一次函数动点问题专题训练PPT课件
一次函数专题复习ppt课件
关运费的信息如右表
A地
B地
(1)设从A地运到乙地x台机 甲地 乙地 400元/台 600元/台
求总运费y(元)关于x的函数关系式;
(2)若要求总运费不超过11000元,有几种方案?
(3)在(2)问的条件下,指出总运费最低的调运方 案,最低的运费是多少?
5、一次函数y=kx+b(k ≠ 0)的性质: ⑴当k>0时,y随x的增大而___增__大____。 ⑵当k<0时,y随x的增大而___减__小____。 ⑶根据下列一次函数y=kx+b(k ≠ 0)的草图回答出各图
中k、b的符号:
k_>__0,b__>_0
k__>_0,b_<__0
k_<__0,b_>__0 k_<__0,b_<__0
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
例3. 某公司在A、B两地分别有库存机器16台和12台。
现要运往甲、乙两地,其中甲地15台,乙地13台。有
(__bk__3,、0一)的次_函一__数条__y直_=_k线_x_+_b。(k≠0)的图象是过点(0,__b_),
4、正比例函数y=kx(k≠0)的性质: ⑴当k>0时,图象过一__、__三__象限;y随x的增大而_增__大_。 ⑵当k<0时,图象过二__、__四__象限;y随x的增大而_减__小_。
答:最低运费是10300元。
达标测试
1、在下列函数中, x是自变量, y是x的函数, 那些是一
一次函数专题(优秀课件)
本课件旨在介绍一次函数的概念、性质以及应用。通过丰富的图像和实例, 帮助学生掌握一次函数的基本知识,并运用于实际生活中。
预备知识
数轴及其应用
学习数轴的表示方法以及在实际问题中的应 用。
点、直线、平面与向量的基本概念
掌握点、直线、平面和向量的基本概念和特 征。
直线方程的表示方法及性质
一次函数的变形及 其图像
研究一次函数的变形形式, 探索其对图像的影响。
一次函数的复合与 反函数
介绍一次函数的复合运算和 反函数的概念及计算方法。
课堂练习与评价
练习题与解答
提供一些针对一次函数知识的 练习题和详细解答。
讲解与展示
互动问答与评价
通过教师的讲解和学生的展示, 加深对一次函数的理解。
通过互动问答和评价,激发学 生的思考和参与度。
了解直线方程的不同表示方法及其性质。
线性函数的定义、图像、性质
学习线性函数的定义,绘制其图像并了解其 性质。
一次函数的定义
1 什么是一次函数
介绍一次函数的定义和 特点。
2 一次函数的标准式
及相关概念
学习一次函数的标准表 示形式以及与之相关的 概念。
3 一次函数的图像及
其性质
绘制一次函数的图像, 并讨论其性质和变化规 律。
一次函数的应用
1
一次函数解决实际问题的方法
2
和步骤
介绍使用一次函数解决实际问题的基
本方法和步骤。
3
一次函数在实际生活中的应用
探索一次函数在实际问题中的应用场 景,如经济、物理等领域。
一次函数的不等式及其应用
探讨一次函数不等式的求解方法及实 际应用。
一次函数的拓展
一次函数的动点问题
利用一次函数解决动点问题的方法
解决动点问题的方法包括确定物体的起始位置和速度,并结合一次函数的方程来计算物体在不同时间点的位置。 这样可以提供关于物体运动情况的详细信息。
一次函数动点问题的应用领域
一次函数的动点问题在物理学、经济学、生态学等领域有着广泛的应用。它可以帮助我们更好地理解和描述物 体在运动过程中的变化规律。
一次函数动点问题的例子
动点问题是指通过建立一次函数的方程来描述物体在运动过程中的位置情况。 例如,一辆行驶中的小车,它的位置可以用一次函数来描述。
如何根据实际问题建立一次函 数的方程
建立一次函数的方程需要根据实际问题中的已知条件进行分析和推导。通常 可以利用直线上两点的坐标来确定斜率和截距,从而建立方程。
一次函数的动点问题
一次函数是一种形式为y = ax + b的函数,它具有直线的特点。在这个演示中, 我们将探讨一次函数的动点问题及其应用。
