时间序列的协整和误差修正模型(PPT34张)
5.3 协整与误差修正模型 计量经济学PPT课件
• 非平稳的时间序列,它们的线性组合也可能成为 平稳的。称变量X与Y是协整的(cointegrated)。
3、协整
• 如果序列{X1t,X2t,…,Xkt}都是d阶单整,存在向量 =(1,2,…,k),使得Zt=XT ~ I(d-b), 其中,b>0,X=(X1t,X2t,…,Xkt)T,则认为序列 {X1t,X2t,…,Xkt}是(d,b)阶协整,记为Xt~CI(d,b), 为协整向量(cointegrated vector)。
5%的显著性水平下协 整的ADF检验临界值
为-3.521
注意:查什么临 界值表?
结论:中国居民总量消费的对数序 列lnY与总可支配收入的对数序列 lnX之间存在(1,1)阶协整。
注意:
这里采用由协整检 验临界值表算得的 临界值(-3.521 ),没有采用ADF 检验给出的临界值 (-1.953),是 正确的。但是,在 很多应用研究中忽 视了这一点,而直 接采用ADF检验给 出的临界值,则是 错误的,容易产生
• 均衡方程中应该包含均衡系统中的所有时间序 列,而协整方程中可以只包含其中的一部分时 间序列。
• 协整方程的随机扰动项是平稳的,而均衡方程 的随机扰动项必须是白噪声。
• 不能由协整导出均衡,只能用协整检验均衡。
五、误差修正模型 Error Correction Model, ECM
1、一般差分模型的问题
• 对于非稳定时间序列,可通过差分的方法将其 化为稳定序列,然后才可建立经典的回归分析 模型。
Yt 0 1 X t t
Yt 1X t vt vt t t1
协整和误差修正模型
(6)取 1 0,则模型变为 yt = 0 + 1 yt -1 + 0 xt + ut.
此模型称为局部调整模型(偏调整模型)。
(7)取 0 0,则模型变为 yt = 0 + 1 yt -1 + 1 xt -1 + ut .
模型中只有变量的滞后值作解释变量,yt的值仅 依靠滞后信息。这种模型称为“盲始”模型。
从上式两侧同时减 yt-1,在右侧同时加减 0xt -1 得:
yt = 0 + 0 xt + (1 -1) yt-1 + (0 + 1) xt-1 + ut
上式右侧第三、四项合并得:
yt = 0 + 0 xt + (1 - 1 ) ( yt-1 - k1 xt-1) + ut 其中k1 = (0 + 1) / (1 - 1 )。在上述变换中没有破坏恒
n
yt = 0 + i xti + ut , ut IID (0, 2 ) i0
上述模型的一个明显问题是xt与xt -1 , xt-2, …, xt - n 高
度相关,从而使 j的OLS估计值很不准确。
3.动态分布滞后模型(自回归分布滞后模型)
如果在分布滞后模型中包括被解释变量的若干个滞
长期趋势模型: yt = k0 + k1 xt + ut
短期波动模型: yt = 0 xt + (1- 1 ) ECMt + ut
ECMt = yt-1 - k0 - k1 xt-1
三、误差修正模型(ECM)的建立
(2) ECM模型中的参数 k0 , k1 估计方法有 : ① 若变量为平稳变量或者为非平稳变量但存在长期
误差修正模型课件
Error Correction Model,简记为ECM,是 一种具有特定形式的计量经济学模型
产生原因:经济数据一般情况下都是非平 稳的,对于非稳定时间序列,可通过差 分的方法将其化为稳定序列,然后才可 建立经典的回归分析模型。
误差修正模型
