垂径定理及相关计算
垂径定理的公式
垂径定理的公式
1傅里叶垂径定理
傅里叶垂径定理(Fourier-Radius Theorem)是一组定理,它指出做傅里叶变换时,傅里叶变换的结果就具有和线的直径的垂直扩展或者收缩。
这类定理广泛用于概括和理解各种数字图像处理的过程。
傅里叶垂径定理的公式:
设在二维平面上的点用(x,y)表示,则傅里叶垂径定理的公式可表示为:
F(R)=R\cdot F(x/R,y/R)
其中F(R)为傅里叶变换后的函数值,F(x/R,y/R)为傅里叶变换前的函数值,R表示放大因子。
可以看到,由于R留存了傅里叶变换原来的函数值,所以它可以将任何空间上的函数投射到另一个空间,而这种投射是以双cos波为基础运作的。
2傅里叶垂径定理的应用
傅里叶垂径定理是一组引人注目的定理,由它看,改变的变量的比值是变换的结果的比值,放大和缩小都可实现。
鉴于傅里叶变换的这种广义特性,它被广泛应用于数字图像处理和标准化的尺度变换等数字处理的技术中。
例如,傅里叶垂径定理可以用于图像放大、图像缩小、图像锐化等,尤其是在金融分析领域,它也可以用于有效率地提取图像纹理特征。
此外,还可以用傅里叶垂径定理来消除在傅里叶变换中定义的色彩抖动,从而改善图像的清晰度。
同时,傅里叶垂径定理还可以用于解决图像分类问题,比如识别植物,分析道路状况等。
总之,傅里叶垂径定理既可以提供科学定理,也可以支持实践技术,在数字图像处理和标准尺度变换等技术领域应用非常广泛,受到越来越多行业的认可。
三垂径定理
三垂径定理一、垂径定理的内容1. 定理表述- 垂直于弦的直径平分弦且平分这条弦所对的两条弧。
- 用几何语言表示:- 已知圆O,直径CD⊥弦AB于点E,则AE = BE,widehat{AD}=widehat{BD},widehat{AC}=widehat{BC}。
2. 定理的证明(以人教版教材思路为例)- 连接OA,OB。
- 因为OA = OB(同圆半径相等),OE⊥ AB,根据等腰三角形三线合一的性质,可得AE=BE。
- 再根据圆的对称性,可得widehat{AD}=widehat{BD},widehat{AC}=widehat{BC}。
3. 相关概念理解- 弦:连接圆上任意两点的线段。
如在圆O中,AB就是一条弦。
- 直径:经过圆心的弦。
例如CD是圆O的直径。
- 弧:圆上任意两点间的部分。
圆O中的widehat{AD}、widehat{BD}、widehat{AC}、widehat{BC}等都是弧。
二、垂径定理的推论1. 推论内容- 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
- 用几何语言表示:- 已知圆O,直径CD平分弦AB(AB不是直径)于点E,则CD⊥ AB,widehat{AD}=widehat{BD},widehat{AC}=widehat{BC}。
2. 推论的证明- 连接OA,OB。
- 因为OA = OB,AE = BE,所以 OAB是等腰三角形,根据等腰三角形三线合一的性质,可得OE⊥ AB,即CD⊥ AB。
- 再根据圆的对称性,可得widehat{AD}=widehat{BD},widehat{AC}=widehat{BC}。
- 这里要注意弦不能是直径,因为任意一条直径都可以平分另一条直径,但不一定垂直。
三、垂径定理及其推论的应用1. 计算类应用- 例1:已知圆O的半径为5,弦AB = 8,求圆心O到弦AB的距离。
- 解:设圆心O到弦AB的距离为d。
- 连接OA,因为OA = 5,AB = 8,根据垂径定理,OE⊥ AB时AE=(1)/(2)AB = 4。
人教版初中数学垂径定理知识点总结
人教版初中数学垂径定理知识点总结一、垂径定理的定义垂径定理是关于直径和过该直径的直线(或圆)交于圆内两点之间的线段长度和关系的重要定理。
如果一个直径和一条过该直径的直线交于圆内两点,那么这条直径平分过这两点的线段,并且这条直径垂直于过这两点的直线。
二、垂径定理的表述1.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
2.垂直于弦的直径平分弦(不是直径),并且平分弦所对的两条弧。
3.垂直于弦的直径平分过弦的两条直线,并且平分弦所对的两条弧。
三、垂径定理的应用垂径定理在几何学中有着广泛的应用,特别是在解决与圆和直径相关的问题时。
例如,可以利用垂径定理来证明圆的性质,如圆的对称性、圆的周长和面积等。
此外,垂径定理还可以用于解决与圆和直线相关的问题,如求圆的半径、确定圆的中心等。
四、垂径定理的推论1.从圆心到弦的垂线是弦的中垂线。
2.圆内一条弦的两端到圆心的距离相等。
3.圆内一条过圆心的弦最短,其长度为圆的直径。
4.圆内一条不过圆心的弦最短,其长度等于从圆心到弦中点的线段长。
五、垂径定理的证明垂径定理可以通过以下两种方法证明:1.直接证明法:通过作图和推理,直接证明垂径定理。
这种方法比较直观和简洁,但需要一定的几何知识和推理能力。
2.代数法:利用圆的性质和代数运算,证明垂径定理。
这种方法比较抽象,但具有普适性,可以用于证明其他类似的定理。
六、注意事项1.在使用垂径定理时,要注意区分直径和其他弦的区别,避免混淆。
2.在作图时,要确保所作的线段是垂直于弦的直径,否则将无法使用垂径定理。
3.在解决实际问题时,要根据具体情况选择合适的方法来应用垂径定理。
七、垂径定理的应用场景1.确定圆的形状和大小:垂径定理可以用于确定圆的形状和大小。
例如,通过测量圆的直径或半径,可以确定圆的大小;通过观察垂径定理的各种表现,可以判断圆的状态和形状。
2.计算圆的周长和面积:垂径定理可以用于计算圆的周长和面积。
例如,通过已知的直径或半径,可以计算出圆的周长和面积。
抛物线垂径定理
抛物线垂径定理引言抛物线垂径定理是解析几何中的一个重要定理,它可以用来求解与抛物线相关的问题。
在本文中,我们将深入探讨该定理的定义、证明过程以及应用实例。
定理定义抛物线垂径定理是指:抛物线上一点的切线与该点到抛物线焦点的垂线交于一点,并且该点在焦点所在的直线上。
定理证明为了证明抛物线垂径定理,我们先引入一些基本知识。
焦点和准线对于一般的抛物线,我们可以通过以下公式来表示:y = ax^2 + bx + c其中,a、b、c为常数,a≠0。
在抛物线上存在两个特殊的点,分别是焦点和准线。
焦点的坐标可以通过以下公式计算得到:F (-b/2a, 1- (b^2-4ac)/4a)准线的方程为:y = (1 + b^2) / 4a - c证明过程现在我们开始证明抛物线垂径定理。
假设抛物线上存在一点P(x1, y1)。
我们知道,P点处的切线斜率等于该点的导数。
因此,P点处的切线方程可以表示为:y - y1 = 2ax1(x - x1)考虑到切线与垂线的关系,我们可以得到垂线方程的斜率为:-1 / (2ax1)P点到焦点F的距离可以表示为:d = sqrt((x1 + b/2a)^2 + (y1 - 1 + (b2-4ac)/4a)2)我们需要证明的是,垂线与切线的交点在焦点所在的直线上。
设垂线与切线的交点为Q(x2, y2)。
根据垂线的性质,我们知道Q点处的切线斜率为:-1 / (2ax1)将Q点的坐标代入切线方程,我们可以得到:y2 - y1 = 2ax1(x2 - x1)解方程组:y - y1 = 2ax1(x - x1)y2 - y1 = 2ax1(x2 - x1)可以得到交点Q的坐标:Q(x2, y2) = (2x1^2 - x1 + x2, 2ax1(x2 - x1) + y1)现在我们来证明Q点在焦点所在的直线上。
计算P点到焦点F的距离:PF = sqrt((x1 + b/2a)^2 + (y1 - 1 + (b2-4ac)/4a)2)同样地,计算交点Q到焦点F的距离:QF = sqrt((x2 + b/2a)^2 + (2ax1(x2 - x1) + y1 - 1 + (b2-4ac)/4a)2)我们需要证明的是,QF = PF。
垂径定理及推论证明方法
垂径定理及推论证明方法一、垂径定理的内容。
1.1 垂径定理简单来说就是在圆中,垂直于弦的直径平分弦且平分这条弦所对的两条弧。
这就像是一个圆里的“公平分配原则”,直径就像一个公正的裁判,只要它垂直于弦,就会把弦和对应的弧都平均分成两份。
1.2 例如,我们有一个圆,画一条弦AB,再画一条直径CD,让CD垂直于AB于点E。
那么根据垂径定理,AE就等于BE,弧AC等于弧BC,弧AD等于弧BD。
这就好像把一块圆形的蛋糕(圆),用一把垂直于蛋糕中间一条线(弦)的长刀(直径)切开,两边的蛋糕(弧)和中间的线(弦)都被平均分开了。
二、垂径定理的证明方法。
2.1 我们可以利用等腰三角形的性质来证明。
连接圆心O与弦AB的两个端点A和B,这样就形成了两个等腰三角形,即△OAB。
