信号与系统 卷积性质例1
信号与系统王明泉版本~第二章习题解答
![信号与系统王明泉版本~第二章习题解答](https://img.taocdn.com/s3/m/4516ad8584868762caaed578.png)
第2章 线性时不变连续系统的时域分析2.1 学习要求(1)会建立描述系统激励与响应关系的微分方程;(2)深刻理解系统的完全响应可分解为:零输入响应与零状态响应,自由响应与强迫响应,瞬态响应与稳态响应;(3)深刻理解系统的零输入线性与零状态线性,并根据关系求解相关的响应; (4)会根据系统微分方程和初始条件求解上述几种响应; (5)深刻理解单位冲激响应的意义,并会求解;(6)深刻理解系统起始状态与初始状态的区别,会根据系统微分方程和输入判断0时刻的跳变情况; (7)理解卷积运算在信号与系统中的物理意义和运算规律,会计算信号的卷积。
; 2.2 本章重点(1)系统(电子、机械)数学模型(微分方程)的建立; (2)用时域经典法求系统的响应; (3)系统的单位冲激响应及其求解;(4)卷积的定义、性质及运算,特别是()t δ函数形式与其它信号的卷积; (5)利用零输入线性与零状态线性,求解系统的响应。
2.3 本章的知识结构2.4 本章的内容摘要2.4.1系统微分方程的建立电阻:)(1)(t v Rt i R R =电感:dtt di L t v L L )()(= )(d )(1)(0t i v Lt i L tL L +=⎰∞-ττ 电容:dtt dv C t i C C )()(= ⎰+=tt L C C t i i Ct v 0)(d )(1)(0ττ 2.4.2 系统微分方程的求解 齐次解和特解。
齐次解为满足齐次方程t n t t h e c e c e c t y 32121)(λλλ+⋅⋅⋅++=当特征根有重根时,如1λ有k 重根,则响应于1λ的重根部分将有k 项,形如t k t k t k t k h e c te c e t c e t c t y 111112211)(λλλλ++⋅⋅⋅++=--- 当特征根有一对单复根,即bi a +=2,1λ,则微分方程的齐次解bt e c bt e c t y at at h sin cos )(21+= 当特征根有一对m 重复根,即共有m 重ib a ±=2,1λ的复根,则微分方程的齐次解bt e t c bt te c bt c t y at m m at h cos cos cos )(121-+⋅⋅⋅++= bt e t d bt te d bt e d at m m at at sin sin sin 121-+⋅⋅⋅+++ 特解的函数形式与激励函数的形式有关。
《信号与系统》第五章基本内容示例(含答案)
![《信号与系统》第五章基本内容示例(含答案)](https://img.taocdn.com/s3/m/c0684868d15abe23492f4d9d.png)
e−4t
sin(0t)
(t)
(2)ℒ
(2t
−
5)
=
1
−5s
e2
s
(3)ℒ-1
1 1− e−s
=
k =0
(t
−
k)
(4)ℒ
cos(3t − 2) (3t − 2) =
s
2
s +
9
−
e
2 3
s
(5)ℒ
e−t (t)
− e−(t −3)
(t
−
3)
=
s
1 (1− +1
e−3s )
(6)ℒ-1
1 2
2. 已知系统的 H (s) = s +1 ,画出系统的零、极点分布图。
(s + 2)2 + 4
六、简单计算下列式子
ℒ 1、
-1
(s
+
0 4)2
+
02
2、ℒ (2t − 5)
ℒ-1
3、
1
1 − e−
s
4、ℒ cos(3t − 2) (3t − 2)
ℒ 5、 e−t (t) − e−(t −3) (t − 3)
系统并联后的复合系统的系统函数为( )。
A . H1(s) + H2 (s)
B . H1(s) H2(s)
C.无法确定
D. H1(s) // H2(s) 14、若 f (t) 1 ,Re[s] −3 ,根据终值定理,原函数 f (t) 的终值为
s+3
( )。
A.无穷小
B.无穷大
C. 1 D. 0
X (s) = F(s) + s X (s) + s2 X (s)
信号与系统
![信号与系统](https://img.taocdn.com/s3/m/54ea2a84ec3a87c24028c4ec.png)
