直观图是下列各图中的()解析:由俯视图排除B,C选项;由主视图、左视图可排除A选项,故选D.答案:D4.某几何体的三视图如图所示,则这个几何体是()A.三棱锥B.四棱锥C.四棱台D.三棱台解析:因为主视图和左视图为三角形,可知几何体为锥体.又俯视图为四边形,所以该几何体为四棱锥,故选B.答案:B5.如图所示,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱解析:由题知,该几何体的三视图为一个三角形,两个四边形,经分析可知该几何体为三棱柱,故选B.答案:B6.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.4解析:由三视图画出直观图如图所示,判断这个几何体是底面边长为6,8,10的直角三角形,高为12的躺下的直=2,这就是做成的最大球的半径.三棱柱,直角三角形的内切圆的半径为r=6+8-102答案:B7.把边长为2的正方形ABCD沿对角线BD折起,连接AC,得到三棱锥C-ABD,其主视图、俯视图均为全等的等腰直角三角形(如图所示),其左视图的面积为.解析:如图所示,根据两个视图可以推知折起后∠CEA=90°,其侧视图是一个两直角边长为1的等腰直角三.角形,所以左视图的面积为12答案:18.用n个体积为1的正方体搭成一个几何体,其主视图、左视图都是如图所示的图形,则n的最大值与最小值之差是.解析:由主视图、左视图可知,正方体个数最少时,底层有3个小正方体,上面有2个,共5个;个数最多时,底层有9个小正方体,上面有2个,共11个.故n的最大值与最小值之差是6.答案:69.下图是一个几何体的三视图,想象该几何体的几何结构特征,画出该几何体的形状.解由于俯视图中有一个圆和一个四边形,则该几何体是由旋转体和多面体构成的组合体,结合左视图和主视图,可知该几何体是由上面一个圆柱、下面一个四棱柱拼接成的组合体.该几何体的形状如图所示.★10.已知几何体的三视图如图所示,用斜二测画法画出它的直观图.解由三视图可知其几何体是底面边长为2,高为3的正六棱锥,其直观图如图所示.§4空间图形的基本关系与公理第1课时平面性质1.两个平面重合的条件是()A.有四个公共点B.有无数个公共点C.有一条公共直线D.有两条相交公共直线解析:由两条相交直线确定一个平面知D选项正确.答案:D2.与“直线l上两点A,B在平面α内”含义不同的是()A.l⫋αB.直线l在平面α内C.直线l上只有这两个点在平面α内D.直线l上所有的点都在平面α内答案:C3.有下列说法:①梯形的四个顶点在同一平面内;②三条平行直线必共面;③有三个公共点的两个平面必重合.其中正确的个数是()A.0B.1C.2D.3解析:梯形是一个平面图形,所以其四个顶点在同一个平面内,故①正确;两条平行直线确定1个平面,三条平行直线确定1个或3个平面,故②错误;三个公共点可以同在两个相交平面的交线上,故③错误.答案:B4.设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列四个命题,其中正确的命题是()①P∈a,P∈α⇒a⫋α;②a∩b=P,b⫋β⇒a⫋β;③a∥b,a⫋α,P∈b,P∈α⇒b⫋α;④α∩β=b,P∈α,P∈β⇒P∈b.A.①②B.②③C.①④D.③④答案:D5.三棱台ABC-A'B'C'的一条侧棱AA'所在直线与平面BCC'B'之间的关系是()A.相交B.平行C.直线在平面内D.平行或直线在平面内解析:棱台就是棱锥被一个平行于底面的平面截去一个棱锥得到的,所以延长棱台各侧棱可以恢复成棱锥的形状,由此可知三棱台的一条侧棱所在直线与其对面所在的平面相交.答案:A6.如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,且C∉l,则平面ABC与平面β的交线是()A.直线ACB.直线BCC.直线ABD.直线CD解析:由题意知,平面ABC与平面β有公共点C,根据公理3,这两平面必定相交,有且只有一条经过C的交线,由于两点确定一条直线,所以只要再找到两平面的另一个公共点即可.显然点D在直线AB上,从而它在平面ABC内,而点D又在直线l上,所以它又在平面β内,所以点D也是平面ABC与平面β的公共点.因此平面ABC 与平面β的交线是直线CD.答案:D7.已知点P在平面α外,点A,B,C在平面α内且不共线,A',B',C'分别在P A,PB,PC上,若A'B',B'C',A'C'与平面α分别交于D,E,F三点,则D,E,F三点()A.成钝角三角形B.成锐角三角形C.成直角三角形D.在一条直线上解析:本题考查三点关系,根据两平面公共点在其交线上,知D,E,F三点共线,故选D.答案:D8.在正方体ABCD-A1B1C1D1中,P,Q,R分别是AB,AD,B1C1的中点,那么,正方体的过P,Q,R的截面图形是()A.三角形B.四边形C.五边形D.六边形解析:如图所示,作GR∥PQ交C1D1于G,延长QP与CB延长线交于M,连接MR交BB1于E,连接PE.同理延长PQ交CD延长线于点N,连接NG交DD1于F,连接QF.所以截面PQFGRE为六边形.故选D.答案:D9.四条线段首尾相接得到一个四边形,当且仅当它的两条对角线时,能得到一个平面图形.解析:由公理1,2知当两条对角线相交时为平面图形,当两条对角线不共面时为空间四边形.答案:相交10.一个平面内不共线的三点到另一个平面的距离相等且不为零,则这两个平面的位置关系是.解析:当三点在另一个平面同侧时,这两个平面平行,当三点不在另一个平面同侧时,这两个平面相交.答案:平行或相交11.过已知直线a外的一点P,与直线a上的四个点A,B,C,D分别画四条直线,求证:这四条直线在同一平面内.证明:如图所示,因为点P在直线a外,所以过直线a及点P可作一平面α,因为A,B,C,D均在a上,所以A,B,C,D均在α内,所以直线P A,PB,PC,PD上各有两个点在α内,由公理2可知,直线P A,PB,PC,PD均在平面α内,故这四条直线在同一平面内.12.如图所示,正方体ABCD-A1B1C1D1的棱长为a,M,N分别是AA1,D1C1的中点,过D,M,N三点的平面与正方体下底面相交于直线l.试画出直线l的位置,并说明理由.解:如图所示,连接DM并延长,交D1A1的延长线于点P',连接NP',则直线NP'即为所求直线l.理由如下: 如图所示,连接DN,∵P'=DM∩D1A1,且DM⫋平面DMN,D1A1⫋平面A1B1C1D1,∴P'∈平面DMN∩平面A1B1C1D1.又N∈平面DMN∩平面A1B1C1D1,∴由公理3知,直线NP'为平面DMN与平面A1B1C1D1的交线.第2课时 异面直线所成的角1.若直线a ∥b ,b ∩c=A ,则直线a 与c 的位置关系是( ) A.异面 B.相交 C.平行 D.异面或相交答案:D2.在三棱锥A-BCD 中,E ,F ,G 分别是AB ,AC ,BD 的中点,如果AD 与BC 所成的角是60°,那么∠FEG 为( ) A .60° B .30°C .120°D .60°或120° 解析:异面直线AD 与BC 所成的角可能等于∠FEG ,也可能等于∠FEG 的补角.答案:D3.若空间中四条两两不同的直线l 1,l 2,l 3,l 4满足l 1⊥l 2,l 2∥l 3,l 3⊥l 4,则下列结论一定正确的是( ) A .l 1⊥l 4 B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定解析:因为l 2∥l 3,所以l 1⊥l 3,l 3⊥l 4.实质上就是l 1与l 4同垂直于一条直线,所以l 1⊥l 4,l 1∥l 4,l 1与l 4既不垂直也不平行都有可能成立,故l 1与l 4的位置关系不确定. 答案:D4.如图,在某个正方体的表面展开图中,l 1,l 2是两条面对角线,则在正方体中,l 1与l 2( ) A.互相平行 B.异面且互相垂直 C.异面且夹角为60° D.相交且夹角为60°解析:将表面展开图还原成正方体如图所示,则B ,C 两点重合.故l 1与l 2相交,连接AD ,△ABD 为正三角形,所以l 1与l 2的夹角为60°. 答案:D5.在三棱柱ABC-A 1B 1C 1中,若点E ,F 分别在AB ,AC 上,且AE=13AB ,AF=13AC ,则下列说法正确的是( ) A.EF ⊥BB 1 B.EF ∥A 1B 1 C.EF ∥B 1C 1D.EF ∥AA 1解析:∵AE=1AB ,AF=1AC ,∴EF ∥BC.又ABC-A1B1C1为棱柱,∴BC∥B1C1.∴EF∥B1C1.答案:C6.下列说法正确的是()A.空间中没有交点的两条直线是平行直线B.一条直线和两条平行直线中的一条相交,则它和另一条也相交C.空间四条直线a,b,c,d,如果a∥b,c∥d,且a∥d,那么b∥cD.分别在两个平面内的直线是平行直线解析:A,B选项中,两直线可能异面,D选项中两直线可能相交,也可能异面.答案:C7.如图是一个正方体的表面展开图,如果将它还原为正方体,那么AB,CD,EF,GH这四条线段所在直线是异面直线的有对.解析:将图形还原成正方体,观察有AB与CD,AB与GH,EF与GH共3对异面直线.答案:38.如图,已知长方体ABCD-A1B1C1D1中,A1A=AB,E,F分别是BD1和AD中点,则异面直线CD1,EF所成的角的大小为.答案:90°9.如图所示,在四棱锥C-ABED中,底面ABED是梯形.