人教版八年级数学上册第十一章测试题及答案

合集下载

人教版八年级上册数学 第十一章测试题含答案

人教版八年级上册数学 第十一章测试题含答案

人教版八年级上册数学第十一章测试题11.1练习题1.下面四个图形中,线段BD是△ABC的高的是()2.如图,在△ABC中,∠1=∠2,G是AD的中点,延长BG交AC于点E,CF⊥AD于点H并交AB于点F,下列判断:①AD是△ABE的角平分线;②BE是△ABD的AD边上的中线;③CH是△ACG,△ACH,△ACD的高;④ AH是△ACF的角平分线和高;⑤CG是△ACD的中线.其中正确的有()A.1个B.2个C.3个D.4个3.如图①为一张△ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图②所示.若△ABC的面积为80,△DBC 的面积为50,则BP与PC的长度比为()A.3∶2B.5∶3C.8∶5D.13∶84.AD是△ABC的中线,如果△ABD比△ACD的周长多6 cm,那么AB 与AC的差为.5.如图,AD是△ABC的中线,CE是△ACD的中线,S△ACE=4 cm2,则S△ABC= .6.如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.AB=2BFB.∠ACE=1∠ACB2C.AE=BED.CD⊥BE7.下列说法错误的是()A.三角形的角平分线能把三角形分成面积相等的两部分B.三角形的三条中线、角平分线都相交于一点C.直角三角形的三条高交于三角形的一个顶点D.钝角三角形的三条高所在直线的交点在三角形的外部8.下面四个图形中,作△ABC的边AB上的高,正确的是()9.如图,AE⊥BC于点E,则图中以AE为高的三角形共有()A.15个B.14个C.10个D.5个第9题图10.四边形ABCD的对角线AC和BD相交于点E,如果△CDE的面积为3,△BCE的面积为4,△AED的面积为6,那么△ABE的面积为()A.7 B.8 C.9 D.10第10题图11.如图,点D,E分别是线段BC,AD的中点,S△ABC=40 cm2,BC=10 cm,则△BDE中BD边上的高为()A.4 cmB.5 cmC.7 cmD.8 cm12.桥梁拉杆,电视塔底座,都是三角形结构,这是利用三角形的性.13.在Rt△ABC中,∠ACB=90°,AC=3 cm,BC=4 cm,CD是AB边的中线,则AC边上的高为cm,△BCD的面积为cm2.第13题图14.如图,在△ABC中,点D,E,F分别为BC,AD,CE的中点,且S△ABC=6 cm2,则S△BEF的值为 1.5cm2.第14题图15.已知AD是△ABC的高,∠ABC=30°,∠CAD=50°,则∠BAC的度数为.16.如图,D是△ABC中BC上的一点,DE∥AC交AB于点E,DF∥AB 交AC于点F,且∠ADE=∠ADF,AD是△ABC的角平分线吗?说明理由.17.在△ABC 中,AB=AC ,中线BD 将这个三角形的周长分为12 cm 和15 cm 两个部分,求这个三角形的三边长.18.阅读与理解:三角形的中线的性质:三角形的中线等分三角形的面积, 即:如图①,AD 是△ABC 中BC 边上的中线, 则S △ABD =S △ACD =12S △ABC .理由:∵BD=CD ,∴S △ABD =12BD ×AH=12CD ×AH=S △ACD =12S △ABC ,即:等底同高的三角形面积相等. 操作与探索:在图②至图④中,△ABC 的面积为a.(1)如图②,延长△ABC的边BC到点D,使CD=BC,连接DA,若△ACD 的面积为S1,则S1= (用含a的代数式表示);(2)如图③,延长△ABC的边BC到点D,延长边CA 到点E,使CD=BC,AE=CA,连接DE,若△DEC的面积为S2,则S2= (用含a的代数式表示),并写出理由;(3)在图③的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF(如图④),若阴影部分的面积为S3,则S3= (用含a的代数式表示).拓展与应用:如图⑤,已知四边形ABCD的面积是a,E,F,G,H分别是AB,BC,CD,AD的中点,求图中阴影部分的面积.答案:1. D2. C3. A4. 6cm5. 16cm26. C7. A8. C9. A10. B11. A12. 稳定13. 4 314. 1.515. 10°或110°16. 解:AD是△ABC的角平分线. 理由:∵DE∥AC,DF∥AB,∴∠ADE=∠DAF ,∠ADF=∠EAD. 又∵∠ADE=∠ADF , ∴∠DAF=∠EAD.又∵∠DAF+∠EAD=∠BAC , ∴AD 是△ABC 的角平分线.17. 解:设AB=AC=x cm ,BC=y cm.列出方程组,得 {x +12x =12,12x +y =15或 {x +12x =15,12x +y =12.解得 {x =8,y =11或 {x =10,y =7.经验算均符合.所以这个三角形的三边长为8 cm ,8 cm ,11 cm 或10 cm ,10 cm ,7 cm. 18. 解:(1)a (2)2a理由:如答图①,连接AD ,∵S △ABC =S △ACD =S △AED =a ,∴S △DCE =2a.答图①(3)6a拓展与应用:如答图②,连接AO ,BO ,CO ,DO ,∵S △AOE =S △BOE =12S △AOB ,S △BOF =S △COF =12S △COB ,S △COG =S △DOG =12S △COD ,S △DOH =S △AOH =12S △AOD ,∴阴影部分面积=12S 四边形ABCD =12a.答图②11.2练习题1.如图,AD 是△ABC 的外角∠EAC 的平分线,AD ∥BC ,∠B=32°,则∠C 的度数是( )A.64°B.32°C.30°D.40°2.如图,在△ABC中,直线DE分别交AB,AC于点D,E,DE∥BC,∠1=105°,∠B=65°,则∠A的度数是()A.30°B.40°C.50°D.60°3.在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1= .4.如图,已知∠B=16°,∠C=24°,∠BOC=128°,求∠A的度数.解:如答图,延长CO交AB于点D,∵∠BDO=∠BOC-∠B=128°-16°=112°,∴∠A=∠BDO-∠C=112°-24°=88°.5.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB为.6.如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是()A.15°B.30°C.45°D.60°7.如图,AD是△ABC的角平分线,若∠ADB=115°,∠C=65°,求∠B的度数.8.下列图中,∠1不是△ABC的外角的是()A.③④B.①②C.②③④D.①③④9.如图,下列说法中错误的是()A.∠1不是△ABC的外角B.∠ACD是△ABC的外角C.∠ACD=∠A+∠BD.∠B=∠110.如图,∠ABD,∠ACD的平分线交于点P,若∠A=55°,∠D=15°,则∠P的度数为()A.15°B.20°C.25°D.30°11.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°12.如图,∠BCD=150°,则∠A+∠B+∠D的度数为()A.110°B.120°C.130°D.150°第12题图13.将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°第13题图14.将一副三角板如图叠放,则图中∠α的度数为.第14题图15.如图,∠A+∠B+∠C+∠D+∠E的度数是.第15题图16.如图,△ABC中,BI,CI分别平分∠ABC,∠ACB,且∠BIC=140°,BM,CM分别平分△ABC的外角∠DBC,∠BCE,则∠BMC= .17.如图,已知D为△ABC的边BC延长线上一点,DF⊥AB于点F交AC于点E,∠A=35°,∠D=42°,求∠ACD的度数.18.一个零件的形状如图所示,按规定∠A应为90°,∠B,∠C应分别是30°和20°,李叔叔量得∠BDC=142°,就判定这个零件不合格,你能说出其中的道理吗?19.如图,在△ABC中,AD是高,∠DAC=10°,AE是△BAC外角的平分线,BF平分∠ABC交AE于点F,若∠ABC=46°,求∠AFB的度数.20.如图,已知BD是∠ABC的平分线,CD是△ABC的外角∠ACE的平分线,CD与BD交于点D.(1)若∠A=50°,则∠D= .(2)若∠A=80°,则∠D= .(3)若∠A=130°,则∠D= .(4)若∠D=36°,则∠A= .(5)综上所述,你会得到什么结论?证明你的结论的准确性.答案:1.B2.B3. 120°4.答图解:如答图,延长CO交AB于点D,∵∠BDO=∠BOC-∠B=128°-16°=112°,∴∠A=∠BDO-∠C=112°-24°=88°.5. 10°6. B7.解:∵∠CAD=∠ADB-∠C=115°-65°=50°,又AD是△ABC的角平分线,∴∠CAB=2∠CAD=100°,∴∠B=180°-∠CAB-∠C=180°-100°-65°=15°.8. A9.D10.B11.C12.D13.C14. 15°15. 180°16. 40°17. 解:∵DF⊥AB,∠D=42°,∴∠B=90°-∠D=90°-42°=48°.∴∠ACD=∠B+∠A=48°+35°=83°.18.解:如答图,连接AD并延长,∵∠1=∠B+∠BAD,∠2=∠C+∠CAD,又∠B=30°,∠C=20°,∴∠BDC=∠1+∠2=∠B+∠BAD+∠DAC+∠C=∠B+∠BAC+∠C. ∴∠BAC=∠BDC-∠B-∠C=142°-30°-20°=92°≠90°,∴这个零件不合格.19.解:∵AD是高,∴∠ADB=90°,∴∠BAD=90°-∠ABC=44°.又∠DAC=10°,∴∠BAC=54°,∴∠MAC=126°.∵AE是△BAC外角的平分线,∴∠MAE=1∠MAC=63°.2∠ABC=23°,∵BF平分∠ABC,∴∠ABF=12∴∠AFB=∠MAE-∠ABF=40°.20.(1) 25°(2)40°(3)65°(4)72°∠A.(5)解:∠D=12证明:∵BD是∠ABC的平分线,CD是∠ACE的平分线,∴∠ACE=2∠2,∠ABC=2∠1.∵∠ACE=∠ABC+∠A,∴2∠2=2∠1+∠A.而∠2=∠1+∠D,∴2∠2=2∠1+2∠D,∴∠A=2∠D,∠A.即∠D=12人教版八年级数学上册课时练第十一章三角形 11.3 多边形及其内角和一、单选题1.若一个多边形的内角和与外角和之和是1800°,则此多边形是()边形.A.八B.十C.十二D.十四2.如果一个多边形的每一个外角都等于45°,则这个多边形的边数为()A.3 B.4 C.5 D.83.一个正多边形的边长为2,每个内角为135°,则这个多边形的周长是( ) A .8B .12C .16D .184.如图①,一张四边形纸片,, ,若将其按照图②所示方式折叠后,确好,,则的度数为( )A .B .C .D .5.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是 A .8B .9C .10D .126.如图,直线AB ∥CD ,点F 在直线AB 上,点N 在直线CD 上,∠EFA =25°,∠FGH =90°,∠HMN =25°,∠CNP =30°,则∠GHM =( )A .45°B .50°C .55°D .60°7.图1是二环三角形,S =∠A 1+∠A 2+…+∠A 6=360,图2是二环四边形,S =∠A 1+∠A 2+…+∠A =720,图3是二环五边形,S =∠A 1+∠A 2+…+∠A =1080…聪明的同学,请你直接写出二环十边形,S =_____________度( )110B ︒∠=150D ︒∠=//MA BC '// NA DC 'C∠45︒50︒55︒60︒()810A .1440B .1800C .2880D .36008.如图,一个凸六边形的六个内角都是120°,六条边的长分别为a ,b ,c ,d ,e ,f ,则下列等式中成立的是( )A .a+b+c=d+e+fB .a+c+e=b+d+fC .a+b=d+eD .a+c=b+d 9.如图,已知∠A=n °,若P 1点是∠ABC 和外角∠ACE 的角平分线的交点,P 2点是∠P 1BC 和外角∠P 1CE 的角平分线的交点,P 3点是∠P 2BC 和外角∠P 2CE 的交点…依此类推,则∠P n =( )A .B .C .D .10.一条长为17.2cm 、宽为2.5cm 的长方形纸条,用如图的方法打一个结,然后轻轻拉紧、压平,就可以得到如图所示的正五边形ABCDE .若CN +DP =CD ,四边形ACDE 的面积是( )cm 2.A .B .10C .8.6D .643343二、填空题11.已知一个多边形的所有内角与它的一个外角之和是2400°,那么这个多边形的边数是____,这个外角的度数是____.12.用边长相等的正三角形和正六边形地砖拼地板,在每个顶点周围有a块正三角形和b块正六边形的地砖(ab≠0),则a-b的值为________.13.一个多边形的所有内角与这个多边形其中一个外角的和等于2020°,则这个多边形的边数是_________.14.根据如图所示的已知角的度数,求出其中∠α的度数为______.15.将等边三角形、正方形、正五边形按如图所示的位置摆放,如果∠1=40°,∠2=50°,那么∠ 3的度数等于______________.三、解答题16.如图1,已知直线PQ∥MN,点A在直线PQ上,点C、D在直线MN上,连接AC、AD,∠PAC=50°,∠ADC=30°,AE平分∠PAD,CE平分∠ACD,AE与CE相交于E.(1)求∠AEC的度数;(2)若将图1中的线段AD沿MN向右平移到A1D1如图2所示位置,此时A1E平分∠AA1D1,CE平分∠ACD1,A1E与CE相交于E,∠PAC=50°,∠A 1D 1C =30°,求∠A 1EC 的度数.(3)若将图1中的线段AD 沿MN 向左平移到A 1D 1如图3所示位置,其他条件与(2)相同,求此时∠A 1EC 的度数.17.如图1,线段AB 、CD 相交于点O ,连结AD 、CB ,我们把这个图形称为“8字型”根据三角形内角和容易得到:∠A +∠D =∠C +∠B .(1)用“8字型”如图2,∠A +∠B +∠C +∠D +∠E +∠F =___________; (2)造“8字型”如图3,∠A +∠B +∠C +∠D +∠E +∠F +∠G =_____________; (3)发现“8字型”如图4,BE 、CD 相交于点A ,CF 为∠BCD 的平分 线,EF 为∠BED 的平分线. ①图中共有________个“8字型”; ②若∠B :∠D :∠F =4:6:x ,求x 的值.18.如图1,已知直线,且和之间的距离为,小明同学制作了一个直角三角形硬纸板,其中,,.小明利用这块三角板进行了如下的操作探究://EF GH EF GH 1ACB 90ACB ∠=︒60BAC ∠=︒1AC =(1)如图1,若点在直线上,且.求的度数;(2)若点在直线上,点在和之间(不含、上),边、与直线分别交于点和点.①如图2,、的平分线交于点.在绕着点旋转的过程中,的度数是否变化?若不变,求出的度数;若变化,请说明理由;②如图3,在绕着点旋转的过程中,设,,求的取值范19.如图1,在四边形中,,点在边上,平分,且.(1)求证:;(2)如图2,已知交边于点,交边的延长线于点,且平分. 若,试比较与的大小,并说明理由.20.如图,四边形ABCD ,BE 、DF 分别平分四边形的外角∠MBC 和∠NDC ,若∠BAD=α,∠BCD=βC EF 20ACE ∠=︒1∠A EF C EF GH EF GH BC AB GHD K AKD ∠CDK ∠O ABC ∆A O ∠O ∠ABC ∆A EAK n ∠=︒()4310CDK m n ∠=--︒m ABCD A C ∠=∠E AB DE ADC ∠ADE DEA ∠=∠AD BC ∕∕DF BC ⊥BC G AB F DB EDF ∠45BDC ∠<︒F ∠EDF ∠(1)如图,若α+β=120°,求∠MBC+∠NDC的度数;(2)如图,若BE与DF相交于点G,∠BGD=30°,请写出α、β所满足的等量关系式;(3)如图,若α=β,判断BE、DF的位置关系,并说明理由.21.提出问题:(1)如图,我们将图(1)所示的凹四边形称为“镖形”.在“镖形”图中,∠AOC与∠A、∠C、∠P的数量关系为_______.(2)如图(2),已知AP平分∠BAD,CP平分∠BCD,∠B =28°,∠D=48°.求∠P的度数.由(1)结论得:∠AOC =∠PAO +∠PCO+∠P所以2∠AOC=2∠PAO +2∠PCO+2∠P即2∠AOC =∠BAO +∠DCO+2∠P 因为∠AOC =∠BAO +∠B,∠AOC =∠DCO +∠D所以2∠AOC=∠BAO +∠DCO+∠B +∠D所以∠P=_______.解决问题:(3)如图(3),直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的数量关系是_______;(4)如图(4),直线AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE ,猜想∠P 与∠B 、∠D 的数量关系是_______.22.,,且,,求和的度数.23.在四边形中,平分交于点,点在线段上运动.(1)如图1,已知.①若平分,则______;②若,试说明;(2)如图2,已知,试说明平分.【参考答案】1.B 2.D 3.C 4.B 5.A 6.D 7.C 8.C 9.B 10.C 11.15 60°12.0或3AF CD ∥AB DE ∥120A ∠=︒80B ∠=︒D ∠C∠ABCD CE BCD ∠AD E F CE 90A D ︒∠=∠=BF ABC ∠BFC ∠=90BFC ︒∠=12DEC ABC ∠=∠A D BFC ∠=∠=∠BF ABC∠13.1314.50度15.12°16.(1)∠AEC =130°;(2)∠A 1EC =130°;(3)∠A 1EC =40°.17.(1)360°;(2)540;(3)①6;②x =5.18.(1);(2)①不变,;②.19.(1)略;(2),理由略.20.(1)120°; (2)β﹣α=60° 理由略;(3)平行,理由略.21.(1)∠AOC=∠A+∠P+∠C ;(2)38°;(3)∠P=90°+(∠B+∠D );(4)∠P=180°-(∠B+∠D ).22.,的度数分别为,.23.(1)①90°;②略;(2)略.170∠=︒75︒70115m <<F EDF ∠<1212CDE ∠C ∠120︒160︒。

人教版八年级上册数学第十一章测试卷(附答案)

人教版八年级上册数学第十一章测试卷(附答案)

