自动控制理论英文版习题

合集下载

(整理)自控原理双语习题

(整理)自控原理双语习题

1-1解释下列概念系统反馈自动控制开环控制闭环控制恒值控制随动控制1-2说明反馈控制系统的组成、工作原理及特点。

1-3什么是开环和闭环控制,说明其特点。

1-4什么是恒值和随动控制系统,说明其特点。

1-5简述自动控制系统分析和设计的主要问题。

1-6举出一个你熟悉的自动控制系统的实例,说明其输入量和被控量,简要分析其组成和功能。

2-1列写图示电路的传递函数。

u)t其中1()u t为输入,2()u t为输出2-2列写图示电路的传递函数。

1Ru)t其中1()u t为输入,2()u t为输出2-3列写图示电路的传递函数,其中()r u t 为输入,()c u t 为输出。

a:(r u t )tb:)tc:r u )t R2-4试用化简方块图的方法求系统的传递函数)()(S R S Y 。

2-5用化简方块图的方法求图示系统的闭环传递函数)(S R 。

2-6试用化简方块图的方法求图示系统的闭环传递函数)()(S R S Y 。

2-7用化简方块图的方法,求图示系统的闭环传递函数)(S R 。

2-8化简下图所示的方块图,并求出其闭环传递函数)()(S R S Y 。

2-9试用化简方块图的方法,求系统的传递函数)()(S R S Y =?2-10试用化简方块图的方法,求系统的传递函数。

2-11试求系统的传递函数。

2-12将图示系统简化,并求出系统的传递函数)()(S R S Y 。

2-13思考题:表示系统的动态特性的数学模型有哪几种形式。

各种形式之间是如何转换的?2-14什么是线性系统?什么是系统的动态、静态特性,传递函数是否只能用来表示线性系统的动态特性,为什么?3-1系统的传递函数2()(1)(2)G s s s =++,试求单位阶跃响应()y t =?3-2某单位反馈系统,开环传递函数为25(20)()( 4.59)( 3.4116.35)s G s s s s s +=+++ 当系统输入()1()r t t =时,试求其响应?3-3若某系统在单位阶跃输入()1()r t t =作用时,系统在零初始条件下的输出响应为2()1t t C t e e -=-+,求系统的传递函数单位脉冲响应函数。

自动控制专业英语 习题参考答案.doc

自动控制专业英语 习题参考答案.doc

自动控制专业英语习题参考答案Lesson 1 Introduction to Control Systems1.Translate the following into Chinese.(1)In 1922 Minorsky worked on automatic controllers for steering ships and showed how stability could be determined from the differential equations describing the system.1922年,Minorsky开发了用于轮船驾驶的自动控制器,并指出根据描述系统的差分方程确定系统稳定性的方法。

(2) A home heating system in which a thermostat is the controller is an example of an automatic regulating system.家用供暖系统是自动调节系统的实例,其中的温度调节装置就是控制器。

(3)An engine which rejected no heat and which converted all the heat absorbed to mechanical work would therefore be perfectly consistent with the first law of thermodynamics.一台不散热并且把吸收的所有热量都转换为机械功的机器就与热力学第一定律完全一致。

(4)In short, a robot can do the dirty work —the dull, repetitious, dehumanizing and sometimes dangerous work that humans won"t or shouldn't do.简言之,机器人能干脏活,即那些人们不愿意或不该做的枯燥的、重复性的、呆板且有时有危险的活。

自动控制原理英文版课后全部_答案

自动控制原理英文版课后全部_答案

Module3Problem 3.1(a) When the input variable is the force F. The input variable F and the output variable y are related by the equation obtained by equating the moment on the stick:2.233y dylF lk c l dt=+Taking Laplace transforms, assuming initial conditions to be zero,433k F Y csY =+leading to the transfer function31(4)Y k F c k s=+ where the time constant τ is given by4c kτ=(b) When F = 0The input variable is x, the displacement of the top point of the upper spring. The input variable x and the output variable y are related by the equation obtained by the moment on the stick:2().2333y y dy k x l kl c l dt-=+Taking Laplace transforms, assuming initial conditions to be zero,3(24)kX k cs Y =+leading to the transfer function321(2)Y X c k s=+ where the time constant τ is given by2c kτ=Problem 3.2 P 54Determine the output of the open-loop systemG(s) = 1asT+to the inputr(t) = tSketch both input and output as functions of time, and determine the steady-state error between the input and output. Compare the result with that given by Fig3.7 . Solution :While the input r(t) = t , use Laplace transforms, Input r(s)=21sOutput c(s) = r(s) G(s) = 2(1)aTs s ⋅+ = 211T T a s s Ts ⎛⎫ ⎪-+ ⎪ ⎪+⎝⎭the time-domain response becomes c(t) = ()1t Tat aT e ---Problem 3.33.3 The massless bar shown in Fig.P3.3 has been displaced a distance 0x and is subjected to a unit impulse δ in the direction shown. Find the response of the system for t>0 and sketch the result as a function of time. Confirm the steady-state response using the final-value theorem. Solution :The equation obtained by equating the force:00()kx cxt δ+=Taking Laplace transforms, assuming initial condition to be zero,K 0X +Cs 0X =1leading to the transfer function()XF s =1K Cs +=1C1K s C+The time-domain response becomesx(t)=1CC tK e -The steady-state response using the final-value theorem:lim ()t x t →∞=0lim s →s 1K Cs +1s =1K00000()()()1;11111()K t CK x x Cx t Kx X K Cs Kx Kx X C Cs K K s KKx x t eCδ-++=⇒++=--∴==⋅++-=⋅According to the final-value theorem:0001lim ()lim lim 01t s s Kx sx t s X C K s K→∞→→-=⋅=⋅=+ Problem 3.4 Solution:1.If the input is a unit step, then1()R s s=()()11R s C s sτ−−−→−−−→+ leading to,1()(1)C s s sτ=+taking the inverse Laplace transform gives,()1tc t e τ-=-as the steady-state output is said to have been achieved once it is within 1% of the final value, we can solute ―t‖ like this,()199%1tc t e τ-=-=⨯ (the final value is 1) hence,0.014.60546.05te t sττ-==⨯=(the time constant τ=10s)2.the numerical value of the numerator of the transfer function doesn’t affect the answer. See this equation, If ()()()1C s AG s R s sτ==+ then()(1)A C s s sτ=+giving the time-domain response()(1)tc t A e τ-=-as the final value is A, the steady-state output is achieved when,()(1)99%tc t A e A τ-=-=⨯solute the equation, t=4.605τ=46.05sthe result make no different from that above, so we said that the numerical value of the numerator of the transfer function doesn’t affect the answer.If a<1, as the time increase, the two lines won`t cross. In the steady state the output lags the input by a time by more than the time constant T. The steady error will be negative infinite.R(t)C(t)Fig 3.7 tR(t)C(t)tIf a=1, as the time increase, the two lines will be parallel. It is as same as Fig 3.7.R(t)C(t)tIf a>1, as the time increase, the two lines will cross. In the steady state the output lags the input by a time by less than the time constant T.The steady error will be positive infinite.Problem 3.5 Solution: R(s)=261s s+, Y(s)=26(51)s s s +⋅+=229614551s s s -+++ /5()62929t y t t e -∴=-+so the steady-state error is 29(-30). To conform the result:5lim ()lim(62929);tt t y t t -→∞→∞=-+=∞6lim ()lim ()lim ()lim(51)t s s s s y t y s Y s s s →∞→→→+====∞+.20lim ()lim ()lim [()()]161lim [()1]()lim (1)()5130ss t s s s s e e t S E S S Y S R S S G S R S S S S S→∞→→→→==⋅=⋅-=⋅-=⋅-⋅++=- Therefore, the solution is basically correct.Problem 3.623yy x += since input is of constant amplitude and variable frequency , it can be represented as:j tX eA ω=as we know ,the output should be a sinusoidal signal with the same frequency of the input ,it can also be represented as:R(t)C(t)t0j t y y e ω=hence23j tj tj tj yyeeeA ωωωω+=00132j y Aω=+ 0294Ayω=+ 2tan3w ϕ=- Its DC(w→0) value is 003Ay ω==Requirement 01122w yy==21123294AA ω=⨯+ →32w = while phase lag of the input:1tan 14πϕ-=-=-Problem 3.7One definition of the bandwidth of a system is the frequency range over which the amplitude of the output signal is greater than 70% of the input signal amplitude when a system is subjected to a harmonic input. Find a relationship between the bandwidth and the time constant of a first-order system. What is the phase angle at the bandwidth frequency ? Solution :From the equation 3.41000.71r A r ωτ22=≥+ (1)and ω≥0 (2) so 1.020ωτ≤≤so the bandwidth 1.02B ωτ=from the equation 3.43the phase angle 110tan tan 1.024c πωτ--∠=-=-=Problem 3.8 3.8 SolutionAccording to generalized transfer function of First-Order Feedback Systems11C KG K RKGHK sτ==+++the steady state of the output of this system is 2.5V .∴if s →0, 2.51104C R→=. From this ,we can get the value of K, that is 13K =.Since we know that the step input is 10V , taking Laplace transforms,the input is 10S.Then the output is followed1103()113C s S s τ=⨯++Taking reverse Laplace transforms,4/4332.5 2.5 2.5(1)t t C e eττ--=-=-From the figure, we can see that when the time reached 3s,the value of output is 86% of the steady state. So we can know34823(2)*4393τττ-=-⇒-=-⇒=, 4/3310.8642t t e ττ-=-=⇒=The transfer function is3128s +146s+Let 12+8s=0, we can get the pole, that is 1.5s =-2/3- Problem 3.9 Page 55 Solution:The transfer function can be represented,()()()()()()()o o m i m i v s v s v s G s v s v s v s ==⋅While,()1()111//()()11//o m m i v s v s sRCR v s sC sC v s R R sC sC =+⎛⎫+ ⎪⎝⎭=⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦Leading to the final transfer function,21()13()G s sRC sRC =++ And the reason:the second simple lag compensation network can be regarded as the load of the first one, and according to Load Effect , the load affects the primary relationship; so the transfer function of the comb ination doesn’t equal the product of the two individual lag transfer functio nModule4Problem4.14.1The closed-loop transfer function is10(6)102(6)101610S S S S C RS s +++++==Comparing with the generalized second-order system,we getProblem4.34.3Considering the spring rise x and the mass rise y. Using Newton ’s second law of motion..()()d x y m y K x y c dt-=-+Taking Laplace transforms, assuming zero initial conditions2mYs KX KY csX csY =-+-resulting in the transfer funcition where2Y cs K X ms cs K +=++ And521.26*10cmkc ζ== Problem4.4 Solution:The closed-loop transfer function is210263101011n n d n W EW E W W E ====-=2121212K C K S S K R S S K S S ∙+==+++∙+Comparing the closed-loop transfer function with the generalized form,2222n n nCR s s ωξωω=++ it is seen that2n K ω= And that22n ξω= ; 1Kξ=The percentage overshoot is therefore21100PO eξπξ--=11100k keπ-∙-=Where 10%PO ≤When solved, gives 1.2K ≤(2.86)When K takes the value 1.2, the poles of the system are given by22 1.20s s ++=Which gives10.45s j =-±±s=-1 1.36jProblem4.5ReIm0.45-0.45-14.5 A unity-feedback control system has the forward-path transfer functionG (s) =10)S(s K+Find the closed-loop transfer function, and develop expressions for the damping ratio And damped natural frequency in term of K Plot the closed-loop poles on the complex Plane for K = 0,10,25,50,100.For each value of K calculate the corresponding damping ratio and damped natural frequency. What conclusions can you draw from the plot?Solution: Substitute G(s)=(10)K s s + into the feedback formula : Φ(s)=()1()G S HG S +.And in unitfeedback system H=1. Result in: Φ(s)=210Ks s K++ So the damped natural frequencyn ω=K ,damping ratio ζ=102k =5k.The characteristic equation is 2s +10S+K=0. When K ≤25,s=525K -±-; While K>25,s=525i K -±-; The value ofn ω and ζ corresponding to K are listed as follows.K 0 10 25 50 100 Pole 1 1S 0 515-+ -5 -5+5i 553i -+Pole 2 2S -10 515-- -5 -5-5i553i --n ω 010 5 52 10 ζ ∞2.51 0.5 0.5Plot the complex plane for each value of K:We can conclude from the plot.When k ≤25,poles distribute on the real axis. The smaller value of K is, the farther poles is away from point –5. The larger value of K is, the nearer poles is away from point –5.When k>25,poles distribute away from the real axis. The smaller value of K is, the further (nearer) poles is away from point –5. The larger value of K is, the nearer (farther) poles is away from point –5.And all the poles distribute on a line parallels imaginary axis, intersect real axis on the pole –5.Problem4.61tb b R L C b o v dv i i i i v dt C R L dt=++=++⎰Taking Laplace transforms, assuming zero initial conditions, reduces this equation to011b I Cs V R Ls ⎛⎫=++ ⎪⎝⎭20b V RLs I Ls R RLCs =++ Since the input is a constant current i 0, so01I s=then,()2b RLC s V Ls R RLCs==++ Applying the final-value theorem yields ()()0lim lim 0t s c t sC s →∞→==indicating that the steady-state voltage across the capacitor C eventually reaches the zero ,resulting in full error.Problem4.74.7 Prove that for an underdamped second-order system subject to a step input, thepercentage overshoot above the steady-state output is a function only of the damping ratio .Fig .4.7SolutionThe output can be given by222222()(2)21()(1)n n n n n n C s s s s s s s ωζωωζωζωωζ=+++=-++- (1)the damped natural frequencyd ω can be defined asd ω=21n ωζ- (2)substituting above results in22221()()()n n n d n d s C s s s s ζωζωζωωζωω+=--++++ (3) taking the inverse transform yields22()1sin()11tan n t d e c t t where ζωωφζζφζ-=-+--=(4)the maximum output is22()1sin()11n t p d p p d n e c t t t ζωωφζππωωζ-=-+-==-(5)so the maximum is2/1()1p c t eπζζ--=+the percentage overshoot is therefore2/1100PO eπζζ--=Problem4.8 Solution to 4.8:Considering the mass m displaced a distance x from its equilibrium position, the free-body diagram of the mass will be as shown as follows.aP cdx kxkxmUsing Newton ’s second law of motion,22p k x c x mx m x c x k x p--=++=Taking Laplace transforms, assuming zero initial conditions,2(2)X ms cs k P ++= results in the transfer function2/(1/)/((/)2/)X P m s c m s k m =++ 2(2/)(2/)((/)2/)k k m s c m s k m =++As we see2(2)X m s c s k P++= As P is constantSo X ∝212ms cs k ++ . When 56.25102cs m-=-=-⨯ ()25min210mscs k ++=4max5100.110X == This is a second-order transfer function where 22/n k m ω= and/2/22n c w m c k m ζ== The damped natural frequency is given by 2212/1/8d n k m c km ωωζ=-=-22/(/2)k m c m =- Using the given data,462510/2100.050.2236n ω=⨯⨯⨯== 462502.79501022100.05ζ-==⨯⨯⨯⨯ ()240.22361 2.7950100.2236d ω-=⨯-⨯= With these data we can draw a picture14.0501160004.673600p de s e T T πωτζωτ======222222112/1222()22,,,428sin (sin cos )0tan 7.030.02n n pp dd n dd n ntd d t t t n d p d d p ddd p p p nX k m c k P ms cs k k m s s s m m k c k c cm m m m km p x e tm p xe t t m t t x m ζωζωωωζωωωωζζωωωζωωωωωωωζω--===⋅=⋅++++++=-===∴==-+=∴=⇒=⇒= 其中Problem4.10 4.10 solution:The system is similar to the one in the book on PAGE 58 to PAGE 63. The difference is the connection of the spring. So the transfer function is2222l n d n n w s w s w θθζ=++222(),;p a m ld a m p m l m l l m mm l lk k k N RJs RCs R k k N k J N J J C N c c N N N θθωθωθ=+++=+=+===p a mn K K K w NJ R='damping ratio 2p a m c NRK K K J ζ='But the value of J is different, because there is a spring connected.122s m J J J J N N '=++Because of final-value theorem,2l nd w θθζ=Module5Problem5.45.4 The closed-loop transfer function of the system may be written as2221010(1)610101*********CR K K K S S K K S S K S S +++==+++++++ The closed-loop poles are the solutions of the characteristic equation6364(1010)3110210(1)n K S K JW K -±-+==-±+=+ 210(1)6310(1)E K E K +==+In order to study the stability of the system, the behavior of the closed-loop poles when the gain K increases from zero to infinte will be observed. So when12K = 3010E =321S J =-± 210K = 3110110E =3101S J =-± 320K = 21070E =3201S J =-±双击下面可以看到原图ReProblem5.5SolutionThe closed-loop transfer function is2222(1)1(1)KC K KsKR s K as s aKs Kass===+++++∙+Comparing the closed-loop transfer function with the generalized form, 2222nn nCR s sωξωω=++Leading to2nKa Kωξ==The percentage overshoot is therefore2110040%PO eξπξ--==Producing the result0.869ξ=(0.28)And the peak time241PnT sπωξ==-Leading to1.586nω=(0.82)Problem5.75.7 Prove that the rise time T r of a second-order system with a unit step input is given byT r = d ω1 tan -1n dζωω = d ω1 tan -1d ωζ21--Plot the rise against the damping ratio.Solution:According to (4.33):c(t)=1-2(cos sin )1n t d d e t t ζωζωωζ-+-. 4.33When t=r T ,c(t)=1.substitue c(t)= 1 into (4.33) Producing the resultr T =d ω1 tan -1n dζωω = d ω1 tan -112ζζ--Plot the rise time against the damping ratio:Problem5.9Solution to 5.9:As we know that the system is the open-loop transfer function of a unity-feedback control system.So ()()GH S G S = Given as()()()425KGH s s s =-+The close-loop transfer function of the system may be written as()()()()()41254G s C Ks R GH s s s K ==+-++ The characteristic equation is()()2254034100s s K s s K -++=⇒++-=According to the Routh ’s method, the Routh ’s array must be formed as follow20141030410s K s s K -- For there is no closed-loop poles to the right of the imaginary axis4100 2.5K K -≥⇒≥ Given that 0.5ζ=4103 4.752410n K K K ωζ=-=⇒=- When K=0, the root are s=+2,-5According to the characteristic equation, the solutions are349424s K =-±-while 3.0625K ≤, we have one or two solutions, all are integral number.Or we will have solutions with imaginary number. So we can drawK=102 -5 K=0K=3.0625K=2.5 K=10Open-loop polesClosed-loop polesProblem5.10 5.10 solution:0.62/n w rad sζ==according to()211sin()21n w t d e c w t ζφζ-=-+=- 1.2sin(1.6)0.4t e t φ-⋅+= 4t a n3φ= finally, t is delay time:1.23t s ≈(0.67)Module6Problem 6.3First we assume the disturbance D to be zero:e R C =-1011C K e s s =⋅⋅⋅+Hence:(1)10(1)e s s R K s s +=++ Then we set the input R to be zero:10()(1)C K e D e s s =⋅+⋅=-+ ⇒ 1010(1)e D K s s =-++Adding these two results together:(1)1010(1)10(1)s s e R D K s s K s s +=⋅-⋅++++21()R s s =; 1()D s s= ∴222110910(1)10(1)100(1)s s e Ks s s Ks s s s s s +-=-=++++++ the steady-state error:232200099lim lim lim 0.09100100ss s s s s s s e s e s s s s s →→→--=⋅===-++++Problem 6.4Determine the disturbance rejection ratio(DRR) for the system shown in Fig P.6.4+fig.P.6.4 solution :from the diagram we can know :0.210.05mv K RK c === so we can get that()0.21115()0.05v m m OL n CL K K DRR cR ωω∆⨯==+=+=∆210.10.050.050.025s s =++, so c=0.025, DRR=9Problem 6.5 6.5 SolutionFor the purposes of determining the steady-state error of the system, we should get to know the effect of the input and the disturbance along when the other will be assumed to be zero.First to simplify the block diagram to the following patter:110s +2021Js Tddθoθ0.220.10.05s ++__+d T—Allowing the transfer function from the input to the output position to be written as01220220d Js s θθ=++ 012222020240*220220(220)dJs s Js s s Js s sθθ===++++++ According to the equation E=R-C:022*******(2)()lim[()()]lim[(1)]lim 0.2220220ssr d s s s Js e s s s s Js s Js s δδδθθ→→→+=-=-==++++问题;1. 系统型为2,对于阶跃输入,稳态误差为0.2. 终值定理写的不对。