误差修正模型建立的作用 为了增强模型的精度,将协整回归中的
误差修正模型
2. 最优滞后阶数的选择
1. AIC信息准则 2. SC准则
误差修正模型
AIC信息准则
AIC值最小 AIC信息准则,又称赤池信息量准则
Akaike information criterion、简称AIC,是衡
量统计模型拟合优良性的一种标准,是由日本 统计学家赤池弘次创立和发展的。 AIC鼓励数据拟合的优良性但是尽量避免出现 过度拟合(Overfitting)的情况。所以优先考虑 的模型应是AIC值最小的那一个。
误差修正模型
目的:查看常数项和时间趋势项是否显著
误差修正模型
第二步:上图结果显示常数项显著,因 此对原始数据单位根检验中同时加入常 数项
误差修正模型
SC信息准则
SC值最小 SC信息准则,又称施瓦兹准则,即
Schwarz Criterion 其检验思想也是通过比较不同分布滞后模
型的拟合优度来确定合适的滞后期长度。 检验过程是:在模型中逐期添加滞后变量 ,直到SC值不再降低时为止,即选择使SC 值达到最小的滞后期k。
误差修正模型
得出图形
误差修正模型
结论
由GDP的时间序列图初步判断序列是不 平稳的
可以看出该序列可能存在趋势项,若需 要单位根检验,则选择第三种模型进行 检验
误差修正模型
方法2:用自相关系数图判断
协整与误差修正模型
1、误差修正模型
前文已经提到,对于非稳定时间序列,可通过差分的方 法将其化为稳定序列,然后才可建立经典的回归分析模型。 如:建立人均消费水平(Y)与人均可支配收入(X) 之间的回归模型:
Yt 0 1 X t t
如果Y与X 具有共同的 向上或向下 的变化趋势 X,Y 成为 平稳 序列
t t t
称为协整回归(cointegrating)或静态回归(static regression)。
e et Y 第二步,检验t 的单整性。如果 为稳定序列,则认为变量t , X t Y 为(1,1)阶协整; et 为 1 阶单整, 如果 则认为变量 t , X t 为(2,1)阶协整; „。
• MacKinnon(1991)通过模拟试验给出了协整检 验的临界值,表9.3.1是双变量情形下不同样本 容量的临界值。
表 9.3.1 样本容量 25 50 100 ∝ 双变量协整 ADF 检验临界值 显 著 性 水 平 0.01 -4.37 -4.12 -4.01 -3.90 0.05 -3.59 -3.46 -3.39 -3.33 0.10 -3.22 -3.13 -3.09 -3.05
•
例9.3.1 检验中国居民人均消费水平CPC与人均国内生 产总值GDPPC的协整关系。
在前文已知CPC与GDPPC都是I(2)序列,而§2.10中已 给出了它们的回归式
CPCt 49.764106 0.45831 GDPPC t
R2=0.9981
通过对该式计算的残差序列作ADF检验,得适当检验 模型
Yt 1X t vt
式中,vt=t-t-1。
实际情况往往并非如此
如果t-1期末,发生了上述第二种情况,即Y的值小于其 均衡值,则Y的变化往往会比第一种情形下Y的变化Yt 大一些; 反之,如果Y的值大于其均衡值,则Y的变化往往会小 于第一种情形下的Yt 。 可见,如果Yt=0+1Xt+t 正确地提示了X与Y间的长 期稳定的“均衡关系”,则意味着Y对其均衡点的偏离从 本质上说是“临时性”的。 因此,一个重要的假设就是:随机扰动项t 必须是平 稳序列。 显然,如果t有随机性趋势(上升或下降),则会导 致Y对其均衡点的任何偏离都会被长期累积下来而不能被 消除。
第5章⑶协整分析与误差修正模型_图文.