一次函数的定义
一次函数是一种具有线性关系的Fra bibliotek数,变量x的最高次数为1。它的图像是一条直线,具有斜率和截距两个重要 特征。
一次函数的图像
一次函数的图像是一条直线,可以通过斜率和截距来确定。斜率决定了直线 的倾斜程度,而截距决定了直线与y轴的交点。
总结与展望
通过本次演示,我们对一次函数的动点问题有了更深入的了解。希望这些知 识能够帮助你在实际问题中应用一次函数,并进一步探索更多数学的奥秘。
一次函数与面积的关系动点问题PPT
2
3
2
3
2x 18
∵点P在第二象限内,且在直线EF上运动
∴- 9<x<0
3
如图,直线y = kx+6与x轴y轴分别相交于点E,F. 点E的 坐标为(- 9, 0), 点A的坐标为(- 6,0). 点P(x,y)是 第二象限内的直线上的一个动点。 (3)探究:当△OPA的面积为3.6时,求P的坐标
成两部分。
x
(1)求△ABO的面积。 y1 B P
(2)若△ABO被直线CP分成 的两部分面积相等,求点
C
Ay
P的坐标及直线CP的函数表达式。
y2
11
3.如图,一次函数y=kx+1.5 的图象过点M(2,0),与 正比例函数y= —1.5x的图象交于点A,过点A作AB垂直 于x轴于点B。 (1)求k的值并计算y=kx+1.5图象与坐标轴围成的三角 形的面积;
一次函数与面积的关系 动点问题
1
例1.如图,直线y=kx+6与x轴y轴分别相交于点E,F.点E的
坐标为(- 9, 0),点A的坐标为(-6,0),点P(x,y)是第二
象限内的直线上的一个动点。
(1)求k的值;
(2)当点P运动过程中,试写出△OPA的面积S与x的函数
关系式,并写出自变量x的取值范围;
2
x
6)
(x,y)p F
∵点P在第二象限
3
PH 2 x 6 2 x 6
3
3
E
A(-6,0) H O
x
∵ A(6,0) OA 6
S△OPA
1 OA PH 2
1 6(2 x 6) 2x 18
OA=__6__,PH=_|_2|_yx_|_6_|。
一次函数与图形变换下的动点问题 PPT(1001)
C
(0,4)
B
●
P
O
●
(4,0)
A
x
D
探究变式 三
最值问题
y x 4
三、2、如图,取OA的中点D, 动点P运动过程中,是否存在某 一位置,使得△POD的周长最小? 最小周长是多少?
(0,4) C
P
● ●
y
B
●D′
O
(4,0)
A
x
D
探究变式四
特殊三角形问题
y x 4
y
(0,4)
点P的行程为 数关系式.
s,
O
x,求 s 与 x 的函
. p A
探究变式一
面积问题
y x 4 y(0,4) C
一·I在上图中以点O为坐标原点、 以OA所在的直线为 x 轴建立平面 直角坐标系,做直线AC . 0 )、 1、点 A 坐标为( 4 , 点 C 坐标( 0 , 4 ) 直线AC的函数表达式:
x
探究变式 三
最值问题
y x 4
三、2、如图,取OA的中点D, 动点P运动到何处时,△POD的 周长最小?最小周长是多少?
C
y(0,4)
●
B P
P
● ●
(4,0)
A
x
O
D
探究变式 三
最值问题
y x 4
y
三、2、如图,取OA的中点D, 动点P运动过程中,是否存在某 一位置,△POD的周长最小?最 小周长是多少?
B
y x 4
(4,0)
O A
x
探究变式 一
2、若P是直线AC上 的一动点,点P的横 坐标为 x , △OAP的 面积为 S ,求 S 与 x 的函数关系式.
一次函数与动点问题 ppt课件
一次函数与动点问题
3
思维体操第二节——思绪飞扬
教材母题:动点与图形面积问题 点P(x,y)在第一象限,且x+y=8,点A的坐标 为(6,0),设△OPA的面积为S (1)用含x的解析式表示S,写出x的取值范围, 画出函数图象。 (2)当点P的横坐标为5时,△OPA的面积为多少? (3)△OPA的面积能大于24吗?为什么?