若AB∥DE,DE=2AB,且F是CD的中点,P是CE的中点,则AF与BP的位置关系是.解析:连接PF,∵P,F分别是CE,CD的中点,∴PF∥ED,且PF=1ED.2又AB∥ED,且DE=2AB,∴AB∥PF,且AB=PF,即四边形ABPF是平行四边形,∴BP∥AF.答案:平行10.如图所示,在三棱锥P-ABC中,D,E是PC上不重合的两点,F,H分别是P A,PB上的点,且与点P不重合.求证:EF和DH是异面直线.证明∵P A∩PC=P,∴P A,PC确定一个平面α.∵E∈PC,F∈P A,∴E∈α,F∈α,∴EF⫋α.∵D∈PC,∴D∈α,且D∉EF.又PB∩α=P,H∈PB,且点H与点P不重合,∴H∉α,DH∩α=D,且DH与EF不相交,于是直线EF和DH是异面直线.★11.如图所示,在空间四边形ABCD中,两条对边AB=CD=3,E,F分别是另外两条对边AD,BC上的点,且AE=BF=1,EF=5,求AB和CD所成的角的大小.解如图所示,过点E作EO∥AB,交BD于点O,连接OF,所以AEED =BOOD,所以BOOD=BFFC,所以OF∥CD.所以∠EOF或其补角是AB和CD所成的角.在△EOF中,OE=2AB=2,OF=1CD=1,又EF=5,所以EF2=OE2+OF2,所以∠EOF=90°.即异面直线AB和CD所成的角为90°.★12.在梯形ABCD中(如图①所示),AB∥CD,E,F分别为BC和AD的中点,将平面CDFE沿EF翻折起来,使CD到C'D'的位置,G,H分别为AD'和BC'的中点,得到如图②所示的立体图形.求证:四边形EFGH为平行四边形.。
2018高考立体几何复习题型归纳.docx
v1.0可编辑可修改2018 高考复习立体几何最新题型总结(文数)题型一:空间几何体的结构、三视图、旋转体、斜二测法了解柱、锥、台、球体及其简单组合体的结构特征,并能运用这些特征描述现实生活中的简单物体的结构。
能画出简单空间几何体的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图。
能用平行投影与中心投影两种方法画出简单空间几何体的三视图与直观图。
了解空间几何体的不同表示形式。
会画某建筑物的视图与直观图。
例 1. 将正三棱柱截去三个角(如图 1 所示A,B,C分别是△GHI三边的中点)得到几何体如图2,则该几何体按图 2 所示方向的侧视图(或称左视图)为()HAGABB BB C B C B侧视IE D E D E EE EF FA.B.C.D.图 1图 2例 2. 由大小相同的正方体木块堆成的几何体的三视图如图所示,则该几何体中正方体木块的个数是.正视图左视图俯视图例 3. 已知一个正四面体的俯视图如图所示,其中四边形ABCD是边长为 2 的正方形,则该正四面体的内切球的表面积为() A. 6π B.54π C. 12π D. 48π例4:如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积为 ()A.12B.16C.32D.8例5:四棱锥P ABCD的顶点 P 在底面 ABCD中的投影恰好是 A,其三视图如图,则四棱锥 P ABCD 的表面积为( )主左视a视图图A.3a2B.2a 2C.3a22a 2D.2a22a2D C俯a视图A Ba例6:三棱柱 ABC— A1B1C1的体积为 V, P、 Q 分别为 AA1、 CC1上的点,且满足 AP=C1Q,则四棱锥 B— APQC的体积是 ___________例 7:如图,斜三棱柱 ABC—A1B1C1中,底面是边长为 a 的正三角形,侧棱长为 b ,侧棱 AA’与底面相邻两边AB、AC都成 450角,求此三棱柱的侧面积和体积.例 8:如图是一个几何体的三视图,根据图中的数据(单位:cm),可知几何体的体积是_________2222211主视图侧视图俯视图真题:【 2017 年北京卷第 6 题】某三棱锥的三视图如图所示,则该三棱锥的体积为( A) 60( B) 30(C) 20( D) 10【 2017 年山东卷第13 题】由一个长方体和两个1圆柱构成的几何体的三视图如右图, 则该几何体的体积4为.【 2017 年浙江卷第 3 题】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A.+1B.+3C.3+1D.3+32222【 2017年新课标 II第 6 题】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为1、( 2016 年山东高考)一个由半球和四棱锥组成的几何体,其三视图如图所示 . 则该几何体的体积为( A)1+2π( B)1+2π (C)1+2π (D)1+ 2 π3333366【答案】 D3、( 2016年天津高考)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()【答案】 B4、( 2016 年全国 I 卷高考)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径. 若28π该几何体的体积是3,则它的表面积是(A)17π( B)18π( C)20π( D)28π【答案】 A6、( 2016 年全国 II卷高考)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()( A)20π(B)24π(C)28π(D)32π【答案】 C7、( 2016 年全国 III卷高考)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( A)1836 5(B)5418 5(C)90(D)81【答案】 B1、( 2016 年北京高考)某四棱柱的三视图如图所示,则该四棱柱的体积为___________.【答案】3 . 22、( 2016 年四川高考)已知某三菱锥的三视图如图所示,则该三菱锥的体积。
2019届广东数学高考复习专题汇编:立体几何(2018-2019年试题,含解析)
立体几何若,,l m n 是互不相同的空间直线,αβ,是不重合的平面,则下列 A.若l n αβαβ⊂⊂,,∥,则l n ∥ B.若l αβα⊥⊂,,则l β⊥ C.若l n m n ⊥⊥,,则l m ∥D.若l l αβ⊥,∥,则αβ⊥(2007年高考广东卷第17小题)已知某几何体的俯视图是如图5所示的矩形,正视图(或称主视图)是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形.(1)求该几何体的体积V ; (2)求该几何体的侧面积S .17解: 由已知可得该几何体是一个底面边长为8和6的矩形,高为4,顶点在底面的射影是矩形中心的四棱锥V-ABCD ;(1) ()1864643V =⨯⨯⨯= (2) 该四棱锥有两个侧面VAD 、VBC 是全等的等腰三角形,且BC 边上的高为1h ==另两个侧面VAB 、VCD 也是全等的等腰三角形,AB 边上的高为25h == 因此112(685)4022S =⨯⨯⨯⨯=+(2008年高考广东卷第7小题)将正三棱柱截去三个角(如图1所示A 、B 、 C分别是△GHI 三边的中点)得到几何体如 图2,则该几何体按图2所示方向的侧视图 (或称左视图)为(A. )(2008年高考广东卷第18小题)如图所示,四棱锥P -ABCD 的底面ABCD 是半径为R 的圆的内接四边形,其中BD 是圆的直径,∠ABD=60°,∠BDC=45°,△ADP ∽△BAD 。
(1)求线段PD 的长;(2)若R ,求三棱锥P-ABC 的体积。
【解析】(1)BD 是圆的直径 ∴ 90BAD ∠= 又 ~ADP BAD ,图5∴AD DP BA AD =,()()22234sin 60431sin 3022R BD AD DP R BA BD R ⨯====⨯ ; (2 ) 在Rt BCD 中,cos452CD BD ==2222229211PD CD R R R PC +=+== ∴PD CD ⊥ 又90PDA ∠= ∴PD ⊥底面ABCD()21132121sin 604522222224ABC S AB BC R R R ⎛=+=+= ⎝⎭三棱锥P ABC -的体积为23113131333P ABC ABCV S PD R R R -++=== . (2009年高考广东卷第6小题)给定下列四个①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真A .①和②B .②和③C .③和④D .②和④ 【答案】D【解析】①错, ②正确, ③错, ④正确.故选D (2009年高考广东卷第17小题)某高速公路收费站入口处的安全标识墩如图4所示,墩的上半部分是正四棱锥P -EFGH,下半部分是长方体ABCD -EFGH.图5、图6分别是该标识墩的正(主)视图和俯视图. (1)请画出该安全标识墩的侧(左)视图; (2)求该安全标识墩的体积 (3)证明:直线BD ⊥平面PEG[:【解析】(1)侧视图同正视图,如下图所示.(2)该安全标识墩的体积为:P EFGH ABCD EFGH V V V --== 221406040203200032000640003=⨯⨯+⨯=+= ()2cm(3)如图,连结EG,HF 及 BD ,EG 与HF 相交于O,连结PO.