因为OA = OB(圆的半径都相等,这是圆的基本性质,就像一个家族里的兄弟姐妹都有相同的地位一样),直径CD垂直于AB,根据等腰三角形三线合一的性质(这可是三角形里的一个“法宝”性质),就可以得出AE = BE,从而证明了垂径定理平分弦这一部分。
2.2 对于平分弧的证明,我们可以利用圆的对称性。
圆是一个非常对称的图形,就像一个完美的圆形镜子,任何一条直径都是它的对称轴。
因为直径CD垂直于弦AB,那么沿着直径CD对折这个圆,弧AC和弧BC会完全重合,弧AD和弧BD也会完全重合,这就证明了直径平分弦所对的两条弧。
这就好比把一张圆形的纸沿着直径对折,两边的图案(弧)会严丝合缝地重合在一起,这就是圆的对称性在起作用。
2.3 从全等三角形的角度也能证明。
在前面连接OA、OB后,在Rt△OAE和Rt△OBE中,OA = OB(半径),OE是公共边,根据HL(斜边直角边)定理,可以得出这两个直角三角形全等。
全等三角形对应边相等,所以AE = BE。
而且全等三角形对应角相等,那么对应的圆心角相等,圆心角相等所对的弧就相等,也就证明了弧AC等于弧BC,弧AD等于弧BD。
第07讲 垂径定理
第07讲垂径定理(核心考点讲与练)【知识梳理】一.垂径定理(1)垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)垂径定理的推论推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.二.垂径定理的应用垂径定理的应用很广泛,常见的有:(1)得到推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(2)垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.这类题中一般使用列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.【核心考点精讲】一.垂径定理(共5小题)1.(2022•拱墅区一模)已知AB是⊙O的弦,半径OC⊥AB于点D.若DO=DC,AB=12,则⊙O的半径为()A.4B.4C.6D.62.(2016秋•北仑区期末)⊙O的直径AB和弦CD相交于点E,已知AE=6,EB=2,∠CEA=30°,则弦CD的长为()A.8B.4C.2D.23.(2022春•长兴县月考)如图,AB是⊙O的直径,CD⊥AB于点E,连结CO并延长,交弦AD于点F.若AB=10,BE=2,则OF的长度是()A.B.3C.D.4.(2022•博山区一模)如图,在平面直角坐标系中,半径为5的⊙E与y轴交于点A(0,﹣2),B(0,4),与x轴交于C,D,则点D的坐标为()A.B.C.D.5.(2021秋•北仑区校级期中)如图,⊙•O的直径AB=5,弦AC=3,点D是劣弧BC上的动点,CE⊥DC交AD于点E,则OE的最小值是()A.B.C.2﹣D.﹣1二.垂径定理的应用(共4小题)6.(2021秋•鹿城区校级期中)如图是一个小圆同学设计的一个鱼缸截面图,弓形ACB是由优弧AB与弦AB组成,AC是鱼缸的玻璃隔断,弓形AC部分不注水,已知CD⊥AB,且圆心O在CD上,AB=CD=80cm.注水时,当水面恰好经过圆心时,则水面宽EF为cm;注水过程中,求水面宽度EF的最大值为cm.7.(2022•旌阳区二模)筒车是我国古代发明的一种水利灌溉工具,如图1,筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2,已知圆心O在水面上方,且⊙O被水面截得弦AB长为4米,⊙O半径长为3米.若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是()A.1米B.2米C.米D.米8.(2021秋•温岭市期末)把一个球放入长方体纸盒,球的一部分露出盒外,球与纸盒内壁都刚好相切,其截面如图所示,若露出部分的高度为6cm,AF=DE=3cm,则这个球的半径是cm.9.(2021秋•诸暨市期末)一根排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=12,如果再注入一些水,当水面AB的宽变为16时,则水面AB上升的高度为.【过关检测】一.选择题(共7小题)1.(2022春•市中区校级月考)如图,在⊙O中,OC⊥AB于点C,若⊙O的半径为10,OC=5,则弦AB的长为()A.5B.10C.5D.102.(2021秋•温州期末)如图,在⊙O中,半径OC⊥AB于点D.已知OC=5,OD=4,则弦AB的长为()A.3B.4C.5D.63.(2021秋•嘉兴期末)如图,⊙O的直径AB=12,弦CD垂直AB于点P.若BP=2,则CD的长为()A.2B.4C.4D.84.(2021秋•嵊州市期末)如图,CD是⊙O的弦,直径AB⊥CD,垂足为M,连结AD.若CD=8,BM=2,则AD的长为()A.10B.5C.4D.35.(2021秋•东阳市期末)在圆柱形油槽内装有一些油,截面如图所示,已知截面⊙O半径为5cm,油面宽AB为6cm,如果再注入一些油后,油面宽变为8cm,则油面AB上升了()cm.A.1B.3C.3或4D.1或7 6.(2021秋•宁波期末)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=6cm,则球的半径为()A.3cm B.cm C.cm D.cm 7.(2021秋•拱墅区期中)如图,在⊙O中,直径AB=10,弦DE⊥AB于点C,若OC:OA=4:5,则DE的长为()A.6B.7C.8D.9二.填空题(共8小题)8.(2021秋•余姚市期末)如图1,水车又称孔明车,是我国最古老的农业灌溉工具,是珍贵的历史文化遗产.如图2,圆心O在水面上方,且⊙O被水面截得的弦AB长为8米,半径为5米,则圆心O到水面AB的距离为米.9.(2021秋•瑞安市期末)如图,AB为⊙O的直径,弦CD⊥AB于点E,CD=10,BE=3,则AE长为.10.(2021秋•拱墅区期末)如图,一个底部呈球形的烧瓶,球的半径为5cm,瓶内原有液体的最大深度CD=4cm.部分液体蒸发后,瓶内液体的最大深度下降为2cm,则截面圆中弦AB的长减少了cm(结果保留根号).11.(2021秋•温州校级月考)如图是郑州圆形“戒指桥”,其数学模型为如图所示.已知桥面跨径AB=20米,D为圆上一点,DC⊥AB于点C,且CD=BC=14米,则该圆的半径长为米.12.(2022•瑞安市开学)如图,矩形ABCD中,E,F分别是边AB,BC上的两个动点,将△BEF沿着直线EF作轴对称变换,得到△B′EF,点B′恰好在边AD上,过点D,F,B′作⊙O,连结OF.若OF⊥BC,AB′=CF=3时,则AE=.13.(2021秋•镇海区期末)⊙O的弦AB的长为8cm,弦AB的弦心距为3cm,则⊙O的半径为cm.14.(2020•金华模拟)如图,依据九上教材中的丁字尺,小明开始自制丁字尺:F、A、D、E在同一直线上,AF⊥AB,AB∥CD,AF=4cm,AD=DE=2cm.(1)现有一圆经过F、E,弧EF为劣弧,且与AB交于G,如果测得AG的长为10cm,那么圆的半径为;(2)小明在DC上制作单位刻度时不小心把尺子割断了,只余DM=1cm,此时只运用这把残破的丁字尺的已知数据(一条线段不能分段测量且不能作延长线),能计算或测量(不计误差)得到的最大半径是.15.(2022•海曙区一模)如图,圆O的半径为4,点P是直径AB上定点,AP=1,过P 的直线与圆O交于C,D两点,则△COD面积的最大值为;作弦DE∥AB,CH ⊥DE于H,则CH的最大值为.三.解答题(共5小题)16.(2021秋•西湖区校级月考)如图,CD为⊙O的直径,CD⊥AB于E,CE=8,DE=2,求AB的长.17.(2021•柯桥区模拟)如图,在⊙O中,过半径OD的中点C作AB⊥OD交⊙O于A、B两点,且AB=2.(1)求OD的长;(2)计算阴影部分的周长.18.(2021秋•玄武区校级月考)如图,AB是⊙O直径,弦CD⊥AB于点E,过点C作DB 的垂线,交AB的延长线于点G,垂足为点F,连结AC.(1)求证:AC=CG;(2)若CD=EG=8,求⊙O的半径.19.(2021秋•下城区校级月考)如图,有一座圆弧形拱桥,它的跨度AB为30m,拱高PM 为9m,当洪水泛滥到跨度只有15m时,就要采取紧急措施,若某次洪水中,拱顶离水面只有2m,即PN=2m时,试求:(1)拱桥所在的圆的半径;(2)通过计算说明是否需要采取紧急措施.20.(2020秋•永嘉县校级期末)如图,AB是⊙O的直径,四边形ABCD内接于⊙O,OD 交AC于点E,AD=CD.(1)求证:OD∥BC;(2)若AC=10,DE=4,求BC的长.。