人教版八年级上册数学第十一章测试卷(附答案)-CAL-FENGHAI.-(YICAI)-Company One1人教版八年级上册数学第十一章测试卷(附答案)一、单选题(共12题;共36分)1.如图,O是△ABC的∠ABC,∠ACB的平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若△ODE的周长为10厘米,那么BC的长为()A. 8cmB. 9cmC. 11cmD. 10cm2.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A. 三角形的稳定性B. 两点之间线段最短 C. 两点确定一条直线 D. 垂线段最短3.如图,工人师傅砌门时,常用木条EF固定矩形门框ABCD,使其不变形,这种做法的根据是()A. 两点之间直线段最短B. 矩形的稳定性C. 矩形四个角都是直角D. 三角形的稳定性4.如图,国旗上的五角星的五个角的度数是相同的,每一个角的度数都是()A. 30°B. 35°C. 36°D. 42°5.下列说法中错误的是()A. 同一平面内的两直线不平行就相交B. 三角形的外角一定大于它的内角C. 对角线互相平分的四边形是平行四边形D. 圆既是轴对称图形又是中心对称图形6.在一个边形的个外角中,钝角最多有()A. 2个B. 3个C. 4个D. 5个7.设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是()A. a>bB. a=bC. a<bD. b=a+180°8.一个等腰三角形的两边长分别为2和5,则它的周长为()A. 7B. 9C. 9或12D. 129.如图:△ABC的周长为30cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边与点E,连接AD,若AE=4cm,则△ABD的周长是()A. 22cmB. 20 cmC. 18cmD. 15cm10.如图,∠1=100°,∠C=70°,则∠A的大小是()A. 10°B. 20°C. 30°D. 80°11.下列各项中,给出的三条线段不能组成三角形的是()A. a=2m、b=3m、c=5m-1(m>1)B. 三边之比为5:6:10C. 30cm、8cm、10cmD. a+1、a+3、a+2(a>0)12.若3,m,5为三角形三边,化简:得().A. -10B. -2m+6C. -2m-6D. 2m-10二、填空题(共6题;共12分)13.已知等腰三角形的两条边长分别为2和5,则它的周长为________.14.一个正多边形的每一个外角都是36°,则这个正多边形的边数是________.15.如图,a∥b,∠1=40°,∠2=80°,则∠3=________ 度.16.等腰三角形的两边长为4,9.则它的周长为________.17.一个正多边形,它的一个外角等于与它相邻内角的,则这个多边形是________ .18.∠A=65º,∠B=75º,将纸片一角折叠,使点C•落在△ABC外,若∠2=20º,则∠1的度数为 ________.三、解答题(共3题;共15分)19.如图,AD为△ABC的中线,(1)作△ABD的中线BE;(2)作△BED的BD边上的高EF;(3)若△ABC的面积为60,BD=10,则点E到BC边的距离为多少?20.如图所示模板,按规定AB,CD的延长线相交成80°的角,因交点不在板上不便测量,工人师傅测得∠BAE=122°,∠DCF=155°,此时AB,CD的延长线相交所成的角是否符合规定为什么21.一个多边形的内角和是它的外角和的5倍,求这个多边形的边数.四、作图题(共1题;共7分)22.如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)在图中画出△A′B′C′,并写出点A′、B′、C′的坐标;(2)在y轴上求点P,使得△BCP与△ABC面积相等.五、综合题(共3题;共30分)23.如图,∠MON=90°,点A、B分别在直线OM、ON上,BC是∠ABN的平分线.(1)如图1,若BC所在直线交∠OAB的平分线于点D时,尝试完成①、②两题:①当∠ABO=30°时,∠ADB=________°②当点A、B分别在射线OM、ON上运动时(不与点O重合),试问:随着点A、B的运动,∠ADB的大小会变吗?如果不会,请求出∠ADB的度数;如果会,请求出∠ADB的度数的变化范围;________(2)如图2, 若BC所在直线交∠BAM的平分线于点C时,将△ABC沿EF折叠,使点C落在四边形ABEF内点C′的位置.求∠BEC′+∠AFC′ 的度数.24.如图,在平面直角坐标系中,已知点A(10,0),B(4,8),C(0,8),连接AB,BC,点P在x 轴上,从原点O出发,以每秒1个单位长度的速度向点A运动,同时点M从点A出发,以每秒2个单位长度的速度沿折线A﹣B﹣C向点C运动,其中一点到达终点时,另一点也随之停止运动,设P,M两点运动的时间为t秒.(1)求AB长;(2)设△PAM的面积为S,当0≤t≤5时,求S与t的函数关系式,并指出S取最大值时,点P的位置;(3)t为何值时,△APM为直角三角形?25.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC中,∠B=2∠C,AD⊥BC于点D,求证:BC=AB+2BD.小明利用条件AD⊥BC,在CD上截取DH=BD,如图2,连接AH,既构造了等腰△ABH,又得到BH=2BD,从而命题得证。

八年级数学上册试题 第十一章 三角形章节测试卷--人教版(含详解)

八年级数学上册试题 第十一章 三角形章节测试卷--人教版(含详解)

第十一章《三角形》章节测试卷一.选择题(共12小题,满分48分,每小题4分)1.已知△ABC中,∠A=20°,∠B=70°,那么△ABC是( )A.直角三角形B.锐角三角形C.钝角三角形D.正三角形2.下面四个图形中,线段BD是△ABC的高的是( )A.B.C.D.3.要使如图所示的五边形木架不变形,至少要再钉上几根木条( )A.1根B.2根C.3根D.4根4.能把一个任意三角形分成面积相等的两部分是( )A.以上都可以B.高C.中线D.角平分线5.长度分别为3,8,x的三条线段能组成一个三角形,x的值可以是( )A.4B.5C.6D.116.如图,在△ABC中,∠BAC=90°,AD是△ABC的高,若∠B=20°,则∠DAC=( )A.90°B.20°C.45°D.70°7.如图所示,∠1=∠2=150°,则∠3=( )A.30°B.150°C.120°D.60°8.如图,在△ABC中,AB=2021,AC=2018,AD为中线,则△ABD与△ACD的周长之差为( )A.1B.2C.3D.49.若一个多边形的每个内角都等于150°,则这个多边形的边数是( )A.10B.11C.12D.1310.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A.90°B.135°C.270°D.315°11.△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数.符合条件的三角形有( )A.1个B.2个C.3个D.4个12.如图,在四边形ABCD中,∠ABC与∠BCD的平分线的交点E恰好在AD边上,则∠BEC=( )A.∠A+∠D﹣45°B.12(∠A+∠D)+45°C.180°-(∠A+∠D)D.12∠A+12∠D二.填空题(共4小题,满分16分,每小题4分)13.如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=20°,则∠1= °.14.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A= .15.如图,△ABC中,∠B=40°,∠C=30°,点D为边BC上一点,将△ADC沿直线AD折叠后,点C落到点E处,若DE∥AB,则∠AFD的度数为 .16.如图,D,E,F分别是△ABC的边AB,BC,AC上的中点,连接AE,BF,CD交于点G,AG:GE=2:1,△ABC的面积为6,设△BDG的面积为S1,△CGF的面积为S2,则S1+S2= .三.解答题(共8小题,满分86分)17.已知一个多边形的内角和是外角和的三倍,则这个多边形是几边形?18.如图,∠ABC=∠FEC=∠ADC=90°.(1)在△ABC中,BC边上的高是 ;(2)在△AEC中,AE边上的高是 ;(3)若AB=2.4cm,CD=2cm,AE=3cm,求△AEC的面积及CE的长.19.如图,已知D是△ABC边BC延长线上一点,DF⊥AB于点F,交AC于点E,∠A=35°,∠D=42°,求(1)∠ACD的度数;(2)∠AEF的度数.20.已知一等腰三角形的两边长x,y满足方程组{3x−y=55x+2y=23求此等腰三角形的周长.21.一个零件的形状如图,按规定∠A=90°,∠B和∠C应分别是32°和21°,检验工人量得∠BDC=149°,就判断这个零件不合格,运用三角形的有关知识说出零件不合格的理由.22.如图1所示,将一副三角板的直角顶点重合在点O处.(1)∠AOD ∠BOC;(填“>”“<”“=”)(2)若将三角尺按图2的位置摆放,∠AOC和∠BOD在数量上有何关系?说明理由;(3)在图2中,已知∠BOC与∠AOC的度数比为m:n,当a6m b11与a n+1b2n﹣11是同类项时,求∠BOD的度数.23.问题1现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.研究(1):如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是 研究(2):如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是 研究(3):如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.问题2研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是 .24.△ABC中,AD是∠BAC的角平分线,AE是△ABC的高.(1)如图1,若∠B=40°,∠C=60°,求∠DAE的度数;(2)如图2(∠B<∠C),试说明∠DAE与∠B、∠C的数量关系;(3)拓展:如图3,四边形ABDC中,AE是∠BAC的角平分线,DA是∠BDC的角平分线,猜想:∠DAE与∠B、∠C的数量关系是否改变.说明理由.答案一.选择题1.【解答】解:∵△ABC中,∠A=20°,∠B=70°,∴∠C=180°﹣20°﹣70°=90°,∴△ABC是直角三角形.故选:A.2.【解答】解:由图可得,线段BD是△ABC的高的图是D选项.故选:D.3.【解答】解:过五边形的一个顶点作对角线,有5﹣3=2条对角线,所以至少要钉上2根木条.故选:B.4.【解答】解:三角形的中线把三角形分成等底同高的两个三角形,面积相等,所以,能把一个任意三角形分成面积相等的两部分是中线.故选:C.5.【解答】解:8﹣3<x<8+3,5<x<11,只有选项C符合题意.故选:C.6.【解答】解:∵∠BAC=90°,∴∠DAC+∠BAD=90°,∵AD是△ABC的高,∴∠ADB=∠BAD+∠B=90°,∴∠DAC=∠B=20°,故选:B.7.【解答】解:∵∠1=∠2=150°,∴∠ABC=∠BAC=180°﹣150°=30°,∴∠3=∠ABC+∠BAC=60°.故选:D.8.【解答】解:∵AD为中线,∴DB=DC,∴△ABD与△ACD的周长之差为:(AB+AD+BD)﹣(AD+DC+AC)=AB+AD+BD﹣AD﹣DC﹣AC=AB﹣AC=2021﹣2018=3,故选:C.9.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.10.【解答】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.11.【解答】解:方程组{x+2y=104x+3y=20的解为:{x=2 y=4,∵△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数,∴2<第三边长<6,1∴第三边长可以为:3,5.∴这样的三角形有2个.故选:B.12.【解答】解:∵四边形的内角和=360°,∴∠ABC+∠BCD=360°﹣(∠A+∠D),∵∠ABC与∠BCD的平分线的交点E恰好在AD边上,∴2∠EBC=∠ABC,2∠ECB=∠BCD,∴∠EBC+∠ECB=12(∠ABC+∠BCD)=12×[360°−(∠A+∠D)],∴∠BEC=180°﹣(∠EBC+∠ECB)=180°−12×[360°−(∠A+∠D)]=12(∠A+∠D),故选:D.二.填空题13.【解答】解:∵∠A=60°,∠C=50°,∴∠ABC=180°﹣∠A﹣∠C=180°﹣60°﹣50°=70°,∴∠1=∠ABC﹣∠D=50°﹣20°=50°.故答案为:50.14.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABC=2∠ABP,∠ACM=2∠ACP,又∵∠ABP=20°,∠ACP=50°,∴∠ABC=2×20°=40°,∠ACM=2×50°=100°,∴∠A=∠ACM﹣∠ABC=60°,故答案为60°.15.【解答】解:∵∠B=40°,∠C=30°,∴∠BAC=110°,由折叠的性质得,∠E=∠C=30°,∠EAD=∠CAD,∵DE∥AB,∴∠BAE=∠E=30°,∴∠CAD=40°,∴∠ADC=180°﹣∠CAD﹣∠C=110°,∴∠AFD=110°﹣40°=70°,故答案为:70°.16.【解答】解:∵D,E,F分别是△ABC的边AB,BC,AC上的中点,∴AD=DB,AF=CF,∴△BDG的面积=△ADG的面积,△CFG的面积=△AGF的面积,∴设△BDG的面积为S1,△CGF的面积为S2,则S1+S2=四边形ADGF的面积,∵△ABC的面积为6,AG:GE=2:1,∴四边形ADGF的面积=23×12×6=2,∴S1+S2=2,故答案为:2三.解答题17.解:设这个多边形为n边形,n边形的内角和为:(n﹣2)×180°,n边形的外角和为:360°,根据题意得:(n﹣2)×180°=3×360°,解得:n=8,答:这个多边形是八边形.18.解:(1)在△ABC中,BC边上的高是线段AB;故答案为线段AB;(2)在△AEC中,AE边上的高是线段CD;故答案为线段CD;(3)∵S△AEC=12×AE×CD=12×CE×AB,∴CE=AE⋅CDAB= 2.5(cm).19.解:(1)∵DF⊥AB,∴∠B=90°﹣∠D=48°,∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=83°;(2)∵DF⊥AB,∴∠AFD=90°,∴∠AEF=90°﹣∠A=55°.20.解:解方程组组{3x−y=55x+2y=23得{x=3 y=4,所以,等腰三角形的两边长为3,4.若腰长为3,底边长为4,由3+3=6>4知,三角形的周长为10.若腰长为4,底边长为3,则三角形的周长为11.所以,这个等腰三角形的周长为10或11.21.解:延长CD交AB于点E,∵∠BEC是△ACE的一个外角,∴∠BEC=∠A+∠C=90°+21°=111°,同理,∠BDC=∠BEC+∠B=111°+32°=143°,而检验工人量得∠BDC=149°,所以零件不合格.22.解:(1)∵∠AOB=∠COD=90°,∴∠AOB+∠BOD=∠COD+∠BOD,即∠AOD=∠BOC.故答案为:=;(2)∵∠AOB=∠COD=90°,∴∠AOC+∠BOD=180°.故∠AOC和∠BOD在数量上的关系为:∠AOC+∠BOD=180°;(3)∵a6m b11与a n+1b2n﹣11是同类项,∴{6m=n+111=2n−11,解得{m=2n=11,∵∠BOC与∠AOC的度数比为m:n,11﹣2=9,∴∠BOC=90°×2=20°,11−2∴∠BOD=90°﹣20°=70°.故∠BOD的度数是70°.23.解:(1)如图1,∠1=2∠A,理由是:由折叠得:∠A=∠DA′A,∵∠1=∠A+∠DA′A,∴∠1=2∠A;故答案为:∠1=2∠A;(2)如图2,猜想:∠1+∠2=2∠A,理由是:由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠ADB+∠AEC=360°,∴∠1+∠2=360°﹣∠ADE﹣∠A′DE﹣∠AED﹣∠A′ED=360°﹣2∠ADE﹣2∠AED,∴∠1+∠2=2(180°﹣∠ADE﹣∠AED)=2∠A;故答案为:∠1+∠2=2∠A;(3)如图3,∠2﹣∠1=2∠A,理由是:∵∠2=∠AFE+∠A,∠AFE=∠A′+∠1,∴∠2=∠A′+∠A+∠1,∵∠A=∠A′,∴∠2=2∠A+∠1,∴∠2﹣∠1=2∠A;(4)如图4,由折叠得:∠BMN=∠B′MN,∠ANM=∠A′NM,∵∠DNA+∠BMC=360°,∴∠1+∠2=360°﹣2∠BMN﹣2∠ANM,∵∠BMN+∠ANM=360°﹣∠A﹣∠B,∴∠1+∠2=360°﹣2(360°﹣∠A﹣∠B)=2(∠A+∠B)﹣360°,故答案为:∠1+∠2=2(∠A+∠B)﹣360°.24.解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分线,∠BAC=40°,∴∠CAD=∠BAD=12∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC =180°﹣∠B ﹣∠C ,∵AD 是∠BAC 的角平分线,∴∠CAD =∠BAD =12∠BAC ,∵AE 是△ABC 的高,∴∠AEC =90°,∴∠CAE =90°﹣∠C ,∴∠DAE =∠CAD ﹣∠CAE =12∠BAC ﹣(90°﹣∠C )=12(180°﹣∠B ﹣∠C )﹣90°+∠C =12∠C −12∠B ,即∠DAE =12∠C −12∠B ; (3)不变,理由:连接BC 交AD 于F ,过点A 作AM ⊥BC 于M ,过点D 作DN ⊥BC 于N ,∵AE 是∠BAC 的角平分线,AM 是高,∴∠EAM =12(∠ACB ﹣∠ABC ),同理,∠ADN =12(∠BCD ﹣∠CBD ),∵∠AFM =∠DFN ,∠AMF =∠DNF =90°,∴∠MAD =∠ADN ,∴∠DAE =∠EAM+∠MAD =∠EAM+∠ADN =12(∠ACB ﹣∠ABC )+12(∠BCD ﹣∠CBD )=12(∠ACD ﹣∠ABD ).。

人教版初中八年级数学上册第十一章《三角形》测试(含答案解析)

人教版初中八年级数学上册第十一章《三角形》测试(含答案解析)