x(n) ∗ h1 (n) ∗ h2 (n) = x(n) ∗ h2 (n) ∗ h1 (n) x(t ) ∗ h1 (t ) ∗ h2 (t ) = x(t ) ∗ h2 (t ) ∗ h1 (t )
x[ n ] h1[ n ] x (t ) h1 (t ) y[ n ] h2 [ n ] y (t ) h2 (t )
x(t )
x(t )
例如:延时器是可逆的LTI系统,h(t ) = δ (t − t0 ) ,其逆系 例如:延时器是可逆的 系统, 系统 显然有: 统是 g (t ) = δ (t + t0 ) ,显然有:
1
2.分配律 2.分配律(the distributive property) 分配律
x[n] ∗ [h1[n] + h2 [n]] = x[n] ∗ h1[n] + x[n] ∗ h2 [n] x(t ) ∗ [h1 (t ) + h2 (t )] = x(t ) ∗ h1 (t ) + x(t ) ∗ h2 (t )
∞
t −ι
t
6
微分性质: ② 微分性质:若y(t)=x(t)*h(t),则 ,
y′(t ) = x(t ) * h′(t ) = x′(t ) * h(t )
两函数相卷积后的导数等于两函数之一的导数与另一函数相卷积。 两函数相卷积后的导数等于两函数之一的导数与另一函数相卷积。
d Proof: y ′(t ) = dt
h2 (t )
y(t ) = [ x(t ) ∗ h1 (t )] ∗ h2 (t )
y[n] = ( x[n] ∗ h1[n]) ∗ h2[n]
⇒
结论: 结论: 两个LTI系统级联时,系统总的单位冲激(脉冲 响应等于各 系统级联时, 脉冲)响应等于各 ①两个 系统级联时 系统总的单位冲激 脉冲 子系统单位冲激(脉冲 响应的卷积。 脉冲)响应的卷积 子系统单位冲激 脉冲 响应的卷积。
信号与系统 卷积积分的性质
![信号与系统 卷积积分的性质](https://img.taocdn.com/s3/m/60def0ddc1c708a1284a44c6.png)
信号与系统
d x t dt
h d
t
2
1
1 0
2
c
1
t
0
4
t
d
dxt t h d 15 dt 8
t
9 8
2
dxt t h d dt
3
1 0
2
2
6
1 0
2 3
6
t
f
e
信号与系统
t t t
[ 1 d ]u (t 1) [ 1 d ]u (t 2)
1 2
t
t
(t 1)u (t 1) (t 2)u (t 2)
(t 1)[u (t 1) u (t 2)] 3u (t 2) 0 t 1 3
0 t a 1 e d 1 e at 0 a
f t
1
1 d ]u(t ) 1 e at u t a
t 0
f d
t 0
t
e at
1 a
0
a
t
0
b
t
信号与系统
作业 13-4-16
t
y( )d f (t ) h( )d h(t ) f ( )d
t
y(t)的一重积分
y ( 1) (t ) f (t ) h( 1) (t ) f ( 1) (t ) h(t )
推广:
y ( m) (t ) f (t ) h( m) (t ) f ( m) (t ) h(t )
卷积的性质
![卷积的性质](https://img.taocdn.com/s3/m/391911ab84868762caaed586.png)
第 17 页
阶跃响应的定义
(t )
初始状态为0 LTI
阶跃响应g(t)
第 18 页
冲激与阶跃响应之间的关系
线性时不变系统满足微、积分特性
(t ) (t ) d t
t
g (t ) h( ) d
t
d g (t ) , h(t ) dt
第 19 页
冲激响应举例
LTI系统分析概述
系统分析研究的主要问题:对给定的具体系统,求出它对给定激励的响 应。具体地说:系统分析就是建立表征系统的数学方程并求出解答。
输入输出法(外部法) 系统的分析方法:
状态变量法(内部法)(chp.8)
时域分析(chp.2,chp.3) 外部法 变换域法 离散系统—频域法(4)和z域法(6) 系统特性:系统函数(chp.7)
设
h ' ( 0 ) h ' ( 0 ) a 1
代入h(t),确定系数C1,C2,得
h(t ) (e e ) (t )
2t 3t
第 21 页
四、卷积积分
1
2 3
卷积概念
卷积图解法 Matlab求卷积
第 22 页
1.卷积概念
卷积概念视频
第 23 页
已知定义在区间( – ∞,∞)上的两个函数f1(t)和f2(t), 则定义积分