垂径定理 (解析版)
垂径定理(解析版)【要点梳理】知识点一、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(如图 1 所示)2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(弦 AB 不是直径,如图 2 所示)图1 图2要点诠释:(1)这里的直径也可以是半径,也可以是过圆心的直线或线段.(2)在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【同步训练】类型一、应用垂径定理进行计算与证明1.如图,AB 是⊙O的弦,半径OC⊥AB于点D,且AB=6 cm,OD=4 cm,则DC 的长为()A.5 cm B.2.5 cm C.2 cm D.1 cmOD 2 + AD2 42 + 323 【答案】D ;【解析】连接 OA ,∵ OC⊥AB∴ AD = AB =3 .Rt△AOD 中, AO = = = 5.∴ DC =OC -OD =OA -OD =5-4=1(cm ).2.(2015•巴中模拟)如图,AB 为半圆直径,O 为圆心,C 为半圆上一点,E 是弧 AC 的中点,OE 交弦 AC 于点 D ,若 AC=8cm ,DE=2cm ,求 OD 的长.【答案】 OD =3cm .【解析】解:∵ E 为弧 AC 的中点,∴ OE ⊥AC ,AD AC =4.设 OD 的长为 x ,则:OE =OD +DE= x+2 =OA.在 Rt △OAD 中,∵ OA 2 =OD 2+AD 2∴(2+ x )2= x 2+42,x =3 .∴ OD =3cm .类型二、垂径定理的综合应用3.如图 1,某公园的一座石拱桥是圆弧形(劣弧),其跨度为 24m ,拱的半径为 13m ,则拱高为( )A .5mB .8mC .7mD . 5 m【答案】B ;【解析】如图 2 所示,由题意可知:AB 表示桥拱,弦 AB 的长表示桥的跨度,C 为 AB 的中点,OC 与 AB 相交于点 D 。
垂径定理及其20个推论
垂径定理及其20个推论垂径定理及其20个推论是几何学中的基本定理,它描述了圆与其内接三角形的关系。
下面是垂径定理及其20个推论的详细解释:垂径定理:在一个圆中,任意一条直径与其上的任意一条弦垂直。
推论1:在一个圆中,以圆心为端点的直径为直角边的两个直角三角形互为相似三角形。
推论2:在一个圆中,以圆心为端点的直径为直角边的直角三角形的斜边等于圆的半径。
推论3:在一个圆中,以圆心为端点的直径为直角边的直角三角形的斜边的平方等于两直角边的乘积。
推论4:在一个圆中,任意两条垂直的弦所对的弧互补。
推论5:在一个圆中,两条交叉的弦所对的四个弧互补。
推论6:在一个圆中,一条弦和其所对的弧上的两个角互补。
推论7:在一个圆中,两条相交弦所对的角互补。
推论8:在一个圆中,两条相交弦所对的角相等。
推论9:在一个圆中,一个角的对角互补角等于其所对的弧所对的角。
推论10:在一个圆中,一个角的对角互补角等于其所对的弦所对的弧所对的角。
推论11:在一个圆中,两条相交弦所对的角等于其所对的弧所对的角。
推论12:在一个圆中,两条相交弦所对的角互补。
推论13:在一个圆中,两个相对的角所对的弦相等。
推论14:在一个圆中,两个相对的角所对的弦互等。
推论15:在一个圆中,两个相对的角所对的弦相等于圆的半径。
推论16:在一个圆中,两个相对的角所对的弦互等于圆的半径。
推论17:在一个圆中,两个相对的角所对的弦的平方等于两个相对角的余弦的差的平方。
推论18:在一个圆中,一条弦所对的角等于其所对的弧所对的角。
推论19:在一个圆中,一条弦所对的角互补。
推论20:在一个圆中,一条弦所对的角是其所对的弧的一半。
椭圆垂径定理公式
椭圆垂径定理公式椭圆垂径定理是椭圆的一个重要性质,可以用来计算椭圆周长和面积,其公式为:垂径定理:对于椭圆上的任意一点P,其到两个焦点的距离和等于椭圆的长半轴长。
设椭圆的中心为O,长半轴长为a,短半轴长为b,焦距为2c (c^2 = a^2 - b^2)。
点P(x,y)是椭圆上的一点,设点F1和F2分别是椭圆的左右焦点。
根据垂径定理,有公式:PF1 + PF2 = 2a即:√((x+c)^2 + y^2) + √((x-c)^2 + y^2) = 2a这就是椭圆的垂径定理公式。
我们可以通过这个公式来解决一些与椭圆相关的计算问题。
例如,我们可以通过已知椭圆的长半轴长和焦距来求解短半轴长。
或者,通过已知椭圆上一点的坐标和长半轴长,来求解该点到两个焦点的距离之和。
除了椭圆的垂径定理公式,还有一些相关的内容可以作为参考。
1. 椭圆的几何性质:椭圆是一个平面上的闭合曲线,可以看作是平面上与两个定点(焦点)F1和F2到定点与给定常数之和等于该常数的点的轨迹。
椭圆还具有对称性、切线性质等一系列几何性质。
2. 椭圆的参数方程:椭圆可以用一组参数方程表示,在直角坐标系中,椭圆上的点可以表示为参数方程:x = a*cosθ, y =b*sinθ,其中a为长半轴长,b为短半轴长,θ为参数角。
3. 椭圆的面积和周长:椭圆的面积公式为S = πab,周长公式为C = 4aE(e),其中E(e)为椭圆的第二类完全椭圆积分,e为椭圆的离心率(e^2 = 1 - b^2/a^2)。
4. 椭圆的离心率与焦距的关系:椭圆的离心率e与焦距的关系为e = c/a,其中c为焦距,a为长半轴长。
5. 椭圆与直线的关系:椭圆与直线的交点可以有0个、1个或2个,这取决于直线与椭圆的位置关系。
当直线与椭圆相切时,直线为椭圆的切线。
以上是与椭圆垂径定理相关的一些参考内容,通过这些内容,我们可以更好地理解和应用椭圆垂径定理。
垂径定理的5个结论
垂径定理的5个结论垂径定理是解决圆与直线之间关系的一项重要定理,它有着广泛的应用。
下面将从五个不同的角度,详细介绍垂径定理的五个结论。
一、定理1:切线垂直于半径根据垂径定理的第一个结论,圆的切线垂直于过切点的半径。
这一结论可以通过简单的几何推理得出。
设圆的半径为r,切点为A,切线为l,连接圆心O与切点A,假设在切点A处引出一条过切点A 的直径AB,连接OB。
由于OA=OB=r,所以AB是圆的直径。
根据定理,AB垂直于切线l。
因此,切线l垂直于过切点A的半径OA。
二、定理2:半径平分弦垂径定理的第二个结论表明,过圆心的半径可以平分弦。
这一结论也可以通过几何推理来证明。
设圆的半径为r,弦的两个端点为A、B,连接圆心O与弦的中点M。
根据定理,OM垂直于弦AB。
又因为OM=r,所以OM是圆的半径,即OM=OA=OB=r。
因此,OM平分弦AB。
三、定理3:半径垂直于弦垂径定理的第三个结论是,过圆心的半径垂直于弦。
这一结论可以通过定理2的推论得出。
根据定理2,过圆心的半径OM平分弦AB。
因为OM平分弦AB,所以OM垂直于弦AB。
因此,过圆心的半径垂直于弦。
四、定理4:垂直弦的两条半径相等定理4指出,如果两条半径分别垂直于同一条弦,那么这两条半径的长度相等。
设圆的两条半径分别为OA和OB,弦为AB,连接OA和OB。
根据定理,OA垂直于弦AB,OB垂直于弦AB。
因为OA=OB=r,所以垂直弦的两条半径相等。
五、定理5:垂直弦的两条半径互为中线垂径定理的第五个结论是,如果两条半径分别垂直于同一条弦,那么这两条半径互为弦的中线。
设圆的两条半径分别为OA和OB,弦为AB,连接OA和OB,垂直弦的两条半径分别为OC和OD。
根据定理,OA垂直于弦AB,OB垂直于弦AB,所以OC=OD=r。
因此,垂直弦的两条半径互为弦的中线。
垂径定理有着五个重要的结论:切线垂直于半径、半径平分弦、半径垂直于弦、垂直弦的两条半径相等、垂直弦的两条半径互为中线。
初中九年级数学垂径定理知识专讲
初中九年级数学垂径定理知识专讲【学习目标】1.理解圆的对称性;2.掌握垂径定理及其推论;3.利用垂径定理及其推论进行简单的计算和证明.【要点梳理】知识点一、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、应用垂径定理进行计算与证明1.如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=6 cm,OD=4 cm,则DC的长为()A.5 cm B.2.5 cm C.2 cm D.1 cm【思路点拨】欲求CD 的长,只要求出⊙O 的半径r 即可,可以连结OA ,在Rt △AOD 中,由勾股定理求出OA.【答案】D ;【解析】连OA ,由垂径定理知, 所以在Rt △AOD 中,(cm ).所以DC =OC -OD =OA -OD =5-4=1(cm ).【点评】主要是解由半径、弦的一半和弦心距(圆心到弦的垂线段的长度)构成的直角三角形。