一、选择题1.已知实数x 、y 满足|x -4|+ 8y -=0,则以x 、y 的值为两边长的等腰三角形周长是( )A .20或16B .20C .16D .18 2.一个多边形的外角和是360°,这个多边形是( ) A .四边形B .五边形C .六边形D .不确定 3.若过六边形的一个顶点可以画n 条对角线,则n 的值是( ) A .1B .2C .3D .4 4.下列长度的三条线段能构成三角形的是( ) A .1,2,3 B .5,12,13 C .4,5,10 D .3,3,6 5.如图,ABC 中,BC 边上的高是( )A .AEB .ADC .CD D .CF6.如图,//AB CD ,40C ∠=︒,60A ∠=︒,则F ∠的度数为( )A .10°B .20°C .30°D .40° 7.下列长度的线段能组成三角形的是( ) A .2,3,5B .4,6,11C .5,8,10D .4,8,4 8.在下列长度的四根木棒中,能与2m 、5m 长的两根木棒钉成一个三角形的是( ) A .2mB .3mC .5mD .7m 9.在△ABC 中,∠A =x °,∠B =(2x +10)°,∠C 的外角大小(x +40)°,则x 的值等于( )A .15B .20C .30D .40 10.在ABC 中,若一个内角等于另两个内角的差,则( )A .必有一个内角等于30°B .必有一个内角等于45°C .必有一个内角等于60°D .必有一个内角等于90°11.下列说法正确的有( )个①把一个角分成两个角的射线叫做这个角的角平分线;②连接C 、D 两点的线段叫两点之间的距离;③两点之间直线最短;④射线上点的个数是直线上点的个数的一半;⑤n 边形从其中一个顶点出发连接其余各顶点,可以画出()3n -条对角线,这些对角线把这个n 边形分成了()2n -个三角形.A .3B .2C .1D .012.如图,在ABC ∆中,80,BAC ∠=︒点D 在BC 边上,将ABD △沿AD 折叠,点B 恰好落在AC 边上的点'B 处,若'20B DC ∠=.则C ∠的度数为( )A .20B .25C .35D .4013.如图,小明从点A 出发沿直线前进9米到达点,B 向左转45后又沿直线前进9米到达点C ,再向左转45后沿直线前进9米到达点D ……照这样走下去,小明第一次回到出发点A 时所走的路程为( )A .72米B .80米C .100米D .64米 14.以下列各组线段为边,能组成三角形的是( ) A .1,2,3 B .2,3,4 C .2,5,8 D .6,3,3 15.如图,在ABC 中,48BAC ∠=︒,点 I 是ABC ∠、ACB ∠的平分线的交点.点D 是ABC ∠、 ACB ∠的两条外角平分线的交点,点E 是内角ABC ∠、外角ACG ∠的平分线的交点,则下列结论 不正确...的是( )A .180BDC BIC ∠+∠=︒B .85ICE ∠=︒C .24E ∠=︒D .90DBE ∠=︒二、填空题16.在一个三角形中,若其中一个内角的度数是另一个内角的2倍,则我们称这个三角形为“倍角三角形”.已知某“倍角三角形”的一个内角的度数为60°,则其它两个内角的度数分别是_______.17.从n 边形的一个顶点出发,连接其余各顶点,可以将这个n 边形分割成17个三角形,则n =______.18.若,,a b c 是△ABC 的三边长,试化简a b c a c b +-+--= __________. 19.一个三角形的三条高的长都是整数,若其中两条高的长分别为4和12,则第三条高的长为_____.20.对于一个四边形的四个内角,下面四个结论中,①可以四个角都是锐角;②至少有两个角是锐角;③至少有一个角是钝角;④最多有三个角是钝角;所有正确结论的序号是______.21.用边长相等的正三角形和正六边形铺满地面,一个结点周围有m 块正三角形,n 块正六边形,则m+n =______.22.如图,将长方形纸片的一角折叠,使顶点A 落在F 处,折痕为BC ,FBD ∠的角平分线为BE ,将FBD ∠沿BF 折叠使BE ,BD 均落在FBC ∠的内部,且BE 交CF 于点M ,BD 交CF 于点N ,若BN 平分CBM ∠,则ABC ∠的度数为_________.23.如图,则∠A+∠B+∠C+∠D+∠E+∠F+∠G =_____.24.一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是___________,最小值是___________.25.已知//AB CD ,点P 是平面内一点,若30,20BPD PBA ∠=︒∠=︒,则CDP ∠=___________度.26.如图,AB BE ,分别是ABC 中,BC AC 边上的高,6cm BC ,4cm AC =,若3cm =AD ,则BE 的长为__________cm .三、解答题27.如图,已知BP 是△ABC 的外角∠ABD 的平分线,延长CA 交BP 于点P .射线CE 平分∠ACB 交BP 于点E .(1)若∠BAC=80°,求∠PEC 的度数;(2)若∠P=20°,分析∠BAC 与∠ACB 的度数之差是否为定值?(3)过点C 作CF ⊥CE 交直线BP 于点F .设∠BAC=α,求∠BFC 的度数(用含α的式子表示).28.如图,∠CBF ,∠ACG 是△ABC 的外角,∠ACG 的平分线所在的直线分别与∠ABC ,∠CBF 的平分线BD ,BE 交于点D ,E .(1)若∠A=70°,求∠D 的度数;(2)若∠A=a ,求∠E ;(3)连接AD ,若∠ACB=β,则∠ADB= .29.如图,在BCD △中,D 为BC 上一点,12∠=∠,34∠=∠,60BAC ∠=︒,求DAC ∠,ADC ∠的度数.30.如图,有一块直角三角板XYZ 置在ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .ABC 中,30A ∠=︒.(1)ABC ACB ∠+∠=________.(2)ABX ACX ∠+∠=________.(说明理由)。

八年级数学上册《第十一章 多边形及其内角和》练习题及答案-人教版

八年级数学上册《第十一章 多边形及其内角和》练习题及答案-人教版

八年级数学上册《第十一章多边形及其内角和》练习题及答案-人教版一、选择题1.以下列图形:正三角形、正方形、正五边形、正六边形为“基本图案”可以进行密铺的有( )A.1种B.2种C.3种D.4种2.下列说法中,正确的是( )A.直线有两个端点B.射线有两个端点C.有六边相等的多边形叫做正六边形D.有公共端点的两条射线组成的图形叫做角3.从 7 边形的一个顶点作对角线,把这个 7 边形分成三角形的个数是( )A.7 个B.6 个C.5 个D.4 个4.若一个正多边形的一个外角是36°,则这个正多边形的边数是( )A.10B.9C.8D.65.一个多边形的内角和比它的外角和的3倍少1800,这个多边形的边数是 ( )A.5条B.6条C.7条D.8条6.若正多边形的内角和是540°,则该正多边形的一个外角为( )A.45°B.60°C.72°D.90°7.一个正多边形的外角与它相邻的内角之比为1:4,那么这个多边形的边数为( )A.8B.9C.10D.128.如果一个多边形的每个内角都相等,且内角和为1800°,那么这个多边形的一个外角是( )A.30°B.36°C.60°D.72°9.设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是( )A.a>bB.a=bC.a<bD.b=a+180°10.把一个多边形纸片沿一条直线截下一个三角形后,变成一个十八边形,则原多边形纸片的边数不可能是( )A.16B.17C.18D.19二、填空题11.形状、大小完全相同的三角形________(填“能”或“不能”)铺满地面;形状、大小完全相同的四边形________(填“能”或“不能”)铺满地面.12.从多边形的一个顶点出发,连接这个点和其他顶点,把多边形分割成16个三角形,则这个多边形的边数是________.13.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是边形.14.如果一个多边形的各个外角都是40°,那么这个多边形的内角和是.15.如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA=.16.如图,五边形ABCDE是正五边形,若l1平行l2,则∠1-∠2=_______.三、解答题17.求下列图形中x的值:18.我们知道把正三角形、正方形、正六边形合在一起可以铺满平面,若把正十边形、正八边形、正九边形合在一起,能不能铺满地面?为什么?19.一个多边形的内角和是外角和的2倍,则这个多边形是几边形?20.如图,以五边形的每个顶点为圆心,以1为半径画圆,求圆与五边形重合的面积.21.如图,求∠A+∠B+∠C+∠D+∠E+∠F的度数.22.探索问题:(1)如图①,你知道∠BOC=∠B+∠C+∠A的奥秘吗?请你用学过的知识予以证明;(2)如图②﹣1,则∠A+∠B+∠C+∠D+∠E=°;如图②﹣2,则∠A+∠B+∠C+∠D+∠E=°;如图②﹣3,则∠A+∠B+∠C+∠D+∠E=°;(3)如图③,下图是一个六角星,其中∠BOD=70°,则∠A+∠B+∠C+∠D+∠E+∠F=°.参考答案1.C2.D3.C4.A5.C6.C.7.C.8.A.9.B10.A.11.答案为:能,能.12.答案为:18;13.答案为:十三.14.答案为:1260°.15.答案为:36°.16.答案为:72°.17.解:(1)90+70+150+x=360.解得x=50.(2)90+73+82+(180﹣x)=360.解得x=65.(3)x+(x+30)+60+x+(x﹣10)=(5﹣2)×180.解得x=115.18.解:因为正十边形、正八边形、正九边形的一个内角分别为144°,135°,140°它们的和144°+135°+140°>360°所以正十边形、正八边形、正九边形合在一起不能铺满地面19.解:设这个多边形的边数为n∴(n﹣2)•180°=2×360°解得:n=6.故这个多边形是六边形.20.解:(5﹣2)×180°=540°540°÷360°π×12=32π.21.解:连接AF.∵在△AOF和△COD中,∠AOF=∠COD,∴∠C+∠D=∠OAF+∠AFD,∴∠A+∠B+∠C+∠D+∠E+∠F=∠OAF+∠OFA+∠CFE+∠OAB+∠E+∠F=∠BAF+∠AFE+∠E+∠B=360°.22.解:(1)如图①,∠BOC=∠B+∠C+∠A.(2)如图②,∠A+∠B+∠C+∠D+∠E=180°.如图③根据外角的性质,可得∠1=∠A+∠B,∠2=∠C+∠D∵∠1+∠2+∠E=180°∴x=∠A+∠B+∠C+∠D+∠E=180°.如图④,延长EA交CD于点F,EA和BC交于点G根据外角的性质,可得∠GFC=∠D+∠E,∠FGC=∠A+∠B ∵∠GFC+∠FGC+∠C=180°∴x=∠A+∠B+∠C+∠D+∠E=180°.(3)如图⑤,∵∠BOD=70°∴∠A+∠C+∠E=70°∴∠B+∠D+∠F=70°∴∠A+∠B+∠C+∠D+∠E+∠F=70°+70°=140°.。

人教版八年级数学上册第十一章《三角形》测试题(含答案)

人教版八年级数学上册第十一章《三角形》测试题(含答案)

人教版八年级数学上册第十一章《三角形》测试题(含答案)一、选择题(30分)1.下列说法错误的是()A.三角形的角平分线把三角形分成面积相等的两部分B.三角形的三条中线相交于一点C.直角三角形的三条高交于三角形的直角顶点处D.钝角三角形的三条高所在直线的交点在三角形的外部2.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④3.如果线段AB=3cm,BC=1cm,那么A,C两点的距离d的长度为()A.4cm B.2cm C.4cm或2cm D.小于或等于4cm,且大于或等于2cm4.如图,三角形ABC中,AB=AC,D,E分别为边AB,AC上的点,DM平分∠BDE,EN平分∠DEC,若∠DMN=110°,则∠DEA=()A.40°B.50°C.60°D.70°5.如图,△ABC中,BD,BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE,∠F, ②2∠BEF,∠BAF,∠C,③∠F,∠BAC,∠C,④∠BGH,∠ABE,∠C,其中正确个数是()A.4个B.3个C.2个D.1个6.小明同学在用计算器计算某n边形的内角和时,不小心多输入一个内角,得到和为2016°,则n等于()A.11B.12C.13D.147.如图,直线AB,CD被BC所截,若AB,CD,,1,45°,,2,35°,则∠3,( )A.80°B.70°C.60°D.90°8.如图,△ABC中,角平分线AD、BE、CF相交于点H,过H点作HG⊥AC,垂足为G,那么∠AHE和∠CHG的大小关系为()A.∠AHE>∠CHG B.∠AHE<∠CHG C.∠AHE=∠CHG D.不一定9.若a,b,c是△ABC的三边的长,则化简|a,b,c|,|b,c,a|,|a,b,c|的结果是()A.a,b,c B.,a,3b,c C.a,b,c D.2b,2c10.已知正多边形的一个外角等于40,那么这个正多边形的边数为()A.6B.7C.8D.9二、填空题(15分)11.如图,已知EF∥GH,A、D为GH上的两点,M、B为EF上的两点,延长AM于点C,AB平分∠DAC,直线DB 平分∠FBC,若∠ACB=100°,则∠DBA的度数为________.12.设三角形三个内角的度数分别为x,y,z,如果其中一个角的度数是另一个角的度数的2倍,那么我们称数对(y,z)(y≤z)是x的和谐数对.例:当x,150°时,对应的和谐数对有一个,它为(10,20);当x,66时,对应的和谐数对有二个,它们为(33,81),(38,76).当对应的和谐数对(y,z)有三个时,此时x的取值范围是____________,13.根据如图所示的已知角的度数,求出其中∠α的度数为______.14.在图中过点P任意画一条直线,最多可以得到____________个三角形.15.如图,点O是△ABC的两条角平分线的交点,若△BOC=118°,则△A的大小是。

人教版八年级数学上册第十一章综合测试卷三套及答案

人教版八年级数学上册第十一章综合测试卷三套及答案

人教版八年级数学上册 第十一章综合测试卷01一、选择题(每小题4分,共28分)1.(河北中考)已知三角无三边长分别为2,x ,13,若x 为正整数,则这样的三角形个数为( ) A.2B.3C.5D.132.(湖北襄阳中考)如图,CD AB ∥,1120∠=︒,280∠=︒则E ∠的度数是( )A.40︒B.60︒C.80︒D.120︒3.三角形的一个外角等于和它相邻的内角的4倍,等于和它不相邻的一个内角的2倍,则这个三角形各角的度数是( ) A.45︒,45︒,90︒B.30︒,60︒,90︒C.25︒,25︒,130︒D.36︒,72︒,72︒4.已知一个多边形的内角和是外角和的4倍,则这个多边形是( ) A.八边形B.十二边形C.十边形D.九边形5.若在ABC △中,()23A C B ∠+∠=∠,则B ∠的外角度数( ) A.36︒B.72︒C.108︒D.144︒6.锐角三角形中,最大角α的取值范围是 ( ) A.090α︒︒<< B.60180α︒︒<< C.6090α︒︒<<D.6090α︒≤︒<7.(内蒙古乌兰察布中考)如图,已知长方形ABCD ,一条直线将该长方形ABCD 分割成两个多边形,若这两个多边形的内角和分别为M 和N ,则M N +不可能是( )A.360︒B.540︒C.720︒D.630︒二、填空题(每小题5分,共25分)8.一个承重架的结构如图所示,如果1155∠=︒,那么2∠=_______.9.(江苏无锡中考)正五边形的每一个内角都等于_______.10.将一块正五边形纸片(图①)做成一个底面仍为正五边形且高相等的无盖纸盒(侧面均垂直于底面,见图②),需在每一个顶点处剪去一个四边形,例如图①中的四边形ABCD ,则BAD ∠的大小是______度.①②11.在ABC △中,80B ∠=︒,40C ∠=︒,AD ,AE 分别是ABC △的高线和角平分线,则DAE ∠的度数为______.12.如图,DE BC ∥,60ADE ∠=︒,50C ∠=︒,则A ∠=______.三、解答题(共47分)13.(11分)每个外角都相等的多边形,如果它的一个内角等于一个外角的9倍,求这个多边形的边数.14.(12分)已知AD 是ABC △的高,70BAD ∠=︒,20CAD ∠=︒,求BAC ∠的度数.15.(12分)(1)如图1,已知三角形ABC ,求证:180A B C ∠+∠+∠=︒ (2)问题:如图2,过BC 上任一点F ,作FH AC ∥,FG AB ∥. 这种添加辅助线的方法能证明180A B C ∠+∠+∠=︒吗?请你试一试。

初中数学人教版八年级上册 第十一章 三角形单元测试(含简单答案)

初中数学人教版八年级上册 第十一章 三角形单元测试(含简单答案)