由正四棱锥的性质可知,PO ⊥平面EFGH , PO HF ∴⊥[:数理化] 又EG HF ⊥ HF ∴⊥平面PEG 又BD HF P BD ∴⊥平面PEG ; (2019年高考广东卷第9小题)如图1, ABC ∆为正三角形,'''////AA BB CC ,''''32CC BB CC AB ⊥===平面ABC 且3AA ,则多面体'''ABC A B C -的正视图(也称主视图)是wDDddD[:(2019年高考广东卷第18小题)如图4,弧AEC 是半径为a 的半圆,AC 为直径,点E 为弧AC 的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足FC ⊥平面BED ,FB .(1)证明:EB FD ⊥; (2)求点B 到平面FED 的距离.18.法一:(1)证明:∵点B 和点C 为线段AD 的三等分点, ∴点B 为圆的圆心 又∵E 是弧AC 的中点,AC 为直径,∴EB BC ⊥即EB BD ⊥ ∵⊥FC 平面BDE ,⊂EB 平面BDE , ∴EB FC ⊥ 又⊂BD 平面FBD ,⊂FC 平面FBD 且C FC BD = ∴⊥EB 平面FBD 又∵⊂FD 平面FBD , ∴FD EB ⊥ (2)解:设点B 到平面FED 的距离(即三棱锥B FED -的高)为h .∵⊥FC 平面BDE , ∴FC 是三棱锥F-BDE 的高,且三角形FBC 为直角三角形由已知可得a BC =,又a FB 5=∴a a a FC 2)5(22=-=在BDE Rt ∆中,a BE a BD ==,2,故2221a a a S BDE =⨯⨯=∆,∴323223131a a a FC S V BDE BDE F =⨯⨯=⋅=∆-,又∵⊥EB 平面FBD ,故三角形EFB 和三角形BDE 为直角三角形, ∴a DE a EF 5,6==,在FCD Rt ∆中,a FD 5=,∴=∆FED S 2221a , ∵FED B BDE F V V --=即323222131a h a =⋅⋅, 故a h 21214=, 即点B 到平面FED 的距离为a h 21214=.(2019年高考广东卷第7小题)正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱的对角线条数共有DA .20 B.15 C.12 D. 10 (2019年高考广东卷第9小题)如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为C//A.D. 2(2019年高考广东卷第18小题)下图所示的几何体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一般沿切面向右水平平移得到的。
专题19 立体几何中体积与表面积—三年高考(2018-2019)数学(文)真题分项版解析(解析版)
1.【2019课标3,文9】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为() A .πB .3π4C .π2D .π4【答案】B【解析】如果,画出圆柱的轴截面,11,2AC AB ==,所以32r BC ==,那么圆柱的体积是2233124V r h πππ⎛⎫==⨯⨯= ⎪ ⎪,故选B.【考点】圆柱体积【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.2.【2019高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) (A )(B )(C )(D )【答案】【考点定位】1.旋转体的几何特征;2.几何体的体积.【名师点睛】本题考查了旋转体的几何特征及几何体的体积计算,解答本题的关键,是理解所得旋转体的几何特征,确定得到计算体积所需要的几何量.本题属于基础题,在考查旋转体的几何特征及几何体的体积计算方法的同时,考查了考生的空间想象能力及运算能力,是“无图考图”的一道好题.3.【2019高考新课标1文数】平面过正文体ABCD—A 1B1C1D1的顶点A,,,则m,n所成角的正弦值为()(A)(B)(C)(D)【答案】A【解析】考点:平面的截面问题,面面平行的性质定理,异面直线所成的角.【名师点睛】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.4.【2019天津,文11】已知一个正方形的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.【答案】9 2【解析】试题分析:设正方体边长为a ,则226183a a =⇒=,外接球直径为34427923,πππ3382R V R ====⨯=. 【考点】球与几何体的组合体【名师点睛】正方体与其外接球的组合体比较简单,因为正方体的中心就是外接球的球心,对于其他几何体的外接球,再找球心时,注意球心到各个顶点的距离相等,1.若是柱体,球心肯定在中截面上,再找底面外接圆的圆心,过圆心做底面的垂线与中截面的交点就是球心,2.若是锥体,可以先找底面外接圆的圆心,过圆心做底面的垂线,再做一条侧棱的中垂线,两条直线的交点就是球心,构造平面几何关系求半径,3.若是三棱锥,三条侧棱两两垂直时,也可补成长方体,长方体的外接球就是此三棱锥的外接球,这样做题比较简单. 5.【2019新课标2文10】已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为()A.B.C.D.【答案】C 【解析】【考点定位】本题主要考查球与几何体的切接问题及空间想象能力. 【名师点睛】由于三棱锥底面AOB 面积为定值,故高最大时体积最大,本题就是利用此结论求球的半径,然后再求出球的表面积,由于球与几何体的切接问题能很好的考查空间想象能力,使得这类问题一直是高考中的热点及难点,提醒考生要加强此方面的训练. 6. [2019高考新课标Ⅲ文数]在封闭的直三棱柱内有一个体积为的球,若,,,,则的最大值是()(A )4π (B )(C )6π (D )【答案】B 【解析】试题分析:要使球的体积最大,必须球的半径最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值,此时球的体积为,故选B.考点:1、三棱柱的内切球;2、球的体积.【思维拓展】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解.7.【2019全国2,文7】正三棱柱的底面边长为,侧棱长为,为中点,则三棱锥的体积为( )(A)(B)(C)(D)【答案】C【考点定位】棱柱、棱锥、棱台的体积【名师点睛】本题考查几何体的体积的求法,属于中档题,求解几何体的底面面积与高是解题的关键,对于三棱锥的体积还可利用换底法与补形法进行处理.8.【2019高考新课标1,文6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有()(A)斛(B)斛(C)斛(D)斛【答案】B【解析】设圆锥底面半径为r ,则,所以,所以米堆的体积为=,故堆放的米约为÷1.62≈22,故选B.【考点定位】圆锥的性质与圆锥的体积公式【名师点睛】本题以《九章算术》中的问题为材料,试题背景新颖,解答本题的关键应想到米堆是圆锥,底面周长是两个底面半径与圆的和,根据题中的条件列出关于底面半径的方程,解出底面半径,是基础题.9.【2019课标1,文16】已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________. 【答案】36π因为平面SAC ⊥平面SBC 所以OA ⊥平面SBC 设OA r =3111123323A SBC SBC V S OA r r r r -∆=⨯⨯=⨯⨯⨯⨯=所以31933r r =⇒=,所以球的表面积为2436r ππ=【考点】三棱锥外接球【名师点睛】本题考查了球与几何体的问题,是高考中的重点问题,要有一定的空间想象能力,这样才能找准关系,得到结果,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.10.【2019课标II ,文15】长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 【答案】14π.【解析】球的直径是长方体的体对角线,所以224π14π.R S R ==== 【考点】球的表面积【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.11.【2019江苏,6】如图,在圆柱12,O O 内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱12,O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是 ▲ .【答案】32【考点】圆柱体积【名师点睛】空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.12【2019高考四川,文14】在三棱住ABC -A 1B 1C 1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B 1C 1的中点,则三棱锥P -A 1MN 的体积是______. 