举一反三:【变式】如图,⊙O 中,弦AB ⊥弦CD 于E ,且AE=3cm ,BE=5cm ,求圆心O 到弦CD 距离。
【答案】.2.(2015•巴中模拟)如图,AB 为半圆直径,O 为圆心,C 为半圆上一点,E 是弧AC 的中点,OE 交弦AC 于点D ,若AC=8cm ,DE=2cm ,求OD 的长.【答案与解析】解:∵E 为弧AC 的中点,∵OE ∵AC ,∵AD=AC=4cm ,∵OD=OE ﹣DE=(OE ﹣2)cm ,OA=OE ,∵在Rt ∵OAD 中,OA 2=OD 2+AD 2即OA 2=(OE ﹣2)2+42,又知0A=OE ,解得:OE=5,∵OD=OE ﹣DE=3cm .【点评】主要是解由半径、弦的一半和弦心距(圆心到弦的垂线段的长度)构成的直角三角形. 举一反三:【变式】已知:如图,割线AC 与圆O 交于点B 、C ,割线AD 过圆心O. 若圆O 的半径是5,且,AD=13. 求弦BC 的长.13cm 2AD AB ==2222435AO OD AD =+=+=1cm 30DAC ︒∠=【答案】6.类型二、垂径定理的综合应用3.如图1,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24m ,拱的半径为13m ,则拱高为( )A .5mB .8mC .7mD .m 【思路点拨】解决此题的关键是将这样的实际问题转化为数学问题,即能够把题目中的已知条件和要求的问题转化为数学问题中的已知条件和问题.【答案】B ;【解析】如图2,表示桥拱,弦AB 的长表示桥的跨度,C 为的中点,CD ⊥AB 于D ,CD 表示拱高,O 为的圆心,根据垂径定理的推论可知,C 、D 、O 三点共线,且OC 平分AB .在Rt △AOD 中,OA =13,AD =12,则OD 2=OA 2-AD 2=132-122=25.∴ OD =5,∴ CD =OC -OD =13-5=8,即拱高为8m .【点评】在解答有关弓形问题时,首先应找弓形的弧所在圆的圆心,然后构造直角三角形,运用垂径定理(推论)及勾股定理求解.4.(2015•蓬溪县校级模拟)如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∵AB ,且AB=26m ,OE ∵CD 于点E .水位正常时测得OE :CD=5:24(1)求CD 的长;(2)现汛期来临,水面要以每小时4m 的速度上升,则经过多长时间桥洞会刚刚被灌满?【答案与解析】解:(1)∵直径AB=26m ,53AB AB AB∵OD=,∵OE∵CD,∵,∵OE:CD=5:24,∵OE:ED=5:12,∵设OE=5x,ED=12x,∵在Rt∵ODE中(5x)2+(12x)2=132,解得x=1,∵CD=2DE=2×12×1=24m;(2)由(1)得OE=1×5=5m,延长OE交圆O于点F,∵EF=OF﹣OE=13﹣5=8m,∵,即经过2小时桥洞会刚刚被灌满.【点评】此题主要考查了垂径定理的应用以及勾股定理等知识,求阴影部分面积经常运用求出空白面积来解决.举一反三:【变式】有一石拱桥的桥拱是圆弧形,如图所示,正常水位下水面宽AB=60m,水面到拱顶距离CD=18m,当洪水泛滥时,水面距拱顶不超过3m时拱桥就有危险,现在水面宽MN=32m时是否需要采取紧急措施?请说明理由.【答案】不需要采取紧急措施设OA=R,在Rt△AOC中,AC=30,OC=OD-CD=R-18,R2=302+(R-18)2, R2=900+R2-36R+324,解得R=34(m).连接OM,设DE=x,在Rt△MOE中,ME=16,342=162+(34-x)2,x2-68x+256=0,解得x1=4,x2=64(不合题意,舍),∴DE=4m>3m,∴不需采取紧急措施.垂径定理—巩固练习【巩固练习】一、选择题1.下列结论正确的是( )A .经过圆心的直线是圆的对称轴B .直径是圆的对称轴C .与圆相交的直线是圆的对称轴D .与直径相交的直线是圆的对称轴2.下列命题中错误的有( ).(1)弦的垂直平分线经过圆心 (2)平分弦的直径垂直于弦(3)梯形的对角线互相平分 (4)圆的对称轴是直径A .1个B .2个C .3个D .4个3.如图所示,AB 是⊙O 的直径,CD 是⊙O 的弦,AB ⊥CD 于E ,则图中不大于半圆的相等弧有( ). A .l 对 B .2对 C .3对 D .4对第3题 第5题4.(2015•广元)如图,已知∵O 的直径AB ∵CD 于点E ,则下列结论一定错误的是( )A .CE=DEB . A E=OEC . =D .∵OCE ∵∵ODE5.如图所示,矩形ABCD 与⊙O 相交于M 、N 、F 、E ,若AM=2,DE=1,EF=8,•则MN 的长为()A .2B .4C .6D .86.已知⊙O 的直径AB=12cm ,P 为OB 中点,过P 作弦CD 与AB 相交成30°角,则弦CD 的长为( ).A .B .C .D .二、填空题7.垂直于弦的直径的性质定理是____________________________________________.315cm 310cm 35cm 33cm8.(2015•黔西南州)如图,AB是∵O的直径,CD为∵O的一条弦,CD∵AB于点E,已知CD=4,AE=1,则∵O的半径为.9.圆的半径为5cm,圆心到弦AB的距离为4cm,则AB=______cm.10.如图,CD为⊙O的直径,AB⊥CD于E,DE=8cm,CE=2cm,则AB=______cm.10题图 11题图 12题图11.如图,⊙O的半径OC为6cm,弦AB垂直平分OC,则AB=______cm,∠AOB=______°.12.如图,AB为⊙O的弦,∠AOB=90°,AB=a,则OA=______,O点到AB的距离=______.三、解答题13.如图,有一座拱桥是圆弧形,它的跨度为60米,拱高18米,当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PN=4米时是否要采取紧急措施?14. 如图所示,AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP:PB=1:5,求⊙O半径.15.(2015•绵阳模拟)如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF∵AD.(1)请证明:E是OB的中点;(2)若AB=8,求CD的长.【答案与解析】一、选择题1.【答案】A ;【解析】图形的对称轴是直线,圆的对称轴是过圆心的直线,或直径所在的直线.2.【答案】C ;【解析】(1)正确;(2)“平分弦(该弦不是直径)的直径垂直于弦”才是正确的,所以(2)不正确;(3)对角线互相平分就是平行四边形,而不是梯形了,所以(3)不正确;(4)圆的对称轴是直径所在的直线,所以(4)不正确.故选C.3.【答案】C ;【解析】;;.4.【答案】B ;【解析】∵⊙O 的直径AB⊥CD 于点E ,∴CE=DE,弧CB=弧BD ,在△OCE 和△ODE 中,,∴△OCE≌△ODE,故选B5.【答案】C ;【解析】过O 作OH ⊥CD 并延长,交AB 于P ,易得DH=5,而AM=2,∴MP=3,MN=2MP=2×3=6.6.【答案】A ;AB AB =AC AD =BC BD =【解析】作OH ⊥CD 于H ,连接OD,则OH=, OD=6,可求DH=,CD=2DH=. 二、填空题 7.【答案】垂直于弦的直径平分弦,并且平分弦所对的两条弧. 8.【答案】;【解析】连接OC ,如图所示:∵AB 是∵O 的直径,CD ∵AB ,∵CE=CD=2,∵OEC=90°,设OC=OA=x ,则OE=x ﹣1,根据勾股定理得:CE 2+OE 2=OC 2,即22+(x ﹣1)2=x 2,解得:x=;故答案为:.9.【答案】6;10.【答案】8;11.【答案】;12.【答案】, ;三、解答题13.【答案与解析】设圆弧所在圆的半径为R ,则R 2-(R-18)2=302, ∴R=34当拱顶高水面4米时,有,∴不用采取紧急措施.14.【答案与解析】连结OC .设AP =k ,PB =5k ,∵ AB 为⊙O 直径,∴ 半径.且OP =OA -PA =3k -k =2k .∵ AB ⊥CD 于P ,∴ CP ==5.在Rt △COP 中用勾股定理,有,323152315o 63,120a 22a 21111()(5)3222OC AB AP PB k k k ==+=+=12CD 222OC PC PO =+∴ .即,∴ (取正根),∴ 半径(cm).15.【答案与解析】(1)证明:连接AC ,如图∵直径AB 垂直于弦CD 于点E ,∵,∵AC=AD ,∵过圆心O 的线CF ∵AD ,∵AF=DF ,即CF 是AD 的中垂线,∵AC=CD ,∵AC=AD=CD .