stata回归结果详解-stata回归解释ppt课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.回归系数检验 .
v a r(ˆ3 )S S T x M 3 ( S 1 E R 3 2 )1 7 5 9 .8 3 4 .( 1 1 6 4 0 0 .7 3 9 2 )3 4 .5 1 8 6 .4 9 0 1 0 .0 8 3 0 3
4.系数标准误差计算 当自变量只有两个时,R2j就是这两个变
量的相关系数(pwcorr x2 x1)的平方
.
对多元回归“排除其它变量影响”的解释
.
.
简单回归和多元回归估计值的比较
.03789471= .0289094 + .1678986 * .0535163 y 0 1 x1 y ˆ 0 ˆ1 x1 ˆ 2 x 2 x 2 0 1 x1 则 1 ˆ1 ˆ 2 • 1
R- Squared为判定系数(determination coefficient),或称拟合优度(goodness of fit), 它是相关系数的平方,也是SSR/SST,y的总偏差中自变量解释的部分。 Adjusted对应的是校正的判定系数
Root MSE为标准误差(standard error),数值越小,拟合的效果越好
即 , 方 差 为 M SE 除 以 xj中 不 能 被 其 它 自 变 量 解 释 的 部 分 ,V IFj变 量 xj的 方 差 扩 大 因 子
T值=Coef./Std. Err.
P值用于说明回归系数的显著性,一般来说P值<0.1(*)表示10%显著水平显著,P值 <0.05(**)表示5%显著水平显著, P值<0.01(***)表示1%显著水平显著 置信区间(CI) 0.0145294-invttail(20,0.025)*0.0830332=0.0145294-2.086*0.0830332=-0.1586748 0.0145294+2.086*0.0830332=0.1877335
16.5 2.2
10.7 27.1
1.7 9.1 2.1 11.2
6 12.7 15.6
8.9 0.6 5.9
5 7.2 16.8 3.8 10.3 15.8 12
x3 5 16 17 10 19 1 17 18 10 14 11 23 14 26 34 15 2 11 4 28 32 10 14 16 10
x1 67.3 111.3 173 80.8 199.7 16.2 107.4 185.4 96.1 72.8 64.2 132.2 58.6 174.6 263.5 79.3 14.8 73.5 24.7 139.4 368.2 95.7 109.6 196.2 102.2
x2 6.8
19.8 7.7 7.2
.
1.方差分析
第二列SS对应的是误差平方和,或称变差。
n
n
1.第一行为回归平方和或回归变差SSR,表示因变量的预 1 .S S R (y ˆiy)2 (y ˆiy ˆ)22 4 9 .3 7
i 1
i 1
测值对其平均值的总偏差。
百度文库
2.第二行为剩余平方和(也称残差平方和或剩余变差)SSE, 是因变量对其预测值的总偏差,这个数值越大,拟合效果
F(4,20)M SR62.342819.70 M SE 3.1640
谓“弃真概率”即模型为假
的概率,显然1-P便是模型" R2SSR249.370.7976
为真的概率,P值越小越好。
SST 63.28
对 于 本 例 , P=0.0000<0.0001 , 故置信度达到99.99%以上。
Ra21SSSSE T//ddffet1(n n1)(m 11R2)124(1200.7976)0.7571
n
2.SSE (yi yˆi)2 i1
63.28
越差,y的标准误差即由SSE给出。 3.第三行为总平方和或总变差SST,表示因变量对其平均值 的总偏差。
n
3.SST (yi y)2312.65 i1
4.容易验证249.37+63.28=312.65
4 .S S R S S E S S T
第三列df是自由度(degree of freedom),第一行是回归自由度dfr,等于变量数 目,即dfr=m;第二行为残差自由度dfe,等于样本数目减去变量数目再减1,即 有dfe=n-m-1;第三行为总自由度dft,等于样本数目减1,即有dft=n-1。对于本例, m=4,n=10,因此,dfr=4,dfe=n-m-1=20,dft=n-1=24。
x4 51.9 90.9 73.7 14.5 63.2 2.2 20.2 43.8 55.9 64.3 42.7 76.7 22.8 117.1 146.7 29.9 42.1 25.3 13.4 64.3 163.9 44.5 67.9 39.7 97.1
数据来源于贾俊平《统计学》(第7版. ),第12章多元线性回归
因此,在以下两种情况下会相等
R o o tM S E M S E .3 .1 6 4 0 1 .7 7 8 8
回归系数
回归系数 标准误差
T值
P值
回 归 系 数 j的 标 准 误 差
置信区间
var(ˆj)SSTx M j(S 1E R2 j)S M SS T E xj *V IFj,R2 j为 xj对 其 它 自 变 量 进 行 回 归 的 判 决 系 数
第四列MS是均方差,误差平方和除以相应的自由度 1.第一行为回归均方差MSR 2.第二行为剩余均方差MSE,数值越小拟合效果越好
1.MSR SSR 249.37 62.34 dfr 4
2.MSE SSE 63.28 3.16 dfe 20
.