【答案】【解析】由题意,三棱柱是底面为直角边长为1的 等腰直角三角形,高为1的直三棱柱,底面积为如图,因为AA 1∥PN ,故AA 1∥面PMN , 故三棱锥P -A 1MN 与三棱锥P -AMN 体积相等, 三棱锥P -AMN 的底面积是三棱锥底面积的,高为1故三棱锥P -A 1MN 的体积为【考点定位】本题主要考查空间几何体的三视图、直观图及空间线面关系、三棱柱与三棱锥的体积等基础知识,考查空间想象能力、图形分割与转换的能力,考查基本运算能力. 【名师点睛】解决本题,首先要正确画出三棱柱的直观图,包括各个点的对应字母所在位置,结合条件,三棱锥P -A 1MN 的体积可以直接计算,但转换为三棱锥P -AMN 的体积,使得计算更为简便,基本上可以根据条件直接得出结论.属于中档偏难题.13.【2019高考浙江文数】某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2,体积是______cm 3.【答案】80;40.PC 1B 1A 1NCMBA考点:三视图.【方法点睛】解决由三视图求空间几何体的表面积与体积问题,一般是先根据三视图确定该几何体的结构特征,再准确利用几何体的表面积与体积公式计算该几何体的表面积与体积. 14.【2019课标II ,文18】如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,01,90.2AB BC AD BAD ABC ==∠=∠= (1)证明:直线//BC 平面PAD ;(2)若△PAD 面积为,求四棱锥P ABCD -的体积.【答案】(Ⅰ)见解析(Ⅱ)4√3 【解析】试题解析:(1)在平面ABCD 内,因为∠BAD=∠ABC=90°,所以BC ∥AD.又BC PAD ⊄平面,AD PAD ⊂平面,故BC ∥平面PAD.(2)取AD 的中点M ,连结PM ,CM ,由12AB BC AD ==及BC ∥AD ,∠ABC=90°得四边形ABCM 为正方形,则CM ⊥AD.因为侧面PAD为等边三角形且垂直于底面ABCD,平面PAD∩平面ABCD=AD,所以PM ⊥AD,PM⊥底面ABCD,因为CM ABCD底面,所以PM⊥CM.设BC=x,则CM=x,CD=√2x,PM=√3x,PC=PD=2x.取CD的中点N,连结PN,则PN⊥CD,所以PN=√142x因为△PCD的面积为2√7,所以1 2×√2x×√142x=2√7,解得x=-2(舍去),x=2,于是AB=BC=2,AD=4,PM=2√3,所以四棱锥P-ABCD的体积V=13×2(2+4)2×2√3=4√3.【考点】线面平行判定定理,面面垂直性质定理,锥体体积【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.15.【2019课标3,文19】如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.【答案】(1)详见解析;(2)1试题解析:(1)证明:取AC 中点O ,连OB OD , ∵CD AD =,O 为AC 中点, ∴OD AC ⊥,又∵ABC ∆是等边三角形, ∴OB AC ⊥,又∵O OD OB = ,∴⊥AC 平面OBD ,⊂BD 平面OBD , ∴BD AC ⊥.(2)设2==CD AD ,∴22=AC ,22==CD AB , 又∵BD AB =,∴22=BD , ∴≅∆ABD CBD ∆,∴EC AE =, 又∵EC AE ⊥,22=AC , ∴2==EC AE , 在ABD ∆中,设xDE =,根据余弦定理DE AD AE DE AD BD AD AB BD AD ADB ⋅-+=⋅-+=∠22cos 222222 x x ⨯⨯-+=⨯⨯-+=22222222)22()22(2222222解得2=x ,∴点E 是BD 的中点,则ACE B ACE D V V --=,∴1=--ACEB ACED VV . 【考点】线面垂直判定及性质定理,锥体体积【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.16.【2019北京,文18】如图,在三棱锥P –ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(Ⅰ)求证:PA ⊥BD ;(Ⅱ)求证:平面BDE ⊥平面PAC ;(Ⅲ)当PA ∥平面BD E 时,求三棱锥E –BCD 的体积. 【答案】详见解析 【解析】试题解析:证明:(I )因为PA AB ⊥,PA BC ⊥,所以PA ⊥平面ABC , 又因为BD ⊂平面ABC ,所以PA BD ⊥.(II )因为AB BC =,D 为AC 中点,所以BD AC ⊥, 由(I )知,PA BD ⊥,所以BD ⊥平面PAC , 所以平面BDE ⊥平面PAC .(III )因为PA ∥平面BDE ,平面PAC 平面BDE DE =,所以PA DE ∥.因为D 为AC 的中点,所以112DE PA ==,BD DC ==由(I )知,PA ⊥平面PAC ,所以DE ⊥平面PAC .所以三棱锥E BCD -的体积1163V BD DC DE =⋅⋅=. 【考点】1.线面垂直的判断和性质;2,。
2019高考数学常见难题大盘点:立体几何
2021高考数学常见难题大盘点:立体几何1.如图, 在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AA 1=4,点D 是AB 旳中点, 〔I 〕求证:AC ⊥BC 1; 〔II 〕求证:AC 1//平面CDB 1;解析:〔1〕证明线线垂直方法有两类:一是通过三垂线定理或逆定理证明,二是通过线面垂直来证明线线垂直;〔2〕证明线面平行也有两类:一是通过线线平行得到线面平行,二是通过面面平行得到线面平行.答案:解法一:〔I 〕直三棱柱ABC -A 1B 1C 1,底面三边长AC =3,BC =4AB =5,∴AC ⊥BC ,且BC 1在平面ABC 旳射影为BC ,∴AC ⊥BC 1; 〔II 〕设CB 1与C 1B 旳交点为E ,连结DE ,∵ D 是AB 旳中点,E 是BC 1旳中点,∴ DE//AC 1,∵ DE ⊂平面C D B 1,AC 1⊄平面C D B 1,∴AC 1//平面C D B 1;解法二:∵直三棱柱ABC -A 1B 1C 1底面三边长AC =3,BC =4,AB =5,∴AC 、BC 、C 1C 两两垂直,如图,以C 为坐标原点,直线CA 、CB 、C 1C 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,那么C 〔0,0,0〕,A 〔3,0,0〕,C 1〔0,0,4〕,B 〔0,4,0〕,B 1〔0,4,4〕,D 〔23,2,0〕〔1〕∵AC =〔-3,0,0〕,1BC =〔0,-4,0〕,∴AC •1BC =0,∴AC ⊥BC 1. 〔2〕设CB 1与C 1B 旳交战为E ,那么E 〔0,2,2〕.∵DE =〔-23,0,2〕,1AC =〔-3,0,4〕,∴121AC DE =,∴DE ∥AC 1. 点评:2.平行问题旳转化:面面平行线面平行线线平行;主要依据是有关旳定义及判定定理和性质定理.2.如下列图,四棱锥P —ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,转化转化AB C ABCExyzPA=AD=CD=2AB=2,M 为PC 旳中点·(1)求证:BM∥平面PAD ;(2)在侧面PAD 找一点N ,使MN ⊥平面PBD ; (3)求直线PC 与平面PBD 所成角旳正弦·解析:本小题考察直线与平面平行,直线与平面垂直, 二面角等根底知识,考察空间想象能力和推理论证能力.答案:〔1〕 M 是PC 旳中点,取PD 旳中点E ,那么MECD 21,又AB CD 21 ∴四边形ABME 为平行四边形 ∴BM ∥EA ,PAD BM 平面⊄PAD EA 平面⊂ ∴BM ∥PAD 平面〔4分〕〔2〕以A 为原点,以AB 、AD 、AP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,如图,那么())0,0,1B ,()0,2,2C ,()0,2,0D ,()2,0,0P ,()1,1,1M ,()1,1,0E在平面PAD 设()z y N ,,0,()1,1,1---=→--z y MN ,()2,0,1-=→--PB ,()0,2,1-=→--DB 由→--→--⊥PBMN ∴221=+--=⋅→--→--z PB MN ∴21=z 由→--→--⊥DBMN ∴221=+--=⋅→--→--y DB MN ∴21=y ∴⎪⎭⎫ ⎝⎛21,21,0N ∴N 是AE 旳中点,此时BD MN P 平面⊥〔8分〕〔3〕设直线PC 与平面PBD 所成旳角为θ()2,2,2-=→--PC ,⎪⎭⎫ ⎝⎛---=→--21,21,1MN ,设→--→--MNPC ,为α3226322cos -=⋅-=⋅=→--→--→--→--MN PC MN PC α32cos sin =-=αθ故直线PC 与平面PBD 所成角旳正弦为32 〔12分〕解法二:〔1〕 M 是PC 旳中点,取PD 旳中点E ,那么MECD 21,又AB CD 21 ∴四边形ABME 为平行四边形 ∴BM ∥EA ,PAD BM 平面⊄PAD EA 平面⊂ ∴BM ∥PAD 平面〔4分〕〔2〕由〔1〕知ABME 为平行四边形ABCD PA 底面⊥∴AB PA ⊥,又AD AB ⊥∴PAD AB 平面⊥ 同理PAD CD 平面⊥,PAD 平面⊂AE∴AE AB ⊥∴ABME 为矩形 CD ∥ME ,PD CD ⊥,又AE PD ⊥ ∴PD ⊥ME ∴ABME 平面⊥PD PBD PD 平面⊂∴ABME PBD 平面平面⊥ 作EB ⊥MF 故PBD 平面⊥MFMF 交AE 于N ,在矩形ABME ,1==ME AB ,2=AE ∴32=MF ,22=NE N 为AE 旳中点∴当点N 为AE 旳中点时,BD MN P 平面⊥〔8分〕〔3〕由〔2〕知MF 为点M 到平面PBD 旳距离,MPF ∠为直线PC 与平面PBD 所成旳角,设为θ,32sin ==MP MF θ∴直线PC 与平面PBD 所成旳角旳正弦值为32点评:〔1〕证明线面平行只需证明直线与平面一条直线平行即可;〔2〕求斜线与平面所成旳角只需在斜线上找一点作平面旳垂线,斜线和射影所成旳角,即为所求角;〔3〕证明线面垂直只需证此直线与平面两条相交直线垂直变可.