一次函数与动点问题
一次函数与动点问题
1
思维体操第一节——思维预热
1、若直线y=kx+b垂直于直线y=3x+2,且它在y轴 上的交点坐标为 (0, 5) 则k= ,b= 。 2、如下图,函数y=2x+4(-2≤x≤0)的图象是( )
4 -2
A
-2
B
C
一次函数与动点问题
D
2
思维体操第一节——思维预热
一次函数与动点问题
7
思维体操第六节——思如泉涌
教材母题变式四:含参数的动点问题 点P(x,8)在第一象限,点A的坐标为(6,0), 过点P作直线y=x+b交线段OA 于E,设△OPE的面 积为S ,求S关于b的函数关系式及自变量b的取值 范围。
一次函数与动点问题
8
思维体操第七节——思空璀璨
如图,在平面直角坐标系xOy中,已知直线PA是一 次函数y=x+m(m>0)的图象,直线PB是一次函数 y=-3x+n(n>m)的图象,点P是两直线的交点,点A、 B、C、Q分别是两条直线与坐标轴的交点. (1)用m、n分别表示点A、B、P的坐标及∠PAB的度 数;
y
C
QP
A
O
B
一次函数应用经典课件pptPPT课件
在实际应用中,一次函数在解决车辆动力学问题、航空航天器设计等领域中具有广泛的应用。
03
一次函数的实际案例
人口增长模型
总结词
练习题
某股票价格在过去一年内从10元上涨到20元,如果市场环境发生 变化,股票价格可能会如何变化?
THANKS
感谢观看
在实际应用中,线性回归分析被广泛应用于经济、金融、医 学、农业等领域,例如预测股票价格、评估广告效果、研究 疾病与年龄之间的关系等。
速度和加速度的计算
速度和加速度是一次函数在物理学中的重要概念。速度是 描述物体位置变化快慢的物理量,而加速度是描述速度变 化快慢的物理量。
通过一次函数,我们可以表示物体在直线运动中的速度和 加速度随时间的变化关系。这对于理解运动学的基本原理 以及解决相关问题具有重要意义。
一次函数应用经典课件pptppt课 件
• 一次函数的基本概念 • 一次函数的应用场景 • 一次函数的实际案例 • 一次函数与其他数学知识的结合 • 一次函数在实际问题中的应用练习
01
一次函数的基本概念
一次函数的定义
一次函数是形如$y = ax + b$的函数,其 中$a$和$b$是常数, 且$a neq 0$。
Hale Waihona Puke 经济学中的成本和收益问题在经济学中,成本和收益是核心概念之一。通过一次函数,我们可以表示成本和 收益与生产量之间的关系。例如,固定成本、可变成本与总成本之间的关系,以 及总收入与销售量之间的关系。
了解成本和收益的变化规律对于企业制定生产计划、进行市场预测以及制定价格 策略等具有重要意义。
《一次函数》ppt完美课件3
x y=-x+1
的正、负对函数图象有 什么影响?
当k>0时,y随x的增
大而增大;当k<0时,y
随x的增大而减小.
y=-2x+1
《一次函数》完美实用课件3(PPT优 秀课件 )
《一次函数》完美实用课件3(PPT优 秀课件 )
五、回顾与反思
在本节课中,我们经历了怎样的过程?有怎 样的收获?
1.一次函数的图象与性质,常数k,b的意义 和作用.
《一次函数》完美实用课件3(PPT优 秀课件 )
3.备选题.
(1)将直线y=3x向下平移2个单位,得到直
线
.
(2)下列一次函数中,y随x的增大而减小的
是( )
A.y3x2 B.y 1 x 1 3
C.y3 3x D.y 31 x
《一次函数》完美实用课件3(PPT优 秀课件 )
《一次函数》完美实用课件3(PPT优 秀课件 )
第十九章 一次函数
19.2 一次 函数 19.2.2 一次函数(第二课时)
学习目标
1、正确理解一次函数的图象与k,b之间的关系。 2.体会研究函数的一般步骤与方法。
一、复习与反思
1.正比例函数的图象与性质.
一般地,正比例函数y=kx(k是常数,k≠0)的图象 是一条经过原点的直线,我们称它为直线y=kx.