第 1页
连续系统—频域法(4)和复频域法(5)
求解的基本思路:
把零输入响应和零状态响应分开求。 把复杂信号分解为众多基本信号之和,根据线性系统的可加性:多个基本 信号作用于线性系统所引起的响应等于各个基本信号所引起的响应之和。
采用的数学工具: • 时 域: 卷积积分与卷积和 • 频 域: 傅里叶变换 • 复频域:拉普拉斯变换与Z变换
《信号与系统分析基础》第二章部分习题参考答案
![《信号与系统分析基础》第二章部分习题参考答案](https://img.taocdn.com/s3/m/9cfdd74cbe1e650e53ea9909.png)
第二章部分习题参考答案2-6 试求下列各函数1()f t 与2()f t 之卷积。
121212(-)01(1) ()() ()() (0) ()()()(-) ()(-)11(1) 0(2) ()t tt t tt t f t u t f t e u t f t f t f f t d u eu t d e e d e e e t f t ααταατααταατττττττααδ-+∞-∞+∞---∞--==>*===⋅=⋅=-≥=⎰⎰⎰,解:,2121212() ()cos(45)()()()cos[()45] cos(45)(3) ()(1)[()(1)] ()(1)(2) ()()t f t t f t f t t d t f t t u t u t f t u t u t f t f t ωδτωττω+∞-∞=+*=-+=+=+--=---*⎰,解:,解:ττ222221211211()(-1)(-1)-2(-2)(-2)(-1)(-1)-(-2)(-2)2211-(-2)(-2)(-3)(-3)-(-2)(-2)(-3)(-3)22()*()()1,()0123, (1-)(1)21(1)--(12ttf t t u t t u t t u t t u t t u t t u t t u t t u t f t f t f t t f t t t dt t ft t t t τττ=+++=<=<<+=+-=++⎰222-112222212111)-222123, (1-)(1)-221()2(1)-2(1-)(-1)211121---152223, ()*()0.t t t t t t d t f t t t t t t t t t t t f t f t ττττ-+=<<+=+=+++=+++=++>=⎰121221--(4) cos , (1)-(-1)()*()()(-) [(1)-(-1)][cos(-)] cos[(1)]-cos[(-1)]f t t f t t t f t f t f f t d t t t d t t ωδδτττδδωττωω+∞∞+∞∞==+==+⋅=+⎰⎰ -212-212--2-220(5) ()(), ()sin ()()()*()()sin(-)(-) sin(-)sin t t ttt tf t e u t f t t u t f t f t f t e u t u t d e t d ee d τττττττττ+∞∞==⋅==⋅⋅⋅=⋅=⋅⎰⎰⎰-12-(-)--0022-(-)-33-2-3(6) ()2[()-(-3)], ()4()-(-2)0, ()0.02,()2488-825, 88()8(-)5, ()0.t tt t t tt t t t t f t e u t u t f t u t u t t f t t f t e d e e e t ft ed ef t e e e t f t ττττττ-==<=<<==⋅=<<===>=⎰⎰2-8 求阶跃响应为32()(21)()t t s t e e u t --=-+的LTI (线性时不变)系统对输入()()t x t e u t =的响应。
《信号与系统教学课件》§2.6 卷积及其性质和计算
![《信号与系统教学课件》§2.6 卷积及其性质和计算](https://img.taocdn.com/s3/m/5218bc96a2161479171128af.png)
将卷积的微分性质和积分性质加以推广,可以得到
s
t
nm
f (n) 1
t
f (m) 2
t
f (m) 1
t
f (n) 2
t
X
二、卷积的性质
注意函数的积分和微分并不是一个严格的可逆关系, 因为函数加上任意常数后的微分与原函数的微分是相 同的。因此,对于等式