自动控制原理(中英文对照李道根)习题3题解

自动控制原理(中英文对照李道根)习题3题解

(d) (s)
12.5
(s 2 2s 5)(s 5)
Solution: (a) (s)
■Solutions
■Solutions
P3.1 The unit step response of a certain system is given by c(t) 1 e t e2t , t 0
(a) Determine the impulse response of the system. (b) Determine the transfer function C(s) R(s) of the system.
R (s)
k1
s
0
k2
s
0
C (s )
(a) Block diagram
c (t)
c (t)
c(t)
1.0
1.0
1.0
t
t
t
0
0
0
(1)
(2)
(3)
c (t)
c(t) Asy mp totic
Parabolic
line
1.0
1.0
t 0
(4 )
t
0
(5 )
(b) Unit-step resp onses
response, i.e.
C(s) L[ (t) e t 2e2t ] 1 1 2 s 2 4s 2
P3.2 Consider the system described by the block diagram shown in Fig. P3.2(a). Determine the polarities of two feedbacks for each of the following step responses shown in Fig. P3.2(b), where “0” indicates that the feedback is open.

《自动控制原理》试卷及答案(英文10套)

《自动控制原理》试卷及答案(英文10套)

AUTOMATIC CONTROL THEOREM (1)⒈ Derive the transfer function and the differential equation of the electric network⒉ Consider the system shown in Fig.2. Obtain the closed-loop transfer function)()(S R S C , )()(S R S E . (12%) ⒊ The characteristic equation is given 010)6(5)(123=++++=+K S K S S S GH . Discuss the distribution of the closed-loop poles. (16%)① There are 3 roots on the LHP ② There are 2 roots on the LHP② There are 1 roots on the LHP ④ There are no roots on the LHP . K=?⒋ Consider a unity-feedback control system whose open-loop transfer function is )6.0(14.0)(++=S S S S G . Obtain the response to a unit-step input. What is the rise time for this system? What is the maximum overshoot? (10%)Fig.15. Sketch the root-locus plot for the system )1()(+=S S K S GH . ( The gain K is assumed to be positive.)① Determine the breakaway point and K value.② Determine the value of K at which root loci cross the imaginary axis.③ Discuss the stability. (12%)6. The system block diagram is shown Fig.3. Suppose )2(t r +=, 1=n . Determine the value of K to ensure 1≤e . (12%)Fig.37. Consider the system with the following open-loop transfer function:)1)(1()(21++=S T S T S K S GH . ① Draw Nyquist diagrams. ② Determine the stability of the system for two cases, ⑴ the gain K is small, ⑵ K is large. (12%)8. Sketch the Bode diagram of the system shown in Fig.4. (14%)⒈212121121212)()()(C C S C C R R C S C C R S V S V ++++=⒉ 2423241321121413211)()(H G H G G G G G G G H G G G G G G G S R S C ++++++=⒊ ① 0<K<6 ② K ≤0 ③ K ≥6 ④ no answer⒋⒌①the breakaway point is –1 and –1/3; k=4/27 ② The imaginary axis S=±j; K=2③⒍5.75.3≤≤K⒎ )154.82)(181.34)(1481.3)(1316.0()11.0(62.31)(+++++=S S S S S S GHAUTOMATIC CONTROL THEOREM (2)⒈Derive the transfer function and the differential equation of the electric network⒉ Consider the equation group shown in Equation.1. Draw block diagram and obtain the closed-loop transfer function )()(S R S C . (16% ) Equation.1 ⎪⎪⎩⎪⎪⎨⎧=-=-=--=)()()()()]()()([)()]()()()[()()()]()()[()()()(3435233612287111S X S G S C S G S G S C S X S X S X S G S X S G S X S C S G S G S G S R S G S X⒊ Use Routh ’s criterion to determine the number of roots in the right-half S plane for the equation 0400600226283)(12345=+++++=+S S S S S S GH . Analyze stability.(12% )⒋ Determine the range of K value ,when )1(2t t r ++=, 5.0≤SS e . (12% )Fig.1⒌Fig.3 shows a unity-feedback control system. By sketching the Nyquist diagram of the system, determine the maximum value of K consistent with stability, and check the result using Routh ’s criterion. Sketch the root-locus for the system (20%)(18% )⒎ Determine the transfer function. Assume a minimum-phase transfer function.(10% )⒈1)(1)()(2122112221112++++=S C R C R C R S C R C R S V S V⒉ )(1)()(8743215436324321G G G G G G G G G G G G G G G G S R S C -+++=⒊ There are 4 roots in the left-half S plane, 2 roots on the imaginary axes, 0 root in the RSP. The system is unstable.⒋ 208<≤K⒌ K=20⒍⒎ )154.82)(181.34)(1481.3)(1316.0()11.0(62.31)(+++++=S S S S S S GHAUTOMATIC CONTROL THEOREM (3)⒈List the major advantages and disadvantages of open-loop control systems. (12% )⒉Derive the transfer function and the differential equation of the electric network⒊ Consider the system shown in Fig.2. Obtain the closed-loop transfer function)()(S R S C , )()(S R S E , )()(S P S C . (12%)⒋ The characteristic equation is given 02023)(123=+++=+S S S S GH . Discuss the distribution of the closed-loop poles. (16%)5. Sketch the root-locus plot for the system )1()(+=S S K S GH . (The gain K is assumed to be positive.)④ Determine the breakaway point and K value.⑤ Determine the value of K at which root loci cross the imaginary axis. ⑥ Discuss the stability. (14%)6. The system block diagram is shown Fig.3. 21+=S K G , )3(42+=S S G . Suppose )2(t r +=, 1=n . Determine the value of K to ensure 1≤SS e . (15%)7. Consider the system with the following open-loop transfer function:)1)(1()(21++=S T S T S K S GH . ① Draw Nyquist diagrams. ② Determine the stability of the system for two cases, ⑴ the gain K is small, ⑵ K is large. (15%)⒈ Solution: The advantages of open-loop control systems are as follows: ① Simple construction and ease of maintenance② Less expensive than a corresponding closed-loop system③ There is no stability problem④ Convenient when output is hard to measure or economically not feasible. (For example, it would be quite expensive to provide a device to measure the quality of the output of a toaster.)The disadvantages of open-loop control systems are as follows:① Disturbances and changes in calibration cause errors, and the output may be different from what is desired.② To maintain the required quality in the output, recalibration is necessary from time to time.⒉ 1)(1)()()(2122112221122112221112+++++++=S C R C R C R S C R C R S C R C R S C R C R S U S U ⒊351343212321215143211)()(H G G H G G G G H G G H G G G G G G G G S R S C +++++= 35134321232121253121431)1()()(H G G H G G G G H G G H G G H G G H G G G G S P S C ++++-+=⒋ R=2, L=1⒌ S:①the breakaway point is –1 and –1/3; k=4/27 ② The imaginary axis S=±j; K=2⒍5.75.3≤≤KAUTOMATIC CONTROL THEOREM (4)⒈ Find the poles of the following )(s F :se s F --=11)( (12%)⒉Consider the system shown in Fig.1,where 6.0=ξ and 5=n ωrad/sec. Obtain the rise time r t , peak time p t , maximum overshoot P M , and settling time s t when the system is subjected to a unit-step input. (10%)⒊ Consider the system shown in Fig.2. Obtain the closed-loop transfer function)()(S R S C , )()(S R S E , )()(S P S C . (12%)⒋ The characteristic equation is given 02023)(123=+++=+S S S S GH . Discuss the distribution of the closed-loop poles. (16%)5. Sketch the root-locus plot for the system )1()(+=S S K S GH . (The gain K is assumed to be positive.)⑦ Determine the breakaway point and K value.⑧ Determine the value of K at which root loci cross the imaginary axis.⑨ Discuss the stability. (12%)6. The system block diagram is shown Fig.3. 21+=S K G , )3(42+=S S G . Suppose )2(t r +=, 1=n . Determine the value of K to ensure 1≤SS e . (12%)7. Consider the system with the following open-loop transfer function:)1)(1()(21++=S T S T S K S GH . ① Draw Nyquist diagrams. ② Determine the stability of the system for two cases, ⑴ the gain K is small, ⑵ K is large. (12%)8. Sketch the Bode diagram of the system shown in Fig.4. (14%)⒈ Solution: The poles are found from 1=-s e or 1)sin (cos )(=-=-+-ωωσωσj e e j From this it follows that πωσn 2,0±== ),2,1,0( =n . Thus, the poles are located at πn j s 2±=⒉Solution: rise time sec 55.0=r t , peak time sec 785.0=p t ,maximum overshoot 095.0=P M ,and settling time sec 33.1=s t for the %2 criterion, settling time sec 1=s t for the %5 criterion.⒊ 351343212321215143211)()(H G G H G G G G H G G H G G G G G G G G S R S C +++++= 35134321232121253121431)1()()(H G G H G G G G H G G H G G H G G H G G G G S P S C ++++-+=⒋R=2, L=15. S:①the breakaway point is –1 and –1/3; k=4/27 ② The imaginary axis S=±j; K=2⒍5.75.3≤≤KAUTOMATIC CONTROL THEOREM (5)⒈ Consider the system shown in Fig.1. Obtain the closed-loop transfer function )()(S R S C , )()(S R S E . (18%)⒉ The characteristic equation is given 0483224123)(12345=+++++=+S S S S S S GH . Discuss the distribution of the closed-loop poles. (16%)⒊ Sketch the root-locus plot for the system )15.0)(1()(++=S S S K S GH . (The gain K is assumed to be positive.)① Determine the breakaway point and K value.② Determine the value of K at which root loci cross the imaginary axis. ③ Discuss the stability. (18%)⒋ The system block diagram is shown Fig.2. 1111+=S T K G , 1222+=S T K G . ①Suppose 0=r , 1=n . Determine the value of SS e . ②Suppose 1=r , 1=n . Determine the value of SS e . (14%)⒌ Sketch the Bode diagram for the following transfer function. )1()(Ts s K s GH +=, 7=K , 087.0=T . (10%)⒍ A system with the open-loop transfer function )1()(2+=TS s K S GH is inherently unstable. This system can be stabilized by adding derivative control. Sketch the polar plots for the open-loop transfer function with and without derivative control. (14%)⒎ Draw the block diagram and determine the transfer function. (10%)⒈∆=321)()(G G G S R S C ⒉R=0, L=3,I=2⒋①2121K K K e ss +-=②21211K K K e ss +-= ⒎11)()(12+=RCs s U s UAUTOMATIC CONTROL THEOREM (6)⒈ Consider the system shown in Fig.1. Obtain the closed-loop transfer function )()(S R S C , )()(S R S E . (18%)⒉The characteristic equation is given 012012212010525)(12345=+++++=+S S S S S S GH . Discuss thedistribution of the closed-loop poles. (12%)⒊ Sketch the root-locus plot for the system )3()1()(-+=S S S K S GH . (The gain K is assumed to be positive.)① Determine the breakaway point and K value.② Determine the value of K at which root loci cross the imaginary axis. ③ Discuss the stability. (15%)⒋ The system block diagram is shown Fig.2. SG 11=, )125.0(102+=S S G . Suppose t r +=1, 1.0=n . Determine the value of SS e . (12%)⒌ Calculate the transfer function for the following Bode diagram of the minimum phase. (15%)⒍ For the system show as follows, )5(4)(+=s s s G ,1)(=s H , (16%) ① Determine the system output )(t c to a unit step, ramp input.② Determine the coefficient P K , V K and the steady state error to t t r 2)(=.⒎ Plot the Bode diagram of the system described by the open-loop transfer function elements )5.01()1(10)(s s s s G ++=, 1)(=s H . (12%)w⒈32221212321221122211)1()()(H H G H H G G H H G G H G H G H G G G S R S C +-++-+-+= ⒉R=0, L=5 ⒌)1611()14)(1)(110(05.0)(2s s s s s s G ++++= ⒍t t e e t c 431341)(--+-= t t e e t t c 41213445)(---+-= ∞=P K , 8.0=V K , 5.2=ss eAUTOMATIC CONTROL THEOREM (7)⒈ Consider the system shown in Fig.1. Obtain the closed-loop transfer function)()(S R S C , )()(S R S E . (16%)⒉ The characteristic equation is given 01087444)(123456=+--+-+=+S S S S S S S GH . Discuss the distribution of the closed-loop poles. (10%)⒊ Sketch the root-locus plot for the system 3)1()(S S K S GH +=. (The gain K is assumed to be positive.)① Determine the breakaway point and K value.② Determine the value of K at which root loci cross the imaginary axis. ③ Discuss the stability. (15%)⒋ Show that the steady-state error in the response to ramp inputs can be made zero, if the closed-loop transfer function is given by:nn n n n n a s a s a s a s a s R s C +++++=---1111)()( ;1)(=s H (12%)⒌ Calculate the transfer function for the following Bode diagram of the minimum phase.(15%)w⒍ Sketch the Nyquist diagram (Polar plot) for the system described by the open-loop transfer function )12.0(11.0)(++=s s s S GH , and find the frequency and phase such that magnitude is unity. (16%)⒎ The stability of a closed-loop system with the following open-loop transfer function )1()1()(122++=s T s s T K S GH depends on the relative magnitudes of 1T and 2T . Draw Nyquist diagram and determine the stability of the system.(16%) ( 00021>>>T T K )⒈3213221132112)()(G G G G G G G G G G G G S R S C ++-++=⒉R=2, I=2,L=2 ⒌)1()1()(32122++=ωωωs s s s G⒍o s rad 5.95/986.0-=Φ=ωAUTOMATIC CONTROL THEOREM (8)⒈ Consider the system shown in Fig.1. Obtain the closed-loop transfer function)()(S R S C , )()(S R S E . (16%)⒉ The characteristic equation is given 04)2(3)(123=++++=+S K KS S S GH . Discuss the condition of stability. (12%)⒊ Draw the root-locus plot for the system 22)4()1()(++=S S KS GH ;1)(=s H .Observe that values of K the system is overdamped and values of K it is underdamped. (16%)⒋ The system transfer function is )1)(21()5.01()(s s s s K s G +++=,1)(=s H . Determine thesteady-state error SS e when input is unit impulse )(t δ、unit step )(1t 、unit ramp t and unit parabolic function221t . (16%)⒌ ① Calculate the transfer function (minimum phase);② Draw the phase-angle versus ω (12%) w⒍ Draw the root locus for the system with open-loop transfer function.)3)(2()1()(+++=s s s s K s GH (14%)⒎ )1()(3+=Ts s Ks GH Draw the polar plot and determine the stability of system. (14%)⒈43214321432143211)()(G G G G G G G G G G G G G G G G S R S C -+--+= ⒉∞ K 528.0⒊S:0<K<0.0718 or K>14 overdamped ;0.0718<K<14 underdamped⒋S: )(t δ 0=ss e ; )(1t 0=ss e ; t K e ss 1=; 221t ∞=ss e⒌S:21ωω=K ; )1()1()(32121++=ωωωωs s ss GAUTOMATIC CONTROL THEOREM (9)⒈ Consider the system shown in Fig.1. Obtain the closed-loop transfer function)(S C , )(S E . (12%)⒉ The characteristic equation is given0750075005.34)(123=+++=+K S S S S GH . Discuss the condition of stability. (16%)⒊ Sketch the root-locus plot for the system )1(4)()(2++=s s a s S GH . (The gain a isassumed to be positive.)① Determine the breakaway point and a value.② Determine the value of a at which root loci cross the imaginary axis. ③ Discuss the stability. (12%)⒋ Consider the system shown in Fig.2. 1)(1+=s K s G i , )1()(2+=Ts s Ks G . Assumethat the input is a ramp input, or at t r =)( where a is an arbitrary constant. Show that by properly adjusting the value of i K , the steady-state error SS e in the response to ramp inputs can be made zero. (15%)⒌ Consider the closed-loop system having the following open-loop transfer function:)1()(-=TS S KS GH . ① Sketch the polar plot ( Nyquist diagram). ② Determine thestability of the closed-loop system. (12%)⒍Sketch the root-locus plot. (18%)⒎Obtain the closed-loop transfer function )()(S R S C . (15%)⒈354211335421243212321313542143211)1()()(H G G G G H G H G G G G H G G G G H G G H G H G G G G G G G G G S R S C --++++-= 354211335421243212321335422341)()(H G G G G H G H G G G G H G G G G H G G H G H G G G H H G S N S E --+++--= ⒉45.30 K⒌S: N=1 P=1 Z=0; the closed-loop system is stable ⒎2423241321121413211)()(H G H G G G G G G G H G G G G G G G S R S C ++++++=AUTOMATIC CONTROL THEOREM (10)⒈ Consider the system shown in Fig.1. Obtain the closed-loop transfer function)()(S R S C ,⒉ The characteristic equation is given01510520)(1234=++++=+S S KS S S GH . Discuss the condition of stability. (14%)⒊ Consider a unity-feedback control system whose open-loop transfer function is)6.0(14.0)(++=S S S S G . Obtain the response to a unit-step input. What is the rise time forthis system? What is the maximum overshoot? (10%)⒋ Sketch the root-locus plot for the system )25.01()5.01()(s S s K S GH +-=. (The gain K isassumed to be positive.)③ Determine the breakaway point and K value.④ Determine the value of K at which root loci cross the imaginary axis. Discuss the stability. (15%)⒌ The system transfer function is )5(4)(+=s s s G ,1)(=s H . ①Determine thesteady-state output )(t c when input is unit step )(1t 、unit ramp t . ②Determine theP K 、V K and a K , obtain the steady-state error SS e when input is t t r 2)(=. (12%)⒍ Consider the closed-loop system whose open-loop transfer function is given by:①TS K S GH +=1)(; ②TS K S GH -=1)(; ③1)(-=TS KS GH . Examine the stabilityof the system. (15%)⒎ Sketch the root-locus plot 。