一、长期均衡关系与协整二、协整检验三、误差修正模型第三节协整与误差修正模型12一、长期均衡关系与协整0、问题的提出•经典回归模型(classical regression model)是建立在稳定数据变量基础上的,对于非稳定变量,不能使用经典回归模型,否则会出现虚假回归等诸多问题。
•由于许多经济变量是非稳定的,这就给经典的回归分析方法带来了很大限制。
•但是,如果变量之间有着长期的稳定关系,即它们之间是协整的(cointegration ,则是可以使用经典回归模型方法建立回归模型的。
•例如,中国居民人均消费水平与人均GDP变量的例子中:因果关系回归模型要比ARMA模型有更好的预测功能,其原因在于,从经济理论上说,人均GDP 决定着居民人均消费水平,而且它们之间有着长期的稳定关系,即它们之间是协整的(cointegration )。
31、长期均衡经济理论指出,某些经济变量间确实存在着长期均衡关系,这种均衡关系意味着经济系统不存在破坏均衡的内在机制,如果变量在某时期受到干扰后偏离其长期均衡点,则均衡机制将会在下一期进行调整以使其重新回到均衡状态。
假设X 与Y 间的长期“均衡关系”由式描述Y t =α0+α1X t +μt式中:μt是随机扰动项。
该均衡关系意味着:给定X 的一个值,Y 相应的均衡值也随之确定为α0+α1X 。
4在t-1期末,存在下述三种情形之一:(1)Y 等于它的均衡值:Y t-1= α0+α1X t ;(2)Y 小于它的均衡值:Y t-1< α0+α1X t ;(3)Y 大于它的均衡值:Y t-1>α0+α1X t ;在时期t ,假设X 有一个变化量ΔX t ,如果变量X 与Y 在时期t 与t-1末期仍满足它们间的长期均衡关系,则Y 的相应变化量由式给出:ΔY t =α1ΔX t +v t式中,v t =μt -μt-1。
5实际情况往往并非如此如果t-1期末,发生了上述第二种情况,即Y 的值小于其均衡值,则Y 的变化往往会比第一种情形下Y 的变化ΔY t 大一些;反之,如果Y 的值大于其均衡值,则Y 的变化往往会小于第一种情形下的ΔY t 。
时间序列协整检验与误差修正模型讲义
二、协整检验—EG检验
1、两变量的Engle-Granger检验
• 为了检验两变量Yt,Xt是否为协整,Engle和Granger于1987年提 出两步检验法,也称为EG检验。
第一步,用OLS方法估计方程 Yt=0+1Xt+t
并计算非均衡误差,得到:
Yˆt ˆ0 ˆ1 X t
eˆt Yt Yˆt 称为协整回归(cointegrating)或静态回归(static regression)。
• 如果X与Y间的长期均衡关系正确,该式表述的非均 衡误差应是一平稳时间序列,并且具有零期望值,即 是具有0均值的I(0)序列。
• 非稳定的时间序列,它们的线性组合也可能成为平稳的。 称变量X与Y是协整的(cointegrated)。
3、协整
• 如果序列{X1t,X2t,…,Xkt}都是d阶单整,存在向量 =(1,2,…,k),使得Zt=XT ~ I(d-b), 其中,b>0,X=(X1t,X2t,…,Xkt)T,则认为序列 {X1t,X2t,…,Xkt}是(d,b)阶协整,记为Xt~CI(d,b),为 协整向量(cointegrated vector)。
一定是I(0)序列。
由于vt象t一样,也是Z、X、Y、W四个变量的线性组合, 由此vt 式也成为该四变量的另一稳定线性组合。
(1, -0,-1,-2,-3)是对应于t 式的协整向量,(1,0-0,-1,1,-1)是对应于vt式的协整向量。
• 检验程序:
–对于多变量的协整检验过程,基本与双变量情形相同, 即需检验变量是否具有同阶单整性,以及是否存在稳 定的线性组合。
ADF临界值还要小。
– MacKinnon(1991)通过模拟试验给出了协整检验的临 界值。