即:∵ACD 是等边三角形,∵∵FCD=30°,在Rt ∵COE 中,,∵,∵点E 为OB 的中点;(2)解:在Rt ∵OCE 中,AB=8,∵,又∵BE=OE ,∵OE=2,∵,∵.垂径定理—知识讲解【学习目标】1. 理解圆的对称性;2. 掌握垂径定理及其推论;3.学会运用垂径定理及其推论解决有关的计算、证明和作图问题.【要点梳理】知识点一、垂径定理1.垂径定理222(3)5(2)k k =+2525k =5k =335OC k ==垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.(4)圆的两条平行弦所夹的弧相等.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、应用垂径定理进行计算与证明1. 如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB =CD ,已知CE =1,ED =3,则⊙O 的半径是.【答案】5.【解析】作OM ⊥AB 于M 、ON ⊥CD 于N ,连结OA ,∵AB=CD ,CE =1,ED =3, ∴OM=EN=1,AM=2,∴OA=.【点评】对于垂径定理的使用,一般多用于解决有关半径、弦长、弦心距之间的运算(配合勾股定理)问题.举一反三:【变式1】如图所示,⊙O 两弦AB 、CD 垂直相交于H ,AH =4,BH =6,CH =3,DH =8,求⊙O 半径.【答案】如图所示,过点O 分别作OM ⊥AB 于M ,ON ⊥CD 于N ,则四边形MONH 为矩形,连结OB ,∴ , , ∴ 在Rt △BOM 中,. 【变式2】(2015春•安岳县月考)如图,∵O 直径AB 和弦CD 相交于点E ,AE=2,EB=6,∵DEB=30°,求弦CD 长.【答案与解析】解:过O 作OF ⊥CD ,交CD 于点F ,连接OD , ∵F 为CD 的中点,即CF=DF , ∵AE=2,EB=6,∵AB=AE+EB=2+6=8, ∵OA=4,∵OE=OA ﹣AE=4﹣2=2, 在Rt ∵OEF 中,∵DEB=30°, 222+1=512MO HN CN CH CD CH ==-=-11()(38)3 2.522CH DH CH =+-=+-=111()(46)5222BM AB BH AH ==+=+=22552OB BM OM =+=∵OF=OE=1,在Rt∵ODF中,OF=1,OD=4,根据勾股定理得:DF==,则CD=2DF=2.2. 已知:⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,求AB、CD间的距离.【思路点拨】在⊙O中,两平行弦AB、CD间的距离就是它们的公垂线段的长度,若分别作弦AB、CD的弦心距,则可用弦心距的长表示这两条平行弦AB、CD间的距离.【答案与解析】(1)如图1,当⊙O的圆心O位于AB、CD之间时,作OM⊥AB于点M,并延长MO,交CD于N点.分别连结AO、CO.∵AB∥CD∴ON⊥CD,即ON为弦CD的弦心距.∵AB=12cm,CD=16cm,AO=OC=10cm,=8+6=14(cm)图1 图2(2)如图2所示,当⊙O的圆心O不在两平行弦AB、CD之间(即弦AB、CD在圆心O的同侧)时,同理可得:MN=OM-ON=8-6=2(cm)∴⊙O中,平行弦AB、CD间的距离是14cm或2cm.【点评】解这类问题时,要按平行线与圆心间的位置关系,分类讨论,千万别丢解.举一反三:【变式】在⊙O中,直径MN⊥AB,垂足为C,MN=10,AB=8,则MC=_________.【答案】2或8.类型二、垂径定理的综合应用3.(2015•普陀区一模)如图,某新建公园有一个圆形人工湖,湖中心O 处有一座喷泉,小明为测量湖的半径,在湖边选择A 、B 两个点,在A 处测得∵OAB=45°,在AB 延长线上的C 处测得∵OCA=30°,已知BC=50米,求人工湖的半径.(结果保留根号)【答案与解析】解:过点O 作OD ∵AC 于点D ,则AD=BD , ∵∵OAB=45°, ∵AD=OD ,∵设AD=x ,则OD=x ,OA=x ,CD=x+BC=x+50.∵∵OCA=30°, ∵=33,即=33, 解得x=25325+, ∵OA=x=×(25325+)=(256252+)(米).答:人工湖的半径为(256252+)米.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.4. 不过圆心的直线l 交⊙O 于C 、D 两点,AB 是⊙O 的直径,AE ⊥l 于E ,BF ⊥l 于F . (1)在下面三个圆中分别画出满足上述条件的具有不同位置关系的图形;(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(OA =OB 除外)(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程); (3)请你选择(1)中的一个图形,证明(2)所得出的结论.【答案与解析】(1)如图所示,在图①中AB 、CD 延长线交于⊙O 外一点;在图②中AB 、CD 交于⊙O 内一点; 在图③中AB ∥CD .(2)在三个图形中均有结论:线段EC =DF .(3)证明:过O 作OG ⊥l 于G .由垂径定理知CG =GD . ∵ AE ⊥l 于E ,BF ⊥l 于F , ∴ AE ∥OG ∥BF . ∵ AB 为直径,∴ AO =OB ,∴ EG =GF ,∴ EC =EG -CG =GF -GD =DF .【点评】在运用垂径定理解题时,常用的辅助线是过圆心作弦的垂线,构造出垂径定理的基本图形.垂径定理—巩固练习【巩固练习】 一、选择题1.如图所示,三角形ABC 的各顶点都在⊙O 上,AC=BC ,CD 平分∠ACB ,交圆O 于点D , 下列结论: ①CD 是⊙O 的直径;②CD 平分弦AB ;③;④;⑤CD ⊥AB . 其中正确的有( )A .2个B .3个C .4个D .5个 2.下面四个命题中正确的是( ).A .平分一条直径的弦必垂直于这条直径B .平分一条弧的直线垂直于这条弧所对的弦C .弦的垂线必过这条弦所在圆的圆心D .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心3.如图,弦CD 垂直于⊙O 的直径AB ,垂足为H ,且CD=,,则AB的长为()A .2 B.3 C.4 D.5第3题 第5题 第6题AC BC =AD BD =COBDA4.⊙O 的半径OA =1,弦AB 、AC的长分别是、,则∠BAC 的度数为( ).A .15°B .45°C .75°D .15°或75°5.(2015•河东区一模)如图,在△ABC 中,∠C=90°,∠A=25°,以点C 为圆心,BC 为半径的圆交AB 于点D ,交AC 于点E ,则的度数为( )A .25°B . 30°C . 50°D . 65°6.如图,EF 是⊙O 的直径,AB 是弦,EF=10cm ,AB=8cm ,则E 、F 两点到直线AB 的距离之和为( ).A .3cmB .4cmC .8cmD .6cm 二、填空题7.如图,⊙O 的弦AB 垂直于CD ,E 为垂足,AE =3,BE =7,则圆心O 到CD 的距离是______. 8.如图,P 为⊙O 的弦AB 上的点,P A =6,PB =2,⊙O 的半径为5,则OP =______.7题图 8题图 9题图9.如图,⊙O 的弦AB 垂直于AC ,AB =6cm ,AC =4cm ,则⊙O 的半径等于______cm . 10.(2015•徐州)如图,AB 是⊙O 的直径,弦CD⊥AB,垂足为E ,连接AC .若∠CAB=22.5°,CD=8cm ,则⊙O 的半径为 cm .11.在图11中,半圆的直径AB=4cm ,O 为圆心,半径OE ⊥AB ,F 为OE 的中点,CD ∥AB ,则弦CD 的长为 .(第12题)12.如图,点A 、B 是⊙O 上两点,AB=10,点P 是⊙O 上的动点(P 与A ,B 不重合)连结AP ,23AEOFBPPB ,过点O 分别作OE ⊥AP 于点E ,OF ⊥PB 于点F ,则EF= . 三、解答题13.如图,在⊙O 中,CD 是直径,弦AB ⊥CD ,垂足为E ,CD=15,,求弦AB 和AC 的长.14.如图所示,C 为的中点,CD 为直径,弦AB 交CD 于P 点,PE ⊥BC 于E ,若BC=10cm ,且CE :BE=3:2,求弦AB 的长.15.如图所示,已知O 是∠MPN 的平分线上的一点,以O 为圆心的圆与角的两边分别交于点A 、B 和C 、D.⑴求证:PB=PD.⑵若角的顶点P 在圆上或圆内,⑴中的结论还成立吗?