自动控制原理(中英文对照李道根)习题2题解

自动控制原理(中英文对照李道根)习题2题解
)c(
2C ov
� � R� R � ) s( iVs 1C � )s ( oV� s 1C � � � )s ( A V �� � 1� 1 � )c( � R R R �� � )s ( oV � )s ( A V� s 2 C � �� � 1 1 2 �� ) s ( iV
.5.2P erugiF
) s ( 2 X 2 s 2 M � ]) s ( 2 X � ) s ( 1 X [ K
snቤተ መጻሕፍቲ ባይዱituloS■

)s ( F )s( 2 X
3
3 Z 1Z � 3 Z 2 Z � 2 Z 1Z
3Z0 Z
��
)s ( iV )s ( oV

�3 2Z 2 1 �� � Z � Z � Z �� ) s ( oV � ) s( A V� � 1 1 1 �� � 1 � )d( 1 0Z� Z � � ) s ( iV � 1 1 � )s ( A V
2 3

) s( R )s ( C
evah ew ,yaw emas a nI )b( si noitcnuf refsnart eht ,ecneH
� ) s( R )s ( C
evah ew ,snoitidnoc laitini orez gnimussa ,mrofsnart ecalpaL gnikaT )a( :noituloS
C
)1 � s (s 0K
5X 2K 2N
4X
sT 1
3X
2X
1G
1X
1N
R
.nwohs sa margaid kcolb eht evah ew , redro ni thgir ot tfel morf )s ( C dna )s ( 5 X , ) s ( 4 X , ) s( 3 X , ) s ( 2 X , )s ( 1 X , )s (R selbairav eht gnignarraeR

完整word版,《自动控制原理》试卷及答案(英文10套),推荐文档

完整word版,《自动控制原理》试卷及答案(英文10套),推荐文档

AUTOMATIC CONTROL THEOREM (1)⒈ Derive the transfer function and the differential equation of the electric network⒉ Consider the system shown in Fig.2. Obtain the closed-loop transfer function)()(S R S C , )()(S R S E . (12%) ⒊ The characteristic equation is given 010)6(5)(123=++++=+K S K S S S GH . Discuss the distribution of the closed-loop poles. (16%)① There are 3 roots on the LHP ② There are 2 roots on the LHP② There are 1 roots on the LHP ④ There are no roots on the LHP . K=?⒋ Consider a unity-feedback control system whose open-loop transfer function is )6.0(14.0)(++=S S S S G . Obtain the response to a unit-step input. What is the rise time for this system? What is the maximum overshoot? (10%)Fig.15. Sketch the root-locus plot for the system )1()(+=S S K S GH . ( The gain K is assumed to be positive.)① Determine the breakaway point and K value.② Determine the value of K at which root loci cross the imaginary axis.③ Discuss the stability. (12%)6. The system block diagram is shown Fig.3. Suppose )2(t r +=, 1=n . Determine the value of K to ensure 1≤e . (12%)Fig.37. Consider the system with the following open-loop transfer function:)1)(1()(21++=S T S T S K S GH . ① Draw Nyquist diagrams. ② Determine the stability of the system for two cases, ⑴ the gain K is small, ⑵ K is large. (12%)8. Sketch the Bode diagram of the system shown in Fig.4. (14%)⒈212121121212)()()(C C S C C R R C S C C R S V S V ++++=⒉ 2423241321121413211)()(H G H G G G G G G G H G G G G G G G S R S C ++++++=⒊ ① 0<K<6 ② K ≤0 ③ K ≥6 ④ no answer⒋⒌①the breakaway point is –1 and –1/3; k=4/27 ② The imaginary axis S=±j; K=2③⒍5.75.3≤≤K⒎ )154.82)(181.34)(1481.3)(1316.0()11.0(62.31)(+++++=S S S S S S GHAUTOMATIC CONTROL THEOREM (2)⒈Derive the transfer function and the differential equation of the electric network⒉ Consider the equation group shown in Equation.1. Draw block diagram and obtain the closed-loop transfer function )()(S R S C . (16% ) Equation.1 ⎪⎪⎩⎪⎪⎨⎧=-=-=--=)()()()()]()()([)()]()()()[()()()]()()[()()()(3435233612287111S X S G S C S G S G S C S X S X S X S G S X S G S X S C S G S G S G S R S G S X⒊ Use Routh ’s criterion to determine the number of roots in the right-half S plane for the equation 0400600226283)(12345=+++++=+S S S S S S GH . Analyze stability.(12% )⒋ Determine the range of K value ,when )1(2t t r ++=, 5.0≤SS e . (12% )Fig.1⒌Fig.3 shows a unity-feedback control system. By sketching the Nyquist diagram of the system, determine the maximum value of K consistent with stability, and check the result using Routh ’s criterion. Sketch the root-locus for the system (20%)(18% )⒎ Determine the transfer function. Assume a minimum-phase transfer function.(10% )⒈1)(1)()(2122112221112++++=S C R C R C R S C R C R S V S V⒉ )(1)()(8743215436324321G G G G G G G G G G G G G G G G S R S C -+++=⒊ There are 4 roots in the left-half S plane, 2 roots on the imaginary axes, 0 root in the RSP. The system is unstable.⒋ 208<≤K⒌ K=20⒍⒎ )154.82)(181.34)(1481.3)(1316.0()11.0(62.31)(+++++=S S S S S S GHAUTOMATIC CONTROL THEOREM (3)⒈List the major advantages and disadvantages of open-loop control systems. (12% )⒉Derive the transfer function and the differential equation of the electric network⒊ Consider the system shown in Fig.2. Obtain the closed-loop transfer function)()(S R S C , )()(S R S E , )()(S P S C . (12%)⒋ The characteristic equation is given 02023)(123=+++=+S S S S GH . Discuss the distribution of the closed-loop poles. (16%)5. Sketch the root-locus plot for the system )1()(+=S S K S GH . (The gain K is assumed to be positive.)④ Determine the breakaway point and K value.⑤ Determine the value of K at which root loci cross the imaginary axis. ⑥ Discuss the stability. (14%)6. The system block diagram is shown Fig.3. 21+=S K G , )3(42+=S S G . Suppose )2(t r +=, 1=n . Determine the value of K to ensure 1≤SS e . (15%)7. Consider the system with the following open-loop transfer function:)1)(1()(21++=S T S T S K S GH . ① Draw Nyquist diagrams. ② Determine the stability of the system for two cases, ⑴ the gain K is small, ⑵ K is large. (15%)⒈ Solution: The advantages of open-loop control systems are as follows: ① Simple construction and ease of maintenance② Less expensive than a corresponding closed-loop system③ There is no stability problem④ Convenient when output is hard to measure or economically not feasible. (For example, it would be quite expensive to provide a device to measure the quality of the output of a toaster.)The disadvantages of open-loop control systems are as follows:① Disturbances and changes in calibration cause errors, and the output may be different from what is desired.② To maintain the required quality in the output, recalibration is necessary from time to time.⒉ 1)(1)()()(2122112221122112221112+++++++=S C R C R C R S C R C R S C R C R S C R C R S U S U ⒊351343212321215143211)()(H G G H G G G G H G G H G G G G G G G G S R S C +++++= 35134321232121253121431)1()()(H G G H G G G G H G G H G G H G G H G G G G S P S C ++++-+=⒋ R=2, L=1⒌ S:①the breakaway point is –1 and –1/3; k=4/27 ② The imaginary axis S=±j; K=2⒍5.75.3≤≤KAUTOMATIC CONTROL THEOREM (4)⒈ Find the poles of the following )(s F :se s F --=11)( (12%)⒉Consider the system shown in Fig.1,where 6.0=ξ and 5=n ωrad/sec. Obtain the rise time r t , peak time p t , maximum overshoot P M , and settling time s t when the system is subjected to a unit-step input. (10%)⒊ Consider the system shown in Fig.2. Obtain the closed-loop transfer function)()(S R S C , )()(S R S E , )()(S P S C . (12%)⒋ The characteristic equation is given 02023)(123=+++=+S S S S GH . Discuss the distribution of the closed-loop poles. (16%)5. Sketch the root-locus plot for the system )1()(+=S S K S GH . (The gain K is assumed to be positive.)⑦ Determine the breakaway point and K value.⑧ Determine the value of K at which root loci cross the imaginary axis.⑨ Discuss the stability. (12%)6. The system block diagram is shown Fig.3. 21+=S K G , )3(42+=S S G . Suppose )2(t r +=, 1=n . Determine the value of K to ensure 1≤SS e . (12%)7. Consider the system with the following open-loop transfer function:)1)(1()(21++=S T S T S K S GH . ① Draw Nyquist diagrams. ② Determine the stability of the system for two cases, ⑴ the gain K is small, ⑵ K is large. (12%)8. Sketch the Bode diagram of the system shown in Fig.4. (14%)⒈ Solution: The poles are found from 1=-s e or 1)sin (cos )(=-=-+-ωωσωσj e e j From this it follows that πωσn 2,0±== ),2,1,0(K =n . Thus, the poles are located at πn j s 2±=⒉Solution: rise time sec 55.0=r t , peak time sec 785.0=p t ,maximum overshoot 095.0=P M ,and settling time sec 33.1=s t for the %2 criterion, settling time sec 1=s t for the %5 criterion.⒊ 351343212321215143211)()(H G G H G G G G H G G H G G G G G G G G S R S C +++++= 35134321232121253121431)1()()(H G G H G G G G H G G H G G H G G H G G G G S P S C ++++-+=⒋R=2, L=15. S:①the breakaway point is –1 and –1/3; k=4/27 ② The imaginary axis S=±j; K=2⒍5.75.3≤≤KAUTOMATIC CONTROL THEOREM (5)⒈ Consider the system shown in Fig.1. Obtain the closed-loop transfer function )()(S R S C , )()(S R S E . (18%)⒉ The characteristic equation is given 0483224123)(12345=+++++=+S S S S S S GH . Discuss the distribution of the closed-loop poles. (16%)⒊ Sketch the root-locus plot for the system )15.0)(1()(++=S S S K S GH . (The gain K is assumed to be positive.)① Determine the breakaway point and K value.② Determine the value of K at which root loci cross the imaginary axis. ③ Discuss the stability. (18%)⒋ The system block diagram is shown Fig.2. 1111+=S T K G , 1222+=S T K G . ①Suppose 0=r , 1=n . Determine the value of SS e . ②Suppose 1=r , 1=n . Determine the value of SS e . (14%)⒌ Sketch the Bode diagram for the following transfer function. )1()(Ts s K s GH +=, 7=K , 087.0=T . (10%)⒍ A system with the open-loop transfer function )1()(2+=TS s K S GH is inherently unstable. This system can be stabilized by adding derivative control. Sketch the polar plots for the open-loop transfer function with and without derivative control. (14%)⒎ Draw the block diagram and determine the transfer function. (10%)⒈∆=321)()(G G G S R S C ⒉R=0, L=3,I=2⒋①2121K K K e ss +-=②21211K K K e ss +-= ⒎11)()(12+=RCs s U s UAUTOMATIC CONTROL THEOREM (6)⒈ Consider the system shown in Fig.1. Obtain the closed-loop transfer function )()(S R S C , )()(S R S E . (18%)⒉The characteristic equation is given 012012212010525)(12345=+++++=+S S S S S S GH . Discuss thedistribution of the closed-loop poles. (12%)⒊ Sketch the root-locus plot for the system )3()1()(-+=S S S K S GH . (The gain K is assumed to be positive.)① Determine the breakaway point and K value.② Determine the value of K at which root loci cross the imaginary axis. ③ Discuss the stability. (15%)⒋ The system block diagram is shown Fig.2. SG 11=, )125.0(102+=S S G . Suppose t r +=1, 1.0=n . Determine the value of SS e . (12%)⒌ Calculate the transfer function for the following Bode diagram of the minimum phase. (15%)⒍ For the system show as follows, )5(4)(+=s s s G ,1)(=s H , (16%) ① Determine the system output )(t c to a unit step, ramp input.② Determine the coefficient P K , V K and the steady state error to t t r 2)(=.⒎ Plot the Bode diagram of the system described by the open-loop transfer function elements )5.01()1(10)(s s s s G ++=, 1)(=s H . (12%)w⒈32221212321221122211)1()()(H H G H H G G H H G G H G H G H G G G S R S C +-++-+-+= ⒉R=0, L=5 ⒌)1611()14)(1)(110(05.0)(2s s s s s s G ++++= ⒍t t e e t c 431341)(--+-= t t e e t t c 41213445)(---+-= ∞=P K , 8.0=V K , 5.2=ss eAUTOMATIC CONTROL THEOREM (7)⒈ Consider the system shown in Fig.1. Obtain the closed-loop transfer function)()(S R S C , )()(S R S E . (16%)⒉ The characteristic equation is given 01087444)(123456=+--+-+=+S S S S S S S GH . Discuss the distribution of the closed-loop poles. (10%)⒊ Sketch the root-locus plot for the system 3)1()(S S K S GH +=. (The gain K is assumed to be positive.)① Determine the breakaway point and K value.② Determine the value of K at which root loci cross the imaginary axis. ③ Discuss the stability. (15%)⒋ Show that the steady-state error in the response to ramp inputs can be made zero, if the closed-loop transfer function is given by:nn n n n n a s a s a s a s a s R s C +++++=---1111)()(Λ ;1)(=s H (12%)⒌ Calculate the transfer function for the following Bode diagram of the minimum phase.(15%)w⒍ Sketch the Nyquist diagram (Polar plot) for the system described by the open-loop transfer function )12.0(11.0)(++=s s s S GH , and find the frequency and phase such that magnitude is unity. (16%)⒎ The stability of a closed-loop system with the following open-loop transfer function )1()1()(122++=s T s s T K S GH depends on the relative magnitudes of 1T and 2T . Draw Nyquist diagram and determine the stability of the system.(16%) ( 00021>>>T T K )⒈3213221132112)()(G G G G G G G G G G G G S R S C ++-++=⒉R=2, I=2,L=2 ⒌)1()1()(32122++=ωωωs s s s G⒍o s rad 5.95/986.0-=Φ=ωAUTOMATIC CONTROL THEOREM (8)⒈ Consider the system shown in Fig.1. Obtain the closed-loop transfer function)()(S R S C , )()(S R S E . (16%)⒉ The characteristic equation is given 04)2(3)(123=++++=+S K KS S S GH . Discuss the condition of stability. (12%)⒊ Draw the root-locus plot for the system 22)4()1()(++=S S KS GH ;1)(=s H .Observe that values of K the system is overdamped and values of K it is underdamped. (16%)⒋ The system transfer function is )1)(21()5.01()(s s s s K s G +++=,1)(=s H . Determine thesteady-state error SS e when input is unit impulse )(t δ、unit step )(1t 、unit ramp t and unit parabolic function221t . (16%)⒌ ① Calculate the transfer function (minimum phase);② Draw the phase-angle versus ω (12%) w⒍ Draw the root locus for the system with open-loop transfer function.)3)(2()1()(+++=s s s s K s GH (14%)⒎ )1()(3+=Ts s Ks GH Draw the polar plot and determine the stability of system. (14%)⒈43214321432143211)()(G G G G G G G G G G G G G G G G S R S C -+--+= ⒉∞ππK 528.0⒊S:0<K<0.0718 or K>14 overdamped ;0.0718<K<14 underdamped⒋S: )(t δ 0=ss e ; )(1t 0=ss e ; t K e ss 1=; 221t ∞=ss e⒌S:21ωω=K ; )1()1()(32121++=ωωωωs s ss GAUTOMATIC CONTROL THEOREM (9)⒈ Consider the system shown in Fig.1. Obtain the closed-loop transfer function)(S C , )(S E . (12%)⒉ The characteristic equation is given0750075005.34)(123=+++=+K S S S S GH . Discuss the condition of stability. (16%)⒊ Sketch the root-locus plot for the system )1(4)()(2++=s s a s S GH . (The gain a isassumed to be positive.)① Determine the breakaway point and a value.② Determine the value of a at which root loci cross the imaginary axis. ③ Discuss the stability. (12%)⒋ Consider the system shown in Fig.2. 1)(1+=s K s G i , )1()(2+=Ts s Ks G . Assumethat the input is a ramp input, or at t r =)( where a is an arbitrary constant. Show that by properly adjusting the value of i K , the steady-state error SS e in the response to ramp inputs can be made zero. (15%)⒌ Consider the closed-loop system having the following open-loop transfer function:)1()(-=TS S KS GH . ① Sketch the polar plot ( Nyquist diagram). ② Determine thestability of the closed-loop system. (12%)⒍Sketch the root-locus plot. (18%)⒎Obtain the closed-loop transfer function )()(S R S C . (15%)⒈354211335421243212321313542143211)1()()(H G G G G H G H G G G G H G G G G H G G H G H G G G G G G G G G S R S C --++++-= 354211335421243212321335422341)()(H G G G G H G H G G G G H G G G G H G G H G H G G G H H G S N S E --+++--= ⒉45.30ππK⒌S: N=1 P=1 Z=0; the closed-loop system is stable ⒎2423241321121413211)()(H G H G G G G G G G H G G G G G G G S R S C ++++++=AUTOMATIC CONTROL THEOREM (10)⒈ Consider the system shown in Fig.1. Obtain the closed-loop transfer function)()(S R S C ,⒉ The characteristic equation is given01510520)(1234=++++=+S S KS S S GH . Discuss the condition of stability. (14%)⒊ Consider a unity-feedback control system whose open-loop transfer function is)6.0(14.0)(++=S S S S G . Obtain the response to a unit-step input. What is the rise time forthis system? What is the maximum overshoot? (10%)⒋ Sketch the root-locus plot for the system )25.01()5.01()(s S s K S GH +-=. (The gain K isassumed to be positive.)③ Determine the breakaway point and K value.④ Determine the value of K at which root loci cross the imaginary axis. Discuss the stability. (15%)⒌ The system transfer function is )5(4)(+=s s s G ,1)(=s H . ①Determine thesteady-state output )(t c when input is unit step )(1t 、unit ramp t . ②Determine theP K 、V K and a K , obtain the steady-state error SS e when input is t t r 2)(=. (12%)⒍ Consider the closed-loop system whose open-loop transfer function is given by:①TS K S GH +=1)(; ②TS K S GH -=1)(; ③1)(-=TS KS GH . Examine the stabilityof the system. (15%)⒎ Sketch the root-locus plot 。