计量经济学8.3时间序列的协整和误差修正模型
首先用OLS对变量进行回归,然后对回归残差进行单 位根检验。如果残差是平稳的,则变量之间存在协 整关系。
Johansen检验
这是一种基于VAR模型的协整检验方法,适用于多 变量系统。通过检验特征根和特征向量的性质来判 断协整关系的存在性和个数。
其他检验方法
如基于残差的DF、ADF检验、PP检验等,这些方法 在特定情况下可能具有更好的适用性。
按时间顺序排列的一组数据,反映现象随时间变化的情况。
时间序列特点
动态性、时序性、规律性、随机性。
平稳性与非平稳性
平稳性
时间序列的统计特性不随时间变化而 变化。
非平稳性
时间序列的统计特性随时间变化而变 化,包括趋势性变化、周期性变化和 随机性变化。
趋势性与周期性
趋势性
时间序列在长期内呈现出的持续上升或下降的变化趋势。
误差修正模型
详细阐述了误差修正模型的构建 方法、优缺点以及适用范围,包 括ECM、VECM等模型。
实证分析与应用
通过多个案例,深入探讨了协整 和误差修正模型在实证分析中的 应用,包括政策评估、金融市场 分析等。
前沿动态介绍
非线性协整理论
随着计量经济学的发展,非线性协整理论逐 渐受到关注,其能够更好地刻画经济变量之 间的长期均衡关系。
系,则建立误差修正模型,并引入误差修正项。 • 实证结果:通过估计ECM模型参数,发现经济增长与通货膨胀之间存在长期
均衡关系。在短期内,经济增长率的波动会受到通货膨胀率的影响,并通过误 差修正项进行调整。此外,还发现其他控制变量如货币政策、财政政策等对经 济增长和通货膨胀也有显著影响。
04
时间序列数据预处理技术
工具变量法(IV)
在存在内生性问题的情况下,使用工具 变量来估计模型参数。需要找到与误差 项无关但与解释变量相关的工具变量。
时间序列分析课件(东北财经大学 王雪标)第6章协整和误差修正模型
第6章协整和误差修正模型本章介绍含有非平稳变量结构方程或V AR的估计。
在一维模型中,我们已经看到,可以通过差分去掉一个随机趋势,得到的平稳序列,再用Box-Jenkins方法来估计模型。
在多维情况下,并不这样直接处理。
通常,整变量的线性组合是平稳的,这些变量称为协整的。
许多经济模型都有这种关系。
本章主要内容:1.介绍协整的基本概念,及在经济模型中的应用。
非平稳变量之间的均衡关系意味着它们的随机趋势是相联系的。
均衡关系意味着这些变量不能相互独立运动。
随机趋势之间的联系保证了变量是协整的。
2.考虑了协整变量的动态路径,由于协整变量的趋势是相互联系的,这些变量的动态路径反映了偏离均衡的偏差的联系。
详细分析了变量的变化与偏离均衡的偏差之间的联系。
3.讨论了协整检验的几种方法。
计量检验方法来自于齐次差分方程理论。
讨论了估计协整系统的方法。
介绍了两种主要的协整检验方法。
6.1整变量的线性组合考虑一个简单的货币需求模型,居民持有实际货币余额,使名义货币需求与价格水平成比例。
当实际收入及交易次数的增加,居民希望持有更多的货币余额。
最后,利率是持有货币的机会成本,货币需求与利率负相关。
采用对数形式,方程设定形式如下:0123t t t t t m p y r e ββββ=++++ (6.1.1)这里: t m =货币需求,t p =价格水平t y =实际收入t r =利率t e =平稳扰动项i β=待估计的参数在货币市场是均衡的条件下,可以得到货币供给、价格水平、实际收入和短期利率的时间序列数据,且要求1231,0,0βββ=><。
在研究中需要检验这些限制。
货币需求的任何偏差{}t e 必须是暂时的。
如果{}t e 有随机趋势,偏离货币市场均衡的偏差不能消失。
所以,这里的关键假设是{}t e 是平稳的。
许多研究者认为,实际GDP 、货币供给、价格水平、利率都是I(1)变量。
每个变量都没有返回到长期水平的趋势。