第十一章三角形一、单选题1.以下列长度的三条线段为边,能组成三角形的是()A.3,5,9B.5,6,13C.4,4,8D.5,6,102.在直角△ABC中,∠B是直角,∠C=22°,则∠A等于( ).A.22°B.68°C.78°D.112°3.过多边形的一个顶点可以引出6条对角线,则多边形的边数是( )A.7B.8C.9D.104.如图,线段AD,AE,AF分别是△ABC的高线,角平分线,中线,比较线段AC,AD,AE,AF的长短,其中最短的是()A.AF B.AE C.AC D.AD5.如图是一个缺损的三角形纸片,小鹿测得∠A=48°,∠B=68°,则这个三角形缺损的顶角∠C的度数为()A.60°B.64°C.74°D.80°6.下面各角能成为某多边形的内角和是()A.4300°B.4343°C.4320°D.4360°7.已知AD为△ABC的中线,且AB=10cm,AC=8cm,则△ABD和△ACD的周长之差为()A.2cm B.4cm C.6cm D.18cm8.用直角三角板作△ABC的边AB上的高,下列直角三角板位置摆放正确的是( )A.B.C.D.9.如图,AD为△ABC的中线,BE为△ABD的中线.若△ABC的面积为12,BD=3,则△BDE中BD边上的高为( )A.1B.4C.3D.2二、填空题10.椅子是一种日常生活家具,现代的椅子追求美观时尚,在如图所示的椅子的设计中,将椅子脚设计成三角形,椅子非常稳固,其所利用的数学原理是.11.在△ABC中,∠A=35°,∠B=45°,则∠C为.12.如图,∠BCD是△ABC的外角,∠BCD=100°,∠A=70°,那么∠B=°.13.如图,∠A+∠B+∠C+∠D+∠E=.14.如图,AD是△ABC的中线,E为线段AD的中点,过点E作EF⊥BC于点F.若S△ABC=16,BD=3,则EF长为.15.将两块分别含有30°和45°角的直角三角板按如图所示叠放,若∠1=∠2,则∠3=°.16.已知一个包装盒的底面是内角和为720°的多边形,它是由另一个多边形纸片剪掉一个角以后得到的,则原多边形是边形.17.如图,△ABC中,E为AD与CF的交点,AE=ED,已知△ABC的面积是36,△BEF的面积是3.6,则△AEF的面积是.18.如图,在△ABC中,点D、E分别为边BC、AC上的点,连接DE,将△CDE沿DE翻折得到△C′DE,使C′D∥AB.若∠A=75°,∠B=60°,则∠C′EA的大小为.19.如图,在△ABC中,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC,内角∠ABC,外角∠ACF,以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC+∠ABD=90°;④∠ADB=45°−1∠CDB,其中正确的结论有.2三、解答题20.已知和多边形一个内角相邻的外角与其余各内角度数总和为600°,求该多边形的边数.21.已知:a、b、c为△ABC的三边长,且a、b满足|2a−b+2|+(a+b−8)2=0.(1)求c的取值范围;(2)在(1)的条件下,若2x−c=1,求x的取值范围.22.一个零件的形状如图所示,按规定∠A=90°,∠B、∠D分别是32°和21°,要测量这个零件是否合格,检验工人测量∠BCD的度数,如果∠BCD=150°,就判定这个零件不合格,你知道这是为什么吗?请说明原因.23.在△ABC中,CD⊥AB于D,CE是∠ACB的平分线,∠A=20°,∠B=60°;求:(1)求∠ACB的度数.(2)∠BCD的度数;(3)∠ECD的度数.24.综合与探究 小明在学习中遇到这样一个问题:如图1,∠MON =90°,点A ,B 分别在OM ,ON 上运动(不与点O 重合).探究与发现:若BC 是∠ABN 的平分线,BC 的反向延长线与∠BAO 的平分线交于点D .(1)①若∠BAO =70°,则∠D =________°;②猜想:∠D 的度数是否随A ,B 的运动而发生变化?并说明理由;(2)拓展延伸:如图2,若∠ABC =13∠ABN ,∠BAD =13∠BAO ,求∠D 的度数.(3)在图1的基础上,如果∠MON =α,其余条件不变,随着点A 、B 的运动(如图3),∠D =________(用含α的代数式表示)参考答案:1.D2.B3.C4.D5.B6.C7.A8.D9.D10.三角形的稳定性11.100°12.3013.180度/180°14.83/22315.67.516.五或六或七17.2.418.30°/30度19.①②③④20.边数为5或6.21.(1)4<c <8(2)52<x <9222.这个零件合格23.(1)100°(2)30°(3)20°24.(1)①45②∠D 的度数不发生变化(2)30°(3)12α。

人教版数学八年级上册第十一章《三角形》测试卷(含答案)

人教版数学八年级上册第十一章《三角形》测试卷(含答案)

人教版数学八年级上册第十一章《三角形》测试卷(含答案)班级姓名一、选择题(每小题3分,共30分)1.如图所示,∠BAC为钝角,AD⊥BC于D,BE⊥AC于E,CF⊥AB于F,△ABC中AC边上的高为()A.ADB.BEC.CFD.AF2.(2019贵州毕节中考)在下列长度的三条线段中,不能组成三角形的是()A.2 cm,3 cm,4 cmB.3 cm,6 cm,6 cmC.2 cm,2 cm,6 cmD.5 cm,6 cm,7 cm3.(2020辽宁沈阳中考)如图,直线AB∥CD,且AC⊥CB于点C,若∠BAC=35°,则∠BCD 的度数为()A.65°B.55°C.45°D.35°4.(2021湖北仙桃、潜江、天门、江汉油田中考)如图,在△ABC中,∠C=90°,点D在AC 上,DE∥AB,若∠CDE=160°,则∠B的度数为()A.40°B.50°C.60°D.70°5.如图,若∠A=70°,∠B=40°,∠C=32°,则∠BDC=()A.102°B.110°C.142°D.148°6.(2022独家原创)如图,在△ABC中,AD平分∠BAC,点E在射线BC上,EF⊥AD于F,∠B=40°,∠ACE=72°,则∠E的度数为()A.68°B.56°C.34°D.32°7.(2021台湾省中考改编)如图,四边形ABCD中,∠1、∠2、∠3分别为四边形ABCD 的外角.判断下列大小关系何者正确.()A.∠1+∠3=∠ABC+∠DB.∠1+∠3<∠ABC+∠DC.∠1+∠2+∠3=360°D.∠1+∠2+∠3>360°8.如图,在△ABC中,AE平分∠BAC交BC于点E,过点A作AD⊥BC,垂足为D,过点E 作EF⊥AC,垂足为F.若∠DAE=15°,∠AEF=50°,则∠B的度数为()A.55°B.65°C.75°D.80°9.(2020黑龙江牡丹江期中)如图,△ABC的面积是1,AD是△ABC的中线,AF=12FD,CE= 12EF,则△DEF的面积为()A.12B.34C.827D.2910.(2020山东青岛市北期末)如图,已知△ABC中,∠B=α,∠C=β(α>β),AD是BC边上的高,AE是∠BAC的平分线,则∠DAE的度数为()A.α-βB.2(α-β)C.α-2βD.12(α-β)二、填空题(每小题3分,共24分)11.(2022江西南昌十中期末)如图,邱叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是.12.(2021湖南郴州中考)一个多边形的每一个外角都等于60°,则这个多边形的内角和为度.13.(2021江苏淮安中考)一个三角形的两边长分别是1和4,若第三边的长为偶数,则第三边的长是.14.(2021天津南开田家炳中学期中)将一副分别含有30°和45°角的两个直角三角板拼成如图所示的图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是.15.(2021河南郑州五校联考)如图,三角形纸片ABC中,∠A=75°,∠B=72°.将三角形纸片的一角折叠,使点C落在△ABC内,如果∠1=32°,那么∠2=.16.(2021福建厦门三中期末)如图,在△ABC中,∠ACB=90°,AD平分∠CAB,交边BC于点D,过点D作DE⊥AB,垂足为E.若∠CAD=20°,则∠EDB的度数是.17.(教材P12变式题)在△ABC中,∠ABC=∠C=2∠A,BD是∠ABC的平分线,则∠ADB 的度数为.18.(2022福建泉州七中期中)如图,在△ABC中,∠ACB=90°,CE是△ABC的角平分线,CD⊥AB,垂足为D,延长CE与外角∠ABG的平分线交于点F.若∠A=60°,则∠DCE+∠F=.三、解答题(共46分)19.(6分)如图所示,已知AD是△ABC的边BC上的中线.(1)作出△ABD的边BD上的高;(2)若△ABC的面积为10,求△ADC的面积;(3)若△ABD的面积为6,且BD边上的高为3,求BC的长.20.(6分)如图,已知△ABC的周长为33 cm,AD是BC边上的中线,AB=3AC.2(1)当AC=10 cm时,求BD的长;(2)若AC=12 cm,能否求出DC的长?为什么?21.(6分)如图,在△ABC中,BD是AC边上的高,∠A=70°.(1)求∠ABD的度数;(2)CE平分∠ACB交BD于点E,∠BEC=118°,求∠ABC的度数.22.(8分)如图,在△ABC中,∠B=2∠C,AD⊥BC于点D,AE平分∠BAC交BC于点E.(1)若∠C=40°,求∠DAE的度数;(2)若EF⊥AE交AC于点F,求证:∠C=2∠FEC.23.(2022吉林临江期末)(10分)我们探究过三角形内角和等于180°,四边形内角和等于360°,请解决下面的问题:(1)如图1,∠A+∠B+∠C+∠D=180°,则∠AOB+∠COD=(直接写出结果);(2)连接AD、BC,若AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线.①如图2,如果∠AOB=110°,求∠COD的度数;②如图3,若∠AOD=∠BOC,AB与CD平行吗?请写出理由.24.(2022山东济南外国语学校期末)(10分)已知∠MON=90°,点A、B分别在OM、ON 上运动(不与点O重合).(1)如图1,AE、BE分别是∠BAO和∠ABO的平分线,随着点A、点B的运动,∠AEB=;(2)如图2,若BC是∠ABN的平分线,BC的反向延长线与∠OAB的平分线交于点D.①若∠BAO=70°,则∠D=°;②随着点A、B的运动,∠D的大小会变吗?如果不会,求∠D的度数;如果会,请说明理由;(3)在图2的基础上,如果∠MON=α,其余条件不变,随着点A、B的运动(如图3),求∠D 的度数.(用含α的式子表示)答案全解全析1.B 三角形的高是过一个顶点作垂直于它对边所在的直线的线段,所以△ABC 中,AC 边上的高是线段BE.故选B.2.C 选项A,2+3>4,能组成三角形;选项B,3+6>6,能组成三角形;选项C,2+2<6,不能组成三角形;选项D,5+6>7,能组成三角形.故选C.3.B ∵AC ⊥CB,∴∠ACB=90°, ∴∠ABC=90°-∠BAC=90°-35°=55°, ∵AB ∥CD,∴∠BCD=∠ABC=55°, 故选B.4.D ∵∠CDE=160°, ∴∠ADE=180°-160°=20°, ∵DE ∥AB,∴∠A=∠ADE=20°,∴∠B=180°-∠A-∠C=180°-20°-90°=70°.故选D.5.C 如图,连接AD 并延长,则∠BDE=∠BAD+∠B,∠CDE=∠CAD+∠C, ∴∠BDC=∠BDE+∠CDE=∠BAD+∠B+∠CAD+∠C=∠BAC+∠B+∠C=142°, 故选C.6.C 由题图知∠ACE=∠B+∠BAC,∠B=40°,∠ACE=72°, ∴∠BAC=∠ACE-∠B=72°-40°=32°. ∵AD 平分∠BAC,∴∠BAD=12∠BAC=12×32°=16°, ∴∠ADE=∠BAD+∠B=16°+40°=56°. ∵EF ⊥AD,∴∠E=90°-∠ADE=90°-56°=34°.7.A 如图,连接BD,∵∠1=∠ABD+∠ADB,∠3=∠DBC+∠BDC,∴∠1+∠3=∠ABD+∠ADB+∠DBC+∠BDC=∠ABC+∠ADC, ∵四边形的外角和是360°, ∴∠1+∠2+∠3<360°.故选A. 8.B ∵AD ⊥BC,∠DAE=15°, ∴∠AED=90°-15°=75°, ∵∠AEF=50°,∴∠FEC=180°-∠AEF-∠AED=55°, ∵EF ⊥AC,∴∠EAF=90°-∠AEF=40°,∠C=90°-∠FEC=35°, ∵AE 平分∠BAC,∴∠BAC=2∠EAC=80°, ∵∠B+∠C+∠BAC=180°,∴∠B=180°-∠BAC-∠C=180°-80°-35°=65°. 9.D ∵△ABC 的面积是1,AD 是△ABC 的中线, ∴S △ACD =12S △ABC =12, ∵AF=12FD,∴DF=23AD, ∴S △CDF =23S △ACD =23×12=13,∵CE=12EF,∴EF=23CF,∴S △DEF =23S △CDF =23×13=29,故选D.10.D 在△ABC 中,∠B=α,∠C=β,∴∠BAC=180°-∠B-∠C=180°-α-β,∵AE 是∠BAC 的平分线,∴∠EAC=12∠BAC=90°-12(α+β).在Rt △ADC 中,∠DAC=90°-∠C=90°-β,∴∠DAE=∠DAC-∠EAC=90°-β-90°+12(α+β)=12(α-β),故选D. 11.三角形的稳定性解析 给凳子加了两根木条之后形成了三角形,所以“这样凳子就比较牢固了”的数学原理是三角形的稳定性. 12.720解析 ∵多边形的每一个外角都等于60°, ∴它的边数为360°÷60°=6, ∴它的内角和为180°×(6-2)=720°, 故答案为720. 13.4解析 设第三边长为a,根据三角形的三边关系知, 4-1<a<4+1,即3<a<5,又∵第三边的长是偶数,∴a 为4. 故答案为4. 14.15°解析 ∵Rt △CDE 中,∠C=90°,∠E=30°, ∴∠BDF=∠C+∠E=90°+30°=120°, ∵△BDF 中,∠B=45°,∠BDF=120°, ∴∠BFD=180°-45°-120°=15°.故答案为15°. 15.34°解析 如图,延长AE 、BF 交于点C',连接CC'.在△ABC'中,∠AC'B=180°-72°-75°=33°,∵∠ECF=∠AC'B,∠1=∠ECC'+∠EC'C,∠2=∠FCC'+∠FC'C,∴∠1+∠2=∠ECC'+∠EC 'C+∠FCC'+∠FC'C=2∠AC'B=66°,∵∠1=32°,∴∠2=66°-32°=34°,故答案为34°.16.40°解析∵AD平分∠CAB,∠CAD=20°,∴∠CAB=2∠CAD=40°,∵∠ACB=90°,∴∠B=90°-40°=50°,∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°-50°=40°,故答案为40°.17.108°解析∵在△ABC中,∠ABC=∠C=2∠A,∴令∠A=x,则∠ABC=∠C=2x,∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°,解得x=36°,∴∠A=36°,∠ABC=72°.∵BD是∠ABC的平分线,∠ABC=36°,∴∠ABD=12∴∠ADB=180°-∠A-∠ABD=180°-36°-36°=108°.18.45°解析∵CD⊥AB,∠A=60°,∴∠ADC=90°,∠ACD=30°,∵CE平分∠ACB,∠ACB=90°,∠ACB=45°,∴∠ACE=∠ECB=12∴∠DCE=∠ACE-∠ACD=45°-30°=15°,∵∠ABG=∠A+∠ACB=150°,BF平分∠ABG,∴∠FBG=1∠ABG=75°,2∵∠FBG=∠F+∠FCB,∴∠F=75°-45°=30°.∴∠DCE+∠F=15°+30°=45°.19.解析(1)如图所示,虚线即为所求.×10=5.(2)∵AD是△ABC的边BC上的中线,△ABC的面积为10,∴△ADC的面积=12(3)∵AD是△ABC的边BC上的中线,∴BD=CD,∵△ABD的面积为6,∴△ABC的面积为12,∵BD边上的高为3,∴BC=12×2÷3=8.20.解析(1)∵AB=3AC,AC=10 cm,∴AB=15 cm.2又∵△ABC的周长是33 cm,∴BC=33-10-15=8(cm).∵AD是BC边上的中线,∴BD=1BC=4 cm.2(2)不能.理由如下:AC,AC=12 cm,∴AB=18 cm.∵AB=32又∵△ABC的周长是33 cm,∴BC=33-12-18=3(cm).∵AC+BC=15<18,∴不能构成三角形,则不能求出DC的长.21.解析(1)∵BD是AC边上的高,∴∠ADB=∠BDC=90°,∵∠A=70°,∴∠ABD=90°-70°=20°.(2)∵∠BEC=∠BDC+∠DCE,且∠BEC=118°,∠BDC=90°,∴∠DCE=118°-90°=28°,∵CE 平分∠ACB,∴∠DCB=2∠DCE=56°, ∴∠DBC=90°-56°=34°,∴∠ABC=∠ABD+∠DBC=20°+34°=54°. 22.解析 (1)∵∠C=40°,∠B=2∠C, ∴∠B=80°,∴∠BAC=180°-80°-40°=60°,∵AE 平分∠BAC,∴∠EAC=12∠BAC=30°,∵AD ⊥BC,∴∠ADC=90°, ∴∠DAC=90°-40°=50°,∴∠DAE=∠DAC-∠EAC=50°-30°=20°. (2)证明:如图,∵EF ⊥AE,∴∠AEF=90°, ∴∠AED+∠FEC=90°,∵∠DAE+∠AED=90°,∴∠DAE=∠FEC, ∵AE 平分∠BAC,∴∠EAC=12∠BAC=12(180°-∠B-∠C)=12(180°-3∠C)=90°-32∠C, ∵∠DAE=∠DAC-∠EAC,∴∠DAE=∠DAC-(90°-32∠C)=90°-∠C-90°+32∠C=12∠C, ∴∠FEC=12∠C,∴∠C=2∠FEC.23.解析(1)∵∠AOB+∠COD+∠A+∠B+∠C+∠D=180°×2=360°,∠A+∠B+∠C+∠D=180°, ∴∠AOB+∠COD=360°-180°=180°. 故答案为180°.(2)①∵AO 、BO 、CO 、DO 分别是四边形ABCD 的四个内角的平分线, ∴∠OAB=12∠DAB,∠OBA=12∠CBA,∠OCD=12∠BCD,∠ODC=12∠ADC,∴∠OAB+∠OBA+∠OCD+∠ODC=12×360°=180°, 在△OAB 中,∠OAB+∠OBA=180°-∠AOB, 在△OCD 中,∠OCD+∠ODC=180°-∠COD, ∴180°-∠AOB+180°-∠COD=180°, ∴∠AOB+∠COD=180°.∵∠AOB=110°,∴∠COD=180°-110°=70°. ②AB ∥CD.理由如下:∵AO 、BO 、CO 、DO 分别是四边形ABCD 的四个内角的平分线, ∴∠OAB=12∠DAB,∠OBA=12∠CBA,∠OCD=12∠BCD,∠ODC=12∠ADC,∴∠OAB+∠OBA+∠OCD+∠ODC=12×360°=180°,在△OAB 中,∠OAB+∠OBA=180°-∠AOB, 在△OCD 中,∠OCD+∠ODC=180°-∠COD, ∴180°-∠AOB+180°-∠COD=180°, ∴∠AOB+∠COD=180°.∴∠AOD+∠BOC=360°-(∠AOB+∠COD)=360°-180°=180°, ∵∠AOD=∠BOC,∴∠AOD=∠BOC=90°.在△AOD 中,∠DAO+∠ADO=180°-∠AOD=180°-90°=90°,∵∠DAO=12∠DAB,∠ADO=12∠ADC,∴12∠DAB+12∠ADC=90°,∴∠DAB+∠ADC=180°,∴AB ∥CD.24.解析 (1)∵∠MON=90°,∴∠OAB+∠OBA=90°, ∵AE 、BE 分别是∠BAO 和∠ABO 的平分线,∴∠BAE=12∠BAO,∠ABE=12∠ABO,∴∠BAE+∠ABE=12(∠BAO+∠ABO)=45°, ∴∠AEB=180°-45°=135°,故答案为135°.(2)①∵∠AOB=90°,∠BAO=70°, ∴∠ABO=20°,∠ABN=160°, ∵BC 是∠ABN 的平分线,∴∠OBD=∠CBN=12×160°=80°,∵AD 平分∠BAO,∴∠DAB=35°,∴∠D=180°-∠ABD-∠BAD=180°-∠OBD-∠ABO-∠BAD=180°-80°-20°-35°=45°, 故答案为45.②∠D 的度数不随A 、B 的移动而发生变化. 设∠BAD=x,∵AD 平分∠BAO,∴∠BAO=2x, ∵∠AOB=90°,∴∠ABN=180°-∠ABO=∠AOB+∠BAO=90°+2x, ∵BC 平分∠ABN,∴∠ABC=12∠ABN=45°+x, ∵∠ABC=180°-∠ABD=∠D+∠BAD, ∴∠D=∠ABC-∠BAD=45°+x-x=45°. (3)设∠BAD=x,∵AD 平分∠BAO,∴∠BAO=2x, ∵∠AOB=α,∴∠ABN=180°-∠ABO=∠AOB+∠BAO=α+2x, ∵BC 平分∠ABN,∴∠ABC=12α+x, ∵∠ABC=180°-∠ABD=∠D+∠BAD, ∴∠D=∠ABC-∠BAD=12α+x -x=12α.。