自动控制原理(中英文对照 李道根)习题5题解

自动控制原理(中英文对照 李道根)习题5题解


180
44
■Solutions
P5.5 Fig. P5.5 shows the polar plots of the open-loop transfer functions of some systems. Determine whether the closed-loop systems are stable. In each case, p is the number of the open-loop poles located in the right half s -plane, is the number of the integral factors in the open-loop transfer function.
( j )
4 9
2
2
2
2
, ( j ) arctan

4
arctan

9
40
■Solutions
P5.3 Plot the asymptotic log-magnitude curves and phase curves for the following transfer functions (a) G ( s) H ( s) (c) G ( s) H ( s) (e) G ( s) H ( s)
(s )
G(s) 5 1 G (s ) 2s 6 5 (2 ) 6
2 2
( j )
, ( j ) arctan
2 6
respectively. (a) In the case of r (t ) sin(t 30 ) , since 1 and 0 30 , we have

自动控制原理(中英文对照李道根)习题3.题解

自动控制原理(中英文对照李道根)习题3.题解

■SolutionsP3.1 The unit step response of a certain system is given by t t e e t c 21)(---+=, 0≥t (a) Determine the impulse response of the system.(b) Determine the transfer function )()(s R s C of the system.Solution:The impulse response is the differential of corresponding step response, i.e.t t e e t tt c t k 22)(d )(d )(--+-==δAs we know that the transfer function is the Laplace transform of corresponding impulse response, i.e.232422111]2)([)()(222++++=+++-=+-=--s s s s s s e e t L s R s C tt δP3.2Consider the system described by the block diagram shown in Fig. P3.2(a). Determinethe polarities of two feedbacks for each of the following step responses shown in Fig. P3.2(b), where “0” indicates that the feedback is open.Solution:In general we have(a) Block diagram.1.1.1.1.1(b) U nit-step resp onses(1)(2)(3)(4)(5)Figure P3.221020221)()(k k s k s k k s R s C ±±=Note that the characteristic polynomial is210202)(k k s k s s ±±=∆where the sign of s k 2is depended on the outer feedback and the sign of 21k k is depended on the inter feedback.Case (1).The response presents a sinusoidal. It means that the system has a pair of pure imaginary roots, i.e. the characteristic polynomial is in the form of 212)(k k s s +=∆. Obviously, the outlet feedback is “–”and the inner feedback is “0”.Case (2).The response presents a diverged oscillation.The system has a pair of complex conjugate roots with positive real parts, i.e. the characteristic polynomial is in the form of 2122)(k k s k s s +-=∆. Obviously, the outlet feedback is “+”and the inner feedback is “–”.Case (3).The response presents a converged oscillation. It means that the system has a pair of complex conjugate roots with negative real parts, i.e. the characteristic polynomial is in the form of 2122)(k k s k s s ++=∆. Obviously,both the outlet and inner feedbacks are “–”.Case (4).In fact this is a ramp response of a first-order system. Hence, the outlet feedback is “0”to produce a ramp signal and the inner feedback is “–”.Case (5).Considering that a parabolic function is the integral of a ramp function, both the outlet and inner feedbacks are “0”.P3.3Consider each of the following closed-loop transfer function. By considering the location of the poles on the complex plane, sketch the unit step response, explaining the results obtained.(a) 201220)(2++=s s s Φ,(b) 61166)(23+++=s s s s Φ(c) 224)(2++=s s s Φ,(d) )5)(52(5.12)(2+++=s s s s ΦSolution:(a) )10)(2(20201220)(2++=++=s s s s s ΦBy inspection, the characteristic roots are 2-, 10-. This is an overdamped second-order system. Therefore, considering that the closed-loop gain is 1=Φk , its unit step response can be sketched as shown.(b) )3)(2)(1(661166)(23+++=+++=s s s s s s s ΦBy inspection, the characteristic roots are 1-, 2-, 3-.Obviously, all three transient components are decayed exponential terms. Therefore, its unit step response, with a closed-loop gain 1=Φk , is sketched as shown..1.1(c) 1)1(4224)(22++=++=s s s s ΦThis is an underdamped second-order system, because its characteristic roots are j ±-1. Hence, transient component is a decayed sinusoid. Noting that the closed-loop gain is 2=Φk , the unit step response can be sketched as shown.(d) )5](21[(5.12)5)(52(5.12)(222++=+++=s s s s s s )+ΦBy inspection, the characteristic roots are 21j ±-, 5-. Since51.0-<<-, there is a pair of dominant poles,21j ±-, for this system. The unit step response, with a closed-loop gain 5.0=Φk , is sketched as shown.P3.4 The open-loop transfer function of a unity negative feedback system is)1(1)(+=s s s G Determine the rise time, peak time, percent overshoot and setting time (using a 5% setting criterion).Solution: Writing he closed-loop transfer function2222211)(nn n s s s s s ωςωωΦ++=++=we get 1=n ω, 5.0=ς. Since this is an underdamped second-order system with 5.0=ς, the system performance can be estimated as follows.Rising time .sec 42.25.0115.0arccos 1arccos 22≈-⋅-=--=πςωςπn r t Peak time .sec 62.35.011122≈-⋅=-=πςωπn p t Percent overshoot %3.16%100%100225.015.01≈⨯=⨯=--πςπςσe e p Setting time .sec 615.033=⨯=≈ns t ςω(using a 5% setting criterion)P3.5 A second-order system gives a unit step response shown in Fig. P3.5. Find the open-loop transfer function if the system is a unit negative-feedback system.Solution:By inspection we have%30%100113.1=⨯-=p σSolving the formula for calculating the overshoot,.1.1Figure P3.5.0.23.021==-ςπςσe p , we have 362.0ln ln 22≈+-=ppσπσςSince .sec 1=p t , solving the formula for calculating the peak time, 21ςωπ-=n p t , we getsec/7.33rad n =ωHence, the open-loop transfer function is)4.24(7.1135)2()(2+=+=s s s s s G n n ςωωP3.6A feedback system is shown in Fig. P3.6(a), and its unit step response curve is shown in Fig. P3.6(b). Determine the values of 1k , 2k ,and a .Solution:The transfer function between the input and output is given by2221)()(k as s k k s R s C ++=The system is stable and we have, from the response curve,21lim )(lim 122210==⋅++⋅=→∞→k sk as s k k s t c s t By inspection we have%9%10000.211.218.2=⨯-=p σSolving the formula for calculating the overshoot, 09.021==-ςπςσe p , we have608.0ln ln 22≈+-=ppσπσςSince .sec 8.0=p t , solving the formula for calculating the peak time, 21ςωπ-=n p t , we getsec/95.4rad n =ωThen, comparing the characteristic polynomial of the system with its standard form, we have.2.2(a)(b)Figure P3.622222n n s s k as s ωςω++=++5.2495.4222===n k ω02.695.4608.022=⨯⨯==n a ςωP3.7A unity negative feedback system has the open-loop transfer function)2()(k s s k s G +=(a) Determine the percent overshoot.(b) For what range of k the setting time less than 0.75 s (using a 5% setting criterion).Solution: (a)For the closed-loop transfer function we have222222)(nn n s s k s k s ks ωςωωΦ++=++=hence, by inspection,we getsec /rad k n =ω, 22=ςThe percent overshoot is%32.4%10021=⨯=-ςπςσe p (b) Since 9.022<=ς, letting.sec 75.025.033<⨯=≈kt ns ςω(using a 5% setting criterion)results in2275.06⎪⎪⎭⎫⎝⎛>k , i.e. 32>k P3.8For the servomechanism system shown in Fig. P3.8,determine the values of k and a that satisfy the following closed-loop system design requirements.(a) Maximum of 40% overshoot.(b) Peak time of 4s.Solution:For the closed-loop transfer function we have22222)(nn n s s k s k s ks ωςωωαΦ++=++=hence, by inspection, we getk n =2ω, αςωk n =2,and n n k ωςςωα22==Taking consideration of %40%10021=⨯=-ςπςσe p results in280.0=ς.In this case, to satisfy the requirement of peak time, 412=-=ςωπn p t , we haveFigure P3.8.sec /818.0rad n =ωHence, the values of k and a are determined as67.02==n k ω, 68.02==nωςαP3.9 The open-loop transfer function of a unity feedback system is)2()(+=s s k s G A step response is specified as:peak time s 1.1=p t , and percent overshoot %5=p σ.(a) Determine whether both specifications can be met simultaneously. (b) If the specifications cannot be met simultaneously, determine a compromise value for k so that the peak time and percent overshoot are relaxed the same percentage.Solution:Writing the closed-loop transfer function222222)(nn n s s k s s ks ωςωωΦ++=++=we get k n =ωand k 1=ς.(a) Assuming that the peak time is satisfiedsec1.1112=-=-=k t n p πςωπwe get 16.9=k . Then, we have 33.0=ςand%5%33%10021>=⨯=-ςπςσe p Obviously, these two specifications cannot be met simultaneously.(b) In order to reduce p σthe gain must be reduced. Choosing sec 2.221==p p t t results in04.31=k , 57.01=ς, %102%3.111=>=p p σσRechoosing sec 31.21.22==p p t t results in85.21=k , 59.01=ς, %10.51.2%0.101=<=p p σσLetting sec 255.205.23==p p t t results in941.23=k , 583.03=ς, %10.2505.2%5.103=≈=p p σσIn this way, a compromise value is obtained as941.2=k P3.10A control system is represented by the transfer function)13.04.0)(56.2(33.0)()(2+++=s s s s R s C Estimate the peak time, percent overshoot, and setting time (%5=∆), using the dominant pole method, if it is possible.Solution:Rewriting the transfer function as]3.0)2.0)[(56.2(33.0)()(22+++=s s s R s C we get the poles of the system: 3.02.021j s ±-=,, 56.23-=s . Then, 21,s can be considered as a pair of dominant poles, because )Re()Re(321s s <<,.Method 1. After reducing to a second-order system,the transfer function becomes13.04.013.0)()(2++=s s s R s C (Note: 1)()(lim 0==→s R s C k s Φ)which results in sec /36.0rad n =ωand 55.0=ς. The specifications can be determined assec 0.42112ςωπ-=n p t , %6.12%10021=⨯=-ςπςσe p sec 67.2011ln 12=⎪⎪⎪⎭⎫⎝⎛-=ς∆ςωn s t Method 2. Taking consideration of the effect of non-dominant pole on the transient components cause by the dominant poles, we havesec0.8411)(231=--∠-=ςωπn p s s t %6.13%10021313=⨯-=-ςπςσe s s s p sec 6.232ln 1313=⎪⎪⎭⎫⎝⎛-⋅=s s s t n s ∆ςωP3.11By means of the algebraic criteria, determine the stability of systems that have thefollowing characteristic equations.(a) 02092023=+++s s s (b) 025103234=++++s s s s (c) 021*******=+++++s s s s s Solution:(a) 02092023=+++s s s . All coefficients of the characteristic equation are positive. Using L-C criterion,1609120202>==D This system is stable.(b) 025103234=++++s s s s . All coefficients of the characteristic equation are positive. Using L-C criterion,15311002531103<-==D This system is unstable.(c) 021*******=+++++s s s s s . (It’s better to use Routh criterion for a higher-order system.)All coefficients of the characteristicequation are positive. Establish the Routh arrayas shown.There are two changes of sign in the first column, this system is unstable.P3.12The characteristic equations for certain systems are given below. In each case,determine the number of characteristic roots in the right-half s -plane and the number of pure imaginary roots.(a) 0233=+-s s (b) 0160161023=+++s s s (c) 04832241232345=+++++s s s s s (d) 0846322345=--+++s s s s s Solution:(a) 0233=+-s s . The Routh array shows that there are two changes of sign in the first column. So that there are two characteristic roots in the right-half s -plane.(b) 0160161023=+++s s s The 1s -row is an all-zero one and an auxiliary equation is made based on 2s -row162=+s Taking derivative with respect to s yields2=s The coefficient of this new equation is inserted in the1s row, and the Routh array is then completed. By inspection, there are no changes of sign in the firstcolumn, and the system has no characteristic roots in the right-half s -plane. The solution of the auxiliary are 4j s ±=, the system has a pair of pure imaginary roots.(c) 04832241232345=+++++s s s s s . The Routh array is established as follows.The 1s -row is an all-zero one and an auxiliary equation based on 2s -row is42=+s Taking derivative with respect to s yields2=s The coefficient of this new equation isinserted in the 1s row, and the Routh array is then completed. By inspection, there are no changes of sign in the first column, and the system has no characteristic roots in the right-half5s 1914s 21023s 402s 1021s -0.800s 23s 1-32s 0 0>⇒ε21s εε23--0s 23s 1162s 101⇒16016⇒1s 02⇒0s 165s 112324s 31⇒248⇒4861⇒3s 41⇒164⇒2s 41⇒164⇒1s 02⇒0s 4s -plane. The solution of the auxiliary are 2j s ±=, the system has a pair of pure imaginaryroots.(d) 0846322345=--+++s s s s s .The Routh array is established as follows.The 3s -row is an all-zero one and an auxiliary equationbased on 4s -row is04324=-+s s Taking derivative with respect to s yields643=+s s The coefficient of this new equation is inserted in the 3s row, and the Routh array is then completed. By inspection, the sign inthe first column is changed one time, and the system has one root in the right-half s -plane. The solution of the auxiliary are 121±=,s 243j s ±=,, the system has one pair of pure imaginary roots.P3.13The characteristic equations for certain systems are given below. In each case, determine the value of k so that the corresponding system is stable. It is assumed that k is positive number.