《一次函数》完美实用课件3(PPT优 秀课件 )
三、巩固与应用
画出函数y=2x-1与y=-0.5x+1的图象.
x
01
y=2x-1 y
y=2x-1 -1 1
y=-0.5x+1 1 0.5
1
-1 O
-1
1
x
y=-0.5x+1
一次函数与面积的关系动点问题
一次函数与面积的关系
当函数的导数为常数时,函数的图像为
图像下面积的计算
2
直线,与x轴和y轴围成的图形面积与x轴 之间的积分成正比,即面积等于函数导
在一次函数的图像下方,面积与反比例
数在定义域上的积分。
函数成正比,可以通过用反比例函数来
计算函数面积。
3
图像上方面积的计算
在一次函数的图像上方,面积பைடு நூலகம்反比例
一次函数与面积的关系动 点问题
在本次的PPT中,我们将会一起探究一次函数与面积的关系动点问题。了解什 么是一次函数,如何求解函数的解析式以及如何计算面积的变化。让我们开 始吧!
什么是一次函数?
一次函数是指函数的最高次项为1的一类函数。它具有简单的线性关系,对于初学者来说是数学 中的基础。
1 定义和性质
将复杂图形分解成若干个简单图形,计算每个图形的面积,然后将它们相加起来。
2
特殊图形的面积计算
掌握特殊图形的计算公式,如扇形和梯形的面积计算公式。
3
应用例题
用面积的知识解决实际问题。
探究一次函数与面积的关系
了解一次函数与面积之间的关系,探究线性函数的图像和面积之间的联系,以及如何在图像上求解面积。
1
了解线性函数的基本概念和特点。
2 解析式的确定
掌握如何根据给定的条件来确定一次函数的解析式。
3 实际问题求解
学会如何用一次函数的知识解决实际问题。
面积的定义和性质
面积是二维图形所占的空间大小。它是一种抽象的概念,但是却具有广泛的应用。
面积的定义
通过正方形面积的概念引入面积的定义。
面积的性质
了解面积在几何学中的一些基本性质,比如面积叠 加和面积不变形。
《一次函数》PPT课件(第1课时)
探究新知 观察以上出现的四个函数解析式,它们是不是正比例函
数,那么它们共同的特征如何表示呢? (1) c = 7 t - 35 (2) G = h -105 (3) y = 0.1 x + 22 (4) y = -5 x + 50
y = k(常数)x + b(常数)
探究新知
一般地,形如y=kx+b (k, b 是常数,k≠0)的函数,叫 做一次函数.
(2)由题意得:m+1=0 , 解得m= -1.
探究新知
知识点 2 利用一次函数解答实际问题
汽车油箱中原有油50升,如果汽车每行驶50千米耗油9升,
求油箱的油量y(单位:升)随行驶路程x(单位:千米)变化的
函数关系式,并写出自变量的取值范围,y 是 x 的一次函数吗?
解:油量y与行驶时间x的函数关系式为:y
50
9 50
x,
自变量x的取值范围是0≤x≤
2500 9
.
函数
y
50
9x 50
,是x的一次函数.
巩固练习
如果长方形的周长是30cm,长是xcm,宽是ycm. (1)写出y与x之间的函数解析式,它是一次函数吗? (2)若长是宽的2倍,求长方形的面积.
解:(1)y=15-x,是一次函数. (2)由题意可得x=2(15-x). 解得x=10,所以y=15-x=5. ∴长方形的面积为10×5=50(cm2).
课堂检测
拓广探索题
如图,△ABC是边长为x的等边三角形.
(1)求BC边上的高h与x之间的函数解析式.h是x的一次函数吗?
如果是,请指出相应的k与b的值.
A
解: (1)∵BC边上的高AD也是BC边上的中线,
一次函数专题复习ppt课件
y=kx+b
方程kx+b=0直线 与的y 1k1
x
b1
y k b 交点 x
2
2
2
y=kx+b
y>0时
y<0时
方程 组
y k b 1
x
1
1 的解
y 2
k
2
x
b2
kx+b>0
kx+b<0
已知y=(m-2)x-(m-4)是y关于x的一次函数。 (1)求m的取值范围
(2) 若2<m<4,函数图像经过哪几个象限?
本节课你学会了哪些方法? 学会了哪些知识?