计量经济学《时间序列的协整和误差修正模型》课件
• 如果不平稳,则需更换被解释变量,进行同样的OLS估 计及相应的残差项检验。
• 当所有的变量都被作为被解释变量检验之后, 仍不能得到平稳的残差项序列,则认为这些变 量间不存在(d,d)阶协整。
称为协整回归(cointegrating)或静态回归(static regression)。
第二步,检验et 的单整性。如果et 为稳定序列,则认为变量 Yt , X t 为(1,1)阶协整;如果et 为 1 阶单整,则认为变量 Yt , X t 为(2,1)阶协整;…。
• 非均衡误差的单整性的检验方法仍然是DF检验 或者ADF检验。
Vt ,Ut ~ CI (2,1) Wt , Pt ~ CI (1,1)
• (d,d)阶协整是一类非常重要的协整关系, 它的经济意义在于:两个变量,虽然它们具有 各自的长期波动规律,但是如果它们是(d,d) 阶协整的,则它们之间存在着一个长期稳定的 比例关系。
• 例如,中国CPC和GDPPC,它们各自都是2阶单整,如果 它们是(2,2)阶协整,说明它们之间存在着一个长期稳 定的比例关系,从计量经济学模型的意义上讲,建立 如下居民人均消费函数模型是合理的。
2、长期均衡
• 经济理论指出,某些经济变量间确实存在着长期均衡关
系,这种均衡关系意味着经济系统不存在破坏均衡的内在 机制,如果变量在某时期受到干扰后偏离其长期均衡点, 则均衡机制将会在下一期进行调整以使其重新回到均衡状 态。
假设X与Y间的长期“均衡关系”由式描述
Yt 0 1X t t
该均衡关系意味着:给定X的一个值,Y相应的均衡值也随 之确定为0+1X。
金融时间序列分析 第2部分 时间序列分析基础4 协整与误差修正模型PPT课件
3、动态分布滞后模型(自回归分布滞后模型)
如果在分布滞后模型中包括被解释变量的若干个滞后值作解释
变量,则称之为“动态分布滞后模型或自回归分布滞后模型”。
例
m
n
yt = 0 + i yti + i xti + ut , ut IID (0, 2 )
i 1
i0
用 ADL (m, n) 表示,其中,m 是自回归阶数,n 是分布滞后阶数 。
注意到 1 yt 2 zt I (0) ,所以有 1 yt 2zt 0 ,从而有
yt
2 1
zt
五、协整理论的意义
(一)避免伪回归 如果非平稳时间序列之间具有协整关系,那就说明残差
序列平稳,就不会产生伪回归问题。所以,协整理论是我们 处理非平稳时间序列的有效工具。 (二)估计量的“超一致性”
相同的I(1) 时间序列。
1、协整回归 设 Xt ~ I (1),Yt ~ I (1), 建立回归方程
Yt Xt ut
得到残差序列
uˆt Yt (ˆ ˆ Xt )
2、检验残差序列的平稳性 用单位根检验---DF检验,检验残差序列的平稳性;
若残差序列 uˆt 是平稳的,则认为存在协整关系。
原因:在初始模型中包括了许多变量,所以不会使回归系数的 OLS估计量存在丢失变量误差。
虽然因为在初始模型中包括了许多非重要解释变量,从而使回 归参数估计量缺乏有效性,但随着检验约束条件的继续,那些非 重要的解释变量被逐步剔除掉,从而使估计量缺乏有效性的问题 得到解决。
4、 误差修正模型
ECM 模型由 ADL (m, n, p) 模型变换而来。
例如,X1t 和 X 2t 都是 I (2),而 X3t 是 I (1),则 X1t (或 X2t ) 与 X3t 之间不可能有协整关系,
时间序列的协整和误差修正模型
时间序列的协整和误差修正模型时间序列分析中,协整和误差修正模型是两个重要的概念。
协整是指两个或多个时间序列之间的长期关系,而误差修正模型是一种用来修正时间序列中的误差的模型。
协整是经济学家提出的一个概念,用来解决时间序列数据存在的非平稳性的问题。