这些从证法中都能十清楚显地表达出来3.如图,四棱锥P ABCD -中,侧面PDC 是边长为2旳正三角形,且与底面垂直,底面ABCD 是60ADC ∠=旳菱形,M 为PB 旳中点.(Ⅰ)求PA 与底面ABCD 所成角旳大小; (Ⅱ)求证:PA ⊥平面CDM ; (Ⅲ)求二面角D MC B --旳余弦值.解析:求线面角关键是作垂线,找射影,求异面直线所成旳角采用平移法 求二面角旳大小也可应用面积射影法,比较好旳方法是向量法 答案:(I)取DC 旳中点O ,由ΔPDC 是正三角形,有PO ⊥DC .又∵平面PDC ⊥底面ABCD ,∴PO ⊥平面ABCD 于O .连结OA ,那么OA 是PA 在底面上旳射影.∴∠PAO 就是PA 与底面所成角. ∵∠ADC =60°,由ΔPCD 和ΔACD 是全等旳正三角形,从而求得OA =OP =3. ∴∠PAO =45°.∴PA 与底面ABCD 可成角旳大小为45°. ……6分 (II)由底面ABCD 为菱形且∠ADC =60°,DC =2,DO =1,有OA ⊥DC . 建立空间直角坐标系如图,那么(3,0,0),(0,0,3),(0,1,0)A P D -, (3,2,0),(0,1,0)B C . 由M 为PB 中点,∴33(,1,)22M . ∴33(,2,),(3,0,3),22DM PA ==-(0,2,0)DC =. ∴33320(3)022PA DM ⋅=⨯+⨯+-=, 03200(3)0PA DC ⋅=⨯+⨯+⨯-=.∴PA ⊥DM ,PA ⊥DC . ∴PA ⊥平面DMC . ……4分(III)33(,0,),(3,1,0)22CM CB ==.令平面BMC 旳法向量(,,)n x y z =,那么0n CM ⋅=,从而x +z =0; ……①, 0n CB ⋅=,从而30x y +=. ……② 由①、②,取x =−1,那么3,1y z ==. ∴可取(1,3,1)n =-. 由(II)知平面CDM 旳法向量可取(3,0,3)PA =-, ∴2310cos ,5||||56n PA n PA n PA ⋅-<>===-⋅. ∴所求二面角旳余弦值为-105. ……6分法二:〔Ⅰ〕方法同上〔Ⅱ〕取AP 旳中点N ,连接MN ,由〔Ⅰ〕知,在菱形ABCD 中,由于60ADC ∠=,那么AO CD ⊥,又PO CD ⊥,那么CD APO ⊥平面,即CD PA ⊥, 又在PAB ∆中,中位线//MN 12AB ,1//2CO AB ,那么//MN CO,那么四边形OCMN 为,所以//MC ON ,在APO ∆中,AO PO =,那么ON AP ⊥,故AP MC ⊥而MCCD C =,那么PA MCD ⊥平面〔Ⅲ〕由〔Ⅱ〕知MC PAB ⊥平面,那么NMB ∠为二面角D MC B --旳平面角,在Rt PAB ∆中,易得6,PA =22226210PB PA AB =+=+=210cos 510AB PBA PB ∠===,10cos cos()5NMB PBA π∠=-∠=故,所求二面角旳余弦值为105点评:此题主要考察异面直线所成旳角、线面角及二面角旳一般求法,综合性较强 用平移法求异面直线所成旳角,利用三垂线定理求作二面角旳平面角,是常用旳方法.4.如下列图:边长为2旳正方形ABFC 和高为2旳直角梯形ADEF 所在旳平面互相垂直且DE=2,ED//AF 且∠DAF =90°·〔1〕求BD 和面BEF 所成旳角旳余弦; 〔2〕线段EF 上是否存在点P 使过P 、A 、C 三点旳平面和直线DB 垂直,假设存在,求EP 与PF 旳比值;假设不存在,说明理由· 解析:1.先假设存在,再去推理,下结论: 2.运用推理证明计算得出结论,或先利用条件特例得出结论,然后再根据条件给出证明或计算·VCB答案:〔1〕因为AC 、AD 、AB 两两垂直,建立如图坐标系, 那么B 〔2,0,0〕,D 〔0,0,2〕, E 〔1,1,2〕,F 〔2,2,0〕, 那么)0,2,0(),2,1,1(),0,0,2(=-==BF BE DB 设平面BEF 旳法向量xz y x n -=则),,,(0,02==++y z y ,那么可取)0,1,2(=n , ∴向量)1,0,2(=n DB 和所成角旳余弦为1010)2(21220222222=-++-+⋅·即BD 和面BEF 所成旳角旳余弦1010·〔2〕假设线段EF 上存在点P 使过P 、A 、C 三点旳平面和直线DB 垂直,不妨设EP 与PF 旳比值为m ,那么P 点坐标为),12,121,121(mm mm m +++++ 那么向量=AP ),12,121,121(mm m m m +++++,向量=CP ),12,11,121(mm m m++-++ 所以21,012)2(12101212==+-++++++m m m m mm所以·点评:此题考察了线线关系,线面关系及其相关计算,此题采用探索式、开放式设问方式,对学生灵活运用知识解题提出了较高要求·5.正方形ABCD E 、F 分别是AB 、CD 旳中点,将ADE 沿DE 折起,如下列图,记二面角A DE C --旳大小为(0)θθπ<<(I) 证明//BF 平面ADE ;(II)假设ACD 为正三角形,试判断点A 在平面BCDE 旳射影G 是否在直线EF 上,证明你旳结论,并求角θ旳余弦值分析:充分发挥空间想像能力,重点抓住不变旳位置和数量关系,借助模型图形得出结论,并给出证明.解: (I)证明:EF分别为正方形ABCD得边AB、CD旳中点,∴EB//FD,且EB=FD,∴四边形EBFD为平行四边形∴BF//ED.,EF AED BF AED⊂⊄平面而平面,∴//BF平面ADE(II)如右图,点A在平面BCDE旳射影G在直线EF上,过点A作AG垂直于平面BCDE,垂足为G,连结GC,GD∆ACD为正三角形,∴AC=AD.∴CG=GD.G在CD旳垂直平分线上, ∴点A在平面BCDE旳射影G在直线EF上,过G作GH垂直于ED于H,连结AH,那么AH DE⊥,所以AHD∠为二面角A-DE-C旳平面角即GAHθ∠=.设原正方体旳边长为2a,连结AF,在折后图旳∆AEF中,EF=2AE=2a,即∆AEF为直角三角形,AG EF AE AF⋅=⋅.AG ∴=在Rt∆ADE中,AH DE AE AD⋅=⋅AH∴=.GH ∴=1 cos4GHAHθ==点评:在平面图形翻折成空间图形旳这类折叠问题中,一般来说,位于同一平面旳几何元素相对位置和数量关系不变:位于两个不同平面旳元素,位置和数量关系要发生变化,翻折问题常用旳添辅助线旳方法是作棱旳垂线·关键要抓不变旳量.6.设棱锥M-ABCD旳底面是正方形,且MA=MD,MA⊥AB,如果ΔAMD旳面积为1,试求能够放入这个棱锥旳最大球旳半径.分析:关键是找出球心所在旳三角形,求出切圆半径.解:∵AB⊥AD,AB⊥MA,∴AB⊥平面MAD,由此,面MAD ⊥面AC.记E 是AD 旳中点,从而ME ⊥AD. ∴ME ⊥平面AC ,ME ⊥EF.设球O 是与平面MAD 、平面AC 、平面MBC 都相切旳球. 不妨设O ∈平面MEF ,于是O 是ΔMEF 旳心. 设球O 旳半径为r ,那么r =MFEM EF S MEF++△2 设AD =EF =a,∵S ΔAMD =1. ∴ME =a 2.MF =22)2(aa +,r =22)2(22aa a a +++≤2222+=2-1· 当且仅当a =a2,即a =2时,等号成立. ∴当AD =ME =2时,满足条件旳球最大半径为2-1.点评:涉及球与棱柱、棱锥旳切接问题时一般过球心及多面体中旳特殊点或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间旳关系·注意多边形切圆半径与面积和周长间旳关系;多面体切球半径与体积和外表积间旳关系·。
立体几何压轴题十大题型汇总(学生版)
立体几何压轴题十大题型汇总命题预测本专题考查类型主要涉及点立体几何的内容,主要涉及了立体几何中的动点问题,外接球内切球问题,以及不规则图形的夹角问题,新定义问题等。
预计2024年后命题会继续在以上几个方面进行。