八年级数学上册第十一章《三角形》考试卷-人教版(含答案)

八年级数学上册第十一章《三角形》考试卷-人教版(含答案)

八年级数学上册第十一章《三角形》考试卷-人教版(含答案)一.选择题(共12小题)1.如图,CG平分正五边形ABCDE的外角∠DCF,并与∠EAB的平分线交于点O,则∠AOG的度数为()A.144°B.126°C.120°D.108°2.已知一个n边形的内角和等于1800°,则n=()A.6B.8C.10D.123.如图,生活中都把自行车的几根梁做成三角形的支架,这是利用三角形的()A.全等形B.稳定性C.灵活性D.对称性4.一个三角形的两边长分别为4cm和5cm,则此三角形的第三边的长不可能是()A.3cm B.5cm C.7cm D.9cm5.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.280°B.285°C.290°D.295°6.下列各组数可能是一个三角形的边长的是()A.4,4,9B.2,6,8C.3,4,5D.1,2,37.已知直线l1∥l2,将一块直角三角板ABC(其中∠A是30°,∠C是60°)按如图所示方式放置,若∠1=84°,则∠2等于()A.56°B.64°C.66°D.76°8.一副三角板,按如图所示叠放在一起,则图中∠α的度数为()A.10°B.15°C.20°D.25°9.如图,六边形ABCDEF内部有一点G,连接BG、DG.若∠1+∠2+∠3+∠4+∠5=440°,则∠BGD 的大小为()A.60°B.70°C.80°D.90°10.如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A点时,一共走的路程是()A.100米B.110米C.120米D.200米11.如图,在△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE交BD于G,交BC于H,下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=(∠BAC﹣∠C);④∠BGH=∠ABE+∠C其中正确的是()A.①②③B.①③④C.①②④D.①②③④12.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个二.填空题(共5小题)13.一个多边形的内角和的度数是外角和的2倍,这个多边形是.14.将一副直角三角板按如图放置,使两直角重合,则∠1的度数为.15.已知三角形的三边分别为3,x,4,那么x的取值范围是.16.如图,△ABC中,∠A=70°,∠B=50°,点M,N分别是BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B'落在AC上.若△MB'C为直角三角形,则∠MNB'的度数为.17.一个三角形3条边长分别为xcm、(x+1)cm、(x+2)cm,它的周长不超过39cm,则x的取值范围是.三.解答题(共4小题)18.如图,在△ABC中,AN是∠BAC的角平分线,∠B=50°,∠ANC=80°.求∠C的度数.19.一个多边形的内角和比它的外角和的3倍还多180度,求这个多边形的边数.20.如图,在四边形ABCD中,AD∥BC,连接BD,点E在BC边上,点F在DC边上,且∠1=∠2.(1)求证:EF∥BD;(2)若DB平分∠ABC,∠A=130°,∠C=70°,求∠CFE的度数.21.(问题背景)∠MON=90°,点A、B分别在OM、ON上运动(不与点O重合).(问题思考)(1)如图①,AE、BE分别是∠BAO和∠ABO的平分线,随着点A、点B的运动,∠AEB=.(2)如图②,若BC是∠ABN的平分线,BC的反向延长线与∠OAB的平分线交于点D.①若∠BAO=70°,则∠D=°.②随着点A、B的运动,∠D的大小会变吗?如果不会,求∠D的度数;如果会,请说明理由;(问题拓展)(3)在图②的基础上,如果∠MON=α,其余条件不变,随着点A、B的运动(如图③),∠D =.(用含α的代数式表示)参考答案一.选择题(共12小题)1.【解答】解:∵任意多边形的外角和等于360°,∴∠DCF=360°÷5=72°.∴这个正五边形的每个内角为180°﹣72°=108°.∴∠B=∠EAB=∠BCD=108°.又∵AO平分∠EAB,∴∠OAB=.又∵CG平分∠DCF,∴∠DCG=.∴∠BCO=∠BCD+∠DCG=108°+36°=144°.∴∠AOC=360°﹣(∠BAO+∠B+∠BCG)=360°﹣(54°+108°+144°)=54°.∴∠AOG=180°﹣∠AOC=180°﹣54°=126°.故选:B.2.【解答】解:∵(n﹣2)×180=1800,∴n=12.故选:D.3.【解答】解:生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有稳定性.故选:B.4.【解答】解:设第三边长为xcm,由三角形的三边关系可得:5﹣4<x<5+4,即1<x<9,故选:D.5.【解答】解:∵∠C=∠F=90°,∠A=45°,∠D=30°,∴∠2+∠3=180°﹣∠D=150°,∵∠α=∠1+∠A,∠β=∠4+∠C,∵∠1=∠2,∠3=∠4,∴∠α+∠β=∠A+∠1+∠4+∠C=∠A+∠C+∠2+∠3=45°+90°+150°=285°,故选:B.6.【解答】解:A、因为4+4<9,所以本组数不能构成三角形.故本选项错误;B、因为2+6=8,所以本组数不能构成三角形.故本选项错误;C、因为3+4>5,所以本组数可以构成三角形.故本选项正确;D、因为1+2=3,所以本组数不能构成三角形.故本选项错误;故选:C.7.【解答】解:∵∠3+∠4+∠A=180°,∠A=30°,∠4=∠1=84°,∴∠3=180°﹣∠A﹣∠4=180°﹣30°﹣84°=66°.又∵直线l1∥l2,∴∠2=∠3=66°.故选:C.8.【解答】解:由题意得,∠ABD=60°,∠C=45°,∴∠α=∠ABD﹣∠C=15°,故选:B.9.【解答】解:∵多边形ABCDEF是六边形,∴∠1+∠5+∠4+∠3+∠2+∠6+∠7+∠C=180°×(6﹣2)=720°,∵∠1+∠2+∠3+∠4+∠5=440°,∴∠6+∠7+∠C=720°﹣440°=280°,∵多边形BCDG是四边形,∴∠C+∠6+∠7+∠BGD=360°,∴∠BGD=360°﹣(∠6+∠7+∠C)=360°﹣280°=80°,故选:C.10.【解答】解:∵每次小明都是沿直线前进10米后向左转36°,∴他走过的图形是正多边形,边数n=360°÷36°=10,∴他第一次回到出发点A时,一共走了10×10=100米.故选:A.11.【解答】解:①∵BD⊥FD,∴∠FGD+∠F=90°,∵FH⊥BE,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH,∴∠DBE=∠F,①正确;②∵BE平分∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C,∴2∠BEF=∠BAF+∠C,②正确;③∠ABD=90°﹣∠BAC,∠DBE=∠ABE﹣∠ABD=∠ABE﹣90°+∠BAC=∠CBD﹣∠DBE﹣90°+∠BAC,∵∠CBD=90°﹣∠C,∴∠DBE=∠BAC﹣∠C﹣∠DBE,由①得,∠DBE=∠F,∴∠F=∠BAC﹣∠C﹣∠DBE,∴∠F=(∠BAC﹣∠C);③正确;④∵∠AEB=∠EBC+∠C,∵∠ABE=∠CBE,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=∠FEB,∴∠BGH=∠ABE+∠C,④正确,故选:D.12.【解答】解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,∴①正确;②∵∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=×180°=90°,∴△ABC是直角三角形,∴②正确;③∵∠A=90°﹣∠B,∴∠A+∠B=90°,∵∠A+∠B+∠C=180°,∴∠C=90°,∴△ABC是直角三角形,∴③正确;④∵∠A=∠B=∠C,∴∠C=2∠A=2∠B,∵∠A+∠B+∠C=180°,∴∠A+∠A+2∠A=180°,∴∠A=45°,∴∠C=90°,∴△ABC是直角三角形,∴④正确;故选:D.二.填空题(共5小题)13.【解答】解:设这个多边形是n边形,根据题意,得(n﹣2)×180°=2×360°,解得:n=6.即这个多边形是六边形.故答案为:六边形.14.【解答】解:如图,由题意知,∠CAD=60°,∠B=90°﹣45°=45°,∴∠CAB=120°,∴∠1=∠B+∠CAB=45°+120°=165°.故答案为:165°.15.【解答】解:根据三角形的任意两边之和大于第三边,两边之差小于第三边可得:4﹣3<x<4+3,即1<x<7.故答案为:1<x<7.16.【解答】解:∵∠C=180°﹣∠A﹣∠B,∠A=70°,∠B=50°,∴∠C=180°﹣70°﹣50°=60°,当∠CB′M=90°,∴∠CMB′=90°﹣60°=30°,由折叠的性质可知:∠NMB′=∠BMB′=75°,∴∠MNB′=180°﹣75°﹣50°=55°,当∠CMB′=90°时,∠NMB=∠NMB′=45°,∠MNB′=180°﹣50°﹣45°=85°,故答案为55°或85°.17.【解答】解:∵一个三角形的3边长分别是xcm,(x+1)cm,(x+2)cm,它的周长不超过39cm,∴,解得1<x≤12.故答案为:1<x≤12.三.解答题(共4小题)18.【解答】解:∵∠ANC=∠B+∠BAN,∴∠BAN=∠ANC﹣∠B=80°﹣50°=30°,∵AN是∠BAC角平分线,∴∠BAC=2∠BAN=60°,在△ABC中,∠C=180°﹣∠B﹣∠BAC=70°.19.【解答】解:设这个多边形的边数为n,则内角和为180°(n﹣2),依题意得:180(n﹣2)=360×3+180,解得n=9.答:这个多边形的边数是9.20.【解答】解:(1)如图,∵AD∥BC(已知),∴∠1=∠3(两直线平行,内错角相等).∵∠1=∠2,∴∠3=∠2(等量代换).∴EF∥BD(同位角相等,两直线平行).(2)解:∵AD∥BC(已知),∴∠ABC+∠A=180°(两直线平行,同旁内角互补).∵∠A=130°(已知),∴∠ABC=50°.∵DB平分∠ABC(已知),∴∠3=∠ABC=25°.∴∠2=∠3=25°.∵在△CFE中,∠CFE+∠2+∠C=180°(三角形内角和定理),∠C=70°,∴∠CFE=85°.21.【解答】解:(1)∵∠MON=90°,∴∠OAB+∠OBA=90°,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴∠BAE=∠BAO,∠ABE=∠ABO,∴∠BAE+∠ABE=(∠BAO+∠ABO)=45°,∴∠AEB=135°;故答案为:135°;(2)①∵∠AOB=90°,∠BAO=70°,∴∠ABO=20°,∠ABN=160°,∵BC是∠ABN的平分线,∴∠OBD=∠CBN=×160°=80°,∵AD平分∠BAO,∴∠DAB=35°,∴∠D=180°﹣∠ABD﹣∠BAD﹣∠AOB=180°﹣80°﹣35°﹣20°=45°,故答案为:45;②∠D的度数不随A、B的移动而发生变化,设∠BAD=x,∵AD平分∠BAO,∴∠BAO=2x,∵∠AOB=90°,∴∠ABN=180°﹣∠ABO=∠AOB+∠BAO=90+2x,∵BC平分∠ABN,∴∠ABC=45°+x,∵∠ABC=180°﹣∠ABD=∠D+∠BAD,∴∠D=∠ABC﹣∠BAD=45°+x﹣x=45°;(3)设∠BAD=x,∵AD平分∠BAO,∴∠BAO=2x,∵∠AOB=α,∴∠ABN=180°﹣∠ABO=∠AOB+∠BAO=α+2x,∵BC平分∠ABN,∴∠ABC=+x,∵∠ABC=180°﹣∠ABD=∠D+∠BAD,∴∠D=∠ABC﹣∠BAD=+x﹣x=;故答案为:。

人教版八年级数学上册第11章《三角形》达标检测卷(含答案)

人教版八年级数学上册第11章《三角形》达标检测卷(含答案)

人教版八年级数学上册第十一章《三角形》达标检测卷(含答案)(总分120分,时间:90分钟)题号一二三总分得分一、选择题(每题3分,共30分)1.现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1个B.2个C.3个D.4个2.下列判断:①有两个内角分别为50°和20°的三角形一定是钝角三角形;②直角三角形中两锐角之和为90°;③三角形的三个内角中不可以有三个锐角;④有一个外角是锐角的三角形一定是钝角三角形,其中正确的有()A.1个B.2个C.3个D.4个3.图中能表示△ABC的BC边上的高的是()A B C D4.如图,在△ABC中,∠A=40°,点D为AB延长线上一点,且∠CBD=120°,则∠C的度数为()A.40°B.60°C.80°D.100°(第4题)(第7题) (第9题) (第10题) 5.等腰三角形的周长为13 cm,其中一边长为3 cm,则该等腰三角形的底边长为()A.7 cm B.3 cm C.9 cm D.5 cm6.八边形的内角和为()A.180°B.360°C.1 080°D.1 440°7.如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()A.60°B.65°C.70°D.80°8.若一个多边形的内角和小于其外角和,则这个多边形的边数是()A.3 B.4 C.5 D.69.如图,在△ABC中,∠CAB=52°,∠ABC=74°,AD⊥BC于D,BE⊥AC于E,AD与BE交于F,则∠AFB的度数是()A.126°B.120°C.116°D.110°10.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A.30°B.36°C.38°D.45°二、填空题(每题3分,共30分)11.若一个三角形的三个内角度数之比为4∶3∶2,则这个三角形的最大内角为________度.12.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有________性.(第12题)13.已知△ABC的两条边长分别为3和5,且第三边的长c为整数,则c的取值可以为________.14.如图,在Rt△ABC中,∠ABC=90°,AB=12 cm,BC=5 cm,AC=13 cm,若BD是AC边上的高,则BD的长为________cm.(第14题) (第15题)15.如图,点D在△ABC的边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是______度.16.如果一个多边形的内角和为其外角和的4倍,那么从这个多边形的一个顶点出发共有________条对角线.(第17题)17.如图是一副三角尺拼成的图案,则∠CEB=________°.18.如图,∠1+∠2+∠3+∠4+∠5+∠6=________.(第18题)19.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为________.20.如图,D,E,F分别是△ABC的边AB,BC,AC上的中点,连接AE,BF,CD 交于点G,AG∶GE=2∶1,△ABC的面积为6,设△BDG的面积为S1,△CGF的面积为S2,则S1+S2=________.(第20题)三、解答题(21、22题每题6分,23、24题每题8分,25、26题每题10分,27题12分,共60分)21.如图,CD是△ABC的角平分线,DE∥BC,∠AED=70°,求∠EDC的度数.(第21题)22.如图.(1)在△ABC 中,BC 边上的高是________; (2)在△AEC 中,AE 边上的高是________;(3)若AB =CD =2 cm ,AE =3 cm ,求△AEC 的面积及CE 的长.(第22题)23.如图,将六边形纸片ABCDEF 沿虚线剪去一个角(∠BCD)后,得到∠1+∠2+∠3+∠4+∠5=440°,求∠BGD 的度数.(第23题)24.在等腰三角形ABC 中,AB =AC ,一边上的中线BD 将这个三角形的周长分为18和15两部分,求这个等腰三角形的底边长.25.如图,在△ABC 中,∠1=100°,∠C =80°,∠2=12∠3,BE 平分∠ABC.求∠4的度数.(第25题)26.已知等腰三角形的三边长分别为a ,2a -1,5a -3,求这个等腰三角形的周长. 27.已知∠MON =40°,OE 平分∠MON ,点A ,B ,C 分别是射线OM ,OE ,ON 上的动点(A ,B ,C 不与点O 重合),连接AC 交射线OE 于点D.设∠OAC =x°.(1)如图(1),若AB ∥ON ,则①∠ABO 的度数是________;②当∠BAD =∠ABD 时,x =________;当∠BAD =∠BDA 时,x =________. (2)如图(2),若AB ⊥OM ,则是否存在这样的x 的值,使得△ADB 中有两个相等的角?若存在,求出x 的值;若不存在,说明理由.(第27题)答案一、1.B 2.C 3.D4.C 点拨:∵∠CBD 是△ABC 的外角,∴∠CBD =∠C +∠A.又∵∠A =40°,∠CBD =120°,∴∠C =∠CBD -∠A =120°-40°=80°.5.B6.C 点拨:八边形的内角和为(8-2)×180°=1 080°. 7.C8.A 点拨:设这个多边形的边数为n ,依题意有(n -2)×180°<360°,即n <4.所以n =3.9.A 点拨:在△ABC 中,∠CAB =52°,∠ABC =74°,∴∠ACB =180°-∠CAB -∠ABC =180°-52°-74°=54°.在四边形EFDC 中,∵AD ⊥BC ,BE ⊥AC ,∴∠ADC =90°,∠BEC =90°,∴∠DFE =360°-∠DCE -∠FDC -∠FEC =360°-54°-90°-90°=126°.∴∠AFB =∠DFE =126°.10.B 点拨:∵五边形ABCDE 是正五边形,∴∠BAE =(5-2)×180°÷5=108°.∴∠AEB =(180°-108°)÷2=36°.∵l ∥BE ,∴∠1=∠AEB =36°.故选B .二、11.80 12.稳定 13.3,4,5,6,714.6013 点拨:由等面积法可知AB·BC =BD·AC ,所以BD =AB·BC AC =12×513=6013(cm ). 15.60 点拨:∵∠ACD 是△ABC 的外角,∴∠ACD =∠A +∠B =80°+40°=120°.又∵CE 平分∠ACD ,∴∠ACE =12∠ACD =12×120°=60°.16.7 17.10518.360° 点拨:如图,∵∠1+∠5=∠8,∠4+∠6=∠7,∠2+∠3+∠7+∠8=360°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.(第18题)19.120°20.2 点拨:∵E 为BC 的中点,∴S △ABE =S △ACE =12S △ABC =3.∵A G ∶GE =2∶1,△BGA 与△BEG 为等高三角形,∴S △BGA ∶S △BEG =2∶1,∴S △BGA =2.又∵D 为AB 的中点,∴S △BGD =12S △BGA =1.同理得S △CGF =1.∴S 1+S 2=2.三、21.解:∵DE ∥BC ,∴∠ACB =∠AED =70°.∵CD 平分∠ACB ,∴∠BCD =12∠ACB =35°.又∵DE ∥BC ,∴∠EDC =∠BCD =35°.22.解:(1)AB ;(2)C D ;(3)∵AE =3 cm ,CD =2 cm ,∴S △AEC =12AE·CD =12×3×2=3(cm 2).∵S △AEC =12CE·AB =3 cm 2,AB =2 cm ,∴CE =3 cm .23.解:∵六边形ABCDEF 的内角和为180°×(6-2)=720°,且∠1+∠2+∠3+∠4+∠5=440°,∴∠GBC +∠C +∠CDG =720°-440°=280°,∴∠BGD =360°-(∠GBC +∠C +∠CDG)=80°.24.解:设这个等腰三角形的腰长为a ,底边长为b. ∵D 为AC 的中点, ∴AD =DC =12AC =12a.根据题意得⎩⎨⎧32a =18,12a +b =15,或⎩⎨⎧32a =15,12a +b =18.解得⎩⎪⎨⎪⎧a =12,b =9,或⎩⎪⎨⎪⎧a =10,b =13.又∵三边长为12,12,9和10,10,13均可以构成三角形. ∴这个等腰三角形的底边长为9或13.25.解:∵∠1=∠3+∠C ,∠1=100°,∠C =80°,∴∠3=20°.∵∠2=12∠3,∴∠2=10°,∴∠B AC =∠2+∠3=10°+20°=30°,∴∠ABC =180°-∠C -∠BAC =180°-80°-30°=70°.∵BE 平分∠ABC ,∴∠ABE =35°.∵∠4=∠2+∠ABE ,∴∠4=45°.26.解:当底边长为a 时,2a -1=5a -3,即a =23,则三边长为23,13,13,不满足三角形三边关系,不能构成三角形;当底边长为2a -1时,a =5a -3,即a =34,则三边长为12,34,34,满足三角形三边关系.能构成三角形,此时三角形的周长为12+34+34=2;当底边长为5a-3时,2a-1=a,即a=1,则三边长为2,1,1,不满足三角形三边关系,不能构成三角形.所以这个等腰三角形的周长为2.27.解:(1)①20°②120;60(2)①当点D在线段OB上时,若∠BAD=∠ABD,则x=20.若∠BAD=∠BDA,则x =35.若∠ADB=∠ABD,则x=50.②当点D在射线BE上时,因为∠ABE=110°,且三角形的内角和为180°,所以只有∠BAD=∠BDA,此时x=125,综上可知,存在这样的x的值,使得△ADB中有两个相等的角,且x=20,35,50或125.。