在实际应用中,有很多时间序列数据是非平稳的,即其均值和方差不随时间变化而保持不变。
然而,这些非平稳的时间序列之间可能存在长期的关系,也就是说它们会随着时间变化而趋于稳定。
这种关系可以通过协整分析来检验和建模。
协整模型的一种常见形式是误差修正模型(Error Correction Model,ECM)。
误差修正模型是建立在协整模型的基础上的,它可以用来描述时间序列数据之间的长期关系,并且考虑了这些时间序列数据之间的短期变动。
在误差修正模型中,如果两个时间序列之间存在协整关系,那么它们之间的生成误差(随机扰动)会导致它们之间的偏离程度逐渐回归到长期均衡的水平。
因此,误差修正模型是通过引入误差修正项来解决协整关系中存在的短期波动的问题。
误差修正模型的基本思想是,当两个时间序列之间存在协整关系时,如果它们之间的误差超过一定的阈值,那么它们之间的误差就会被修正回长期均衡的水平。
这种修正过程可以通过引入一个误差修正项来实现,从而使得模型具备误差修正的能力。
总之,协整和误差修正模型是对时间序列数据进行建模和分析的重要工具。
协整可以用来检验和描述时间序列之间的长期关系,而误差修正模型则是在协整的基础上引入修正项,用来处理时间序列之间的短期波动。
这些方法在经济学和金融学等领域中具有广泛的应用价值。
协整和误差修正模型是时间序列分析中非常重要的概念。
协整是指两个或多个非平稳时间序列之间存在的长期关系,而误差修正模型则是通过引入误差修正项来描述时间序列的短期波动。
在实际应用中,许多经济和金融时间序列是非平稳的,即它们的均值和方差会随时间变化而发生变动。
这种非平稳性可能会导致误导性的统计结果,因为传统的统计方法要求时间序列数据是平稳的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、协整
• 如果序列{X1t,X2t,…,Xkt}都是d阶单整,存在向量 =(1,2,…,k),使得Zt=XT ~ I(d-b), 其中,b>0,X=(X1t,X2t,…,Xkt)T,则认为序列 {X1t,X2t,…,Xkt}是(d,b)阶协整,记为Xt~CI(d,b), 为协整向量(cointegrated vector)。 • 如果两个变量都是单整变量,只有当它们的单整 阶数相同时,才可能协整;如果它们的单整阶数 不相同,就不可能协整。
• (d,d)阶协整是一类非常重要的协整关系, 它的经济意义在于:两个变量,虽然它们具有 各自的长期波动规律,但是如果它们是(d,d) 阶协整的,则它们之间存在着一个长期稳定的 比例关系。
• 例如,中国CPC和GDPPC,它们各自都是2阶单整,如果 它们是(2,2)阶协整,说明它们之间存在着一个长期稳 定的比例关系,从计量经济学模型的意义上讲,建立 如下居民人均消费函数模型是合理的。
• 式Yt=0+1Xt+t中的随机扰动项也被称为非均 衡误差(disequilibrium error),它是变量X 与Y的一个线性组合:
Y X t t 0 1 t
• 如果X与Y间的长期均衡关系正确,该式表述的非
均衡误差应是一平稳时间序列,并且具有零期望值, 即是具有0均值的I(0)序列。 • 非稳定的时间序列,它们的线性组合也可能成为 平稳的。称变量X与Y是协整的(cointegrated)。
该均衡关系意味着:给定X的一个值,Y相应的均衡值也随 之确定为0+1X。
• 在t-1期末,存在下述三种情形之一:
– Y等于它的均衡值:Yt-1= 0+1Xt ; – Y小于它的均衡值:Yt-1< 0+1Xt ; – Y大于它的均衡值:Yt-1> 0+1Xt ; • 在时期t,假设X有一个变化量Xt,如果变量X
CointegrationandErrorCorrectionMod
el
一、长期均衡与协整分析
二、协整检验
三、误差修正模型
一、长期均衡与协整分析 Equilibrium and Cointegration