f1 t
f2 t
f1' t
k
d
k
f
3
t
d
令w k
f1
k
f2
w f3
t
k
w d w d k
令st f2t f3t
f1 k s t k d k
f1 t st
f1 t
f2 t
f3 t
f 1
t f2 t
f3 t
X
二、卷积的性质
一、代数性质 • 结合律
对于函数f1 t , f2 t , f3 t ,存在
h2 t
r(t)
h1 t
图2.6.2 卷积交换律的系统意义
X
二、卷积的性质
一、代数性质
• 结合律
对于函数f1 t , f2 t , f3 t ,存在
f1 t f2 t f3 t f1 t f2 t f3 t
根据卷积的定义
f1 t
f2
t
f3
t
f1
k
f2
X
三、卷积的计算
根据卷积的定义,卷积计算是由若干基本的信号运算组成的, 对于
s
t
f1
f2
t
d
第一步 反褶:将 f1 t 反褶运算,得到 f1
信号与系统信号的时域分解与卷积积分
![信号与系统信号的时域分解与卷积积分](https://img.taocdn.com/s3/m/fc9a9c526137ee06eef9182c.png)
28
三、卷积的性质及卷积计算
(2) (t-t0 ) 是卷积的延迟器
y(t) f (t) (t t0 )=f (t t0 )
物理意义
f (t)
有用推论
(t t0 )
f (t t0 )
f (t t1) (t t2 ) f (t t1 t2 )
若:f1(t) f2 (t) y(t) 则: f1(t t1) f2(t t2) y(t t1 t2)
s 平面和z平面的对应关系
×
衰减振荡信号
j
×虚指数信号 ×
增长振荡信号
指数×衰减信号
×
直流信号
×
指数增长信号
jIm[z]
z esT rej r eT , T
× 虚指数信号
衰减振荡信号
×
×
× 指×数增长
指数衰减信号 直流 Re[z]
增长振荡信号
× 2
温故知新,上讲回顾
信号波形的翻转、展缩与平移
)
f3 (t
)]d
f1( )
f2 (t
)d
f1 (
)
f3 (t
)d
f1(t) f2 (t) f1(t) f3 (t)
物理意义:两个LTI系统并联,其总的单位冲激响应等
于各个子系统的单位冲激响应之和。也可通过交换律/
线性系统性质证明
f1 (t )
f2 (t) f3 (t)
f1(t) [ f2 (t) f3 (t)]
f1(t) f2 (t ) f3 (t) yzs (t) f1 (t) [ f2 (t) f3 (t)]
表明:两个LTI系统级联时,系统总的单位冲激响 应等于各个子系统单位冲激响应的卷积。
第二章第3讲 卷积
![第二章第3讲 卷积](https://img.taocdn.com/s3/m/d9433fe6f90f76c661371aae.png)
[ f () * f ()]d f (t) * f ()d f (t) * f ()d
1 2 1 2 2 1
t
t
t
证明:
[ f ( ) * f
1 t 1
t
2
( )]d [ f1 ( ) f 2 ( )d ]d
[ f1 (t )u(t t1 )] [ f 2 (t )u(t t2 )]
信号与系统 同济大学汽车学院 魏学哲 weixzh@
g (t ) f1 ( )u( t1 ) f 2 (t )u(t t2 )d
结合律应用于系统分析,相当于串联系统的冲激响 应,等于串联的各子系统冲激响应的卷积
信号与系统 同济大学汽车学院 魏学哲 weixzh@
卷积的微分与积分
df2 (t ) df1 (t ) d [ f1 (t ) * f 2 (t )] f1 (t ) * f 2 (t ) * dt dt dt
t t2
t1
f1 ( ) f 2 (t )d
t1 t t2
t
积分限是: 例:
f1(t ) 2e u(t )
g (t )
f 2 (t ) u(t ) u(t 2)
求
f1 ( ) f 2 (t )d
信号与系统 同济大学汽车学院 魏学哲 weixzh@
f1( ) 1 f2(1-) 2
f1( ) 1 f2(2-) 2
f1( )
f2(3-)
2
c
c
c
c
-1
0
f1() f2(-)
信号与系统实验报告
![信号与系统实验报告](https://img.taocdn.com/s3/m/90c8d077a22d7375a417866fb84ae45c3a35c27b.png)