人教版八年级数学上册第11章单元测试卷及答案

人教版八年级数学上册第11章单元测试卷及答案

人教版八年级数学上册第11章单元测试卷及答案一.选择题(每小题3分,共30分)1.若一个三角形的两边长分别为5和8,则第三边长可能是( )A.14B.10C.3D.22.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( )A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.三角形的稳定性3.画△ABC中AB边上的高,下列画法中正确的是( )A.B.C.D.4.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于( )A.30°B.40°C.60°D.70°第4题图第5题图第6题图5.如图,AD是△ABC的中线,的周长为25cm,AB比AC长6cm,则△ACD的周长为( )A.19cm B.22cm C.25cm D.31cm6.如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是( )A.35°B.55°C.60°D.70°7.一个多边形的内角和是外角和的2倍,则这个多边形是( )A.四边形B.五边形C.六边形D.八边形8.如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于点E,∠BAC=60°,∠C=80°,则∠EOD的度数为( )A.20°B.30°C.10°D.15°第8题图第9题图9.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)10.一个角的两边与另一个角的两边互相垂直,且这两个角之差为40°,那么这两个角分别为( ) A.70°和110°B.80°和120°C.40°和140°D.100°和140°二.填空题(每小题3分,共15分)11.如图,在△ABC中,∠ACB=90°,将△ACD沿CD折叠,使点A恰好落在BC边上的点E处.若∠B=25°,则∠BDE= 度.第11题图第12题图第13题图12.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A= .13.如图,已知△ABC为直角三角形,∠B=90°,若沿图中虚线剪去∠B,则∠1+∠2等于 度.14.如图,△ABC中,AD为中线,DE⊥AB于E,DF⊥AC于F,AB=3,AC=4,DF=1.5,则DE= .第14题图第15题图15.如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A 2,得∠A2;…∠A2016BC和∠A20l6CD的平分线交于点A2017,则∠A2017= °.三.解答题(本大题共8个小题,满分75分)16.(8分)如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.17.(9分)如图,A点在B处的北偏东40°方向,C点在B处的北偏东85°方向,A点在C处的北偏西45°方向,求∠BAC及∠BCA的度数.18.(9分)如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.19.(9分)如图所示,已知在△ABC中,∠B>∠C,AD为∠BAC的平分线,AE丄BC,垂足为E.求证:∠DAE=(∠B﹣∠C).20.(9分)一个多边形的内角和比外角和的3倍少180°,求(1)这个多边形的边数;(2)该多边形共有多少条对角线.21.(10分)如图,在△ABC中,点D在BC 上,点E 在AC 上,AD交BE于F.已知EG∥AD交BC于G,EH⊥BE交BC 于H,∠HEG=50°.(1)求∠BFD的度数.(2)若∠BAD=∠EBC,∠C=42°,求∠BAC的度数.22.(10分)(1)如图1,点P为△ABC的内角平分线BP与CP的交点,求证:∠BPC=90°+∠A;(2)如图2,点P为△ABC内角平分线BP与外角平分线CP的交点,请直接写出∠BPC与∠A的关系;(3)如图3,点P是△ABC的外角平分线BP与CP的交点,请直接∠BPC与∠A的关系.23.(11分)将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE.DF恰好分别经过点B.C.(1)如图①,若∠A=40°时,点D在△ABC内,则∠ABC+∠ACB= 度,∠DBC+∠DCB= 度,∠ABD+∠ACD= 度;(2)如图②,改变直角三角板DEF的位置,使点D在△ABC内,请探究∠ABD+∠ACD与∠A之间存在怎样的数量关系,并验证你的结论.(3)如图③,改变直角三角板DEF的位置,使点D在△ABC外,且在AB边的左侧,直接写出∠ABD.∠ACD.∠A三者之间存在的数量关系.第十一章三角形单元测试卷参考答案一.选择题1.B2.D3.C4.A5.A 6.D 7.C8.A9.B10.A二.填空题11.11012.85°13.27014.215..三.解答题(共8小题)16.解:∵∠AFE=90°,∴∠AEF=90°﹣∠A=90°﹣35°=55°,∴∠CED=∠AEF=55°,∴∠ACD=180°﹣∠CED﹣∠D=180°﹣55°﹣42°=83°. 17.解:∵∠DBA=40°,∠DBC=85°,DB∥CE,∴∠ECB=180°﹣85°=95°,∠ABC=85°﹣40°=45°,∵∠ECA=45°,∴∠BCA=95°﹣45°=50°,∴∠BAC=180°﹣50°﹣45°=85°.18.解:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.19.解:在Rt△AED中,∠DAE+∠ADE=90°,∵∠ADE=∠C+∠DAC,而∠DAC=∠BAC,∴∠DAE=90°﹣(∠C+∠BAC),又∵∠BAC=180°﹣∠B﹣∠C,∴∠DAE=90°﹣∠C﹣(180°﹣∠B﹣∠C)=90°﹣∠C﹣90°+∠B+∠C=(∠B﹣∠C).20.解:(1)设这个多边形的边数为n.根据题意得:180°×(n﹣2)=360°×3﹣180°,解得:n=7;(2)==14.答:(1)该多边形为七边形;(2)七边形共有14条对角线.21.解:(1)∵EH⊥BE,∴∠BEH=90°,∵∠HEG=50°,∴∠BEG=40°,又∵EG∥AD,∴∠BFD=∠BEG=40°;(2)∵∠BFD=∠BAD+∠ABE,∠BAD=∠EBC,∴∠BFD=∠EBC+∠ABE=∠ABC=40°,∵∠C=42°,∴∠BAC=180°﹣∠ABC﹣∠C=180°﹣40°﹣42°=98°.22.证明:(1)∵∠PBC+∠BCP+∠BPC=180°,∵∠BPC=120°,∴∠ABC+∠ACB=60°,∵BP.CP是角平分线,∴∠ABC=2∠PBC,∠ACB=2∠BCP,∵∠ABC+∠ACB+∠A=180°,∴∠BPC=90°+∠A;(2)∠P=∠A,理由如下:∵△ABC的内角平分线BP与外角平分线CP交于P,∴∠PBC=∠ABC,∠PCD=∠ACD,∵∠ACD=∠A+∠ABC,∠PCD=∠PBC+∠P,∴(∠A+∠ABC)=∠PBC+∠P=∠ABC+∠P,∴∠P=∠A;(3)∠P=90°﹣∠A,理由如下:∵BP.CP是△ABC的外角平分线,∴∠PBC=(∠A+∠ACB),∠PCB=(∠A+∠ABC),又∵∠PBC+∠PCB+∠P=180°,∴∠P=180°﹣(∠PBC+∠PCB)=180°﹣(∠A+∠ACB+∠A+∠ABC)=180°﹣(180+∠A)=90°﹣∠A.23.解:(1)在△ABC中,∵∠A=40°,∴∠ABC+∠ACB=180°﹣40°=140°,在△DBC中,∵∠BDC=90°,∴∠DBC+∠DCB=180°﹣90°=90°,∴∠ABD+∠ACD=140°﹣90°=50°;故答案为:140;90;50.(2)∠ABD+∠ACD与∠A之间的数量关系为:∠ABD+∠ACD=90°﹣∠A.证明如下:在△ABC中,∠ABC+∠ACB=180°﹣∠A.在△DBC中,∠DBC+∠DCB=90°.∴∠ABC+∠ACB﹣(∠DBC+∠DCB)=180°﹣∠A﹣90°.∴∠ABD+∠ACD=90°﹣∠A.(3)∠ACD﹣∠ABD=90°﹣∠A.。

人教版数学八年级上册第十一章基础检测题含答案

人教版数学八年级上册第十一章基础检测题含答案

1 / 20人教版数学八年级上册第十一章基础检测题含答案《11.1与三角形有关的线段》一、单选题(每小题只有一个正确答案)1.在一次数学实践活动中,杨阳同学为了估计一池塘边,A B 两点间的距离,如下图,先在池塘边取一个可以直接到达A 点和B 点的点,C 连结,CA CB 、测得15,12CA m CB m ==,则,A B 间的距离不可能是( )A .20mB .24mC .25mD .28m2.三角形一边上的中线把原三角形一定分成两个 ( )A .形状相同的三角形B .面积相等的三角形C .周长相等的三角形D .直角三角形3.下列三条线段能构成三角形的是( )A .1,2,3B .3,4,5C .7,10,18D .4,12,74.如图,在ABC 中,AC 边上的高是( )A .BEB .ADC .CFD .AF5.已知三角形的三边长分别为4,5,x ,则x 不可能是( )A .3B .5C .7D .96.若线段,AP AQ 分别是ABC 边上的高线和中线,则( )A .AP AQ >B .AP AQ ≥C .AP AQ <D .AP AQ ≤7.如图所示的图形中具有稳定性的是( )A .①②③④B .①③C .②④D .①②③8.如图,△ABC 的面积为8,AD 为BC 边上的中线,E 为AD 上任意一点,连接BE ,CE ,图中阴影部分的面积为( )A .2B .3C .4D .5二、填空题 9.已知一个三角形的两边长分别是2cm 和4cm ,当这个三角形的第三条边长为偶数时,其长度是________cm .10.如果a ,b ,c 为一个三角形的三边长,那么点()P a b c a b c +---,在第3 / 20____________象限.11.已知等腰三角形的两边长分别为3和5,则它的周长是____________12.如图,在△ABC 中,AD 平分∠BAC .AE ⊥BC ,∠B =44°,∠DAE =18°,则∠2=_____°.13.如图,在ABC 中,AD 是BC 边上的中线,10AB BC ==,7AD =,则ABD △ 的周长为________.三、解答题14.已知,已知ABC ∆的周长为33cm ,AD 是BC 边上的中线,32AB AC =.(1)如图,当10AC cm =时,求BD 的长.(2)若12AC cm =,能否求出DC 的长?为什么?15.如图,△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的平分线,∠EAD =5°,∠B =50°,求∠C 的度数.-+-----+.16.已知a、b、c为三角形的三边长,化简a b c b c a a c b1 / 20参考答案1.D 2.B 3.B 4.A 5.D 6.D 7.B 8.C9.4 10.四 11.11或13 12.10°13. 解:AD 是BC 边上的中线,10AB BC ==,5,BD CD ∴==7,AD =105722.ABDC AB BD AD ∴=++=++= 14. 解:(1)∵32AB AC =,10AC cm =, ∴15AB cm =,又∵ABC ∆的周长是33cm ,∴8BC cm =,∵AD 是BC 边上的中线, ∴142BD BC cm ==; (2)不能,理由如下: ∵32AB AC =,12AC cm =, ∴18AB cm =,又∵ABC ∆的周长是33cm ,∴3BC cm =,∵1518AC BC AB +=<=,∴不能构成三角形ABC ,则不能求出DC 的长.15.解:∵AD 是BC 边上的高,∠EAD=5°,∴∠AED=85°,∵∠B=50°,∴∠BAE=∠AED-∠B=85°-50°=35°,∵AE 是∠BAC 的角平分线,∴∠BAC=2∠BAE=70°,∴∠C=180°-∠B-∠BAC=180°-50°-70°=60°.16. 解:∵a ,b ,c 是一个三角形的三条边长,∴0a c b +->,0c a b +->,0a b c +->,即0a b c -+>,0b c a --<,0a c b -+>, ∴a b c b c a a c b -+-----+()()a b c b c a a c b =-++----+a b c b c a a c b =-++---+-a b c =--+.11.2与三角形有关的角一、选择题1.如图,∠BDC =98°,∠C =38°,∠A =37°,则∠B 的度数是( )A.33°B.23°C.27°D.37°2.如图,F是AB上一点,E是AC上一点,BE、CF相交于点D,∠A=70°,∠ACF=30°,∠ABE=20°,则∠BFC+∠BEC的度数为()A.172°B.190°C.65°D.60°3.已知,从的顶点引射线,若,那么()A. 或B.C. D.4.如图,,,.那么等于().A. B. C. D.3/ 205.已知三角形两个内角的差等于第三个内角,则它是( )A .锐角三角形B .钝角三角形C .直角三角形D .等边三角形 6.如图,BC AE ⊥,垂足为C ,过C 作CD ∥AB .若43ECD ∠=︒,则B 的度数是( )A .43°B .45°C .47°D .57° 7.如图,在中,,点为AB 延长线上一点,且,则( )A. B. C. D.8.已知三角形的一个内角是另一个内角的23,是第三个内角的45,则这个三角形各内角的度数分别为( )A .60°,90°,75°B .48°,72°,60°C .48°,32°,38°D .40°,50°,90°9.如图,∠A+∠B+∠C+∠D+∠E+∠F 的和为( )5 / 20A .180°B .360°C .270°D .540° 10.在中,,则等于( )A. B. C. D. 11.下列说法不正确的有( )①一个三角形至少有2个锐角;①在△ABC 中,若∠A=2∠B=3∠C ,则△ABC 为直角三角形;①过n 边形的一个顶点可作(n ﹣3)条对角线;①n 边形每增加一条边,则其内角和增加360°. A .1个 B .2个 C .3个 D .4个12.在中,,,则( )A. B. C. D. 二、填空题13.如图,已知//DE BC ,//EF AB ,63DEF ∠=,70C ∠=,则A ∠=__________.14.如图所示,将△ABC 平移后得到△DEF ,已知∠B =35°,∠A =85°,则∠DEF =____,∠D =_____,∠F =____.15.在中,已知,则是______三角形. 16.如图,在△ABC 中,CE 、BF 是两条高,若∠A=65°,∠BCE=35°,则∠ABF 的度数是_____,∠FBC 的度数是_____.三、解答题17.如图,ABC △沿着BC 的方向,平移至DEF , 80A ∠=,60B ∠=︒,求F ∠的度数.18.如图,在四边形中,,直线与边,分别相交于点,,求的度数.19.如图所示,在△ABC 中,60A ∠=,BP ,BQ 三等分ABC ∠,CP ,CQ 三等分ACB ∠,7 / 20求BPC ∠的度数.20.如图, //30100CE AB B AOB ∠=∠=,,,求C ∠和ODE ∠的度数.答案1. B2. B3. A4. B5. C6. C7. C8.B9.B10. B11.B12. C13.4714.35°;85°;60°.15. 直角16.25° 30°17.40∠=F18. 解:由三角形的内角和定理,得.,. 由邻补角的性质,得,,9 / 20.19. ∵∠A=60°∴∠ABC+∠ACB=180°-60°=120°又∵∠PBC=13∠ABC 又∵线段CP ,CQ 三等分∠ACB∴∠PCB=13∠ACB ∴∠PBC+∠PCB=13(∠ABC+∠ACB)=13×120°=40° ∴∠BPC=180°-40°=140°.20. ∵CE ∥AB ,∴∠C =∠B =30°.∠COD =∠AOB =100°(对顶角相等),∠ODE =∠C +∠COD =30°+100°=130°(三角形外角和定理).11.3 多边形考点1 认识多边形1.下列说法正确的是( )A .一个多边形外角的个数与边数相同B .一个多边形外角的个数是边数的二倍C .每个角都相等的多边形是正多边形D .每条边都相等的多边形是正多边形 2.一个四边形截去一个角后内角个数是( ①A .3B .4C .5D .3①4①53.判断下列说法,正确的是()A.三角形的外角大于任意一个内角B.三角形的三条高相交于一点C.各条边都相等的多边形叫做正多边形D.四边形的一组对角互补,则另一组对角也互补考点2 多边形的对角线4.一个多边形的内角和为720°,那么这个多边形的对角线共有().A.6条B.7条C.8条D.9条5.若一个多边形从一个顶点所作的对角线为5条,则这个多边形是()A.五边形B.六边形C.七边形D.八边形6.若一个n边形的每个内角为144°,则这个正n边形的所有对角线的条数是( )A.7B.10C.35D.707.多边形的每个外角都等于30°,则从此多边形的一个顶点出发可分为()个三角形.A.8B.9C.10D.118.从一个n边形的某个顶点出发,分别连接这个点与其他顶点可以把这个n边形分割成三角形个数是()A.3个B.(n﹣1)个C.5个D.(n﹣2)个考点3 多边形的内角和9.正多边形的每个内角都等于135°,则该多边形是正()边形A.8B.9C.10D.1110.一个多边形的每个外角都是45°,则这个多边形的内角和为()11 / 20A .360°B .140°C .1080°D .720°11.如图,在平面上将变长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠放在一起,则312∠+∠-∠=( )A .30B .24︒C .20︒D .28︒12.当多边形的边数增加1时,它的内角和会( )A .增加160B .增加180C .增加270D .增加360 13.一个多边形截去一个角后,形成另一个多边形的内角和为900︒,那么原多边形的边数为( )A .5B .5或6C .6或7或8D .7或8或9 14.如图,七边形ABCDEFG 中,AB 、ED 的延长线交于点O ,若1∠、2∠、3∠、4∠对应的邻补角和等于225︒,则BOD ∠的度数为( )A .35︒B .40︒C .45︒D .50︒15.如图,∠A +∠B +∠C +∠D +∠E +∠F 的度数为( )A.180°B.270°C.360°D.720°考点4 多边形的外角和16.一个多边形的每一个内角都等于140°,那么这个多边形的边数为()A.8B.9C.10D.1117.如图,小亮从A点出发前进10m,向右转15°,再前进10m,又向右转15°,这样一直走下去,他第一次回到出发点A时,一共走了米数是()A.120B.150C.240D.360∠的度数为()18.如图,六角螺母的横截面是正六边形,则1A.60°B.120°C.45°D.75°19.富有灿烂文化的永州,现今保留许多具有历史和文化价值的建筑,古朴的建筑物上雕刻的优美图案是我们数学研究的重要内容,图1中的“冰裂纹窗格”图案就是永州古建筑雕刻图案其中的代表,无规则多边形的形状,蕴含了丰富而和谐的数学美.图2是从图1冰裂纹∠+∠+∠+∠+∠窗格图案中提取的由五条线段组成的多边形,根据绘制的图案,则12345的度数为()13 / 20A .72︒B .108︒C .360︒D .540︒ 20.如图,M 是正五边形ABCDE 的边CD 延长线上一点.连接AD ,则ADM ∠的度数是( )A .108︒B .120︒C .144︒D .150︒21.如图,A B C D E F ∠+∠+∠+∠+∠+∠的和的大小为( )A .180°B .360°C .540°D .720°考点5 镶嵌问题 22.只用一种多边形不能镶嵌整个平面的是( )A .正三角形B .正四边形C .正五边形D .正六边形 23.某广场准备用边长相等的正方形和正三角形两种地砖铺满地面,在每个顶点的周围,正方形和正三角形地砖的块数分别是()A.1、2B.2、1C.2、2D.2、324.我们知道正五边形不能进行平面镶嵌,若将三个全等的正五边形按如图所示拼接在一起,那么图中的∠1的度数是()A.18°B.30°C.36°D.54°25.用边长相等的下列两种正多边形,不能进行平面镶嵌的是()A.等边三角形和正六边形B.正方形和正八边形C.正五边形和正十边形D.正六边形和正十二边形26.如图所示,已知等边三角形ABC的边长为1,按图中所示的规律,用2008个这样的三角形镶嵌而成的四边形的周长是()A.2008B.2009C.2010D.2011答案1.B2.D3.D4.D5.D6.C7.C8.D9.A10.C11.B12.B13.C14.C15/ 2015.C 16.B 17.C 18.A 19.C 20.A 21.B 22.C 23.D 24.C 25.D 26.C。