若不成立,请说明理由;若成立,请加以证明.16.(2015•杭州模拟)如图,⊙O 的两条弦AB 、CD 交于点E ,OE 平分∠BED. (1)求证:AB=CD ;(2)若∠BED=60°,EO=2,求DE ﹣AE 的值.【答案与解析】 一、选择题35OE OC ∶∶ACBD1.【答案】D .【解析】由圆的对称性、等腰三角形的三线合一的性质可得到5个结论都是正确的. 2.【答案】D .【解析】根据垂径定理及其推论来判断. 3.【答案】B . 【解析】由垂径定理得HD=,由勾股定理得HB=1,设圆O 的半径为R ,在Rt △ODH 中,则,由此得R=, 所以AB=3.故选 B. 4.【答案】D .【解析】分弦AB 、AC 在圆心的同侧和异侧讨论. 5.【答案】C ;【解析】连接CD ,∵在△ABC 中,∠C=90°,∠A=25°, ∴∠ABC=90°﹣25°=65°, ∵BC=CD,∴∠CDB=∠ABC=65°,∴∠BCD=180°﹣∠CDB﹣∠CBD=180°﹣65°﹣65°=50°,∴=50°.故选C .6.【答案】D .【解析】E 、F 两点到直线AB 的距离之和为圆心O 到AB 距离的2倍. 二、填空题 7.【答案】2. 8.【答案】 9.【答案】 10.【答案】42 .【解析】解:连接OC ,如图所示:∵AB 是⊙O 的直径,弦CD⊥AB,∴CE=DE=CD=4cm , ∵OA=OC,∴∠A=∠OCA=22.5°, ∵∠COE 为△AOC 的外角, ∴∠COE=45°,∴△COE 为等腰直角三角形, ∴OC=CE=4cm , 故答案为:411.【答案】. 2()()22221R R =+-32.13.1323cm【解析】连接OC,易求CF= CD=. 12.【答案】5.【解析】易证EF 是△APB 的中位线,EF=三、解答题13.【答案与解析】连结OA ,∵CD=15,, ∴OA=OC=7.5,OE=4.5,CE=3,∴14.【答案与解析】因为C 为的中点,CD 为直径,弦AB 交CD 于P 点,所以 CD ⊥AB. 由BC=10cm ,且CE :BE=3:2,得CE=6cm ,BE=4cm ,设则解得,. 15.【答案与解析】(1)证明:过O 作OE ⊥PB 于E ,OF ⊥PD 于F.∵ PO 平分∠MPN ∴ OE=OF ,PE=PF ∴ AB=CD ,BE=DF ∴ PE+BE=PF+DF ∴ PB=PD(2)上述结论仍成立.如下图所示.证明略.3.23cm 15.2AB =35OE OC =∶∶222222227.5 4.562126335AE OA OE AB AE AC AE CE =-=-====+=+=,ACB ,,BP a CP b ==22222221046a b a b ⎧+=⎪⎨-=-⎪⎩210a =2410AB a cm ==16.【答案与解析】 解:(1)过点O 作AB 、CD 的垂线,垂足为M 、N ,如图1,∵OE 平分∠BED,且OM⊥AB,ON⊥CD, ∴OM=ON, ∴AB=CD;(2)如图2所示,由(1)知,OM=ON ,AB=CD ,OM⊥AB,ON⊥CD, ∴DN=CN=AM=BM,在Rt△EON 与Rt△EOM 中, ∵,∴Rt△EON≌Rt△EOM(HL ), ∴NE=ME,∴CD﹣DN ﹣NE=AB ﹣BM ﹣ME , 即AE=CE ,∴DE﹣AE=DE ﹣CE=DN+NE ﹣CE=CN+NE ﹣CE=2NE , ∵∠BED=60°,OE 平分∠BED, ∴∠NEO=BED=30°,∴ON=OE=1,AA EEP O P O F FC C PA=PC PA=PC图1DBBD图2在Rt△EON中,由勾股定理得:NE==,∴DE﹣AE=2NE=2.。
垂径定理
一、垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.符号语言表述为:如图,在中,若⊙O 直径CD ⊥AB ,则AE=BE ,弧AD=弧BD,弧AC=弧BC 。
诠释:垂径定理可改述为:一条直线若满足:①过圆心(CD 是直径);②垂直于弦(CD ⊥AB );则可推出:③平分弦(AE=BE );④平分弦所对的优弧(弧AC=弧BC );⑤平分弦所对的劣弧(弧AD=弧BD ).事实上,对于一个圆和一条直线,只要具备上述五个条件中的任何两个,就可以推出其余三个。
譬如:(1)①② ⇒③④⑤(即是定理);(2)①③ ⇒②④⑤.即:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(3)②③ ⇒①④⑤.即:弦的垂直平分线必过圆心,并且平分弦所对的两条弧. (4)①④ ⇒②③⑤.即:平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.通常把上面的(2)、(3)、(4)叫做垂径定理的推论. 聪明的读者朋友,相信你还能写出余下的结论.特别说明:(1)推论“平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧”中“弦不是直径”是它的重要条件,因为一个圆的任意两条直径总是互相平分的,但是它们未必垂直.(2)垂径定理是根据圆是对称性推导出来的,该定理及其推论是证明线段相等、角相等、垂直关系、弧 相等和一条弦是直径的重要依据. 【应用】例(福建福州). 如图,⊙O 中,弦AB 的长为6cm ,圆心O 到AB 的距离为4cm ,则⊙O 的半径长为( )A .3cmB .4cmC .5cmD .6cm 解析:过圆心O 作OC AB ⊥于C ,(如图3)则4OC cm =又由垂径定理得12AC AB ==3cm , 在Rt AOC 中,由勾股定理得:2222345OA AC OC =+=+=即⊙O 的半径长为5cm ,选C.点评:(1)解有关圆的问题时,时常需要添加辅助线,针对各种具体情况,辅助线的添加有一定规律,利用垂径定理常作“垂直于弦的直径”(往往又只是作圆心到弦的垂线段,如本例);(2)垂径定理常与勾股定理结合在一起,进行有关圆的半径R 、圆心到弦的距离OB Ad 、弦长a 和弓形高h 等数量的计算.这些量之间的关系是222()2ar d =+,r d h =+.根据这些关系,在a 、r 、d 、h 四个量中,知道其中任何两个量,就可以求出其余的两个量.【练习】1、(江西无锡)如图1,AB 是⊙O 的弦,OC AB ⊥于C ,若25cm AB =,1cm OC =,则⊙O 的半径长为cm . 2、湖南怀化)圆的半径为13cm ,两弦AB CD ∥,24cm AB =,10cm CD =,则两弦AB CD ,的距离是( ) A.7cm B.17cm C.12cm D.7cm 或17cm .3、小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图2所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( )A .第①块B .第②块C .第③块D .第④块图14、高速公路的隧道和桥梁最多.如图3是一个隧道的横截面,若它的形状是以O 为圆心的圆的一部分,路面AB =10米,净高CD =7米,则此圆的半径OA =( ) A.5 B.7 C.537 D. 737 5、兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如图4所示,已知AB =16m ,半径 OA =10m ,高度CD 为_____m .6、如图是“明清影视城”的圆弧形门,黄红同学到影视城游玩,很想知道这扇门的相关数据,于是她从景点管理人员处打听到:这个圆弧形门所在的圆与水平地面是相切的,AB=CD=20 cm ,BD=200cm ,且AB ,CD 与水平地面都是垂直的.根据以上数据,请你帮助黄红同学计算出这个圆弧形门的最高点离地面的高度是多少? 7、每位同学都看到过日出时美丽的景色.图6是一位同学从照片上剪切下来的画面,“图上”太阳与海平线交于A 、B 两点,他测得“图上”圆的半径为5厘米,AB=8厘米,若从目前太阳所处位置到太阳完全跳出海面的时间为16分钟,则“图上”太阳升起的速度为( ) A. 0.4厘米/分 B. 0.5厘米/分 C. 0.6厘米/分 D. 0.7厘米/分图6 OD ABC图3 DBAO C图4OMN G图5图2二、垂径定理解题应用举例(一)利用垂径平分弦所对的弧,来处理角的关系 【例1】 (重庆市)如图1,⊙O 的直径CD 过弦EF 的中点G ,∠EOD =40°,则∠DCF 等于( )A.80°B. 50°C. 40°D. 20° 分析:本题可由②③⇒①④⑤,所以可得ED DF =,从而得出∠DCF 与∠EOD 的关系。
垂径定理及推论
垂径定理及推论
垂径定理是数学中比较重要的定理之一。