信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。
由于b=2,故平移量为2时,实际是右移1,符合平移性质。
两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。
平移,伸缩变化都会导致输出结果相对应的平移伸缩。
2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。
两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。
二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。
两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。
3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。
两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。
三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。
2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。
两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。
(完整版)信号与系统中(常见简答题)
![(完整版)信号与系统中(常见简答题)](https://img.taocdn.com/s3/m/ef7330e502768e9950e73811.png)
信号与系统(常见简答题)1. 能量有限信号的平均功率是多少?功率有限且不为零的信号能量是什么?2.写出复指数信号的表达式,并简述复指数信号的重要特性。
3.写出冲击函数的广义函数定义。
4.某线性时不变系统的冲激响应为h(t),输入为f (t ),则零状态响应为f (t )* h(t),写出卷积积分f (t )* h(t)的定义式,并说明其物理意义?5.什么是因果系统?因果系统的冲激响应有什么特点?6.什么是动态系统?动态系统的冲激响应有什么特点?7.简述连续LTI 系统的积分特性。
8.简述卷积和运算的分配律的物理意义。
9.写出理想低通滤波器的频率响应,理想低通滤波器是物理可实现的吗?10.简述时域取样定理。
11.对于有现长序列,其Z 变换之收敛域如何?12.简述可观测可控制因果连续系统的极点位置与稳定性的关系。
13.f (t )是时间t 的实函数且是奇函数,其频率函数有何特点?14.数字信号、模拟信号、连续时间信号、离散时间信号有什么区别和联系?15.离散时间因果系统稳定的充要条件是什么?16.已知信号f (t )的最高频率为Wm ,信号飞f^2(t )的最高频率是多少?17.半波镜像周期信号的傅里叶级数展开式有什么特点?18.什么是无失真传输?无失真传输系统应满足的条件是什么?19.信号f(t)=δ(t )+δ(2t )的能量是多少?20.周期信号的频谱和非周期信号的频谱有什么区别和联系?21.已知系统函数与激励分别如下,零状态响应的初值和终值分别等于多少?H (s)=)23(4+++s s s s ,e(t)=e t -u(t) 22.一个系统完成输入序列的累加功能,给出该系统的单位响应h (k )。
23.写出Z 平面与S 平面的对应关系式,并解释其意义。
24.简述H (s )几点位置与响应函数的对应关系。
25.简述系统控制性的定义。
26.为什么周期函数的傅里叶变换中含有频域的冲激函数项。
27.如果一个连续LTI 系统的冲激响应h(t)=ε(t),该系统完成什么运算?如果输入为f (t ),写出零状态的输出表达式。
信号与系统-线性系统分析__第二章
![信号与系统-线性系统分析__第二章](https://img.taocdn.com/s3/m/fe2c3c0ece2f0066f4332201.png)
一.微分方程的经典解法
• n阶常系数线性微分方程
n
m
aiy(i) (t) bjf (j) (t)
i0
j0
(an 1)
y(n) (t) an-1y(n-1)(t) a0y(t)
bmf (m) (t) bm-1f (m-1)(t) b0f(t)
微分方程的全解由齐次解yh(t)和特解yp(t)组成