高频考法题型01几何图形内切球、外接球问题题型02立体几何中的计数原理排列组合问题题型03立体几何动点最值问题题型04不规则图形中的面面夹角问题题型05不规则图形中的线面夹角问题题型06几何中的旋转问题题型07立体几何中的折叠问题题型08不规则图形表面积、体积问题题型09立体几何新定义问题题型10立体几何新考点题型01几何图形内切球、外接球问题解决与球相关的切、接问题,其通法是作出截面,将空间几何问题转化为平面几何问题求解,其解题思维流程如下:(1)定球心:如果是内切球,球心到切点的距离相等且为球的半径;如果是外接球,球心到接点的距离相等且为半径;(2)作截面:选准最佳角度做出截面(要使这个截面尽可能多的包含球、几何体的各种元素以及体现这些元素的关系),达到空间问题平面化的目的;(3)求半径下结论:根据作出截面中的几何元素,建立关于球的半径的方程,并求解.1(多选)(23-24高三下·浙江·开学考试)如图,八面体的每个面都是正三角形,并且4个顶点A,B,C,D 在同一个平面内,如果四边形ABCD是边长为2的正方形,则()A.异面直线AE与DF所成角大小为π3B.二面角A-EB-C的平面角的余弦值为13C.此八面体一定存在外接球D.此八面体的内切球表面积为8π32(2024·浙江宁波·二模)在正四棱台ABCD-A1B1C1D1中,AB=4,A1B1=2,AA1=3,若球O与上底面A1B1C1D1以及棱AB,BC,CD,DA均相切,则球O的表面积为()A.9πB.16πC.25πD.36π3(2024·河北石家庄·二模)已知正方体的棱长为22,连接正方体各个面的中心得到一个八面体,以正方体的中心O为球心作一个半径为233的球,则该球O的球面与八面体各面的交线的总长为()A.26πB.463π C.863π D.46π4(多选)(2022·山东聊城·二模)用与母线不垂直的两个平行平面截一个圆柱,若两个截面都是椭圆形状,则称夹在这两个平行平面之间的几何体为斜圆柱.这两个截面称为斜圆柱的底面,两底面之间的距离称为斜圆柱的高,斜圆柱的体积等于底面积乘以高.椭圆的面积等于长半轴与短半轴长之积的π倍,已知某圆柱的底面半径为2,用与母线成45°角的两个平行平面去截该圆柱,得到一个高为6的斜圆柱,对于这个斜圆柱,下列选项正确的是()A.底面椭圆的离心率为22B.侧面积为242πC.在该斜圆柱内半径最大的球的表面积为36πD.底面积为42π5(21-22高三上·湖北襄阳·期中)在正方体ABCD-A1B1C1D1中,球O1同时与以A为公共顶点的三个面相切,球O2同时与以C1为公共顶点的三个面相切,且两球相切于点F.若以F为焦点,AB1为准线的抛物线经过O1,O2,设球O1,O2的半径分别为r1,r2,则r1r2=.题型02立体几何中的计数原理排列组合问题1(2024·浙江台州·二模)房屋建造时经常需要把长方体砖头进行不同角度的切割,以契合实际需要.已知长方体的规格为24cm×11cm×5cm,现从长方体的某一棱的中点处作垂直于该棱的截面,截取1次后共可以得到12cm×11cm×5cm,24cm×112cm×5cm,24cm×11cm×52cm三种不同规格的长方体.按照上述方式对第1次所截得的长方体进行第2次截取,再对第2次所截得的长方体进行第3次截取,则共可得到体积为165cm3的不同规格长方体的个数为()A.8B.10C.12D.162(2023·江苏南通·模拟预测)在空间直角坐标系O-xyz中,A10,0,0,B0,10,0,C0,0,10,则三棱锥O-ABC内部整点(所有坐标均为整数的点,不包括边界上的点)的个数为()A.C310B.C39C.C210D.C293(2024·重庆·模拟预测)从长方体的8个顶点中任选4个,则这4个点能构成三棱锥的顶点的概率为()A.2736B.2935C.67D.32354(多选)(2024·重庆·模拟预测)如图,16枚钉子钉成4×4的正方形板,现用橡皮筋去套钉子,则下列说法正确的有(不同的图形指两个图形中至少有一个顶点不同)()A.可以围成20个不同的正方形B.可以围成24个不同的长方形(邻边不相等)C.可以围成516个不同的三角形D.可以围成16个不同的等边三角形5(2024·上海浦东新·模拟预测)如图ABCDEF -A B C D E F 为正六棱柱,若从该正六棱柱的6个侧面的12条面对角线中,随机选取两条,则它们共面的概率是.题型03立体几何动点最值问题空间几何体中线段和差最值以及几何体中的轨迹问题,以及线线角和线面角的求解,综合性较强,难度较大,解答时要发挥空间想象,明确空间的位置关系,结合空间距离,确定动点的轨迹形状;结合等体积法求得点到平面的距离,结合线面角的定义求解.1(多选)(2024·浙江台州·二模)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为平面ABCD 内一动点,且直线D 1P 与平面ABCD 所成角为π3,E 为正方形A 1ADD 1的中心,则下列结论正确的是()A.点P 的轨迹为抛物线B.正方体ABCD -A 1B 1C 1D 1的内切球被平面A 1BC 1所截得的截面面积为π6C.直线CP 与平面CDD 1C 1所成角的正弦值的最大值为33D.点M 为直线D 1B 上一动点,则MP +ME 的最小值为11-2662(多选)(2024·江苏扬州·模拟预测)如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为平面ABCD 内一动点,则()A.若M 在线段AB 上,则D 1M +MC 的最小值为4+22B.平面ACD 1被正方体内切球所截,则截面面积为π6C.若C 1M 与AB 所成的角为π4,则点M 的轨迹为椭圆D.对于给定的点M ,过M 有且仅有3条直线与直线D 1A ,D 1C 所成角为60°3(多选)(2023·安徽芜湖·模拟预测)已知正方体ABCD -A 1B 1C 1D 1的棱长为2,棱AB 的中点为M ,过点M 作正方体的截面α,且B 1D ⊥α,若点N 在截面α内运动(包含边界),则()A.当MN 最大时,MN 与BC 所成的角为π3B.三棱锥A 1-BNC 1的体积为定值23C.若DN =2,则点N 的轨迹长度为2πD.若N ∈平面A 1BCD 1,则BN +NC 1 的最小值为6+234(多选)(2024·福建厦门·一模)如图所示,在五面体ABCDEF 中,四边形ABCD 是矩形,△ABF 和△DCE 均是等边三角形,且AB =23,EF =x (x >0),则()A.EF ⎳平面ABCDB.二面角A -EF -B 随着x 的减小而减小C.当BC =2时,五面体ABCDEF 的体积V (x )最大值为272D.当BC =32时,存在x 使得半径为32的球能内含于五面体ABCDEF 5(多选)(2024·广西南宁·一模)在边长为2的正方体ABCD -A 1B 1C 1D 1中,动点M 满足AM =xAB+yAD +zAA 1 ,(x ,y ,z ∈R 且x ≥0,y ≥0,z ≥0),下列说法正确的是()A.当x =14,z =0,y ∈0,1 时,B 1M +MD 的最小值为13B.当x =y =1,z =12时,异面直线BM 与CD 1所成角的余弦值为105C.当x +y +z =1,且AM =253时,则M 的轨迹长度为42π3D.当x +y =1,z =0时,AM 与平面AB 1D 1所成角的正弦值的最大值为63题型04不规则图形中的面面夹角问题利用向量法解决立体几何中的空间角问题,关键在于依托图形建立合适的空间直角坐标系,将相关向量用坐标表示,通过向量的坐标运算求空间角,其中建系的关键在于找到两两垂直的三条直线.1(2024·浙江台州·二模)如图,已知四棱台ABCD-A1B1C1D1中,AB=3A1B1,AB∥CD,AD⊥AB,AB=6,CD=9,AD=6,且AA1=BB1=4,Q为线段CC1中点,(1)求证:BQ∥平面ADD1A1;A1与平面CDD1C1夹角的余弦值.(2)若四棱锥Q-ABB1A1的体积为3233,求平面ABB12(2024·浙江杭州·二模)如图,在多面体ABCDPQ中,底面ABCD是平行四边形,∠DAB=60°,BC =2PQ=4AB=4,M为BC的中点,PQ∥BC,PD⊥DC,QB⊥MD.(1)证明:∠ABQ=90°;(2)若多面体ABCDPQ的体积为152,求平面PCD与平面QAB夹角的余弦值.3(2024·浙江金华·模拟预测)已知四棱锥P-ABCD的棱AB,BC的长为2,其余各条棱长均为1.(1)求四棱锥P-ABCD的体积;(2)求二面角A-PC-B的大小.4(2024·安徽·二模)将正方形ABCD绕直线AB逆时针旋转90°,使得CD到EF的位置,得到如图所示的几何体.(1)求证:平面ACF⊥平面BDE;(2)点M为DF上一点,若二面角C-AM-E的余弦值为13,求∠MAD.5(2024·山西·二模)如图,四棱锥P-ABCD中,二面角P-CD-A的大小为90°,∠DCP=∠DPC<π°,E是PA的中点.4,∠DAB=∠ABC=2∠ADB=2∠DCB=90(1)求证:平面EBD⊥平面PCD;(2)若直线PD与底面ABCD所成的角为60°,求二面角B-ED-C的余弦值.题型05不规则图形中的线面夹角问题1(2024·浙江宁波·二模)在菱形ABCD中,AB=2,∠BAD=60°,以AB为轴将菱形ABCD翻折到菱形ABC1D1,使得平面ABC1D1⊥平面ABCD,点E为边BC1的中点,连接CE,DD1.(1)求证:CE∥平面ADD1;(2)求直线CE与平面BDD1所成角的正弦值.2(23-24高三下·江苏泰州·阶段练习)如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD= 60°,△PAD为等边三角形,点M,N分别为AB,PC的中点.