(a) 02102234=++++k s s s s (b) 0504)5.0(23=++++ks s k s Solution: (a) 02102234=++++k s s s s .The system is stable if and only if⎪⎪⎩⎪⎪⎨⎧<⇒>=>9022*********k k D k i.e. the system is stable when 90<<k .(b) 0504)5.0(23=++++ks s k s . The system is stable if and only if⎪⎩⎪⎨⎧>-+⇒>-+⇒>+=>>+0)3.3)(8.34(05024041505.00,05.022k k k k k k D k k i.e. the system is stable when 3.3>k .P3.14The open-loop transfer function of a negative feedback system is given by)12.001.0()(2++=s s s Ks G ςDetermine the range of K and ςin which the closed-loop system is stable.Solution: The characteristic equation is2.001.023=+++K s s s ςThe system is stable if and only if5s 13-44s 21⇒63⇒-84-⇒3s 04⇒06⇒02s 3-8 1s 5000s -8⎪⎩⎪⎨⎧<⇒>-⇒>=>>ςςς200010200101.02.002.0,02K K .ς.K D k The required range is 020>>K ς.P3.15The open-loop transfer function of negative feedback system is given)12)(1()1()()(+++=s Ts s s K s H s G The parameters K and T may be represented in a plane with K as the horizontal axis and T as the vertical axis. Determine the region in which the closed-loop system is stable.Solution:The characteristic equation is)1()2(223=+++++K s K s T Ts Since all coefficients are positive, the system is stable if and only if)1)(2(01222>++⇒>++=K T K T KT D 022>++-T KT K 04)2()2(>+-+-T T K 4)1)(2(<--⇒K T The system is stable in the region 4)1)(2(<--K T , which is plotted as shown. (Letting 2-='T T and 1-='K K results in 4<''K T .)P3.16A unity negative feedback system has an open-loop transfer function)1)(1)(1()(2+++=Ts n nTs Ts Ks G where 10≤≤n , 0>K , T is a positive constant.(a) Determine the range of K and n so that the system is stable.(b) Determine the value of K required for stability for 1=n , 0.5, 0.1, 0.01, and 0.(c) Discuss the stability of the closed-loop system as a function of n for a constant K .Solution:The closed-loop characteristic equation is)1)(1)(1(2=+++K Ts n nTs Ts +i.e. 01)1()(22223333=+++++++K Ts n n s T n n n s T n +(a) The system is stable if and only if)1(1)1(233222>+++++=Tn n Tn K T n n n D i.e.)1(0)1()1(2223322>--++⇒>+-++K n n n n T K T n n n ⎪⎪⎭⎫⎝⎛-++⎪⎪⎭⎫ ⎝⎛+++<⇒-⎪⎪⎭⎫⎝⎛++<1111112222n n n n n n K n n n K ⎪⎭⎫ ⎝⎛++<⇒⎪⎪⎭⎫⎝⎛-+++++<2222211)1(11)1(n n K n n n n n n n K '21hence, the system is stable when ⎪⎭⎫ ⎝⎛++<<2211)1(0n n K .(b) The value of K required for stability for 1=n , 0.5, 0.1, 0.01, and 0are calculated as shown.80<<K for 1=n ,5.110<<K for 5.0=n ,21.1220<<K for 1.0=n ,102020<<K for 01.0=n ,∞<<K 0for 0=n .(c) For a constant K , the stability of the closed-loop system is related to the value of n , the larger the value of n ,the easier the system to be stable. (Stagger principle.)P3.17A unity negative feedback system has an open-loop transfer function)16)(13()(++=s s s Ks G Determine the range of k required so that there are no closed-loop poles to the right of the line 1-=s .Solution:The closed-loop characteristic equation is18)6)(3(0)16)(13(=+++⇒=+++K s s s K ss s i.e. 01818923=+++K s s s Letting 1~-=s s resulting in)1018(~3~6~018)5~)(2~)(1~(23=-+++⇒=+++-K s s s K s s s Using Lienard-Chipart criterion, all closed-loop poles locate in the right-half s ~-plane, i.e. to the right of the line 1-=s , if and only if⎪⎩⎪⎨⎧<⇒>-⇒>-=>⇒>-91408.1820311018695,010182K K K D K K The required range is 91495<<K , or 56.10.56<<K P3.18A system has the characteristic equation291023=+++k s s s Determine the value of k so that the real part of complex roots is 2-, using the algebraiccriterion.Solution:Substituting 2~-=s s into the characteristic equation yields02~292~102~23=+-+-+-k s s s )()()(0)26(~~4~23=-+++k s s s The Routh array is established as shown.If there is a pair of complex roots with real part of 2-, then26=-k 3s 112s 426-k 1s 0si.e. 30=k . In the case of 30=k , we have the solution of the auxiliary equation j s ±=~, i.e. j s ±-=2.P3.19 An automatically guided vehicle is represented by the system in Fig. P3.19.(a) Determine the value of τrequired forstability.(b) Determine the value of τwhen one root of the characteristic equation is 5-=s , and the values of the remainingroots for the selected τ.(c) Find theresponse of the system to a step command for the τselected in (b).Solution:The closed-loop transfer function is10101010)()()(23+++==s s s s R s C s τΦ(a) The closed-loop characteristic equation is 010101023=+++s s s τSince all coefficients are positive, the system is stable if and only if1.0010110102>⇒>=ττD (b) Substituting 5~-=s s into the characteristic equation yields0105~105~105~23=+-+-+-)()()(s s s τ0)50135(~)2510(~5~23=-+-+-ττs s s In the case of 050135=-τ, i.e. 7.2=τ, we have 0~1=s , i.e. 51-=s . Solving the characteristic equation with 7.2=τ, i.e. 0~2~5~23=++-s s s results in 56.4~2=s and 44.0~3=s . Hence the remaining roots are 44.02-=s and 56.43-=s .(c) The closed-loop transfer function for 7.2=τis)5)(56.4)(44.0(10)(+++=s s s s ΦThe unit step response of the system is500.156.421.144.021.111)5)(56.4)(44.0(10)(+--+++-=⋅+++=s s s s s s s s s C tt t e e e t c 556.444.000.121.121.11)(----+-=Or, considering that there is a dominant pole for the system, we have127.2144.044.0)(+=+≈s s s Φte t c 44.01)(--≈P3.20A thermometer is described by the transfer function )11+Ts . It is known that, measuring the water temperature in a container, one minute is required to indicate 98% of the actual water temperature. Evaluate the steady-state indicating error of the thermometer if the container is heated and the water temperature is lineally increased at the rate of C/min 10 .travelFig.P3.19Solution:One minute required to indicate 98% of the actual water temperature means that the setting time is sec 604=≈T t s , i.e. the time constant of the thermometer issec15≈T The indicated error caused by the given ramp input, C/sec)(6010C/min)(10)( ==t t r , is222611611161)()()(sTs Ts s Ts s s C s R s E ⋅+=⋅+-=-=By inspection, a first-order system is always stable. Hence, the steady-state indicating error isC ss s s e s ss 5.26111515lim 20=⋅+⋅=→P3.21 Determine the steady-state error for a unit step input, a unit ramp input, and an acceleration input 22t for the following unit negative feedback systems. The open-loop transfer functions are given by(a) )12)(11.0(50)(++=s s s G ,(b) )5.0)(4(10)()(++=s s s s H s G (c) )11.0()15.0(8)(2++=s s s s G ,(d) )5)(1(10)(2++=s s s s G (e) )2004()(2++=s s s k s G Solution:(a) )12)(11.0(50)(++=s s s G . This is a second-order system and must be stable. Asa 0-type system,0=υ, the corresponding error constants are50=p K , 0=v K , 0=a K Consequently, the corresponding steady-state errors are0196.0501110.=+=+=p r ss K r ε, ∞==v v ss K v 0.ε, ∞==aa a ss K v .εrespectively.(b) )5.0)(4(10)()(++=s s s s H s G . The characteristic polynomial is40209)(23+++=s s s s τ∆Using L-C criterion,01402014092>==D the closed-loop system is stable. By inspection, system type 1=υand open-loop gain 5=K . Hence, the corresponding steady-state errors are0.=r ss ε, 2.01.==Kv ss ε, ∞=a ss .εrespectively.(c) )11.0()15.0(8)(2++=s s s s G . The characteristic polynomial is40209)(23+++=s s s s τ∆Using L-C criterion01402014092>==D the closed-loop system is stable. By inspection, system type 1=υand open-loop gain 5=K . Hence, the corresponding steady-state errors are0.=r ss ε, 2.01.==Kv ss ε, ∞=a ss .εrespectively.(d) )5)(1(10)(2++=s s s s G . The characteristic polynomial is1056)(234+++=s s s s ∆By inspection, this system is unstable (due to constructional instability).(e) )2004()(2++=s s s k s G . The characteristic polynomial isks s s s +++=2004)(23∆Using L-C criterionkkD -==800200142the closed-loop system is stable if and only if 8000<<k . This is a 1-type system with a open-loop gain 200k K =. In the case of 8000<<k , i.e. 40<<K ,the corresponding steady-state errors are0.=r ss ε, kK v ss 2001.==ε, ∞=a ss .εrespectively.P3.22 The open-loop transfer function of a unity negative feedback system is given by)1)(1()(21++=s T s T s Ks G Determine the values of K , 1T , and 2T so that the steady-state error for the input, bt a t r +=)(, is less than 0ε. It is assumed that K , 1T , and 2T are positive, a and b are constants.Solution:The characteristic polynomial is Ks s T T s T T s ++++=221321)()(∆Using L-C criterion, the system is stable if and only if2121212121212001T T T T K T KT T T T T K T T D +<⇒>-+⇒>+=Considering that this is a 1-type system with a open-loop gain K , in the case of 2121T T T T K +<, we have0..εεεεεbK Kbv ss r ss ss >⇒<=+=Hence, the required range for K is21210T T T T K b+<<εP3.23 The open-loop transfer function of a unity negative system is given by)1()(+=Ts s K s G Determine the values of K and T so that the following specifications are satisfied:(a) The steady-state error for the unit ramp input is less than 02.0.(b) The percent overshoot is less than %30and the setting time is less s 3.0.Solution:Assuming that both K and T are positive, the system must be stable. To meet the requirement on steady-state error, we have5002.010≥⇒≤==k KK v v ss εTo meet the second requirement, we have358.0%3021≥⇒≤=-ςσςπςe p and%)2(,10sec3.03=≥⇒≤≈∆ςωςωn ns t Considering that KT21=ςand TKn =ω, we get 95.1358.021≤⇒≥=KT KTς05.02010≤⇒=≥=T KT T K n ςωFinally, to met all specifications, the required ranges K and T are⎪⎩⎪⎨⎧≤≤≤T K T 95.15005.0P3.24 The block diagram of a control system is shown in Fig. P3.24, where)()()(s C s R s E -=. Select the values of τand b so that the steady-state error for a ramp input is zero.Figure P3.24Solution:Assuming that all parameters are positive, the system must be stable. Then, the error response is)()1)(1()(1)()()(21s R K s T s T b s K s C s R s E ⎥⎦⎤⎢⎣⎡++++-=-=τ)()1)(1()1()(2121221s R Ks T s T Kb s K T T s T T ⋅+++-+-++=τLetting the steady-state error for a ramp input to be zero, we get221212210.)1)(1()1()(lim )(lim sv Ks T s T Kb s K T T s T T s s sE s s r ss ⋅+++-+-++⋅==→→τεwhich results in⎩⎨⎧=-+=-00121τK T T Kb I.e. K T T 21+=τ, Kb 1=.P3.25 The block diagram of a compound system is shown in Fig. P3.25.Select the values ofa andb so that the steady-state error for a parabolic input is zero.Solution: The characteristic polynomial is 1012.0002.0)(23+++=s s s s ∆Using L-C criterion,1.01002.01012.02>==D the system is stable. The transfer function between error and input is given by10)102.0)(11.0()(10)102.0)(11.0()102.0)(11.0(101)102.0)(11.0()(101)()()(22++++-++=++++++-=-=s s s bs as s s s s s s s s s bs as s C s R s E 10)102.0)(11.0()101()101.0(002.023+++-+-+=s s s s b s a s Letting the steady-state error for a parabolic input to be zero yields010)102.0)(11.0()101()101.0(002.0lim 30230.=⋅+++-+-+⋅=→sa s s s sb s a s s s ass εwhich results inFigure P3.25⎩⎨⎧=-=-01012.00101a b i.e. 012.0=a , 1.0=b .P3.26 The block diagram of a system is shown in Fig. P3.26. In each case, determine the steady-state error for a unit step disturbance and a unit ramp disturbance, respectively.(a) 11)(K s G =, )1()(222+=s T s K s G (b) ss T K s G )1()(111+=, )1()(222+=s T s K s G , 21T T >Solution: (a) In this case the system is of second-order and must be stable. The transferfunction from disturbance to error is given by212212.)1(1)(K K Ts s K G G G s d e ++-=+-=ΦThe corresponding steady-state errors are12120.11)1(lim K s K K Ts s K s s p ss -=⋅++-⋅=→ε∞→⋅++-⋅=→22120.1)1(lim sK K Ts s K s s a ss ε(b) Now, the transfer function from disturbance to error is given by)1()1()(121222.+++-=s T K K s T s sK s d e Φand the characteristic polynomial is21121232)(K K s T K K s s T s +++=∆Using L-C criterion,)(121211212212>-==T T K K T K K T K K D the system is stable. The corresponding steady-state errors are01)1()1(lim 1212220.=⋅+++-⋅=→s s T K K s T s sK s s p ss ε121212220.11)1()1(lim K s s T K K s T s sK s s a ss -=⋅+++-⋅=→εFigure P3.26P3.27 The block diagram of a compound system is shown in Fig. P3.26, where1)(111+=s T K s G , )1()(222+=s T s K s G ,233)(K K s G =Determine the feedforward block transfer function )(s G d so that the steady-state error due tounit step disturbance is zero.Solution: the characteristic equation is 0121=+G G , i.e.21221321)(K K s s T T s T T ++++Using L-C criterion, the system is stable if and only if002121212121212>-+=+=T T K K T T T T K K T T D hence, the system is stable if212121T T T T K K +<The transfer function from disturbance to error is given by111)(1)1(1)(2211112322212123.+⋅++⎥⎦⎤⎢⎣⎡⋅+++-=+--=s T K s T K s G s T K K K s T s K G G G G G G G s dd de Φ21212113)1)(1()()1(K K s T s T s s G K K s T K d +++++-=When the system is stable, letting the steady-state error to be zero yields0)1)(1()()1(lim 0212121130=⋅⎥⎦⎤⎢⎣⎡+++++-⋅=→s d K K s T s T s s G K K s T K s d s ss ε[]0)()1(lim 21130=++→s G K K s T K d s i.e.213)(K K K s G d -=The feedforward block function is 213)(K K K s G d -=, where 212121T T TT K K +<.Figure P3.27。