上例中,可令f(t)=10ejt,得解为 yp(t)=(1−j)ejt=cost+sint+j(sint−cost)
▪ 求微分方程也就是确定解的形式与全部待定系数。 ▪ 解的形式根据表2−1和表2−2确定,待定系数由初始
条件求出。
11
• 用算子方法求微分方程
微分算子:p d dt
积分算子:1 t ( )d
Pet (i) 或 et[Prtr+Pr−1tr−1+…+P0]
Pcos(t)+Qsin(t) 或 Aetcos(t+)
5
f(t)为常数1时,则特解为b0/a0。 考察函数f(t)在t0时作用,则全解的定义域[0,)。
全解由齐次解和特解组成,待定常数由初始条件y(0)、
y(1)(0)、…、y(n−1)(0)确定。
j1
j1
自由响应:由系统 本身的特性确定的 响应形式
强迫响应:由激 励信号确定的响 应形式
当输入信号含有阶跃函数或有始的周期函数时,系 统的全响应可分解为瞬态响应和稳态响应。
18
例:微分方程为 y''(t)+3y'(t)+2y(t)=2f '(t)+6f(t);
初始状态y(0−)=2,y'(0−)=1;输入函数f(t)=(t)。 求零输入响应和零状态响应。
信号与系统复习资料总结
![信号与系统复习资料总结](https://img.taocdn.com/s3/m/9740ff5b312b3169a451a49e.png)
f (t)
+
∫
∫
+
y(t)
例图
解 选图中右端积分器的输出为中间变量x(t),则其输入 为x′(t),左端积分器的输入为x″(t), 如图所示。写出左端加 法器的输出
x" (t ) = − x ' (t ) − 3x (t ) + f (t ) x" (t ) + 5 x ' (t ) + 3x (t ) = f (t )
卷积图形计算
• 卷积积分图解(反转) f (t)
1
f2(t)=3/4t 1.5
2 O 4 t
O
2
t
f1(τ) 2 O 4 τ –2 O
f2(– τ) 1.5 τ
卷积图形计算
• 卷积积分图解(平移)
t=0 f2(t – τ) 1.5 –2 O τ
t<0
f2(t – τ) 1.5 t–2 t O τ
所以u1(t) f(t) u (t)对f(t)的传输算子为
2( p + 1) H ( p) = 2 p + 2p + 2
它代表的实际含义是
u (t ) + 2u (t ) + 2u1 (t ) = 2 f ' (t ) + 2 f (t )
" 1 ' 1
卷积计算方法
• 卷积最重要的用法:系统零状态响应y(t)=f(t)*h(t) • 时域计算方法,又分为
信号与系统复习重点
信号自变量的线性变换: 已知f(t) 图 形,求f(at-b)
• 按“平移-翻转-展缩”顺序。 • (a)平移:b>0,则先将f(t)沿t轴右移b个单位 得到f(t-b)波形。若b<0, 则将f(t)沿t轴左移b 个单位得到f(t-b)波形
信号与系统-时域 卷积定理
![信号与系统-时域 卷积定理](https://img.taocdn.com/s3/m/221c9a14763231126edb11eb.png)
τ δ (ω ) = lim Sa(ωτ ) τ →∞ π
FT[cosω1t ] = π [δ (ω + ω1 ) + δ (ω − ω1 )]
f 0 (t )
F0 (ω )
τ
τ 2
1
−τ 2
2
−1
− ω1
πδ (ω + ω 0 )
− ω1
F (ω )
ω1
ω
πδ (ω − ω 0 )
ω
ω1
四、周期单位冲激序列的FS δ T (t ) =
l 取f(t)的一个周期 f 0 (t )
,其FT为 F0(ω)
2 2
F 0 (ω ) =
l 所以
∫
T1
− T1
f 0 ( t ). e
ω = nω1
− jω t
dt
1 Fn = F0 (ω ) T1
三、正余弦信号的傅立叶变换 ——用频移特性 F0 (ω ) = FT [ 1 ] = 2πδ (ω )
三 频域抽样
l 设连续频谱函数 F (ω ) 对应的时间函数为f(t),
抽样冲激序列 δ ω1 (ω ) =
l 抽样后的频率函数 l 根据卷积定理可得
2π – 其中 ωs = T1
∑
∞ n =−∞
δ (ω − nω1 )
F1 (ω ) = F (ω ) δ ω1 (ω )
∞ 1 f1 (t ) = ∑ n =−∞ f (t − nT1 ) ω1
∞
FT
nω1τ F (ω ) = Eτω1 ∑ Sa δ (ω − nω1 ) 2 1 n = −∞