1、(2015•陕西)设正比例函数y=mx的图像经过点A(m, 4),且y随x的增大而减小,则m=() A、2 B、-2 C、4 D、-4 2、(2016•陕西)已知一次函数y=kx+5和y= x+7,假设k>0,
<0,则这两个一次函数图像交点在() A、第一象限 B、第二象限 C、第三象限 D、第四象限
(6) 若此函数图像经过点(2,5),请画出此一次
函数图像,根据图像回答下列问题:
y
① 求出一次函数与两坐标轴的交点;
② 不解方程求出(m-2)x-(m-4)=0时方
程的解;
③ 求不等式(m-2)x-(m-4)>-1的解;
O
x
④ 求出图像与两坐标轴围成的面积。
(7)一次函数y=kx+b与(6)中一次函数交点坐标为(1, y),与y轴交点坐标为(0,4)
5、(2016•陕西)昨天早晨7点,小明乘车从家出发,去西安参加中学生科 技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中, 他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象. 根据下面图象,回答下列问题: (1)求线段AB所表示的函数关系式; (2)已知昨天下午3点时,小明距西安112千米,求他何时到家?
一次函数之动点问题(含解析)
一次函数之动点问题一、 框架套路和标准动作动点问题的特征是速度已知,主要考查运动的过程. 1. 一次函数背景下研究动点问题的思考方向:①把函数信息(坐标或表达式)转化为背景图形的信息; ②分析运动过程,注意状态转折,确定对应的时间范围; ③画出符合题意的图形,研究几何特征,设计解决方案. 2. 解决具体问题时会涉及线段长的表达,需要注意两点:①路程即线段长,可根据s=vt 直接表达已走路程或未走路程;②根据研究几何特征的需求进行表达,既要利用动点的运动情况,又要结合背景图形信息.二、 例题解析(1)读题标注,整合信息(即研究背景图形)由直线AB 的表达式y +()(400A B -,,, 即4OA OB ==,8AB =,∠BAC =60°.又由∠ABC =60°, 可得△ABC 是等边三角形,且AB =BC =AC =8,OA =OC =4. 如图:(2)分析特征,有序思考,设计方案(分析运动过程): 分析运动过程,核心是运动过程的四要素:①起点、终点、速度;②时间范围;③状态转折点;④目标.具体操作:①起点、终点、速度;动点P 从点A 沿AC 向点C 运动,可以确定点P 的起点(点A )、终点(点C ),速度为1/s ;动点Q 从点C 沿CB —BA 向点A 运动,可以确定点Q 的起点(点C )、终点(点A ),速度为2/s ,图示如下:AQ :BC (2/s)(1/s)A P :②时间范围根据路程、时间和速度的公式s =vt ,已知动点的速度,结合基本图形中线段长的研究,可以确定动点的运动时间.例如:动点P 的速度是1/s ,AC =8,故动点P 由A 到C 共经过8s ;动点Q 的速度是2/s ,CB =BA =8,故每段各走4s ,共8s ,综上0≤t ≤8.图示如下:AQ :B C4s(2/s)(1/s)(0≤t ≤8)A P :③状态转折点状态转折点即点的运动发生变化的点,常常为动点的运动方向发生改变、或者是动点的速度发生改变.例如:动点P 从点A 到点C ,速度和方向均未变化,故点P 没有状态转折点;动点Q 从点C 沿CB —BA 向点A 运动,在点B 处运动方向发生了变化,故点B 为状态转折点,由状态转折点可对运动过程进行分段.图示如下:4 < t ≤ 80 ≤ t ≤ 4①②Q :C(2/s)(1/s)(0≤t ≤8)A P :④确定目标确定目标是正确高效解题的保证,是有序操作的重要一环.本题求S 与t 之间的函数关系式,即用t 来表示△APQ 的面积S .图示如下:△APQ S (t )4 < t ≤ 80 ≤ t ≤ 4①②Q :C(2/s)(1/s)(0≤t ≤8)A P : (3)根据方案作出图形、有序操作(分段作图,求解)作图需要充分借助动点的运动路线图,利用运动路线图可以确定每段时间范围内点的位置. 例如:①当04t ≤≤时,点P 在AO 上,点Q 在CB 上,连接AQ ,PQ ;要求△APQ 的面积,先从表达开始,可以表达动点的已走路程,得到AP =t ,CQ =2t 。
一次函数动点问题专题训练PPT课件
2020/1/1
12
8、如图在边长为2的等边△ABC中,E是AB边上不同于点A、点
B
的一动点,过点E作ED⊥BC于点 D,过点D作DH⊥AC于点
H, 过点H作HF⊥AB于点F,设BE的长为x,AF的长为y; ⑴求y与x的函数关系式,并写出自变量的范围; ⑵当x为何值时,点E与点F重合,判断这时△EDH为什么三角形
A.4个 B.5个 C.6个 D.7个
6. 如图1,点A的坐标为(1,0),点B在直线
段AB最短时,点B的坐标为( )
1
A.(0,0) B. ( 2,-
1
) 2C.(
,-
) 22D.(- 22,
)
上运动,当线
11 22
2020/1/1
图1
11
7.直线y=-x+2与x轴,y轴分别交于点A和点B,另一直线 y=kx+b经过点C(1,0),且把△AOB分成两部分.