(1)证明:直线MN⎳平面PAD;(2)当二面角P-AD-C为120°时,求直线MN与平面PCD所成的角的正弦值.3(23-24高三下·浙江·开学考试)在三棱锥D-ABC中,AC=3,DC=22,∠DCA=45°,CB⊥AB,BC=BD=6.(1)证明:平面ADC⊥平面ABC;(2)点E为棱DC上,若BC与平面EAB所成角的正弦值为3311,求DE的长;4(2022·江西赣州·二模)已知四棱锥P-ABCD中,△ABD、△BCD、△BDP都是正三角形AB=2,AP=3(1)求证:平面ACP⊥平面BDP;(2)求直线BP与平面ADP所成角的正弦值.5(2024·全国·模拟预测)如图,AB,CD,EF两两垂直,点E为AB的中点,点F在线段CD上,且满足DF=4CF,AB=EF=2,CD=5.(1)求证:平面ABC⊥平面ABD.(2)求直线BD与平面ACD所成角的正弦值.题型06几何中的旋转问题1(2024·全国·模拟预测)如图,已知长方体ABCD-A B C D 中,AB=BC=2,AA =2,O为正方形ABCD的中心点,将长方体ABCD-A B C D 绕直线OD 进行旋转.若平面α满足直线OD 与α所成的角为53°,直线l⊥α,则旋转的过程中,直线AB与l夹角的正弦值的最小值为( )(参考数据:sin53°≈4 5,cos53°≈35)A.43-310B.33-410C.33+310D.43+3102(多选)(2024·河北唐山·一模)在透明的密闭正三棱柱容器ABC-A1B1C1内灌进一些水,已知AB= AA1=4.如图,当竖直放置时,水面与地面距离为3.固定容器底面一边AC于地面上,再将容器按如图方向倾斜,至侧面ACC1A1与地面重合的过程中,设水面所在平面为α,则()A.水面形状的变化:三角形⇒梯形⇒矩形B.当C1A1⊂α时,水面的面积为221C.当B∈α时,水面与地面的距离为835D.当侧面ACC1A1与地面重合时,水面的面积为123(2024·陕西商洛·模拟预测)魔方,又叫鲁比克方块,最早是由匈牙利布达佩斯建筑学院厄尔诺•鲁比克教授于1974年发明的机械益智玩具.魔方拥有竞速、盲拧、单拧等多种玩法,风靡程度经久未衰,每年都会举办大小赛事,是最受欢迎的智力游戏之一.一个三阶魔方,由27个棱长为1的正方体组成,如图是把魔方的中间一层转动了45°,则该魔方的表面积增加了 .4(2024·福建·模拟预测)在△ABC 中,∠ABC =90°,AB =6,∠ACB 的平分线交AB 于点D ,AD =2DB .平面α过直线AB ,且与△ABC 所在的平面垂直.(1)求直线CD 与平面α所成角的大小;(2)设点E ∈α,且∠ECD =30°,记E 的轨迹为曲线Γ.(i )判断Γ是什么曲线,并说明理由;(ii )不与直线AB 重合的直线l 过点D 且交Γ于P ,Q 两点,试问:在平面α内是否存在定点T ,使得无论l 绕点D 如何转动,总有∠PTC =∠QTC ?若存在,指出点T 的位置;若不存在,说明理由.5(多选)(2024·浙江·二模)已知正方体ABCD -A 1B 1C 1D 1,的棱长为1,点P 是正方形A 1B 1C 1D 1上的一个动点,初始位置位于点A 1处,每次移动都会到达另外三个顶点.向相邻两顶点移动的概率均为14,向对角顶点移动的概率为12,如当点P 在点A 1处时,向点B 1,D 1移动的概率均为14,向点C 1移动的概率为12,则()A.移动两次后,“PC =3”的概率为38B.对任意n ∈N *,移动n 次后,“PA ⎳平面BDC 1”的概率都小于13C.对任意n ∈N *,移动n 次后,“PC ⊥平面BDC 1”的概率都小于12D.对任意n ∈N *,移动n 次后,四面体P -BDC 1体积V 的数学期望E V <15(注:当点P 在平面BDC 1上时,四面体P -BDC 1体积为0)题型07立体几何中的折叠问题1(2020·浙江·模拟预测)如图,在△ABC中,∠ABC=90°,AB=1,BC=2,D为线段BC(端点除外)上一动点.现将△ABD沿线段AD折起至△AB D,使二面角B -AD-C的大小为120°,则在点D的移动过程中,下列说法错误的是()A.不存在点D,使得CB ⊥ABB.点B 在平面ABC上的投影轨迹是一段圆弧C.B A与平面ABC所成角的余弦值的取值范围是105,1D.线段CB 的最小值是32(多选)(23-24高三下·江苏泰州·阶段练习)已知正方形ABCD的边长为4,点E在线段AB上,BE =1.沿DE将△ADE折起,使点A翻折至平面BCDE外的点P,则()A.存在点P,使得PE⊥DCB.存在点P,使得直线BC⎳平面PDEC.不存在点P,使得PC⊥DED.不存在点P,使得四棱锥P-BCDE的体积为83(2024·安徽池州·模拟预测)如图①,四边形ABCD是边长为2的正方形,△EAB与△FAD是两个全等的直角三角形,且FA=4,FC与AD交于点G,将Rt△EAB与Rt△FAD分别沿AB,AD翻折,使E,F重合于点P,连接PC,得到四棱锥P-ABCD,如图②,(1)证明:BD⊥PC;(2)若M为棱PC的中点,求直线BM与平面PCG所成角的正弦值.4(多选)(2023·浙江嘉兴·模拟预测)如图,在△ABC 中,∠B =π2,AB =3,BC =1,过AC 中点M 的直线l 与线段AB 交于点N .将△AMN 沿直线l 翻折至△A MN ,且点A 在平面BCMN 内的射影H 在线段BC 上,连接AH 交l 于点O ,D 是直线l 上异于O 的任意一点,则()A.∠A DH ≥∠A DCB.∠A DH ≤∠A OHC.点O 的轨迹的长度为π6D.直线A O 与平面BCMN 所成角的余弦值的最小值为83-135(2024·全国·模拟预测)如图1,已知在正方形ABCD 中,AB =2,M ,E ,F 分别是边CD ,BC ,AD的中点,现将矩形ABEF 沿EF 翻折至矩形A B EF 的位置,使平面A B EF ⊥平面CDFE ,如图2所示.(1)证明:平面A EM ⊥平面A FM ;(2)设Q 是线段A E 上一点,且二面角A -FM -Q 的余弦值为33,求EQ EA的值.题型08不规则图形表面积、体积问题解决不规则图形的表面积体积问题,注意使用割补法,通过分割与补形的方法,转化成常规的几何体进行求解。
2019年人教版高考数学总复习之【立体几何好题难题集萃】Word版
立体几何好体难解集萃(附参考答案)条棱两端的顶浙江理(14)(安徽卷)理科数学(16)多面体上,位于同一点称为相邻的,如图,正方体的一个顶点A 在平面内,其余顶点在的同侧,正方体上与顶点A 相邻的三个顶点到的距离分别为1,2和4,P 是正方体的其余四个顶点中的一个,则P 到平面的距离可能是:①3;②4;③5;④6;⑤7以上结论正确的为______________。
(写出所有正确结论的编号..)解:如图,B 、D 、A 1到平面的距离分别为1、2、4,则D 、A 1的中点到平面的距离为3,所以D 1到平面的距离为6;B 、A 1的中点到平面的距离为,所以B 1到平面的距离为5;则D 、B 的中点到平面的距离为,所以C 到平面的距离为3;C 、A 1的中点到平面的距离为,所以C 1到平面的距离为7;而P 为C 、C 1、B 1、D 1中的一点,所以选①③④⑤。
3.过平行六面体任意两条棱的中点作直线,其中与平面平行的直线共有DA .4条B .6条C .8条D .12条4、若是平面外一点,则下列命题正确的是D(A )过只能作一条直线与平面相交(B )过可作无数条直线与平面垂直 (C )过只能作一条直线与平面平行(D )过可作无数条直线与平面平行【说明】过一点作已知平面的垂线有且只有一条(唯一性) 过平面外一点可作无数直线与已知平面平行(存在性)(浙江文)(17)如图,在四棱锥P-ABCD 中,底面为直角梯形,AD ∥BC,∠BAD=90°,PA ⊥底面ABCD ,且PA =AD=AB=2BC,M 、N 分别为PC 、PB 的中点. (Ⅰ)求证:PB ⊥DM;(Ⅱ)(文)求BD 与平面ADMN 所成的角。
(理)求CD 与平面ADMN 所成的角 解:方法一:(Ⅱ)(文)连结DN , 因为PB ⊥平面ADMN ,所以∠BDN 是BD 与平面ADMN 所成的角. 在中,故BD 与平面ADMN 所成的角是.方法二:ABCDA 1B 1C 1D 1如图,以A为坐标原点建立空间直角坐标系,设BC=1,则(Ⅱ)因为所以PB⊥AD.又PB⊥DM.因此的余角即是BD与平面ADMN.所成的角.因为所以=因此BD与平面ADMN所成的角为.(理)(II)取的中点,连结、,则,所以与平面所成的角和与平面所成的角相等.因为平面,所以是与平面所成的角.在中,.故与平面所成的角是.方法二:如图,以为坐标原点建立空间直角坐标系,设,则.(II)因为,所以,又因为,所以平面因此的余角即是与平面所成的角.因为,所以与平面所成的角为.18、如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为1,M是底面BC边上的中点,N是侧棱CC1上的点,且CN=2C1N.(Ⅰ)求二面角B1-AM-N的平面角的余弦值;(Ⅱ)求点B1到平面AMN的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)证明: MD 平面 ABC ; (2)求二面角 A1 − AC − B 的余弦值. 23、如图,正方体 ABCD − A1B1C1D1 中, E, F 分别是 BB1, CD 的中点.