1、问题的提出
• 经典回归模型( classical regression model )是建立在 平稳数据变量基础上的,对于非平稳变量,不能使用经典 回归模型,否则会出现虚假回归等诸多问题。 • 由于许多经济变量是非平稳的,这就给经典的回归分析方 法带来了很大限制。 • 但是,如果变量之间有着长期的稳定关系,即它们之间是 协整的(cointegration),则是可以使用经典回归模型方 法建立回归模型的。 • 例如,中国居民人均消费水平与人均 GDP 变量的例子 , 从 经济理论上说,人均 GDP 决定着居民人均消费水平,它们 之间有着长期的稳定关系,即它们之间是协整的。
• 3个以上的变量,如果具有不同的单整阶数,有 可能经过线性组合构成低阶单整变量。
W I ( 1 ), V I ( 2 ), U I ( 2 ) t~ t~ t~
P bU 1 ) t aV t t ~I( Q cW eP 0 ) t t t ~I(
Vt ,Ut ~ CI(2,1 ) W 1 ,1 ) t,P t ~ CI(
二、协整检验—EG检验
1、两变量的Engle-Granger检验
• 为了检验两变量 Yt,Xt 是否为协整, Engle 和 Granger 于 1987年提出两步检验法,也称为EG检验。 第一步,用OLS方法估计方程 Yt=0+1Xt+t 并计算非均衡误差,得到:
ˆ ˆ0 ˆ1 X t Y t ˆ ˆ Y Y e
2、长期均衡 •
经济理论指出,某些经济变量间确实存在着长期均衡关 系,这种均衡关系意味着经济系统不存在破坏均衡的内在 机制,如果变量在某时期受到干扰后偏离其长期均衡点, 则均衡机制将会在下一期进行调整以使其重新回到均衡状 态。
假设X与Y间的长期“均衡关系”由式描述
Y X t 0 1 t t
t t t
称为协整回归(cointegrating)或静态回归(static regression)。
第 二 步 , 检 验 单 整 性 。 如 果 稳 定 序 列 , 则 认 为 变 量 e e Y , X t的 t 为 t t
为 ( 1 , 1 ) 阶 协 整 ; 如 果 1 阶 单 整 , 则 认 为 变 量 ( 2 , 1 ) 阶 协 整 ; … 。 e Y , X t为 t t为
• 非均衡误差的单整性的检验方法仍然是DF检验 或者ADF检验。
• 需要注意是,这里的DF或ADF检验是针对协 整回归计算出的误差项,而非真正的非均衡误 差。
• 而OLS法采用了残差最小平方和原理,因此估 计量是向下偏倚的,这样将导致拒绝零假设 的机会比实际情形大。 • 于是对et平稳性检验的DF与ADF临界值应该比 正常的DF与ADF临界值还要小。
与Y在时期t与t-1末期仍满足它们间的长期均衡关 系X v t 1 t t
vt=t-t-1
• 如果t-1期末,发生了上述第二种情况,即Y的 值小于其均衡值,则t期末Y的变化往往会比第 一种情形下Y的变化大一些; • 反之,如果t-1期末Y的值大于其均衡值,则t期 末Y的变化往往会小于第一种情形下的Yt 。 • 可见,如果 Yt=0+1Xt+t 正确地提示了 X 与 Y 间的长期稳定的“均衡关系”,则意味着 Y 对 其均衡点的偏离从本质上说是“临时性”的。 • 一个重要的假设就是 : 随机扰动项 t 必须是平 稳序列。如果 t有随机性趋势(上升或下降), 则会导致 Y 对其均衡点的任何偏离都会被长期 累积下来而不能被消除。
CPC GDPPC t 0 1 t t
• 尽管两个时间序列是非平稳的,也可以用经典
的回归分析方法建立回归模型。
•
从这里,我们已经初步认识到: 检验变量之 间的协整关系,在建立计量经济学模型中是非常 重要的。 而且,从变量之间是否具有协整关系出发选 择模型的变量,其数据基础是牢固的,其统计性 质是优良的。