(1)填空:BQ=
,PB=
(用含x的代数式表示);
(2)当x为何值时,PQ∥AC?
(3)当x为何值时,△PBQ为直角三角形?
2020/1/1
5
例4. 如图,矩形ABCD中,AB=6,BC=8,点P从A出发沿
A→B→C→D的路线移动,设点P移动的路程为x,△PAD 的面积为y.
(1)写出y与x之间的函数关系式,并在坐标系中画出这个函数 的图象.
(2)求当x=4和x=18时的函数值. (3)当x取何值时,y=20,并说明此时点P在矩形的哪条边上
2020/1/1
6
小结:在动点的运动过程中观察图形的变化情况,
一次函数图像专题详解PPT讲稿
减小
当前你正在浏览到的事第六页PPTT,共十六页。
练习:一次函数y=kx+b的图象如图, 请尽可能多的说出你知道的结论.
y
1
o
11
x
2
当前你正在浏览到的事第七页PPTT,共十六页。
1、拖拉机开始工作时,油箱中有油40升,如果每小
时耗油5升,那么工作时,油箱中的余油量Q(升
)与工作时间t(小时)之间的函数关系用图象可
表示为( )
40 Q
o
8t
(A) Q
40
O
8t
C
Q 40
O Q 40 O
8 (B)
8
注
意自变来自t量的取
值
t
范 围
(C)
当前你正在浏览到的事第八页PPTT,共十六页。
k≠0
当前你正在浏览到的事第四页PPTT,共十六页。
2.一次函数的图象 一次函数y=kx+b(k≠0)的图象与k,b符号的关系:
k__>_0,b___0 > k___0,b>___0 k___<0,b___0 < k___0,b>___0
<
<
当前你正在浏览到的事第五页PPTT,共十六页。
3.一次函数的性质
元;
40
1 Y= 5x+20
72元
Y(元)
60 40 20
O
100
200
当前你正在浏览到的事第十页PPTT,共十六页。
X(度)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数关系式。
2020/1/1
4
例3、如图1,等边△ABC中,BC=6cm,现有两个动点P、Q分
别从点A和点B同时出发,其中点P以2cm/s的速度沿AB向终点
B
移动;点Q以1cm/s的速度沿BC向终点C移动,其中一点到终
点,另一点也随之停止.连接PQ,设动点运动时间为x秒.
A.3
B.4 C.5 D.6
D
C
P
A
BO
图1
2 5x 图2
2020/1/1
8
2020/1/1
9
3. 如图,平面直角坐标系中,在边长为1的正方形ABCD的边
上
有一动点P,沿
运动一周,则P的纵坐标y与点P
走过的路程s 之间的函y 数关系用y 图象表y示大致是y ( )
2
2
2
2
1
1
1
1
O 123 4 s O 123 4 sO 123 4 sO 123 4 s
(判断形状,不需证明).
2020/1/1
13
9、如图,正方形ABCD的边长为6cm,动点P从A点出发,在
正方形的边上由A→B→C→D运动,设运动的时间为t(s),
△APD的面积为S(cm2),S与t的函数图象如图所示,
请回答下列问题:
(1)点P在AB上运动时间为 s,在CD上运动的速度为
cm/s,
2020/1/1
15
2020/1/1
16
△APD的面积S的最大值为cm2;(2)求出点P在CD上运动时S与t的函数解析式;
(3)当t为
s时,△APD的面积为10cm2.
2020/1/1
14
10、如图1所示,在直角梯形ABCD中,AB∥DC,∠B=90°.动点 P从点B出发,沿梯形的边由B→C→D→A运动.设点P运动的 路程为x,△ABP的面积为y.把y看作x的函数,函数的图象 如图2 所示,试求当0≤x≤9时y与x的函数关系式.