(1)求证:AC⊥平面 BDE; (2)求二面角 F-BE-D 的余弦值; (3)设点 M 是线段 BD 上一个动点,试确定点 M 的位置,使得 AM∥平面 BEF, 并证明你的结论. 21、如图,四棱锥 P − ABCD 中,底面 ABCD 是 ADC = 60 的菱形, 侧面 PDC 是边长为 2 的正三角形,且与底面垂直, M 为 PB 的中点.
18、在直三棱柱
中,
为正三角形,点 在棱 上,且
(1)求证:平面
平面 ;
(2)求二面角
的余弦值.
20、如下图所示,ABCD 是边长为 3 的正方形,DE⊥平面 ABCD,AF∥DE, DE=3AF,BE 与平面 ABCD 所成的角为 60°.
,点 , 分别为棱 , 的中点.
第 7 页 共 12 页
第 8 页 共 12 页
13、如图,在棱长为 2 的正四面体 A − BCD 中, E、F 分别为直线 AB、CD 上的动点,且 EF = 3 .若记 EF 中点 P 的轨迹为 L ,则 L 等 于____________.(注: L 表示 L 的测度,在本题, L 为曲线、平面图 形、空间几何体时, L 分别对应长度、面积、体积.)
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………
16、沿对角线 AC 将正方形 A B C D 折成直二面角后,A B 与 C D 所在的
直线所成的角等于
.
评卷人 得分 三、解答题(注释)
(1)证明: 平面 ;
(2)若
,求直线 与平面 所成的角的正弦值.
(1)求证: D1F ⊥ 平面 ADE ; (2)求异面直线 EF 与 BD1 所成角的余弦值.
24、如图,在四棱锥
中,底面 为直角梯形,其中
,
,侧面
平面 ,且
,动点 在棱
(1)求证: PA ⊥ 平面 CDM ; (2)求二面角 D − MC − B 的余弦值. 22、如图,三棱柱 ABC − A1B1C1 中,BC ⊥ 平面 ABB1A1 ,D、M 分别为
10、一只小球放入一长方体容器内,且与共点的三个面相接触.若小球
上一点到这三个面的距离分别为 4、5、5,则这只小球的半径是 ( )
A.3 或 8 B.8 或 11
C.5 或 8
D.3 或 11
A. 3 6
B. 2 6
C. 3 10
D. 2 10
8、如图,四棱锥 P − ABCD 中,底面 ABCD 是矩形,PD ⊥ 平面 ABCD , 且 PD = AD =1, AB = 2 ,点 E 是 AB 上一点,当二面角 P − EC − D 为
A. 2 3
B. − 2 3
C. 6 8
D. − 6 8
第 1 页 共 12 页
5、如图,正方形 A1BCD 折成直二面角 A − BD − C ,则二面角 A − CD − B
第 2 页 共 12 页
…………○…………内…………○…………装…………○…………订…………○…………线…………○………… ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………
的余弦值是( )
时, AE = (
)
4
A. 1 3
B. 3 3
C. 1 2D. Fra bibliotek 26、在正方体 ABCD − A1B1C1D1 中,二面角 A-BD1-B1 的大小为( )
A.. 60 B. 30 C.120 D.150
19、如图,在三棱锥 中,
,
,侧面 为等边三
角形,侧棱
.
17、如图,四棱锥 P − ABCD 中, PAD 为等边三角形,且平面 PAD ⊥
平面 ABCD , AD = 2BC = 2 , AB ⊥ AD , AB ⊥ BC .
(Ⅰ)证明: PC ⊥ BC ; (Ⅱ)若直线 PC 与平面 ABCD 所成角为 60 ,求二面角 B − PC − D 的 余弦值.
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
A. 18 5 5
B. 8
C. 16 3 3
D. 10
12、棱长为 的正方体
内有一个内切球 O,过正方体中两条
互为异面直线的 , 段的长为( )
的中点 作直线,该直线被球面截在球内的线
A.
B.
C.
D.
评卷人 得分 二、填空题(注释)
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
(2)已知二面角 A − PB − D 的余弦值为 15 ,若 E 为 PB 的中点,求 EC 5
第 11 页 共 12 页
第 12 页 共 12 页
答案第 1 页,总 1 页
11、如图,在长方体 ABCD − ABCD 中,点 P,Q 分别是棱 BC,CD 上
的动点, BC = 4,CD = 3,CC = 2 3 ,直线 CC 与平面 PQC ' 所成的角
为 300 ,则 PQC 的面积的最小值是(
)
第 3 页 共 12 页
第 4 页 共 12 页
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________
9、若直线 a 上的所有点到两条直线 m、n 的距离都相等,则称直线 a 为
“m、n 的等距线”.在正方体 ABCD﹣A1B1C1D1 中,E、F、G、H 分别是所在
棱中点,M、N 分别为 EH、FG 中点,则在直线 MN,EG,FH,B1D 中,是“A1D1、
AB 的等距线”的条数为( )
A.1 B.2 C.3 D.4
7、如图,在三棱锥 ABC − A1B1C1 中,底面为正三角形,侧棱垂直底面,
AB = 4, AA1 = 6 . 若 E, F 分 别 是 棱 BB1,CC1 上 的 点 , 且
BE
= B1E,C1F
=
1 3
CC1
,则异面直线
A1E
与
AF
所成角的余弦值为
()
A. 1 B. 1 2
C. 2 − 2
D. 2 − 3
坐标系中,有向量 X = (x1, x2 ) ,下面给出的几个表达式中,可能表示向 量 X 的范数的是_____ _______.(把所有正确答案的序号都填上)
(1) x12 + 2x22 (2) 2x12 − x22 (3) x12 + x22 + 2 (4)
x12 + x22
15、如图,在正方体 ABCD − A1B1C1D1 中,AB = 3 3 ,点 E, F 在线段 DB1
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………
与平面 PAB 所成角的正弦值.
25、如图,在四棱锥
平面 AD,
,
中,平面 ,,
平面 ABCD, ;
平面
(1)求证: 平面 ;
(2)求直线 PB 与平面 所成角的正弦值; 26、如图,在四棱锥 P − ABCD 中,PD ⊥ 平面 ABCD ,四边形 ABCD 是 菱形, AC = 2 , BD = 2 3 ,且 AC , BD 交于点 O , E 是 PB 上任意 一点. (1)求证: AC ⊥ DE ;
A
B
C
D
3、已知 ABC − A1B1C1 是各棱长均等于 a 的正三棱柱,D 是侧棱 CC1 的中
点,则平面 ABC 与平面 AB1D 所成的锐二面角为( )
A. 45
B. 60
C. 75
D. 30
4、已知三棱柱 ABC − A1B1C1 的侧棱与底面边长都相等, A1 在底面 ABC
内的射影为△ABC 的中心,则二面角 B1 − AC − B 的余弦值等于( )
上,且 DE = EF = FB1 ,点 M 是正方体表面上的一动点,点 P, Q 是空间
两 动 点 , 若 | PE | = | QE | = 2 且 | PQ |= 4 , 则 MP • MQ 的 最 小 值 | PF | | QF |
为
.
第 5 页 共 12 页
第 6 页 共 12 页
…………○…………内…………○…………装…………○…………订…………○…………线…………○………… ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
14、在空间直角坐标系中,对其中任何一向量 X = (x1, x2 , x3) ,定义范数 || X || ,它满足以下性质:(1) || X || 0 ,当且仅当 X 为零向量时,不等式
取等号;(2)对任意的实数 ,|| X ||=| | || X || (注:此处点乘号为普
通的乘号)。(3)|| X || + || Y |||| X + Y || 。试求解以下问题:在平面直角
绝密★启用前
2018-2019 学年度立体几何难题大汇总
学校:__________姓名:__________班级:__________考号:__________