它是欧几里得第九定理的一个特殊情况,它描述了连接两个点的距离与这两个点在一条直线上的距离关系。
垂径定理可以概述为:对于任意一条线段AB,在AB垂直延长线上任取一点C,连接AC和BC所得的距离AC、BC之和为AB的两倍,即:AC+BC=2AB。
垂径定理的证明:在矩形ABCD中,AB=CD,BC=DA,AC=DB,则构成一个等腰直角三角形ABC,可得: AC^2+BC^2=AB^2,即:AC+BC=2AB。
垂径定理在实际中有着广泛的应用,可以解决各种问题。
以三角形的最大边长为例,在三角形的两个顶点A和B之间有一个顶点C,若知道C在AB之间的距离AC和BC,则可以用垂径定理求出三角形最大边长为:AB=AC+BC/2。
再以圆形的周长计算为例:以给定的圆心O为原点,延长圆上任意一点M到MO上取一点N,使得ON=NM,由垂径定理可知:ON+MN=2MN,带入圆的半径为R,则得出圆的周长为2πR。
垂径定理还可以推广到更高维数,比如十维空间。
十维空间中,垂径定理可表示为:连接点A、B、C之间的距离之和为AB与AC两倍,即:AC+BC=2AB。
因此,可以看出,垂径定理是数学中思想方式独特、重要又有用的定理,它可以帮助我们正确理解和解决实际中出现的问题,可谓是数学科学的一颗璀璨之星。
垂径定理—知识讲解
垂径定理一知识讲解(提高)责编:常春芳【学习目标】1.理解圆的对称性:2.掌握垂径定理及其推论:3.学会运用垂径泄理及其推论解决有关的计算、证明和作图问题.【要点梳理】知识点一、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即直径 | [平分弦垂直于弦平分弦所对的弧(2)这里的直径也町以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径泄理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧:(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.(4)圆的两条平行弦所夹的弧相等.要点诠释:任垂径宦理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知逍任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、应用垂径定理进行计算与证明C1.如图,00的两条弦AB、CD互相垂直,垂足为E,且AB=CD、已知C民1, ED=3,贝900的半径是________________ ・【答案】迈・【解析】作0M丄AB于M、ON丄CD于N,连结OA,VAB=CD, CE=\. ED=3,AOM=EN=h AM=2,AOA=V22+12二頁.【点评】对于垂径左理的使用,一般多用于解决有关半径、弦长、弦心距之间的运算(配合勾股泄理)问题.举一反三:【变式1】如图所示,00两5玄AB、CD垂直相交于H, AH = 4, BH = 6,【答案】如图所示,过点0分别作0H丄AB于M, ON丄CD于N,则四边形MONH为矩形.连结0B,••• MO = HN = CN-CH =、CD-CH2= l(CH + DH)-CH=l(3 + 8)-3 = 2.5.2 2BM =-AB = -(BH +AH) = -(4 + 6) = 5,2 2 2•在RtABOM 中,OB = y)BM2+OM2 =-yf5 ・2ID 356965 关联的位汽名称(播放点名称):例2-例3]【变式21(2015春•安岳县月考)如图,OO直径AB和弦CD相交于点E, AE=2, EB=6, z DEB=30% 求弦CD 长.【答案与解析】解:过O作OF丄CD,交CD于点F,连接OD,・・・F为CD的中点,即CF=DF,T AE=2, EB=6,AB=AE+EB=2+6=8»・•・OA=4,/. OE=OA ■ AE=4 ■ 2=2,在RtA OEF 中,z DEB=30\・・・OF=1OE=1,2在R^ODF 中,OF=L OD=4, 根拯勾股左理得:DF=^2T^j2=V15.则CD=2DF=2A/15・【高淸ID号:356965 关联的位置名称(播放点名称):例2-例3】Wr 2.已知:00 的半径为10cm,弦AB〃CD, AB二12cm, CD二16cm,求AB、CD 间的距离. 【思路点拨】在O0中,两平行弦AB、CD间的距离就是它们的公垂线段的长度,若分别作弦AB、CD的弦心距, 则可用弦心距的长表示这两条平行弦AB、CD间的距离.【答案与解析】(1)如图1,当<90的圆心0位于AB、CD之间时,作0M丄AB于点M, 并延长H0,交CD于N点•分别连结AO、C0.VAB/7CD•••ON丄CD,即ON为弦CD的弦心距.TAB二12cm, CD二16cm, AO—OC— 1 Ocm* :.AM二丄AB=6cm,ChT=l CD=8cm2 2 _____________________________MN=MO+NO=7102 -62 + J1L-F二8+6 =14 (cm)B U /厂q、D/\~T M \图1 图2⑵如图2所示,当00的圆心0不在两平行弦AB、CD之间(即弦AB、CD在圆心0的同侧)时,同理可得:MN二0H-0N二8-6二2 (cm)•••00中,平行弦AB、CD间的距离是14cm或2cm・【点评】解这类问题时,要按平行线与圆心间的位置关系,分类讨论,千万别丢解.举一反三:【变式】在。
垂径定理及其推论
圆部分知识点总结垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
垂径定理及其推论可概括为: 过圆心垂直于弦直径 平分弦 知二推三 平分弦所对的优弧 平分弦所对的劣弧 弧、弦、弦心距、圆心角之间的关系定理1:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
2:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们 所对应的其余各组量都分别相等。
圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
点和圆的位置关系设⊙O 的半径是r ,点P 到圆心O 的距离为d ,则有: d<r ⇔点P 在⊙O 内;d=r ⇔点P 在⊙O 上; d>r ⇔点P 在⊙O 外。
过三点的圆1、不在同一直线上的三个点确定一个圆。
2、经过三角形的三个顶点的圆叫做三角形的外接圆。
3、三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。
直线与圆的位置关系直线和圆有三种位置关系,具体如下:(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点; (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线, (3)相离:直线和圆没有公共点时,叫做直线和圆相离。
如果⊙O 的半径为r ,圆心O 到直线L 的距离为d,那么:直线L 与⊙O 相交⇔d<r ;直线L 与⊙O 相切⇔d=r ; 直线L 与⊙O 相离⇔d>r ;圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。
垂径定理——邵明峰
《垂径定理》专题
一、垂径定理地位与作用
垂径定理是圆的轴对称性最完美体现,是证明线段相等、角相等、直线垂直的重要依据。
是每年中考必考的知识模块。
二、垂径定理
垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。
垂径定理包含五个方面内容:
①过圆心②垂直于弦③平分弦
④平分弦所对劣弧
⑤平分弦所对优弧
“知二推三法”
三、应用
类型1:利用垂径定理求线段的长
1、已知AB是⊙O的弦,半径OA=20,∠AOB=120°,求线段AB的长。
2、CD是⊙O的一条弦,作直径AB,使AB⊥CD,垂足为E,若AB=10,CD=8,求BE的长。
总结归纳:如图是垂径定理应用的基本图形,设半径为R,CD=a,OE=d,BE=h,∠C=α,∠COB=β。
已知六个量中任意两个量(至少有一个是边)就可以求出其余的量。
类型2:利用垂径定理证明
3、已知两个同心圆,大圆弦AB交小圆于C、D两点,
求证:AC=BD。
类型3:利用垂直定理定圆心
残破叶片,请你用所学知识将其复圆。
类型4:利用垂径定理解决实际问题
有一拱形公路桥,圆弧形桥拱的水面跨度AB=80米,桥拱到水面的最大高度为20米,求:
(1)桥拱的半径
(2)现有一轮船宽60米,船舱顶部为长方形并高出水面9米要经过这里,这艘轮船能顺道过吗?