A.4个 B.5个 C.6个 D.7个
6. 如图1,点A的坐标为(1,0),点B在直线
段AB最短时,点B的坐标为( )
1
A.(0,0) B. ( 2,-
1
) 2C.(
,-
) 22D.(- 22,
)
上运动,当线
11 22
2020/1/1
图1
11
7.直线y=-x+2与x轴,y轴分别交于点A和点B,另一直线 y=kx+b经过点C(1,0),且把△AOB分成两部分.
2020/1/1
1
学习目标:
1.从变换的角度和运动变化来研究函数图像,来探索 与发现图形性质及图形变化,解题过程中渗透空间 观念和合情推理。
2.选择基本的几何图形,让学生经历探索的过程,以 能力立意,考查学生的自主探究能力,培养学生解 决问题的能力.
3.体会数学思想:分类思想,函数思想 ,方程思想 , 数形结合思想 ,转化思想。
2020/1/1
7
自我检测:
1.如图,正方形ABCD的边长为5,P为CD边上一动点,设DP的长 为x,
的面积为y,写出y与x之间的函数关系式,及自变量x的取值 范围。
2.如图1,在直角梯形ABCD中,动点P从点B出发,沿BC,CD
运动至点D停止.设点P运动的路程为x,△ABP的面积为y,
如果y关于x的函数图象如图2所示,则△BCD的面积是( )
(2)求当x=4和x=18时的函数值. (3)当x取何值时,y=20,并说明此时点P在矩形的哪条边上
2020/1/1
6
小结:在动点的运动过程中观察图形的变化情况,
需要理解图形在不同位置的情况, 才能做好计算推理的过程。 在变化中找到不变的性质是解决数学 “动点”探究题的基本思路,这也是动态几何 数学问题中最核心的数学本质。
(3)探究:当点P运动到什么位置时,△OPA的面积为 ,27
并说明理由。
8
y
F
E A
ox
2020/1/1
3
例2. 如图,直线OC、BC的函数关系式分别为y=x和y=-2x+6,
动点P(x,0)在OB上移动(0<x<3),
⑴求点C的坐标; ⑵若A点坐标为(0,1),当点P运动到什么位置时(它的坐标
是什么),AP+CP最小;
A.
B.
C.
D.
4、如果一次函数y=-x+1的图象与x轴、y轴分别交于点A点、 B点,点M在x轴上,并且使以点A、B、M为顶点的三角形 是等腰三角形,那么这样的点M有( )。 A.3个 B.4个 C.5个 D.7个
2020/1/1
10
5、直线与y=x-1与两坐标轴分别交于A、B两点,点C在坐标轴上, 若△ABC为等腰三角形,则满足条件的点C最多有( ).
学习重点:综合运用一次函数和其它知识解决
动点问题
2020/1/1
2
例1、如图,直线
与x轴、y轴分别交于点E、F,点E的
坐标为(-8,0),点A的坐标为(-6,0)。
(1)求k的值。
(2)若点P(x,y)是直线上的一个动点,在点P的运动过程中,
试写出△OPA的面积S与x的函数关系式,并写出自变量x
的取值范围;
(1)填空:BQ=
,PB=
(用含x的代数式表示);
(2)当x为何值时,PQ∥AC?
(3)当x为何值时,△PBQ为直角三角形?
2020/1/1
5
例4. 如图,矩形ABCD中,AB=6,BC=8,点P从A出发沿
A→B→C→D的路线移动,设点P移动的路程为x,△PAD 的面积为y.
(1)写出y与x之间的函数关系式,并在坐标系中画出这个函数 的图象.
(1)若△AOB被分成的两部分面积相等,求k和b的值 (2)若△AOB被分成的两部分的面积比为1:5,求k和b的值.
2020/1/1
12
8、如图在边长为2的等边△ABC中,E是AB边上不同于点A、点
B
的一动点,过点E作ED⊥BC于点 D,过点D作DH⊥AC于点
H, 过点H作HF⊥AB于点F,设BE的长为x,AF的长为y; ⑴求y与x的函数关系式,并写出自变量的范围; ⑵当x为何值时,点E与点F重合,判断这时△EDH为什么三角形