《自动控制理论》(双语)试卷

《自动控制理论》(双语)试卷

《 自动控制理论》(双语)期末考试试卷 2005 ~2006 学年第 二 学期年级专业: 学号: 姓名: (.本试卷共六大题,满分100分,考试时间120分钟)1. Determine the transfer function i oX X shown as the following figure.(15分)ix ox2.Simplify the block diagram shown as the following figure and determine the closed loop transfer function。

(15 分)3.Consider the closed-loop system shown in the following figure,determine: (15分)(1) The damping ratioζ, the damped natural frequency nωand undamped naturalω;frequencyd(2)The percentage overshoot PO, the peak time P T and the settling time s T.4.For the system shown in the following figure, determine the system type and the steady-state error for a unit step, unit ramp and unit acceleration inputs.(15分)5. 设单位负反馈系统的开环传递函数为()()()131++=s s s Ks G ,请利用幅值裕度的概念分析使系统恒稳定的最大K 值,并用Routh ’s Method 验证结果。

[Suppose the open-loop transfer function of a unity negative feedback control system is ()()()131++=s s s Ks G ,please find the maximum value of K consistent with stability according to the concept of gain margin and check the result using Routh ’s method.](20分)6.试画出(1)()()()101.0104.01000++=s s s s G (2)()()()()()()101.0104.01515.01000++++=s s s s s s G s G c两种情况下的对数幅频特性,标明剪切频率c ω、斜率及转折频率,并说明滞后校正的作用。

浙大自动控制理论-第七周作业 ( 英文

浙大自动控制理论-第七周作业 ( 英文

Homework Week71.A unit-step response of a second order system is known as following)1.536.1sin(5.1210)(2.1 +−=−t e t h tFind the percent overshoot σ%, peak time p t and settling time s t of the system 。

2. For a unity-feedback second ordersystem, when its unit-step responseis given as the Fig, determine theopen-loop transfer function of thesystem. (hint: 20112ξωπσξξπ−==−−p t e;/ )3.The unit-impulse responses k(t) of the systems are known as following, determine the closed-loop transfer function φ(s) of these systems.(1)t e t k 25.10125.0)(−=(2))454sin(105)( ++=t t t k4. (P660. 3.13)5. (P661. 3.16) For the mechanical system of Fig.2.11a the state equation for Example 2, Sec.2.6, is given in phase-variable form . With the input as a x u =, thestate variabkes are b x x =1 , and b xx =2. Use M=5, K=10, and B=15. The initial conditions are 1)0(=b x and 2)0(−=b x. (a) Find the homogeneous solution for x(t). (b) Find the complete solution with u(t)=1(t).6. (P661. 3.17; P6634.15) (注意(b)改为:by Laplace transform method.) For the autonomous systemx x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−=375100010, []x y 001=(a) Find the system eigenvalues. (b) Evaluate the state transmission matrix Φ(t) by Laplace transform method.7.(P662. 4.12) System 1A linear system is described by(1) u x x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡−−=103212, []x y 01= Where u=1(t) and the initial conditions are x 1(0)=0 and x 2(0)=1. (a) Using Laplace transforms, find X(s). Put the elements of this vector over a common denominator. (b) Find the transfer function G(s). (c) Find y(t).8.(P663. 4.14)(1) A system is described by(1) u x x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡−−=010516, 1x y =(a) Find x(t) with x(0)=0 and u(t)=1(t). (b) Determine the transfer function G(s)=Y(s)/U(s).9. P.667.5.11 (3). Givenu Du u D y Dy y D y ++=−+−62403811D 3223)(Obtain state and output equations using (a)phase variables, (b) canonical variables.10. (P.669 5.18(2)) A system is described by(2) x =−2−103⎡⎣⎢⎤⎦⎥x +010⎡⎣⎢⎤⎦⎥u , 1x y =(a) Derive the system transfer function G(s)=Y(s)/U(s); (b) Draw an appropriate state-variable diagram; (c) For zero initial state and a unit-step input evaluate x 1(t) and x 2(t).11.(胡寿松P.511习题9-2)设系统微分方程为u x x x=++23 ,其中u 为输入量,x 为输出量。

英语00自控原理及系统英文试题及解答a

英语00自控原理及系统英文试题及解答a

沈阳电专 学年第 学期考试试卷试卷类型: 考试形式: 满分:分 姓名: 学号:考试科目: 专业: 班级:------------------------------装----------------------------订----------------------------线------------------------------一、Fill in the blanks (每题/空 分,共 20 分) (1). If the metals are , the emf is zero.(2). The emf produced isto the difference in temperature. (3). The loop is by the feedback path.(4). The reference input and negative feedback signal are summed to give theinput to the controller.(5). If the output is intended to follow a time-varying reference input then this is refered to asa .二、Give f (t) = 3e -2t, determine F(s). (10分).三、Using the Laplace transform methods solve the differential equationsdx(t)/dt + x(t) = 0, x(0) = 2. (10 分).------------------------------装----------------------------订----------------------------线------------------------------四、Draws the block diagram for boiler in power plant, indicate the input and output.(10分).五、Classify the following system as either open-loop or closed-loop and explain youanswer briefly: (a) on-off lamp; (b) flush toilet; (c)shower water temperature system;(d) washer. (10分 ).六、Given R0= 500Ω,α0 = 0.005 1/℃, T0= 0 ℃, find the linearapproximation of resistance versus temperature 20 ℃.(10分).1.------------------------------装----------------------------订----------------------------线------------------------------八、The bridge nulls with R1=3400Ω,R2=3445Ω, R3=1560Ω, find R4.(10分).九、Suppose the temperature transmitter range 20℃to 120℃is linearly representedby the standard current range of 4 to 20 m A, what current result from 100℃. (10分)? 答案:1 (1)same;(2)proportional;(3)closed;(4)error;(5)servo.2 3/(s+2)3 2e-t4Input: feed-water flow; sprad flow; fuel flow; forced draft flow; induced draft flow.Output: steam-drum level; steam superheat temperrature; steam superheat pressure;Flue gas oxygen-containing ; furnace pressure.5 open loop: (a);(d).closed-loop: (b);(c).6550Ω75mV81581Ω916.8mA。

自动控制原理(中英文对照 李道根)习题4.题解

自动控制原理(中英文对照 李道根)习题4.题解
G ( s) k (s 1) s 4s 5
2
,
(a) Find the angles of departure of the root locus from the complex poles. (b) Find the entry point for the root locus as it enters the real axis. Solution: G ( s)
Solving the breakaway-point equation
2s 4 s 4s 8
2

1 s3

s 2 6s 4 0
we have s b 5.24 . Or, z1 p1 5 , s b 3 5 5.24 . The angles of departure of the root locus from the complex poles are
k ( s 3) s 4s 8
2

k ( s 3) (s 2) 2 2 2
. By inspection, we have p1, 2 2 j 2 and
z1 5 . The root locus in the complex plane is a part of a circle with the center at the zero and a radius of the length from the zero to one pole. There is a breakaway point on the real-axis segment, ( , 3) . The root locus is plotted as shown.
z1 1 . k (s 1) s 4s 5

自控原理习题

自控原理习题

自控原理习题2习题一1. The differential equation of a system shown below, try to establish the dynamic structure diagram of the system and determine the transfer function Y(s)/R(s),Y(s)/N 1(s), Y(s)/N 2(s).dt)t (dy dt )t (y d )t (x )t (n )t (x )t (x )t (x dt)t (dx )t (x )t (x )t (x )t (x )t (x )t (n )t (y )t (r )t (x +=-==-==+-=22524534523121110232. A Feedback control system has the structure shown in figure 2. Determine the K 1 and K 2 so that the unit step response y(t) has T p =0.5s and P.O=2%.3Figure 23.When the input signal of the system is t )t ()t (r +=1, themeasuredoutputresponsefor t e .).t ()t (y 109090--+=.(1) Determine the system transfer function)s (R )s (Y . (2) For a unit step input and a unit ramp input ,calculate the steady-state error respectively.4. A negative feedback system has a loop transfer function 22)s (s K)s (GH +=.(1) Using the Routh-Hurwitz criterion, find the value of the gain K when the closed-loop system has two poles on the imaginary axis. (2) Find the value of the gain K when s=-3 and other roots of the characteristic equation.45L(w)dBL(w)dB 07. A unity feedback control system has a plant)s )(s (s )s ()s (G 13012110+++=(1) Plot the Bode diagram of G(s).(2) Determine the phase margin PM and gain margin GM.(3) Plot the polar plot and Mark GM, PM on the this map.习题二1. A unity negative feedback control systemhas the plant)2()(KssKsG+=(1)Determine the percent overshoot due to a unit step input.(2)For what range of K is the settling time less than 1 second?2.A control system is shown in figure 2.(1)when r(t)=t and n(t)=t, determine allsteady-state error of the system.(2)when r(t)=1(t) and n(t)=0,determine the P.Oand Ts.Figure 23.A control system shown in figure 3.onecontroller is the proportional controller,Gc(s)=Kp. determine the range of Kp ofstable system .Figure3674. The unit-step response of a unity feedback systemt t e e t y 10602.12.01)(---+=(1)Find the transfer function of the system)()(s R s Y . (2)Find the open-loop transfer function G(s). 5.A unity feedback system has a plant )0,0(,)10(1()()(>>-+=T K s T K s H s G s s )(1)when T=1,Sketch the root locus for 0<K<∞. Find the range of K when all roots are negative real parts.(2)when K=10,sketch the root locus for 0<T<∞.Determine the range of T of the stable system.6. the following open-loop transfer function G(s)H(s) have no poles on the right half s-plane , their polar plots shown in figure 6. Please analyze the stability of the corresponding system.F igure 67. A closed-loop control system shown in Figure 7.(1)Draw the Bode plot of the open-loop transfer functionG(s).(2)Calculate the phase margin.(3)Prove the phase is -180°when 1ωand=4.0find out thegain margin.89Figure 7习题三一、A control system is shown in Figure 2.1(a)and Figure2.1(b), find thetransfer function()()Y s R s (()0D s =), ()()E s R s (()0D s =),()()Y s D s (()0R s =), ⊗⊗)(1s G )(2s G )(s H )(s Y ()D s )(s R )(s E -+Figure 2.1 (a))(s G C )(s G )(s H )(s G d D(s)+R(s)E(s)Y(s)+--10Figure 2.1 (b)二 、 A unity feedback system has a plant2)1()(+=s K s G .(1) Plot the polar plot for )(s G when 4=K ; (2) Calculate the phase and magnitude at 1=ω; (3) Determine the range of K for which the system is stable; (4) Calculate the steady-state error ss e for input ()sin r t t =.三、A control system is shown in Figure 4.1,Where )(s G C =1+s K I , )(s G P =25(2)s s +.Figure 4.1(1) To assure the system is stable, determine the condition that I K ,t K should satisfy ;(2) When I K =0, t K ≠0, determine the value of t K when the percentovershoot (P.0%) is 16.3%; (..%P O =)(3) For the condition of (2), find the time response y(t) for a step input r(t)=A,11for t>0;(4) When I K ≠0, t K ≠0, find the steady-state error ss e for input r(t)=10+2t.四、 A unity feedback system has a plant2)4()(+=s s Ks G(1) Sketch the root locus for 0<K<∞;(2) Determine the value of the roots on the axis j -ω and the gain K required for those roots;(3) Determine the range of K , that result in a system that satisfy step response with no overshoot.五、The open-loop bode plot of a unity feedback system are shown in Fig.6. (1)Find the open-loop transfer function G(s);. (2)Determine the phase margin and gain margin ;. (3)When K=20,whether the system is stable.;1212.24100.1-20dB/dec-40dB/dec-60dB/decωωdBL )(ω)(ωΦ0o -90o -180o -270o-6.2dBFigure 614六、The unity feedback system has open-loop transfer function ,)15.0(100)(0+=s s S GThe bode plot of 0()()c G s G s is shown in Fig.7.Fig.7(1)Determine the transfer function of compensator Gc(s)(2)When 9.04/g w rad s =,determine the phase margin of the system aftercompensation.习题四1. Determine the transfer function Y(s)/R(s).2.A Feedback control system has the structure shown in figure 2.F igure2(1)Show the permissible area for the poles ofY(s)/R(s) in order to achieve P.O≤ 16.3%1314and t s ≤4s .(2)When ζ=0.5 and ωn =10, determine the value of K and β.(3)Determine the steady-state error for a step and a ramp input.3.A system has the transfer function15815)()()(2++==s s s R s Y s TDetermine its unity step response and its unity impulse response.4.A unity negative feedback system has a loop transfer function)1()1()5.0()(2-++=s s s K s G .(1)Sketch the root locus of q(s)=1+G(s)=0. (2)Determine the range of K for stability. (3)Find the value of the gain K when s=0 and other roots of the characteristic equation.5.The polar plot of the open-loop transfer15function of a system is shown below. (Fig.5(2)) (1) the corresponding transfer function is thefollowing which form? (Fig.5(1))(2) determine the stability of the system usingNyquist stability criteria.)Ti ,K (,)s T )(s T )(s T (K)s (H )s (G )b ()T ,K (,)s T )(s T (T (K )s (H )s (G )a (i 0011100111321213>>+++=>>+++=s s )Fig.5(1)Fig.5(2)6.Logarithm amplitude frequency characteristic curve of minimum phase systems as shown below, write out the system transfer function respectively.167. A unity feedback control system has a plant)s )(s (s )s (G 3212++=(1) Plot the Bode diagram of G(s).(2) Determine the phase margin PM and gain margin GM.(3) Plot the polar plot and Mark GM, PM on the map.。