人教版 八年级数学 上册第十一章检测题含答案)

人教版 八年级数学 上册第十一章检测题含答案)

人教版八年级数学上册第十一章检测题11.1 与三角形有关的线段一、选择题(本大题共12道小题)1. 三角形按边分类可分为()A.不等边三角形、等边三角形B.等腰三角形、等边三角形C.不等边三角形、等腰三角形、等边三角形D.不等边三角形、等腰三角形2. 人字梯中间一般会设计一“拉杆”,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.两直线平行,内错角相等D.三角形具有稳定性3. 已知在△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A. 11B. 5C. 2D. 14. 课堂上,老师把教学用的两块三角尺叠放在一起,得到如图所示的图形,其中三角形的个数为()A.2B.3C.5D.65. 已知等腰三角形的腰和底的长分别是一元二次方程x2-6x+8=0的根,则该三角形的周长为()A. 8B. 10C. 8或10D. 126. 如图,已知AD是△ABC的中线,且△ABD的周长比△ACD的周长大3 cm,则AB与AC的差为()A.2 cm B.3 cm C.4 cm D.6 cm7. 如图,已知P为直线l外一点,点A,B,C,D在直线l上,且PA>PB>PC >PD,则下列说法正确的是()A.线段PD的长是点P到直线l的距离B.线段PC可能是△PAB的高C.线段PD可能是△PBC的高D.线段PB可能是△PAC的高8. 下列关于三角形的分类,有如图K-1-4所示的甲、乙两种分法,则()A.甲、乙两种分法均正确B.甲分法正确,乙分法错误C.甲分法错误,乙分法正确D.甲、乙两种分法均错误9. 如图,六根木条钉成一个六边形框架ABCDEF,要使框架稳固且不活动,至少还需要添加木条()A.1根B.2根C.3根D.4根10. 长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种11. 将一个三角形纸片剪开分成两个三角形,这两个三角形不可能()A.都是直角三角形B.都是钝角三角形C.都是锐角三角形D.是一个直角三角形和一个钝角三角形12. 某木材市场上木棒规格与对应单价如下表:规格 1 m 2 m 3 m 4 m 5 m 6 m单价(元/根) 10 15 20 25 30 35小明的爷爷要做一个三角形的木架养鱼用,现有两根长度分别为3 m和5 m的木棒,还需要到该木材市场去购买一根木棒,则小明的爷爷至少带的钱数应为()A.10元B.15元C.20元D.25元二、填空题(本大题共6道小题)13. 如图,自行车的主框架采用了三角形结构,这样设计的依据是________________.14. 如图,AE是△ABC的中线,已知EC=8,DE=3,则BD=________.15. 已知一个等腰三角形两边的长分别为3和6,则该等腰三角形的周长是.16. 如图,在△ABC中,AD⊥BC于点D,点E在CD上,则图中以AD为高的三角形有______个.17. 已知三角形的三边长分别为3,8,x,若x为偶数,则x=____________.18. 如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为________.三、解答题(本大题共3道小题)19. 如图,用钉子把木棒AB,BC和CD分别在端点B,C处连接起来,AB,CD 可以转动,用橡皮筋把AD连接起来,橡皮筋始终绷直,设橡皮筋AD的长是x cm.(1)若AB=5 cm,CD=3 cm,BC=11 cm,求x的最大值和最小值;(2)在(1)的条件下要围成一个四边形,你能求出x的取值范围吗?20. 数学活动课上,老师让同学们用长度分别是20 cm,90 cm,100 cm的三根木棒搭一个三角形的木架,小明不小心把100 cm的木棒折去了35 cm,他发现:用折断后剩下的木棒与另两根木棒怎么也搭不成三角形.(1)你知道为什么吗?(2)100 cm长的木棒至少折去多长后剩余的部分就不能与另两根木棒搭成三角形?21. 观察探究观察并探求下列各问题.(1)如图①,在△ABC中,P为边BC上一点,则BP+PC________AB+AC(填“>”“<”或“=”);(2)将(1)中的点P移到△ABC内,如图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由;(3)将(2)中的点P变为两个点P1,P2,如图③,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.人教版八年级数学11.1 与三角形有关的线段课时训练-答案一、选择题(本大题共12道小题)1. 【答案】D2. 【答案】D3. 【答案】B4. 【答案】C5. 【答案】B【解析】解一元二次方程x2-6x+8=0,得x1=2,x2=4.当三角形三边为2,2,4时,∵2+2=4,∴不符合三边关系,应舍去;当三角形三边为2,4,4时,∵2+4>4,符合三边关系,∴三角形的周长为10,故选B.6. 【答案】B[解析] ∵AD是△ABC的中线,∴BD=CD.∴△ABD与△ACD的周长之差=(AB+AD+BD)-(AC+AD+CD)=AB-AC. ∵△ABD的周长比△ACD的周长大3 cm,∴AB与AC的差为3 cm.7. 【答案】C[解析] 由于PA>PB>PC>PD,因此PD可能是钝角三角形PBC 中BC边上的高.8. 【答案】C9. 【答案】C[解析] 添加3根木条以后成为如右所示图形,其由若干三角形组成,具有稳定性.10. 【答案】C11. 【答案】C[解析] 如图①,沿虚线剪开即可得到两个直角三角形.如图②,钝角三角形沿虚线剪开即可得到两个钝角三角形.如图③,直角三角形沿虚线剪开即可得到一个直角三角形和一个钝角三角形.因为剪开的边上的两个角互补,故这两个三角形不可能都是锐角三角形.12. 【答案】C[解析] 由三角形三边大小关系可得第三根木棒的长度应该大于2 m 且小于8 m,所以满足要求的木棒有3 m,4 m,5 m,6 m,其中买3 m木棒用钱最少,为20元.二、填空题(本大题共6道小题)13. 【答案】三角形具有稳定性14. 【答案】5[解析] ∵AE是△ABC的中线,EC=8,∴BE=EC=8.∵DE=3,∴BD=BE-DE=8-3=5.15. 【答案】15[解析] 若腰长为3,3+3=6,∴3,3,6不能组成三角形;若腰长为6,3+6=9>6,∴3,6,6能组成三角形,该三角形的周长为3+6+6=15.16. 【答案】617. 【答案】6或8或10[解析] 由三角形三边关系可知5<x<11.因为x为偶数,所以x的值为6或8或10.18. 【答案】13【解析】由折叠的性质可得:CD=AD,∴△BCD的周长=BC +CD+BD=BC+AD+BD=BC+BA=6+7=13.三、解答题(本大题共3道小题)19. 【答案】解:(1)x的最大值是5+3+11=19,最小值是11-3-5=3.(2)由(1)得x的取值范围为3<x<19.20. 【答案】解:(1)把100 cm的木棒折去了35 cm后还剩余65 cm.∵20+65<90,∴20 cm,65 cm,90 cm长的三根木棒不能构成三角形.(2)设折去x cm后剩余的部分不能与另两根木棒搭成三角形.根据题意,得20+(100-x)≤90,解得x≤30,∴100 cm长的木棒至少折去30 cm后剩余的部分就不能与另两根木棒搭成三角形.21. 【答案】解:(1)<(2)△BPC的周长<△ABC的周长.理由:如图①,延长BP交AC于点M.在△ABM中,BP+PM<AB+AM.在△PMC中,PC<PM+MC.两式相加,得BP+PC<AB+AC,∴△BPC的周长<△ABC的周长.(3)四边形BP1P2C的周长<△ABC的周长.理由:如图②,分别延长BP1,CP2交于点M.由(2)知,BM+CM<AB+AC.又∵P1P2<P1M+P2M,∴BP1+P1P2+P2C<BM+CM<AB+AC.∴四边形BP1P2C的周长<△ABC的周长.11.2三角形-与三角形有关的角一、选择题1.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是( )A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形2.如图所示,BD平分∠ABC,DE∥BC,且∠D=30°,则∠AED的度数为()。

人教版八年级数学上册第十一章综合检测卷含答案

人教版八年级数学上册第十一章综合检测卷含答案

人教版八年级数学上册第十一章综合检测卷一、选择题(每题3分,共30分)1.【教材P8习题T1变式】如图,图中三角形的个数共有()A.3个B.4个C.5个D.6个(第1题)(第3题)(第5题)2.【教材P4练习T2变式】下列长度的三条线段,能组成三角形的是() A.2 cm,3 cm,4 cm B.2 cm,3 cm,5 cmC.2 cm,5 cm,10 cm D.8 cm,4 cm,4 cm3.【教材P8习题T3变式】已知,图中的虚线部分是小玉作的辅助线,则下列结论正确的是()A.CD是边AB上的高B.CD是边AC上的高C.BD是边CB上的高D.BD是边AC上的高4.在△ABC中,能说明△ABC是直角三角形的是()A.∠A∶∠B∶∠C=1∶2∶2 B.∠A∶∠B∶∠C=3∶4∶5C.∠A∶∠B∶∠C=1∶2∶3 D.∠A∶∠B∶∠C=2∶3∶4 5.【教材P16习题T5变式】如图,直线AB∥CD,∠B=50°,∠D=20°,则∠E =()A.20°B.30°C.50°D.70°6.【2021·毕节】将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.70°B.75°C.80°D.85°(第6题)(第7题)(第9题)(第10题)7.如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC.下列说法不正确...的是()A.BE是△ABD的中线B.BD是△BCE的角平分线C.∠1=∠2=∠3 D.BC是△ABE的高8.【教材P24练习T3变式】一个多边形的内角和比其外角和大180°,则这个多边形的边数是()A.4 B.5 C.6 D.79.如图,在△ABC中,∠C=75°,若沿图中虚线截去∠C,则∠1+∠2=() A.260°B.280°C.255°D.245°10.【2021·扬州】如图,点A,B,C,D,E在同一平面内,连接AB,BC,CD,DE,EA,若∠BCD=100°,则∠A+∠B+∠D+∠E=()A.220°B.240°C.260°D.280°二、填空题(每题3分,共24分)11.人站在晃动的公交车上,若分开两腿站立,还需伸出一只手抓住栏杆才能站稳,这是利用了________________________.12.六边形的外角和的度数是________.13.已知三角形三边长分别为1,x,5,则整数x=________.14.若一个多边形截去一个角后,变成六边形,则原来多边形的边数可能是________.15.如图,△ABC中,∠1=∠2,∠BAC=65°,则∠APB=________.(第15题)(第17题) (第18题)16.【教材P28复习题T4变式】一个多边形从一个顶点出发可以画9条对角线,则这个多边形的内角和为________.17.如图,在△ABC中,AD是BC边上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积是________.18.【教材P17习题T9拓展】已知△ABC,有下列说法:(1)如图①,若P 是∠ABC 和∠ACB 的平分线的交点,则∠P =90°+12∠A ; (2)如图②,若P 是∠ABC 和外角∠ACE 的平分线的交点,则∠P =90°-∠A ; (3)如图③,若P 是外角∠CBF 和∠BCE 的平分线的交点,则∠P =90°-12∠A . 其中正确的有______个.三、解答题(23题12分,24题14分,其余每题10分,共66分) 19.【2021·海淀区校级期中】求出下列图形中x 的值.20.【教材P 12例2变式】如图,一艘轮船在A 处看见巡逻艇C 在其北偏东62°的方向上,此时一艘客船在B 处看见巡逻艇C 在其北偏东13°的方向上.试求此时在巡逻艇上看这两艘船的视角∠ACB 的度数.21.如图,已知AD 是△ABC 的角平分线,CE 是△ABC 的高,AD ,CE 相交于点P ,∠BAC =66°,∠BCE =40°.求∠ADC 和∠APC 的度数.22.【教材P25习题T10变式】如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证:AF∥CD.23.【2021·黄冈期中】已知,在△ABC中.(1)若∠B=∠A+15°,∠C=∠B+15°,求△ABC的各内角度数;(2)若三边长分别为a,b,c.试化简|a+b-c|-|b-c-a|.24.如图,在△ABC中,∠A=30°,一块直角三角尺XYZ放置在△ABC上,恰好三角尺XYZ的两条直角边XY,XZ分别经过点B,C.(1)∠ABC+∠ACB=________,∠XBC+∠XCB=________,∠ABX+∠ACX=________.(2)若改变直角三角尺XYZ的位置,但三角尺XYZ的两条直角边XY,XZ仍然分别经过点B,C,且直角顶点X始终在△ABC的内部,则∠ABX+∠ACX的大小是否变化?请说明理由.答案一、1.C 2.A 3.A 4.C 5.B 6.B7.C8.B9.C10.D 点方法:求复杂几何图形中相关角的度数和,可运用转化思想,将这几个角转化到一个多边形内,然后利用多边形内角和公式求解.二、11.三角形具有稳定性12.360°13.514.5,6,715.115°16.1 800°17.618.2三、19.解:(1)x=180-90-50=40;(2)x+x+40=180,解得x=70;(3)x+70=x+x+10,解得x=60.20.解:由题意可得AD∥BF,∴∠BEA=∠DAC=62°.∵∠BEA是△CBE的一个外角,∴∠BEA=∠ACB+∠CBE.∴∠ACB=∠BEA-∠CBE=62°-13°=49°.答:此时在巡逻艇上看这两艘船的视角∠ACB的度数为49°.21.解:∵CE是△ABC的高,∴∠AEC=90°.∴∠ACE=180°-∠BAC-∠AEC=24°.∵∠BCE=40°,∴∠ACB=40°+24°=64°.∵AD是△ABC的角平分线,∴∠DAC=12∠BAC=33°.∴∠ADC=180°-∠DAC-∠ACB=83°.∴∠APC=∠ADC+∠BCE=83°+40°=123°.22.(1)解:∵六边形ABCDEF的内角都相等,内角和为(6-2)×180°=720°,∴∠B=∠A=∠BCD=720°÷6=120°.∵CF∥AB,∴∠B+∠BCF=180°.∴∠BCF=60°.∴∠FCD=∠BCD-∠BCF=60°.(2)证明:∵CF ∥AB ,∴∠A +∠AFC =180°. ∴∠AFC =180°-120°=60°. ∴∠AFC =∠FCD .∴AF ∥CD .23. 点方法:化简涉及三角形三边的绝对值时,要先运用三角形的三边关系判断绝对值符号内的式子的正负,然后利用| a | =⎩⎨⎧a (a ≥0),-a (a <0)去掉绝对值符号,再合并化简.解:(1)设∠A =x ,则∠B =x +15°,∠C =x +30°. ∴x +x +15°+x +30°=180°, ∴x =45°.∴∠A =45°,∠B =60°,∠C =75°. (2)∵△ABC 的三边长分别为a ,b ,c , ∴a +b -c >0,b -c -a <0. ∴|a +b -c |-|b -c -a | =(a +b -c )-(-b +c +a ) =a +b -c +b -c -a =2b -2c .24.解:(1)150°;90°;60°(2)∠ABX +∠ACX 的大小不变.理由:在△ABC 中,∠A +∠ABC +∠ACB =180°,∠A =30°, ∴∠ABC +∠ACB =180°-30°=150°. ∵∠YXZ =90°,∴∠XBC +∠XCB =90°.∴∠ABX +∠ACX =(∠ABC -∠XBC )+(∠ACB -∠XCB )=(∠ABC +∠ACB )-(∠XBC +∠XCB )=150°-90°=60°. ∴∠ABX +∠ACX 的大小不变.。