类型5:垂径定理的综合应用
AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF 上的任意一点,则PA+PC的最小值为多少?
谢谢同学们!再见!。
初三数学垂径定理知识精讲
初三数学垂径定理知识精讲知识考点:1、垂径定理及其推论是指:一条直线①过圆心;②垂直于一条弦;③平分这条弦;④平分弦所对的劣弧;⑤平分弦所对的优弧。
这五个条件只须知道两个,即可得出另三个(平分弦时,直径除外),要求理解掌握。
2、掌握垂径定理在圆的有关计算和证明中的广泛应用。
精典例题:【例1】如图,⊙O 的直径AB 和弦CD 相交于E ,若AE =2cm ,BE =6cm ,∠CEA =300,求: (1)CD 的长; (2)C 点到AB 的距离与D 点到AB 的距离之比。
分析:有关弦、半径、弦心距的问题常常利用它们构造的直角三角形来研究,所以连半径、作弦心距是圆中的一种常见辅助线添法。
解:(1)过点O 作OF ⊥CD 于F ,连结DO ∵AE =2cm ,BE =6cm ,∴AB =8cm∴⊙O 的半径为4 cm ∵∠CEA =300,∴OF =1 cm∴1522=-=OF OD DF cm 由垂径定理得:CD =2DF =152cm(2)过C 作CG ⊥AB 于G ,过D 作DH ⊥AB 于H ,易求EF =3cm ∴DE =)315(+cm ,CE =)315(-cm∴253315315-=+-==DE CE DH CG 【例2】如图,半径为2的圆内有两条互相垂直的弦AB 和CD ,它们的交点E 到圆心O 的距离等于1,则22CD AB +=( )A 、28B 、26C 、18D 、35分析:如图,连结OA 、OC ,过O 分别作AB 、CD 的垂线,垂足分别为M 、N ,则AM =MB ,CN =ND 。
∵OM ⊥MN ,ME ⊥EN ,CN =ND∴222OE ON OM =+从而22222OE CN OC AM OA =-+-即222221)2(2)2(2=-+-CD AB ∴2822=+CD AB 故选A 。
∙例1图H E F G O DCBA ∙例2图MN E O DCBA∙例2图MN E O DCBA【例3】如图,等腰△ABC 内接于半径为5cm 的⊙O ,AB =AC ,tanB =31。
初中数学垂径定理及弧长和扇形面积的计算
AB
C
在图中 AB=37.4 m,CD=7.2 m, A
D
B
AD 1 AB 1 37.4 18.7(m), R
2
2
O
OD=OC-CD=R-7.2
在Rt△OAD中,由勾股定理,得
OA2=AD2+OD2
即 R2=18.72+(R-7.2)2
解得R≈27.9.
因此,赵州桥的主桥拱半径约为27.9 m.
求证:CD⊥AB,且A⌒D=B⌒D,
A⌒C
⌒ =BC
C
证明:连接OA,OB,则OA=OB
∵ AE=BE
∴ CD⊥AB,∠AOD=∠BOD.
∴ A⌒D=B⌒D, A⌒C =B⌒C
·O
AE
B
D
平分弦(不是直径)的直径垂直于弦,并且平分弦所对 的两条弧.
(2)“不是直径”这个条件能去掉吗?如果不能,请举 出反例.
(4)n°圆心角所对弧长是多少?
nR
180
O
n°
A
B
l
若设⊙O半径为R, n°的圆心角所对的弧长为l,则
l nR
180
O
n°
A
B
l
(1)在应用弧长公式l n R ,进行计算时,要注意公式
180 中n的意义.n表示1°圆心角的倍数,它是不带单位的;
(2)区分弧、弧的度数、弧长三概念.度数相等的弧,弧 长不一定相等,弧长相等的弧也不一定是等孤,而只有在 同圆或等圆中,才可能是等弧.
解: 作OE AB于点E,
AE 1 AB 1 8 4.
2
2
在Rt△AOE中,
·O
且平分弦所对的两条弧.
E
A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
垂径定理的相关计算导学案
教学目标:
1.进一步熟悉垂径定理及其推论。
2.通过练习,总结常用解题方法,渗透方程、构造直角三角形的数学思想。
3.学会与同学交流合作,培养团队精神,体验学习过程中成功的快乐,增强学习数学的信心与热情。
重点难点:垂径定理及其推论在计算中的应用。
教学过程 一、复习引入:
【垂径定理】垂直于弦的直径平分这条弦,并且平分弦所对的弧.
【推论】平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 算一算:如图CD 是⊙O 的直径。
(1) 若CD ⊥弦AB 于E ,若AB =8cm,CD =10cm ,则OE =___ (2) 若AE=BE ,若DE=1cm,CD=10cm,则AB=___
(3)若CD ⊥弦AB 于E ,AB=8cm,ED=2cm, 则CD 的长=___ (4)若E 为弦AB 的中点,AB =4cm,CE =6 cm, 则OC 的长=___
(5)若CD ⊥弦AB 于E ,连结AD ,AD=13cm,OA=5cm, 则AB 的长=___
二、能力训练:
1.如图,底面半径为5dm 的圆柱形油桶横放在水平地面上,向桶内加油后,量得长方形油面的宽度为8dm ,求油的深度(指油的最深处即油面到水平地面的距离)。
E
B
A
D
C
O
E
B
A
D
C
O
E
B
A
D
C
O
5dm
2.⊙O 的半径为13cm ,AB 、CD 为⊙O 的两条弦,AB ∥CD ,AB =24cm ,CD =10cm ,求 AB 和CD 之间的距离。
三.提高练习:
3.已知: A 、B 、C 为⊙O 上的三点,且AB = AC ,圆心O 到BC 的距离为3cm,,半径A0= 7cm ,求AB 的长度.
四.课后思考:
4.如右图, 某地有一座圆弧形拱桥,桥下水面宽度AB 为7.2m ,拱高CD 为2.4m ,
现有一艘长10m 、宽为3m 、船舱顶部为长方形并高出水面2m 的货船要经过这里,此货船能顺利通过拱桥吗?
B
A。