2.模型显著性 F值,用于线性关系的判定。
结合P值对线性关系的显著性 进行判断,即弃真概率。所
stata回归结果详解
付畅俭 湘潭大学商学院
.
no 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
y 0.9 1.1 4.8 3.2 7.8 2.7 1.6 12.5 1 2.6 0.3 4 0.8 3.5 10.2 3 0.2 0.4 1 6.8 11.6 1.6 1.2 7.2 3.2
v a r(ˆ3 )S S T x M 3 ( S 1 E R 3 2 )1 7 5 9 .8 3 4 .( 1 1 6 4 0 0 .7 3 9 2 )3 4 .5 1 8 6 .4 9 0 1 0 .0 8 3 0 3
4.系数标准误差计算 当自变量只有两个时,R2j就是这两个变
量的相关系数(pwcorr x2 x1)的平方
.
对多元回归“排除其它变量影响”的解释
.
.
简单回归和多元回归估计值的比较
.03789471= .0289094 + .1678986 * .0535163 y 0 1 x1 y ˆ 0 ˆ1 x1 ˆ 2 x 2 x 2 0 1 x1 则 1 ˆ1 ˆ 2 • 1
R- Squared为判定系数(determination coefficient),或称拟合优度(goodness of fit), 它是相关系数的平方,也是SSR/SST,y的总偏差中自变量解释的部分。 Adjusted对应的是校正的判定系数
Root MSE为标准误差(standard error),数值越小,拟合的效果越好
即 , 方 差 为 M SE 除 以 xj中 不 能 被 其 它 自 变 量 解 释 的 部 分 ,V IFj变 量 xj的 方 差 扩 大 因 子
T值=Coef./Std. Err.
P值用于说明回归系数的显著性,一般来说P值<0.1(*)表示10%显著水平显著,P值 <0.05(**)表示5%显著水平显著, P值<0.01(***)表示1%显著水平显著 置信区间(CI) 0.0145294-invttail(20,0.025)*0.0830332=0.0145294-2.086*0.0830332=-0.1586748 0.0145294+2.086*0.0830332=0.1877335
16.5 2.2
10.7 27.1
1.7 9.1 2.1 11.2
6 12.7 15.6
8.9 0.6 5.9
5 7.2 16.8 3.8 10.3 15.8 12
x3 5 16 17 10 19 1 17 18 10 14 11 23 14 26 34 15 2 11 4 28 32 10 14 16 10
x1 67.3 111.3 173 80.8 199.7 16.2 107.4 185.4 96.1 72.8 64.2 132.2 58.6 174.6 263.5 79.3 14.8 73.5 24.7 139.4 368.2 95.7 109.6 196.2 102.2
x2 6.8
19.8 7.7 7.2
.
1.方差分析
第二列SS对应的是误差平方和,或称变差。
n
n
1.第一行为回归平方和或回归变差SSR,表示因变量的预 1 .S S R (y ˆiy)2 (y ˆiy ˆ)22 4 9 .3 7
i 1
i 1
测值对其平均值的总偏差。
百度文库
2.第二行为剩余平方和(也称残差平方和或剩余变差)SSE, 是因变量对其预测值的总偏差,这个数值越大,拟合效果
F(4,20)M SR62.342819.70 M SE 3.1640
谓“弃真概率”即模型为假
的概率,显然1-P便是模型" R2SSR249.370.7976
为真的概率,P值越小越好。
SST 63.28
对 于 本 例 , P=0.0000<0.0001 , 故置信度达到99.99%以上。
Ra21SSSSE T//ddffet1(n n1)(m 11R2)124(1200.7976)0.7571
n
2.SSE (yi yˆi)2 i1
63.28
越差,y的标准误差即由SSE给出。 3.第三行为总平方和或总变差SST,表示因变量对其平均值 的总偏差。
n
3.SST (yi y)2312.65 i1
4.容易验证249.37+63.28=312.65
4 .S S R S S E S S T
第三列df是自由度(degree of freedom),第一行是回归自由度dfr,等于变量数 目,即dfr=m;第二行为残差自由度dfe,等于样本数目减去变量数目再减1,即 有dfe=n-m-1;第三行为总自由度dft,等于样本数目减1,即有dft=n-1。对于本例, m=4,n=10,因此,dfr=4,dfe=n-m-1=20,dft=n-1=24。
x4 51.9 90.9 73.7 14.5 63.2 2.2 20.2 43.8 55.9 64.3 42.7 76.7 22.8 117.1 146.7 29.9 42.1 25.3 13.4 64.3 163.9 44.5 67.9 39.7 97.1
数据来源于贾俊平《统计学》(第7版. ),第12章多元线性回归
因此,在以下两种情况下会相等
R o o tM S E M S E .3 .1 6 4 0 1 .7 7 8 8
回归系数
回归系数 标准误差
T值
P值
回 归 系 数 j的 标 准 误 差
置信区间
var(ˆj)SSTx M j(S 1E R2 j)S M SS T E xj *V IFj,R2 j为 xj对 其 它 自 变 量 进 行 回 归 的 判 决 系 数
第四列MS是均方差,误差平方和除以相应的自由度 1.第一行为回归均方差MSR 2.第二行为剩余均方差MSE,数值越小拟合效果越好
1.MSR SSR 249.37 62.34 dfr 4
2.MSE SSE 63.28 3.16 dfe 20
.
2.模型显著性 F值,用于线性关系的判定。
结合P值对线性关系的显著性 进行判断,即弃真概率。所
stata回归结果详解
付畅俭 湘潭大学商学院
.
no 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
y 0.9 1.1 4.8 3.2 7.8 2.7 1.6 12.5 1 2.6 0.3 4 0.8 3.5 10.2 3 0.2 0.4 1 6.8 11.6 1.6 1.2 7.2 3.2