人教版数学八年级上册 第十一章《三角形》单元测试题(配套练习附答案)

人教版数学八年级上册 第十一章《三角形》单元测试题(配套练习附答案)
∴∠C=60°,
∵BD平分∠ABC,
∴∠DBC=35° ,
∴∠BDC=180°﹣60°﹣35°=85°.
故答案为85°.
17.若n边形的内角和是它的外角和的2倍,则n=.
【答案】6
【解析】
此题涉及多边形内角和和外角和定理
多边形内角和=180(n-2),外角和=360º
所以,由题意可得180(n-2)=2×360º
16.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是_____.
【答案】85°.
【解析】
【分析】
根据三角形内角和得出∠C=60°,再利用角平分线得出∠DBC=35°,进而利用三角形内角和得出∠BDC的度数.
【详解】∵在△ABC中,∠A=50°,∠ABC=70°,
【答案】2cm2
【解析】
【分析】
由点E为AD的中点,可得△ABC与△BCE的面积之比,同理可得,△BCE和△EFC的面积之比,即可解答出.
【解析】
解:如图2,连接BE,由对顶三角形可得,∠C+∠D=∠CBE+∠DEB.∵五边形ABEFG中,∠A+∠ABE+∠BEF+∠F+∠G=540°,即∠A+∠ABC+∠CBE+∠BED+∠DEF+∠F+∠G=540°,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F+∠G=540°.故答案为540.
点睛:本题主要考查了多边形内角和定理的运用,解决问题的关键是作辅助线构造“对顶三角形”以及五边形,并得出∠C+∠D=∠CBE+∠DEB.解题时注意,五边形的内角和为540°.

人教版初二数学上册《第十一章单元试卷》(详尽答案版)

人教版初二数学上册《第十一章单元试卷》(详尽答案版)

人教版初二数学上册第十一章章检测题一、选择题1.下列图形中具有稳定性的是()A B C D2.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.nB.n-1C.n-2D.n-33.下列四个图形中,线段BE是△ABC的高的是()4.下列说法中,正确的是()A.三角形的内角中最多有一个锐角B.三角形的内角中最多有两个锐角C.三角形的内角中最多有一个直角D.三角形的内角都大于60°5.已知正n边形的一个内角为135°,则边数n的值是()A.6B.7C.8D.106.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11D.167.若一个三角形的三个内角的度数比为3∶4∶7,则这个三角形为()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形图11-98.如图11-9所示,已知AB∥CD,∠A=50°,∠C=∠E,则∠C等于()A.20°B.25°C.30°D.40°9.如图11-10所示,在△ABC中,∠C=90°,EF∥AB,∠CEF=50°,则∠B的度数为()A.50°B.60°C.30°D.40°图11-10图11-1110.将一副三角尺按如图11-11所示的方式摆放在一起,则∠1的度数是()A.55°B.65°C.75°D.85°二、填空题11.五边形的内角和的度数是.12.若正n边形的一个外角的度数为60°,则n的值为.13.如图11-12所示,BD=DE=EF=FC,那么AE是的中线.图11-12图11-1314.图11-13为2012年伦敦奥运会纪念币的图案,其形状近似看作正七边形,则一个内角为°.(不取近似值)15.如果三角形的两条边长分别为23cm和10cm,第三边与其中一边的长相等,那么第三边的长为cm.16.如图11-14所示,小明在操场上从点A出发,沿直线前进10m后向左转40°,再沿直线前进10m后,又向左转40°,照这样走下去,他第一次回到出发地点A时,一共走了m.图11-14图11-1517.如图11-15所示,若l1∥l2,则∠1= °.18.如图11-16所示,FE∥ON,OE平分∠MON,∠E=28°,则∠MFE= °.图11-16图11-1719.如图11-17所示,在Rt△ABC中,∠A=90°.小华用剪刀沿DE剪去∠A,得到一个四边形,则∠1+∠2= °.20.一个多边形的内角与外角的和是1440°,那么这个多边形是边形.三、解答题(共60分)21.若一个多边形的内角和比外角和多540°,求这个多边形的边数.22.如果一个多边形的所有内角从小到大排列起来,依次增加的度数恰好相同,设最小角为100°,最大角为140°,那么这个多边形的边数为多少?23.如图11-18所示,在△ABC中,∠BAC=30°,∠C=70°,AF平分∠BAC,BF平分∠CBE,AF交BC于点D,求∠BDA和∠F的度数.图11-1824.如图11-19所示,五边形ABCDE中,∠A=135°,AE⊥ED,AB∥CD,∠B=∠D,试求∠C的度数.图11-1925.如图11-20所示,已知∠1=∠2,∠3=∠4,∠C=32°,∠D=28°,求∠P的度数.图11-2026.(1)如图11-21①所示,若AB∥CD,点P在AB,CD外部,则有∠B=∠BOD.又因∠BOD是△POD的外角,故∠BOD=∠P+∠D,得∠P=∠B-∠D.将点P移到AB,CD内部,如图11-21②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD,∠B,∠D之间有何数量关系?并证明你的结论;(2)在图11-21②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图11-21③,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论,求图11-21④中∠A+∠B+∠C+∠D+∠E+∠F的度数.图11-21参考答案1.C解析:把多边形分割成三角形,多边形的形状不会改变,因而具有稳定性的是C.2.C解析:从n边形的一个顶点作对角线,把这个n边形分成的三角形有(n-2)个.3.D解析:根据高的画法知,过点B作AC边上的垂线,垂足为点E,其中线段BE是△ABC的高.4.C解析:若一个三角形有两个直角,则这个三角形的内角和大于180°,这与三角形内角和定理矛盾,所以一个三角形最多有一个直角.5.C解析:∵正n边形的一个内角为135°,∴正n边形的一个外角为180°-135°=45°,n=360°÷45°=8.6.C解析:设此三角形第三边的长为x,则10-4<x<10+4,即6<x<14,四个选项中只有11符合条件.7.A解析:设一份为k°,则三个内角的度数分别为3k°,4k°,7k°,则3k°+4k°+7k°=180°,解得7k°=90°,∴这个三角形是直角三角形.8.B解析:∵AB∥CD,∠A=50°,∴∠A=∠AOC.又∵∠C=∠E,∠AOC=∠C+∠E,∴∠C=50°÷2=25°.9.D解析:∵∠C=90°,∴∠CFE=90°-∠CEF=40°.又∵EF∥AB,∴∠B=∠CFE=40°.10.C解析:一副三角尺所对应的角度是60°,45°,30°,90°,由图可知∠1所在的三角形另外两个角的度数是60°,90°-45°=45°,所以∠1=180°-60°-45°=75°.11.540°解析:五边形的内角和的度数为(5-2)×180°=3×180°=540°.12.6解析:∵正n边形的一个外角的度数为60°,∴n=360°÷60°=6.13.△ABC和△ADF 解析:∵BD=DE=EF=FC,∴点E是BC和DF的中点,∴AE是△ABC和△ADF的中线.14.错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1人教版八年级数学上册第十一章测试题及答案(考试时间:120分钟 满分:120分)分数:__________第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分)1.下列各组中的三条线段能组成三角形的是( B ) A .2 cm ,4 cm ,6 cm B .1 cm ,6 cm ,6 cm C .2 cm ,6 cm ,9 cm D .5 cm ,3 cm ,10 cm 2.下列角度,不能成为多边形内角和的只有( A ) A .260° B .540° C .1 800° D .900° 3.如图,在△ABC 中,BD ⊥AC ,EF ∥AC ,交BD 于点G ,那么下列结论错误的是( C ) A .BD 是△ABC 的高 B .CD 是△BCD 的高 C .EG 是△ABD 的高 D .BG 是△BEF 的高第3题图 第4题图 4.如图,直线l 1∥l 2,∠1=55°,∠2=65°,则∠3为( C ) A .50° B .55° C .60° D .65°5.从一个n 边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n 的值是( C )A .6B .7C .8D .96.如图,已知BE =CE ,ED 为△EBC 的中线,BD =8,△AEC 的周长为24,则△ABC 的周长为( D )A.16B.24C.32D.407.如图,把一直尺放置在一个三角形纸片上,则下列结论正确的是( D )A.∠1+∠6>180° B .∠2+∠5<180° C .∠3+∠4<180° D .∠3+∠7>180°8.三角形的三个外角度数之比为3∶4∶5,则对应的三个内角的度数之比为( D ) A .3∶4∶5 B .5∶4∶3 C .1∶2∶3 D .3∶2∶19.已知a ,b ,c ,d ,e 五条线段,其长度均为整数,现由a ,b ,c 三条线段组成△ABC ,又由c ,d ,e 组成△CDE ,若a ,b 满足a -4+(b -1)2=0,d =2,则△CDE 的周长可以为( A )A .11B .12C .13D .1410.★已知△ABC ,(1)如图①,若P 点是∠ABC 和∠ACB 的平分线的交点,则∠P =90°+12∠A ;(2)如图②,若P 点是∠ABC 和外角∠ACE 的平分线的交点,则∠P =90°-∠A ;(3)如图③,若P 点是外角∠CBF 和∠BCE 的平分线的交点,则∠P =90°-12∠A .上述说法正确的有( C )A .0个B .1个C .2个D .3个第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共24分)11.一个三角形中最多有 1 个内角是钝角.12.△ABC 的三边长分别为a ,b ,c ,则|a -b -c|-|b -a -c|= 2b -2a .13.已知△ABC 中,∠A ∶∠B ∶∠C =1∶3∶5,则△ABC 是 钝角 三角形. 14.若一个多边形的内角和是其外角和的一半,则这个多边形的边数是 3 .15.如图所示,在△ABC 中,AC =6,BC =4,BD =2,BD ⊥AC 于D ,AE 是BC 边上的高,则AE = 3 .第15题图第16题图16.如图,分别以四边形ABCD的四个顶点为圆心,R为半径作四个互不相交的圆,则图中阴影部分的面积之和是πR2.17.★如图,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为80° .第17题图第18题图18.★如图,在△ABC中,E是BC上的一点,CE=2BE,点D是AC的中点,设△ABC,△三、解答题(共66分)19.(8分)如图,在△ABC中,已知AD是角平分线,∠B=66°,∠C=54°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC于点E,求∠ADE的度数.解:(1)∵∠B=66°,∠C=54°,∴∠BAC=180°-∠B-∠C=180°-66°-54°=60°.∵AD平分∠BAC,∴∠BAD=∠CAD=30°,∴∠ADB=180°-∠B-∠BAD=180°-66°-30°=84°,∠ADC=180°-∠ADB=96°.(2)∵DE⊥AC,∴∠ADE=90°-∠DAE=90°-30°=60°.20.(9分)按要求画图:(1)在图①中,画出△ABC三边上的高;(2)在图②中,画出△ABC三边上的中线;(3)在图③中,画出△ABC的三条角平分线.解:画图如图所示.21.(8分)如图,△ABC中,∠A=46°,CE是∠ACB的平分线,B,C,D三点在同一直线上,∠D=42°,当∠B的度数为多少时,EC∥FD?说明理由.解:当∠B=50°时,EC∥FD.理由:∵FD∥EC,∠D=42°.∴∠BCE=42°.∵CE是∠ACB的平分线,∴∠ACB=2∠BCE=84°.∵∠A=46°,∴∠B=180°-84°-46°=50°.22.(10分)已知n边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙两同学的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.解:(1)甲的说法对,乙的说法不对.理由:由题意可知,n边形的内角和为180°的正整数倍.∵360°÷180°=2,630°÷180°=3.5,∴甲的说法对,乙的说法不对.360°÷180°+2=2+2=4.∴甲同学说的边数n是4.(2)依题意有(n+x-2)×180°-(n-2)×180°=360°,解得x=2.23.(10分)如图,在△ACB 中,∠ACB =90°,CD ⊥AB 于D.(1)求证:∠ACD =∠B ;(2)若AF 平分∠CAB 分别交CD ,BC 于点E ,F ,求证:∠CEF =∠CFE.证明:(1)∵∠ACB =90°,CD ⊥AB ,∴∠ACD +∠BCD =90°,∠B +∠BCD =90°, ∴∠ACD =∠B.(2)在Rt △AFC 中,∠CFE =90°-∠CAF , 同理在Rt △AED 中,∠AED =90°-∠DAE. ∵AF 平分∠CAB , ∴∠CAF =∠DAE. ∴∠AED =∠CFE. ∵∠CEF =∠AED ,∴∠CEF =∠CFE.24.(9分)一个等腰三角形的周长为40 cm . (1)求腰长的取值范围;(2)若一边长为10 cm ,求另外两边长.解:(1)设腰长为x cm ,则底边长为(40-2x )cm ,∴可得⎩⎨⎧x +x >40-2x ,x +40-2x >x ,解得10<x <20.(2)∵腰长不能等于10 cm , ∴底边长只能为10 cm ,∴另外两边长分别为15 cm 和15 cm.25.(12分)如图,在△ABC 中,∠ACB >∠ABC ,三条内角平分线AD ,BE ,CF 相交于点I.(1)若∠ABE =25°,求∠DIC 的度数;(2)在(1)的条件下,图中互余的角有多少对?列举出来;解:(1)∵BE 平分∠ABC ,∠ABE =25°, ∴∠ABC =50°, ∴∠BAC +∠ACB =130°. ∵AD 平分∠BAC ,CF 平分∠ACB ,∴∠IAC =12∠BAC ,∠ICA =12∠ACB.∴∠DIC =∠IAC +∠ICA =12(∠BAC +∠ACB ) =12×130°=65°. (2)在(1)的条件下,图中互余的角有12对.由(1)知∠DIC 与∠ABE 互余,则∠DIC 与∠EBC 互余. ∵∠DIC =∠AIF ,∴∠AIF 与∠ABE 互余,∠AIF 与∠EBC 互余,同理,∠BID 与∠ACF ,∠BCF 互余; ∠AIE 与∠ACF ,∠BCF 互余; ∠CIE 与∠BAD ,∠CAD 互余; ∠BIF 与∠BAD ,∠CAD 互余,∴一共有12对互余的角.(3)过点I 作IH ⊥BC ,垂足为H ,试问∠BID 与∠HIC 相等吗?为什么? (4)G 是AD 延长线上一点,过G 点作GP ⊥BC ,垂足为P ,试探究∠G 与∠ABC ,∠ACB 之间的数量关系,直接写出结论,不需证明.解:(3)∠BID =∠HIC.理由:由(2)知∠BID =90°-∠BCF , ∵IH ⊥BC ,∴∠HIC =90°-∠BCF , ∴∠BID =∠HIC.(4)∠G =12(∠ACB -∠ABC ).。

相关文档
最新文档