∞
小结——单脉冲和周期信号的傅
立叶变换的比较 是连续谱, 它的大小是有限值; l 周期信号的谱 F(ω) 是离散谱, 含谱密度概念,它的大小用冲激 表示; 1 l F0 (ω) 是 F(ω) 的包络的 ω 1 。
信号与系统教案第2章
![信号与系统教案第2章](https://img.taocdn.com/s3/m/fd92cc0a91c69ec3d5bbfd0a79563c1ec5dad76f.png)
不难求得其齐次解为Czs1e-t + Czs2e-2t + 3
代入初始值求得
yzs(t)= – 4e-t + e-2t + 3 ,t≥0
第2-11页
■
©江西科技师范大学通信与电子学院
信号与系统 电子教案
2.2 冲激响应和阶跃响应
2.2 冲激响应和阶跃响应
一、冲激响应
由单位冲激函数δ(t)所引起的零状态响应称为单位冲 激响应,简称冲激响应,记为h(t)。h(t)=T[{0},δ(t)]
例1 描述某系统的微分方程为 y”(t)+5y’(t)+6y(t)=f(t) 求其冲激响应h(t)。
解 根据h(t)的定义 有 h”(t) + 5h’(t) + 6h(t) = δ(t) h’(0-) = h(0-) = 0
先求h’(0+)和h(0+)。
第2-12页
■
©江西科技师范大学通信与电子学院
代入初始条件求得C1=1,C2=-1, 所以 h(t)=( e-2t - e-3t)ε(t)
第2-13页
■
©江西科技师范大学通信与电子学院
信号与系统 电子教案
2.2 冲激响应和阶跃响应
例2 描述某系统的微分方程为
y”(t)+5y’(t)+6y(t)= f”(t) + 2f’(t) + 3f(t) 求其冲激响应h(t)。
齐次解的函数形式仅与系统本身的特性有关,而与激励 f(t)的函数形式无关,称为系统的固有响应或自由响应; 特解的函数形式由激励确定,称为强迫响应。
例 描述某系统的微分方程为
y”(t) + 5y’(t) + 6y(t) = f(t) 求(1)当f(t) = 2e-t,t≥0;y(0)=2,y’(0)= -1时的全解;
《信号与系统》课程讲义3-4
![《信号与系统》课程讲义3-4](https://img.taocdn.com/s3/m/a91d6c323968011ca3009129.png)
t 2
1
§3.4卷积定理和相关定理
二、相关定理
1.能量信号与功率信号
①能量与能量信号
∫ i)能量 E =
+∞
|
f
(t) |2dt
−∞
ii)能量信号E<+ ∞,例 f (t) = EGτ (t)
∫ ②iii功))功功率率率与P信功=号率Tl→iPm信+<∞+号T1∞−T22T
f (t 例f
) 2 dt (t) =
) )
f f
2 2
(t (τ
−τ −t
)dt )dτ
③ ⇒ f1(t) * f2 (−t) = R12 (t)
§3.4卷积定理和相关定理
[例3]:已知 f1(t) = G2 (t),f2 (t) = (−t + 2)R2 (t) 求① f1(t) * f2 (t)
② R12 (t) = f1(t) * f2 (−t)
t+2 -1
1τ
§3.4卷积定理和相关定理
⎧0
∫⎪
⎪
t+2 2dτ
−1
∫ f1 (t )
*
f2 (t)
=
⎪ ⎨
⎪
∫⎪
⎪⎩
+21dτ
−1
12dτ
t−2
0
t < −3 ⎧ 0
− 3 ≤ t < −1 −1≤ t <1
=
⎪⎪⎪⎨2(t 4+
3)
1 ≤ t < 3 ⎪⎪2(3 − t)
t>3
⎪⎩ 0
t < −3 − 3 ≤ t < −1 −1≤ t <1
§3.4卷积定理和相关定理
《信号与系统》实验报告
![《信号与系统》实验报告](https://img.taocdn.com/s3/m/7aa760d9aeaad1f346933fae.png)
信号与系统实验报告班级:姓名:信息与通信工程学院实验一 系统的卷积响应实验性质:提高性 实验级别:必做 开课单位:信息与通信工程学院 学 时:2一、实验目的:深刻理解卷积运算,利用离散卷积实现连续卷积运算;深刻理解信号与系统的关系,学习MATLAB 语言实现信号通过系统的仿真方法。
二、实验设备: 计算机,MATLAB 软件 三、实验原理: 1、 离散卷积和: 调用函数:conv ()∑∞-∞=-==i i k f i f f f conv S )()(1)2,1(为离散卷积和,其中,f1(k), f2 (k) 为离散序列,K=…-2, -1, 0 , 1, 2, …。