APS复习--自动控制理论英文版

APS复习--自动控制理论英文版

Classic Control TheoryWhat have you learned in this course ?1.linear system control theory:modelingtime domain methodroot locus analysisfrequency domain methodSeries correction2.*nonlinear system control theory:harmonic wave equilibrium method3.*sampling control systemStability criterion & Steady state errorDetailLinear system theory1.ModelingClassic control theory use T.F as its model. There’re usually two methods to obtain a practical system’s T.F:1.1Mechanism analysis method:analysis the system and use some certain physical or other principles of system to obtain differential equations of system, then using Laplace transform to get system’s T.F. Example: LRC series circuit(pic.)1.2Testing method:Give a certain input to system, usually step input or impulse input, then record system’s output curve,and analysis the curve to get a appropriate T.F model.Example:A. Single capacity tank: the first order modeling(pic.)According the output curve, it’s a first order object,the gain can be calculated as K= ......And the time constant is the time value of 63.2%’s output value, that’s T=t......So the T.F is ......B. Double tank: the second order object’s modeling(pic.)The curve is approximate S-shape, so it’s a second or a hi gher order object. The gain K=... Suppose it’s a second order, then the general formula can be like this G(s)=......and time constant T1,T2 can also be calculated according to the curve, which have certain formula to reference. And if the model turns out not accurate enough, we can change the model’s order and do it again, until the result is close enough to the output curve.1.3 To get discrete time system’s modelwe can use so called least square method,which are usually applied by computer software,like MATLAB. The least square method is as following,the best estimate model is to minimize the sum of the errors...... /*最小二乘法待补充*/1.4 Mason ruleIf we have a system’s block diagram, we can directly write out the system’s closed loop T.F, according to Mason rule: T=......for example: ...2.Time domain methodThere’re three aspects to analysis a system’s performance in time domain:transientresponse, stability and steady state error.2.1 transient responseWe mainly concern about two parameters in transient response: settling time (ts) and overshoot (Mp%). Settling time presents the time when output is within plus and minus five percentage or two percentage of error. And overshoot equals to (peak value divided by steady state value). For a second order system, the transient of step response equals to c(t)=...ts=...Mp%=...and the curve like this: (pic.)We can also study the distribution of open loop poles to analysis the transient response. For example(pic.). This distance represents ..... And the closer poles to imaginary axis are, the shorter settling time will be. The bigger cos(x) is, the larger overshoot will be.2.2 stabilityThere’re many methods to determine the stability of a system in classic control theory, such as the pole distribution method, Routh-Hurwitz stability criterion, Nyquist criterion ,root locus analysis and so on.Pole distribution method: is the most basic method. If all of the open loop poles are settled in the left half part of the s-plane,then the closed loop system is stable, otherwise the system is unstable. (pic.)Routh-Hurwitz stability criterion: is a algebraic method to determine the system’s stability. Firstly we should get the characteristic equation from T.F, then list out the Routh Table, if all of the elements of the first column are positive, the closed system can be determined as stable. E.g.(pic.)2.3 steady-state errorSteady-state error (Es) is used to evaluate the system’s steady state accuracy. If we know the given input and the T.F of open loop then we can work out Es=...(final value theorem)./*表达式*/3. Root locus analysisRoot locus analysis is a graphical method for examining how the closed loop roots of a system change with variation of a certain system parameter, commonly the gain of a feedback system. It has several rules to follow when plotting a root locus. E.g(pic.)Root locus can also be used to analysis the system’s transient performance and stability.3.1 second order systemFor a second order system, if roots moved closer to the imaginary axis,then the settling time will be smaller, and if cos(x) get bigger, then overshoot will also be higher. And when all of the roots are settled in left part of the s-plane, the system are determined as stable.3.2 higher order systemFor a higher order system, there’re so ca lled dominant poles, which play a major role in the transient performance. Dominant poles are those poles which are closest to the imaginary axis, there are usually two dominant poles. By studying these two dominant poles in a similar way, the higher order system can be analyzed like a second order system. E.g.(pic.)3.3 effects of system zerosIn a higher order system, if we add a open loop zero in real axis, it will change the shape of the root locus, then change the system’s transient performance. Gene rally speaking,the root locus will shift to the left, thus system’s transient performance will be improved. And the closer the zero to the imaginary axis is, the more significant the effect will be. What ‘s more, if a zero is placed close to a pole, the i mpact of the pole will be reduced. In extreme cases, if a zero and a pole coincide, which become a dipole, the effect of this dipole can be ignored in transient analysis. The method is commonly used to eliminate the bad impact of a pole.4. Frequency domain methodIn frequency domain analysis, we chose sine signal as the reference input, and Fourier transform is applied in T.F, we call it frequency characteristic, which include magnitude frequency characteristic and phase frequency characteristic. G(jω)=G(s).4.1 Nyquist plot & Nyquist stability criterionIn Cartesian coordinates, the real part of the transfer function is plotted on the X axis, the imaginary part is plotted on the Y axis. The frequency is swept as a parameter, resulting in a plot per frequency,which called Nyquist plot. E.g.(pic.)One of the most commonly application of Nyquist plot is to determine the stability, known as Nyquist stability criterion. By looking at the number N of encirclements of the point at (-1,0), and comparing with the number P of open loop poles in right half part, can we know the number of unsatable closed loop poles Z. If Z is positive , system is unstable, otherwise if Z equals zero, the system is stable.4.2 Bode plotBode plot include magnitude plot and phase plot, expressing the variation of magnitude and phase. E.g.(pic.)Application: gain margin and phase margin. They’re used to evaluate the stability margin. Phase marginγ: when magnitude plot through the log-frequency axis at the cut off frequency ωc, then phase margin equal to the corresponding phase ψ(ω) plus 180.And when γ is positive, the system is stable, otherwise unstable.Gain margin GM: when phase polt through the -πphase, the reciprocal of the corresponding magnitude called gain margin Kg, or GM=20lgKg. And when Kg>1 or GM>0 , the system is stable.The key to calculate γis to obtain the cut off frequency ωc. By plotting the draft of magnitude plot can we approximate calculate the cut off frequency. And the key to obtain GM is to work out the frequency ωg./*注意这两个频率的计算*/5. Series compensation5.1 lead compensation G(s)=......Using occasion & effect: system’s phase margin is not sa tisfied enough, and need to be improved less than 60°, or want to increase the cut off frequency to improve the transient performance.The principle of design: place the biggest leading phase in the cut off point of the compensated system.Algorithm: fix the gain according to steady state error (K=1/e), work out phase margin of original system, calculate the expected leading phase ψ, then α, work out the new cut off frequency, obtain another parameter ω2. E.g.(pic.)/*注意算法*/5.2 lag compensation G(s)=......Using occasion & effect: when the transient performance is relative satisfied, but thesteady state accuracy and the immunity of system need to be improved. Effect: reduce the cut off frequency,increase the settling time, phase margin and immunity of system. Nonlinear system theoryIf a system contain at least one nonlinear element, then we call it nonlinear system. The most great difference between linear and nonlinear system is whether superposition principal can be used.Characteristics of typical nonlinear elements:(pic.)......To determine nonlinear system’s stability: Lyapunov stability theory./*见《现控》*/6. Harmonic wave equilibrium methodIt’s a frequency domain method, which can be used to approximately estimate the stability of nonlinear system.The system are separated into two part: linear and nonlinear.The describing function of nonlinear element N(x) : it is the frequency response of fundamental wave of output, and input is sine signal. X represents the amplitude of input. G(jω) is the frequency characteristic of linear part of system.Plot the -1/N(x) and G(jω) in the same s-plane, and study the common points: (pic.)If linear part G(jω) encircle the nonlinear part -1/N(x), then system is unstable;If not encircle and they have no common points, then system is stable;If they have some common points, along the direction of frequency increasing, when the point tend to get into the encirclement, then it’s not a self-oscillation point, when the point tend to get out of the encirclement, then it’s a self -oscillation point. And the oscillation frequency equals to the frequency of that point, the amplitude equals to X.Sampling control systemSampling control system is also called discrete time control system. A sampling control system contains sampler and holder. E.g.(pic.) /*框图*/The T.F hear is called pulse T.F, we can obtain the pulse T.F in a similar way as in continuous time system. (E.g)7. Stability & steady state errorStability:Obtain the pulse F.T, according to the block diagram. Use bilinear transformation z=(1+w)/(1-w) in the characteristic equation, then use Routh-Hurwitz criterion to determine the system’s stability.Steady state error: ....../*表达式*/Connection with other courses1.With modern control theoryDifferent models: in classic control theory we use F.T as mathematical model, but in modern control theory we use state space as mathematical model.Different mathematical foundation: the mathematical foundation of classic is Laplace transformation and Fourier transformation , and the modern is matrix theory.Different object: in classic we study mainly SISO (single input single output) system and LTI (linear time-invariant) system, but in modern we study mainly MIMO system and even much more complicated system.Different methods: in classic we study system both in time domain and frequency domain, but in modern we mainly in time domain.Different research tools: in classic we usually use manual computation, but in modern we mainly use software to compute, like MATLAB. Because modern control theory is more suitable for computer.2.With process controlProcess control is the application of control theory in continuous industry. Process control is a engineering discipline, it concerns about not only system’s performance but also other practical problem, such as safety, economy, environment and so on. And process control is more than control theory, but also contains detection, mechanism and architecture.3.With other coursesAnalog electronic technology: negative feedback amplifier.。

自动控制理论第五章习题

自动控制理论第五章习题

第五章习题E5.2 The engine,body,and tires of a racing vehicle affect the acceleration and speed attainable.The speed control of the car is represented by the model shown in FigureE5.2.(a)Calculate the steady-state error of the car to a step command in speed.(b)Calculate overshoot of the speed to a step command.E5.3 For years,Amtrak has struggled to attract passengers on its routes in the Midwest,using technology developed decades ago.During the same time,foreign railroads were developing new passenger rail systems that could profitably compete with air travel.Two of these systems,the French TGV and the Japanese Shinkansen,reach speed of 160 mph.The Transrapid-06,a U.S. Experimental magnetic levitation train,is shown in Figure E5.3(a).The use of magnetic levitation and electromagnetic propusion to provide contactless vehicle movement makes the Transrapid-06 technolog radically different from the existing Metroliner.The underside of the TR-06 carriage(where the wheel trucks would be on a conventional car)wraps around a guideway.Magnets on the bottom of the guideway attract electromagnets on the "wraparound,"pulling it up toward the guideway.This suspends the vehicles about one centimeter above the guideway.The levitation control is represented by Figure E5.3(b).(a)using Table 5.6 for a step input,select K so that the system provide an optimum ITAE response.(b)Using Figure5.3 determine the expected overshoot to a step input of I(s).E5.5 A low-inertia plotter is shown in Figure E5.5(a).This system may be represented by block diagram shown in Figure E5.5(b).(a)Calculate the steady error for a ramp input.(b)Select a value of K that will result in zero overshoot to a step input.Provide the most rapid response that is attainable.Plot the poles and zeros of the system and discuss the dominance of the complex poles.What overshoot for a step input do you expect?E5.6 Effective control of insulin injection can result in better lives for diabetic persons.Automatically controlled insulin jection by means of a pump and a sensor that measures blood sugar can be very effective.A pump and injection system has a feedback control as shown in Figure E5.6.Calculate the suitable gain K,so that the overshoot of the step response due to the drug injection is approximately 7%.R(s) is the desired blood-sugar level and Y(s),is the actual blood-sugar level.Figure E5.6E5.8 A unity negative feedback control system has the plant transfer function(a)Determine the percent overshoot and setting time (using a 2% setting criterion) due to a unit step input.(b)For what range of K is the setting time less than 1 second?E5.10 A system with unity feedback is shown in Figure E5.10.Determine the steady-state error for a step and ramp input whenE5.11 We are all familiar with the Ferris wheel featured at state fairs and carnivals,George Ferris was born in Galesbueg,Illinois,in 1859;he later moved to Nevada and then graduated from Rensselaer Polytechnic Institute in 1881. By 1891,Ferris had considerable experience with iron,steel,and bridge construction.He conceived and constructed his famous wheel for the 1893 Columbian Exposition in Chicago. To avoid upsetting passegers,set a requirement that the steady-state speed must be controlled to within 5% of the desired speed for the system shown in Figure E5.11.(a)Determine the required gain K to achieve the steady-state requirement.(b)For the gain of the part(a),determine and plot the error e(t) for a distrbance D(s)=1/s.Does the speed change more than 5%?(set R(s)=0 for ease of computation.)E5.13 A feedback system is shown in Figure E5.13.(a)Determine the steady-state error for a unit step when K=0.4 and G p(s)=1.(b)Select an appropriate value for G p(s) so that the steady-state error is equal to zero for the unit step input.E5.16 A closed-loop control system transfer function T(s) has two dominant complex conjugate poles.Sketch the region in the left-hand s-plane where the complex poles should be located to meet the given specifications.(aE5.17 A system is shown in Figure E5.17(a).Theresponse to a unit step,when K=1,is shown in FigureE5.17(b).Determine the value of K so that thesteady-state error is equal to zero.P5.1 A important problem for television systems is thejumping or wobbling of the picture due to the movementof the camera.This effect occurs when the camera ismounted in a moving truck or airplane. The Dynalenssystem has been designed to reduce the effect of rapidscanning motion;see Figure P5.1. A maximum scanning motion of 25% is expected.Let Kg=K f=1 and assume that τg is negligible.(a)Determine the error of the system E(s).(b)Determine the necessary loop gain,K a K m Kt,when a 10/s steady-state error is allowable.(c)The motor time constant is 0.40s.Determine the necessary loop gain so that the setting time(to within 2% of the final value of v b) is less than or equal to 0.03s.P5.2 A specific closed-loop control system is to be designed for an underramped response to a step input.The specification for the system are as follows:10%<percent overshoot<20%, Setting time<0.6s.(a)Identify the desired area for the dominant roots of the sytem(b)Determine the smallest value of a third root,r3 ,if the complex conjugate roots are to represent the dominant response.(c)The closed-loop system transfer function T(s) is third-order,and the feedback has a unity gain, Determine the forword transfer function,G(s)=Y(s)/E(s).when the setting time to within 2% of the final value is 0.6s and the percent overshoot is 20%.P5.5 A space telescope is to be launched to carry out astronamical experiments.The pointing control system is desried to achieve 0.01 minute of arc and track solar objects with apparent motion up to 0.21 minute per second. Tne system is illustrated in Figure P5.5(a).The control system is shown in Figure P5.5(b). Assume that τ1 =1second and τ2 =0(an approximation).(a)Determine the gain K=K1K2required so that the response to a step command is as rapid as reasonable with an overshoot of less than 5%(b)Determine the steady-state error of the system for a step and ramp input(c)Determine the value of K1K2 for ITAE optimal system for (1) a step input and (2)a ramp input.P5.6 A robot is programmed to have a tool or welding torch follow a prescribed path. Consider a robot tool that is to follow a sawtooth path.as shown in FigureP5.6(a).The transfer function of the plant isThe transfer function of the plant is for the closed-loop system shown in Figure P5.6(b).Calculate the steady-state error.P5.7 Astronaut Bruce McCandless II took the first unthethered walk in space on February 7,1984,using the gas-jet propulsion device illustrated in Figure P5.7(a).The controller can be represented by a gain K2 , shown in Figure P5.7(b).The inertia of the equipment and man with his arms at his sides is 25 Kg-m2.FIGURE P5.7 (a)Astronaut Bruce McCandless II is shown a few meters away from the earth-orbiting space shuttle, Challenger. He used a nitrogenpropelled handcontrolled device called the manned maneuvering unit.(Courtesy of National Aeronautic and space Administration) (b)Block diagram of controller(a)Determine the necessary gain K3to maintain a steady-state error equal to 1 cm when the input is a ramp r(t)=t(meters).(b)With this gain K3,determine the necessary gain K1K2 in order to restrict the percent overshoot to 10%. (c)Determine annalytically the gain K1K2 in order to minimize the ISE performance index for a step input.P5.16 Electronic pacemakers for human hearts regulate the speed of the heart pump.A proposed closed-loop system that includes a pacemaker and measurement of the heart rate is shown in Figure P5.16.The transfer function of the heart pump and the pacemake is found to be:Design the amplifier gain to yield a system with a setting time to a step disturbance of less than 1 second.The overshoot to a step in desired heart rate should be less than 10%.FIGURE P5.16 Heart pacemaker(a)Find a suitable range of K(b)If the nominal value of K is K=10,find the sensitivity of the system to a small change in K.(c)Evaluate the sensitivity of part(b) at DC(set s=0).(d)Evaluate the magnitude of the sensitivity at normal heart rate of 60 beats/minute.P5.19 A system is shown in Figure P5.19.(a)Determine the steady-state error for a unit step input in terms of K and K1,where E(s)=R(s)-Y(S). (b)Select K1 so that the steady-state error is zero.AP5.1 A closed-loop transfer function is(a)Determine the steady-state error for a unit step input R(s)=1/s(b)Assume that the complex poles dominate,and determine the overshoot and setting time to within 2% of the final value(c)Plot the actual system response,and compare it with the estimate of part(b).AP5.3 A closed-loop system is shown in Figure AP5.3.Plot the response to a unit step input for system with τp=0, 0.5, 2,and 5. Record the percent overshoot,rise time,and settling time(with a 2% criter ion) as τp varies.Describe the effect of varying τp .Compare the location of the closed-loop roots.AP5.4 The speed control of a high-speed train is represented by the system shown in Figure AP5.4.Determine the equation for steady-state error for K for a unit step input r(t).Consider the three values for equal to 1, 10, 100.(a)Determine the steady-state error.(b)Determine and plot the response y(t) for (i) a unit step input r(t) and (ii) a unit step disturbance input d(t).(c)Creat a table showing overshoot,setting time (with a 2% criertion),e ss for r(t),and |y/d|max for the three values of K.Select the best comprise value.AP5.6 The block diagram model of an armature-current-controlled DC motor is shown in Figure AP5.6.(a)Determine the steady-state error for a step input r(t)=t,t>=0, in terms of K,Kb,and K m .(b)Let K m=10 and K b=0.05,and select K so that steady-state error is equal to 1.(c)Plot the response to a unit step and a unit ramp input for 20 seconds,Are the responses acceptable?(d) .(e)(f)。

