7.子空间的直和

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§6.7 子空间的直和
证:由题设,V1 L(1, 2 , , r ), dimV1 r V2 L(1,2 , ,s ), dimV2 s
V1 V2 L(1, 2 , , r ,1,2 , ,s ). 若 1, 2 , , r ,1,2 , ,s 线性无关,
则它是 V1 V2 的一组基. 从而有 dim(V1 V2 ) r s dimV1 dimV2 V1 V2 是直和.
四个条件等价: 1) V1 V2 是直和 2)零向量分解式唯一
3) V1 V2 0
4)dim(V1 V2 ) dimV1 dimV2
§6.7 子空间的直和
二、ห้องสมุดไป่ตู้子空间
(定理10) 设U是线性空间V的一个子空间, 则必存在一个子空间W,使 V U W .
称这样的W为U的一个余子空间.
证:取U的一组基 1 ,2 , ,m 把它扩充为V的一组基 1 ,2 , ,m ,m1 , ,n 令 W L(m1 ,m2 , ,n ), 则 V U W .
1 2 , 1 V1,2 V
是唯一的,和 V1 V2就称为直和,记作 V1 V2 .
§6.7 子空间的直和
注:
① 分解式 1 2 唯一的,意即 若有 1 2 1 2 , 1 , 1 V1 ,2 , 2 V2 则 1 1,2 2.
② 分解式唯一的不是在任意两个子空间的和中 都成立. 例如,R3的子空间
1 2 0,1 V1,2 V2 1 2 0.
证:必要性. V1 V2 是直和, V1 V2 , 的分解式唯一. 若1 2 0, 1 V1,2 V2
而0有分解式 0= 0 0,
1 0, 2 0.
§6.7 子空间的直和
充分性. 设 V1 V2 ,它有两个分解式 1 2 1 2 , 1 , 1 V1 , 2 , 2 V2
V1 V2 0
V1 V2 是直和. (由2)得之)
§6.7 子空间的直和
4)和 V1 V2 是直和 V1,V2 的基合并起来是 V1 V2的基。
5)设 1, 2 , , r ; 1,2 , ,s 分别是线性子空间
V1,V2 的一组基,则
V1 V2 是直和 1, 2 , , r ,1,2 , ,s 线性无关.
§6.7 子空间的直和
三、多个子空间的直和
1、定义
V1,V2 , ,Vs 都是线性空间V的子空间,若和
s
Vi V1 V2 Vs 中每个向量 的分解式
而在和 V1 V3 中,向量 (2,2,2)的分解式是唯一的, (2,2,2) (2,2,0) (0,0,2)
事实上,对 (a1,a2 ,a3 ) V1 V3 , 都只有唯一分解式: (a1,a2 ,0) (0,0,a3 ).
故 V1 V2是直和.
§6.7 子空间的直和
2、判定
1)定理8 和 V1 V2 是直和的充要条件是零向量 分解式唯一,即
§6.7 子空间的直和
2) dim(V1 V2 ) dimV1 dimV2 此时 dim(V1 V2 ) 0,
V1 V2 不含非零向量,即 V1 V2 0
情形2)是子空间的和的一种特殊情况
直和
§6.7 子空间的直和
一、两个子空间的直和
1、定义 设 V1,V2为线性空间V的两个子空间,若和V1 V2 中每个向量 的分解式
V1 L(1, 2 ), V2 L( 2 , 3 ), V3 L( 3 ) 这里,1 (1,0,0), 2 (0,1,0), 3 (0,0,1)
§6.7 子空间的直和
在和V1 V2 中,向量的分解式不唯一,如 (2,2,2) (2,3,0) (0, 1,2) (2,1,0) (0,1,2) 所以和 V1 V2不是直和.
证:“ ” 若1 2 0, 1 V1, 2 V2 .
则有 1 2 V1 V2 0
1 2 0, 即V1 V2 是直和. “ ” 任取 V1 V2 , 于是零向量可表成
0 ( ), V 1, V2.
由于V1 V2 是直和,零向量分解式唯一,
0. 故 V1 V2 0.
§6.7 子空间的直和
注意:
余子空间 一般不是唯一的(除非U是平凡子空间). 如,在R3中,设
1 (1,1,0), 2 (1,0,0), 1 (0,1,1), 2 (0,0,1) 令 U L(1,2 ), W1 L(1 ), W2 L(2 ), 则 R3 U W1 U W2 , 但 W1 W2
§6.7 子空间的直和
一、两个子空间的直和 二、余子空间 三、多个子空间的直和
§6.7 子空间的直和
引入
设 V1,V2为线性空间V的两个子空间,由维数公式 dimV1 dimV2 dim(V1 V2 ) dim(V1 V2 )
有两种情形: 1) dim(V1 V2 ) dimV1 dimV2 此时 dim(V1 V2 ) 0, 即,V1 V2 必含非零向量.
§6.7 子空间的直和
3、(定理9)和V1 V2 是直和 dim(V1 V2 ) dimV1 dimV2 证:由维数公式
dimV1 dimV2 dim(V1 V2 ) dim(V1 V2 ) 有, dim(V1 V2 ) dimV1 dimV2
dim(V1 V2 ) 0
于是 (1 1 ) (2 2 ) 0 其中 1 1 V1, 2 2 V2
由零向量分解成唯一,且 0= 0 0,
有 1 1 0, 2 2 0. 即 1 1, 2 2 的分解式唯一.
故 V1 V2 是直和.
§6.7 子空间的直和
2)和 V1 V2 是直和 V1 V2 0.
§6.7 子空间的直和
反之,若 V1 V2 直和,则 dim(V1 V2 ) dimV1 dimV2 r s
从而 1, 2 , , r ,1,2 , ,s 的秩为r+s . 所以 1, 2 , , r ,1,2 , ,s 线性无关.
§6.7 子空间的直和
总之,设 V1,V2 为线性空间V的子空间,则下面
相关文档
最新文档