但是,conv 函数只给出纵轴的序列值的大小,而不能给出卷积的X 轴序号。
为得到该值,进行以下分析:对任意输入:设)(1k f 非零区间n1~n2,长度L1=n2-n1+1;)(2k f 非零区间m1~m2,长度L2=m2-m1+1。
则:)(*)()(21k f k f k s =非零区间从n1+m1开始,长度为L=L1+L2-1,所以S (K )的非零区间为:n1+m1~ n1+m1+L-1。
2、 连续卷积和离散卷积的关系:计算机本身不能直接处理连续信号,只能由离散信号进行近似: 设一系统(LTI )输入为)(t P ∆,输出为)(t h ∆,如图所示。
)t)()(t h t P ∆∆→)()(lim )(lim )(0t h t h t P t =→=∆→∆∆→∆δ若输入为f(t):∆∆-∆=≈∑∞-∞=∆∆)()()()(k t P k f t f t f k得输出:∆∆-∆=∑∞-∞=∆∆)()()(k t hk f t y k当0→∆时:⎰∑∞∞-∞-∞=∆→∆∆→∆-=∆∆-∆==ττδτd t f k t P k f t f t f k )()()()(lim)(lim )(0⎰∑∞∞-∞-∞=∆→∆∆→∆-=∆∆-∆==τττd t h f k t hk f t y t y k )()()()(lim)(lim )(0所以:∆∆-∆=-==∑⎰→∆)()(lim)()()(*)()(212121k t f k fd t f f t f t f t s τττ如果只求离散点上的f 值)(n f ∆])[()()()()(2121∑∑∞-∞=∞-∞=∆-∆∆=∆∆-∆∆=∆k k k n f k f k n f k fn f所以,可以用离散卷积和CONV ()求连续卷积,只需∆足够小以及在卷积和的基础上乘以∆。
信号与系统单位冲激函数有关例题
![信号与系统单位冲激函数有关例题](https://img.taocdn.com/s3/m/4c832d640622192e453610661ed9ad51f01d5486.png)
信号与系统单位冲激函数有关例题摘要:一、信号与系统简介- 信号与系统的基本概念- 信号与系统的重要性二、单位冲激函数- 单位冲激函数的定义- 单位冲激函数的性质- 单位冲激函数在信号与系统中的作用三、单位冲激函数例题解析- 例题一:求解单位冲激函数的导数- 例题二:利用单位冲激函数求解信号的卷积- 例题三:利用单位冲激函数分析信号与系统的稳定性四、总结- 单位冲激函数在信号与系统中的重要性- 学习单位冲激函数的意义正文:一、信号与系统简介信号与系统是通信工程、自动控制等领域中的重要基础知识,它主要研究信号的产生、传输、处理和分析等方面的问题。
在实际应用中,信号与系统的问题往往涉及到复杂的数学模型和算法,因此,对于信号与系统的深入理解和掌握是非常重要的。
二、单位冲激函数单位冲激函数是信号与系统中非常重要的一个概念,它是一种理想化的数学模型,表示一种强度极大、作用时间极短暂且积分有限的信号。
单位冲激函数的定义为一个在t=0 处强度为1,在其他地方强度为0 的函数。
单位冲激函数的性质非常特殊,它具有以下几个重要的性质:1.线性性质:单位冲激函数与任何信号的卷积等于该信号的线性组合。
2.移位性质:单位冲激函数的移位是其自身的线性组合。
3.时间反转性质:单位冲激函数的时间反转仍然是它自身。
单位冲激函数在信号与系统中的作用非常重要,它被广泛应用于信号的卷积运算、系统的稳定性分析等方面。
三、单位冲激函数例题解析例题一:求解单位冲激函数的导数根据单位冲激函数的定义,我们可以得到单位冲激函数的导数为:δ(t)" = ∫[-∞,∞]δ(t-τ)dτ = δ(t)因此,单位冲激函数的导数仍然是单位冲激函数。
例题二:利用单位冲激函数求解信号的卷积设信号f(t) 和g(t) 分别为:f(t) = δ(t) + δ(t-1)g(t) = δ(t-1) + δ(t-2)则f(t) 和g(t) 的卷积为:(f*g)(t) = ∫[-∞,∞]f(τ)g(t-τ)dτ= ∫[-∞,∞](δ(τ) + δ(τ-1))(δ(t-τ) + δ(t-τ-1))dτ= δ(t) + δ(t-1) + δ(t-2) + δ(t-3)因此,f(t) 和g(t) 的卷积结果为δ(t) + δ(t-1) + δ(t-2) + δ(t-3)。