《自动控制原理》试卷及答案(英文10套)

《自动控制原理》试卷及答案(英文10套)

AUTOMATIC CONTROL THEOREM (1)⒈ Derive the transfer function and the differential equation of the electric network⒉ Consider the system shown in Fig.2. Obtain the closed-loop transfer function)()(S R S C , )()(S R S E . (12%) ⒊ The characteristic equation is given 010)6(5)(123=++++=+K S K S S S GH . Discuss the distribution of the closed-loop poles. (16%)① There are 3 roots on the LHP ② There are 2 roots on the LHP② There are 1 roots on the LHP ④ There are no roots on the LHP . K=?⒋ Consider a unity-feedback control system whose open-loop transfer function is )6.0(14.0)(++=S S S S G . Obtain the response to a unit-step input. What is the rise time for this system? What is the maximum overshoot? (10%)5. Sketch the root-locus plot for the system )1()(+=S S K S GH . ( The gain K is assumed to be positive.)① Determine the breakaway point and K value.② Determine the value of K at which root loci cross the imaginary axis. ③ Discuss the stability. (12%)Fig.16. The system block diagram is shown Fig.3. Suppose )2(t r +=, 1=n . DetermineFig.37. Consider the system with the following open-loop transfer function:)1)(1()(21++=S T S T S K S GH . ① Draw Nyquist diagrams. ② Determine the stability of the system for two cases, ⑴ the gain K is small, ⑵ K is large. (12%)8. Sketch the Bode diagram of the system shown in Fig.4. (14%)⒈212121121212)()()(C C S C C R R C S C C R S V S V ++++=⒉ 2423241321121413211)()(H G H G G G G G G G H G G G G G G G S R S C ++++++=⒊ ① 0<K<6 ② K ≤0 ③ K ≥6 ④ no answer⒋⒌①the breakaway point is –1 and –1/3; k=4/27 ② The imaginary axis S=±j; K=2③⒍5.75.3≤≤K⒎ )154.82)(181.34)(1481.3)(1316.0()11.0(62.31)(+++++=S S S S S S GH AUTOMATIC CONTROL THEOREM (2)⒈Derive the transfer function and the differential equation of the electric network⒉ Consider the equation group shown in Equation.1. Draw block diagram and obtain the closed-loop transfer function )()(S R S C . (16% ) Equation.1 ⎪⎪⎩⎪⎪⎨⎧=-=-=--=)()()()()]()()([)()]()()()[()()()]()()[()()()(3435233612287111S X S G S C S G S G S C S X S X S X S G S X S G S X S C S G S G S G S R S G S X⒊ Use Routh ’s criterion to determine the number of roots in the right-half S plane for the equation 0400600226283)(12345=+++++=+S S S S S S GH . Analyze stability.(12% )⒋ Determine the range of K value ,when )1(2t t r ++=, 5.0≤SS e . (12% )Fig.1⒌Fig.3 shows a unity-feedback control system. By sketching the Nyquist diagram of the system, determine the maximum value of K consistent with stability, and check the result using Routh ’s criterion. Sketch the root-locus for the system (20%)(18% )⒎ Determine the transfer function. Assume a minimum-phase transfer function.(10% )⒈ 1)()(2122112221112++++=S C R C R C R S C R C R S V ⒉ )(1)()(8743215436324321G G G G G G G G G G G G G G G G S R S C -+++= ⒊ There are 4 roots in the left-half S plane, 2 roots on the imaginary axes, 0 root in the RSP. The system is unstable.⒋ 208<≤K⒌ K=20⒎ )154.82)(181.34)(1481.3)(1316.0()11.0(62.31)(+++++=S S S S S S GHAUTOMATIC CONTROL THEOREM (3)⒈List the major advantages and disadvantages of open-loop control systems. (12% )⒉Derive the transfer function and the differential equation of the electric network⒊ Consider the system shown in Fig.2. Obtain the closed-loop transfer function)()(S R S C , )()(S R S E , )()(S P S C . (12%)⒋ The characteristic equation is given 02023)(123=+++=+S S S S GH . Discuss the distribution of the closed-loop poles. (16%)5. Sketch the root-locus plot for the system )1()(+=S S K S GH . (The gain K is assumed to be positive.)④ Determine the breakaway point and K value.⑤ Determine the value of K at which root loci cross the imaginary axis.⑥ Discuss the stability. (14%)6. The system block diagram is shown Fig.3. 21+=S K G , )3(42+=S S G . Suppose )2(t r +=, 1=n . Determine the value of K to ensure 1≤SS e . (15%)7. Consider the system with the following open-loop transfer function:)1)(1()(21++=S T S T S K S GH . ① Draw Nyquist diagrams. ② Determine the stability of the system for two cases, ⑴ the gain K is small, ⑵ K is large. (15%) ⒈ Solution: The advantages of open-loop control systems are as follows: ① Simple construction and ease of maintenance② Less expensive than a corresponding closed-loop system③ There is no stability problem④ Convenient when output is hard to measure or economically not feasible. (For example, it would be quite expensive to provide a device to measure the quality of the output of a toaster.)The disadvantages of open-loop control systems are as follows:① Disturbances and changes in calibration cause errors, and the output may be different from what is desired.② To maintain the required quality in the output, recalibration is necessary from time to time.⒉ 1)(1)()()(2122112221122112221112+++++++=S C R C R C R S C R C R S C R C R S C R C R S U S U ⒊351343212321215143211)()(H G G H G G G G H G G H G G G G G G G G S R S C +++++= 35134321232121253121431)1()()(H G G H G G G G H G G H G G H G G H G G G G S P S C ++++-+= ⒋ R=2, L=1⒌ S:①the breakaway point is –1 and –1/3; k=4/27 ② The imaginary axis S=±j; K=2⒍5.75.3≤≤KAUTOMATIC CONTROL THEOREM (4)⒈ Find the poles of the following )(s F :s es F --=11)( (12%) ⒉Consider the system shown in Fig.1,where 6.0=ξ and 5=n ωrad/sec. Obtain the rise time r t , peak time p t , maximum overshoot P M , and settling time s t when the system is subjected to a unit-step input. (10%)⒊ Consider the system shown in Fig.2. Obtain the closed-loop transfer function)()(S R S C , )()(S R S E , )()(S P S C . (12%)⒋ The characteristic equation is given 02023)(123=+++=+S S S S GH . Discuss the distribution of the closed-loop poles. (16%)5. Sketch the root-locus plot for the system )1()(+=S S K S GH . (The gain K is assumed to be positive.)⑦ Determine the breakaway point and K value.⑧ Determine the value of K at which root loci cross the imaginary axis.⑨ Discuss the stability. (12%)6. The system block diagram is shown Fig.3. 21+=S K G , )3(42+=S S G . Suppose )2(t r +=, 1=n . Determine the value of K to ensure 1≤SS e . (12%))1)(1()(21++=S T S T S K S GH . ① Draw Nyquist diagrams. ② Determine the stability of the system for two cases, ⑴ the gain K is small, ⑵ K is large. (12%8. Sketch the Bode diagram of the system shown in Fig.4. (14%)⒈ Solution: The poles are found from 1=-s e or 1)sin (cos )(=-=-+-ωωσωσj e e j From this it follows that πωσn 2,0±== ),2,1,0( =n . Thus, the poles are located at πn j s 2±=⒉Solution: rise time sec 55.0=r t , peak time sec 785.0=p t ,maximum overshoot 095.0=P M ,and settling time sec 33.1=s t for the %2 criterion, settling time sec 1=s t for the %5 criterion.⒊ 351343212321215143211)()(H G G H G G G G H G G H G G G G G G G G S R S C +++++= 35134321232121253121431)1()()(H G G H G G G G H G G H G G H G G H G G G G S P S C ++++-+=⒋R=2, L=15. S:①the breakaway point is –1 and –1/3; k=4/27 ② The imaginary axis S=±j; K=2⒍5.75.3≤≤KAUTOMATIC CONTROL THEOREM (5)⒈ Consider the system shown in Fig.1. Obtain the closed-loop transfer function )()(S R S C , )()(S R S E . (18%)⒉ The characteristic equation is given 0483224123)(12345=+++++=+S S S S S S GH . Discuss the distribution of the closed-loop poles. (16%)⒊ Sketch the root-locus plot for the system )15.0)(1()(++=S S S K S GH . (The gain K is assumed to be positive.)① Determine the breakaway point and K value.② Determine the value of K at which root loci cross the imaginary axis.③ Discuss the stability. (18%)⒋ The system block diagram is shown Fig.2. 1111+=S T K G , 1222+=S T K G . ①Suppose 0=r , 1=n . Determine the value of SS e . ②Suppose 1=r , 1=n . Determine the value of SS e . (14%)⒌ Sketch the Bode diagram for the following transfer function. )1()(Ts s K s GH +=, 7=K , 087.0=T . (10%)⒍ A system with the open-loop transfer function )1()(2+=TS s K S GH is inherently unstable. This system can be stabilized by adding derivative control. Sketch the polar plots for the open-loop transfer function with and without derivative control. (14%) ⒎ Draw the block diagram and determine the transfer function. (10%)⒈∆=321)()(G G G S R S C ⒉R=0, L=3,I=2⒋①2121K K K e ss +-=②21211K K K e ss +-= ⒎11)()(12+=RCs s U s U AUTOMATIC CONTROL THEOREM (6)⒈ Consider the system shown in Fig.1. Obtain the closed-loop transfer function )()(S R S C , )()(S R S E . (18%)⒉The characteristic equation is given 012012212010525)(12345=+++++=+S S S S S S GH . Discuss the distribution of the closed-loop poles. (12%)⒊ Sketch the root-locus plot for the system )3()1()(-+=S S S K S GH . (The gain K is assumed to be positive.)① Determine the breakaway point and K value.② Determine the value of K at which root loci cross the imaginary axis.③ Discuss the stability. (15%)⒋ The system block diagram is shown Fig.2. SG 11=, )125.0(102+=S S G . Suppose t r +=1, 1.0=n . Determine the value of SS e . (12%)⒌ Calculate the transfer function for the following Bode diagram of the minimum phase. (15%)⒍ For the system show as follows, )5(4)(+=s s s G ,1)(=s H , (16%) ① Determine the system output )(t c to a unit step, ramp input.② Determine the coefficient P K , V K and the steady state error to t t r 2)(=.⒎ Plot the Bode diagram of the system described by the open-loop transfer function elements )5.01()1(10)(s s s s G ++=, 1)(=s H . (12%) ⒈32221212321221122211)1()()(H H G H H G G H H G G H G H G H G G G S R S C +-++-+-+= ⒉R=0, L=5w⒌)1611()14)(1)(110(05.0)(2s s s s s s G ++++= ⒍t t e e t c 431341)(--+-= t t e e t t c 41213445)(---+-= ∞=P K , 8.0=V K , 5.2=ss eAUTOMATIC CONTROL THEOREM (7)⒈ Consider the system shown in Fig.1. Obtain the closed-loop transfer function)()(S R S C , )()(S R S E . (16%)⒉ The characteristic equation is given 01087444)(123456=+--+-+=+S S S S S S S GH . Discuss the distribution of the closed-loop poles. (10%)⒊ Sketch the root-locus plot for the system 3)1()(S S K S GH +=. (The gain K is assumed to be positive.)① Determine the breakaway point and K value.② Determine the value of K at which root loci cross the imaginary axis.③ Discuss the stability. (15%)⒋ Show that the steady-state error in the response to ramp inputs can be made zero, if the closed-loop transfer function is given by:nn n n n n a s a s a s a s a s R s C +++++=---1111)()( ;1)(=s H (12%)⒌ Calculate the transfer function for the following Bode diagram of the minimum phase.w(15%⒍ Sketch the Nyquist diagram (Polar plot) for the system described by the open-loop transfer function )12.0(11.0)(++=s s s S GH , and find the frequency and phase such that magnitude is unity. (16%)⒎ The stability of a closed-loop system with the following open-loop transfer function )1()1()(122++=s T s s T K S GH depends on the relative magnitudes of 1T and 2T . Draw Nyquist diagram and determine the stability of the system. (16%) ( 00021>>>T T K ) ⒈3213221132112)()(G G G G G G G G G G G G S R S C ++-++= ⒉R=2, I=2,L=2 ⒌)1()1()(32122++=ωωωs s ss G ⒍o srad 5.95/986.0-=Φ=ω。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
of performance relating x1 to y1. (a) Neglect the load reaction. (b) Do not neglect load reaction. There is only one fixed pivot, as shown in
figure.
2.19. The mechanical load on the hydraulic translational actuator is Sec. 2.9, Fig. 2.22, is changed to that in the accompanying figure. Determine the new state equations and compare with Eq. (2.114).
722
Linear Control System Analysis and Design
ห้องสมุดไป่ตู้
has resistance and inductance. (a) Write the differential equations of performance. (b) Write the state equations.
Copyright © 2003 Marcel Dekker, Inc.
724
Linear Control System Analysis and Design
2.17. 2.18.
Write the state and system output equations for the rotational mechanical system of Fig. 2.16. (a) With T as the input, use x1 ¼ y3, x2 ¼ Dy3, x3 ¼ Dy2 and (b) with y1 as the input, use x1 ¼ y3, x2 ¼ Dy3, x3 ¼ y2, x4 ¼ Dy2. For the hydraulic preamplifier shown, write the differential equations
2.6. (a) Derive the differential equation relating the position y(t) and the force f (t). (b) Draw the mechanical network. (c) Determine the transfer function G(D) ¼ y/f. (d ) Identify a suitable set of independent state variables.Write the state equation in matrix form.
Copyright © 2003 Marcel Dekker, Inc.
Problems
723
2.13. (a) Write the equations of motion for this system. (b) Using the physical energy variables,write the matrix state equation.
Linear Control System Analysis and Design
2.3. The circuits shown are in the steady state with the switch S closed. At time t ¼ 0, S is opened. (a) Write the necessary differential equations for determining i1(t). (b) Write the state equations.
Copyright © 2003 Marcel Dekker, Inc.
Problems
721
2.7. (a) Draw the mechanical network for the mechanical system shown. (b) Write the differential equations of performance. (c) Draw the analogous electric circuit in which force is analogous to current. (d ) Write the state equations.
2.4. Write all the necessary equations to determine v0. (a) Use nodal equations. (b) Use loop equations. (c) Write the state and output equations.
2.5. Derive the state equations. Note that there are only two independent state variables.
Problems
CHAPTER 2 2.1. Write the (a) loop, (b) node, and (c) state equations for the circuit shown
after the switch is closed. Let u ¼ e, y1 ¼vC, and y2 ¼ vR2: (d ) Determine the transfer function y1/e and y2/u ¼ G2.
2.8. (a) Write the differential equations describing the motion of the following system, assuming small displacements. (b) Write the state equations.
2.9. A simplified model for the vertical suspension of an automobile is shown in the figure. (a) Draw the mechanical network; (b) write the differential equations of performance; (c) derive the state equations; (d ) determine the transfer function x1=u^ 2, where u^ 2 ¼ ðB2D þ K2Þu2 is the force exerted by the road.
2.14.
The figure represents a cylinder of intertia J1 inside a sleeve of intertia J2. There is viscous damping B1 between the cylinder and the sleeve. The springs K1 and K2 are fastened to the inner cylinder. (a) Draw the mechanical network. (b) Write the system equations. (c) Draw
2.2. Write the (a) loop, (b) node, and (c) state equations for the circuit shown after the switch S is closed.
Copyright © 2003 Marcel Dekker, Inc.
720
2.10. An electromagnetic actuator contains a solenoid, which produces a magnetic force proportional to the current in the coil, f ¼ Kii. The coil
Copyright © 2003 Marcel Dekker, Inc.
2.11. A warehouse transportation system has a motor drive moving a trolley on a rail. Write the equation of motion.
2.12.
For the system shown, the torque T is transmitted through a noncompliant shaft and a hydraulic clutch to a pulley #1,which has a moment of inertial J1. The clutch is modeled by the damping coefficient B1 (it is assumed to be massless). A bearing between the clutch and the pulley #1 has a damping coefficient B2. Pulley #1 is connected to pulley #2 with a slipless belt drive. Pulley #2,which has a moment of inertial J2, is firmly connected to a wall with a compliant shaft that has a spring constant K. The desired outputs are: y1 ¼ yb, the angular position of the J1, and y2 ¼ y_a, the angular velocity of the input shaft, before the clutch. (a) Draw the mechanical network; (b) write the differential equations of performance; (c) write the state equations; (d ) determine the transfer function y1/u and y2/u.
相关文档
最新文档