人工神经网络

合集下载

《人工神经网络》课件

《人工神经网络》课件
添加项标题
动量法:在梯度下降法的基础上,引入动量项,加速收敛速 度
添加项标题
RMSProp:在AdaGrad的基础上,引入指数加权移动平 均,提高了算法的稳定性和收敛速度
添加项标题
随机梯度下降法:在梯度下降法的基础上,每次只使用一个 样本进行更新,提高了训练速度
添加项标题
AdaGrad:自适应学习率算法,根据历史梯度的平方和来 调整学习率,解决了学习率衰减的问题
情感分析:分析文本中的情感 倾向,如正面评价、负面评价 等
推荐系统
推荐系统是一种基于用户历史行为 和偏好的个性化推荐服务
推荐算法:协同过滤、深度学习、 矩阵分解等
添加标题
添加标题
添加标题
添加标题
应用场景:电商、社交媒体、视频 网站等
应用效果:提高用户满意度、增加 用户粘性、提高转化率等
Part Six
类型:Sigmoid、 Tanh、ReLU等
特点:非线性、可 微分
应用:深度学习、 机器学习等领域
权重调整
权重调整的目的:优化神经网络的性能 权重调整的方法:梯度下降法、随机梯度下降法等 权重调整的步骤:计算损失函数、计算梯度、更新权重 权重调整的影响因素:学习率、批次大小、优化器等
Part Four
《人工神经网络》PPT 课件
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 神 经 网 络 基 础 知 识 05 神 经 网 络 应 用 案 例 07 未 来 发 展 趋 势 与 挑 战
02 人 工 神 经 网 络 概 述 04 人 工 神 经 网 络 算 法 06 神 经 网 络 优 化 与 改 进
深度学习算法
卷积神经网络(CNN):用于图像处理和识别 循环神经网络(RNN):用于处理序列数据,如语音识别和自然语言处理 长短期记忆网络(LSTM):改进的RNN,用于处理长序列数据 生成对抗网络(GAN):用于生成新数据,如图像生成和文本生成

《人工神经网络》课件

《人工神经网络》课件

拟牛顿法
改进牛顿法的不足,使用正定矩阵近 似Hessian矩阵,提高优化效率。
共轭梯度法
结合梯度下降法和共轭方向的思想, 在每一步迭代中选择合适的共轭方向 进行搜索。
遗传算法
模拟生物进化过程的优化算法,通过 选择、交叉、变异等操作寻找最优解 。
正则化技术
L1正则化
对权重参数的绝对值进行惩罚总结词
自然语言处理是利用人工神经网络对自然语言文本进行分析和处理的技术。
详细描述
自然语言处理是实现人机文本交互的关键技术之一,通过训练神经网络对大量文本数据进 行学习,可以实现对文本的自动分类、情感分析、机器翻译等功能。
具体应用
在社交媒体领域,自然语言处理技术可以用于情感分析和舆情监控;在新闻媒体领域,可 以用于新闻分类和摘要生成;在机器翻译领域,可以用于实现多语言之间的自动翻译。
06
人工神经网络的未 来展望
新型神经网络模型的研究
持续探索新型神经网络模型
随着技术的不断发展,新型神经网络模型的研究将不断涌现,以解决传统模型无法处理 的复杂问题。这些新型模型可能包括更复杂的拓扑结构、更高效的参数优化方法等。
结合领域知识进行模型设计
未来的神经网络模型将更加注重与领域知识的结合,以提高模型的针对性和实用性。例 如,在医疗领域,结合医学影像和病理学知识的神经网络模型能够更准确地辅助医生进
THANKS
感谢您的观看
文字、人脸等目标的技术。
02 03
详细描述
图像识别是人工神经网络应用的重要领域之一,通过训练神经网络对大 量图像数据进行学习,可以实现对图像的自动分类、目标检测、人脸识 别等功能。
具体应用
在安防领域,图像识别技术可以用于人脸识别和视频监控;在医疗领域 ,可以用于医学影像分析;在电商领域,可以用于商品图片的自动分类 和检索。

人工神经网络概述

人工神经网络概述

2.1 感知器
单层感知器的学习法:
2.1 感知器
多层感知器:
在输入层和输出层之间加入一层或多层隐单元,构成 多层感知器。提高感知器的分类能力。
两层感知器可以解决“异或”问题的分类及识别任一凸 多边形或无界的凸区域。
更多层感知器网络,可识别更为复杂的图形。
2.2 BP网络
多层前馈网络的反向传播 (BP)学习算法,简称BP 算法,是有导师的学习,它 是梯度下降法在多层前馈网 中的应用。
基本感知器
是一个具有单层计算神经元的两层网络。 只能对线性可分输入矢量进行分类。
n个输入向量x1,x2, …, xn 均为实数,w1i,w2i,…,wni 分别是n个输入 的连接权值,b是感知器的阈值,传递函数f一般是阶跃函数,y 是感 知器的输出。通过对网络权值的训练,可以使感知器对一组输入矢量 的响应成为0或1的目标输出,从而达到对输入矢量分类识别的目的。
网络结构 见图,u、y是网络的输
入、输出向量,神经元用节 点表示,网络由输入层、隐 层和输出层节点组成,隐层 可一层,也可多层(图中是 单隐层),前层至后层节点 通过权联接。由于用BP学习 算法,所以常称BP神经网络 。
2.2 BP网络
已知网络的输入/输出样本,即导师信号 。
BP学习算法由正向传播和反向传播组成 :
net.trainparam.goal=0.00001;
网络可能根本不能训
% 进行网络训练和仿真:
练或网络性能很差;
[net,tr]=train(net,X,Y);
若隐层节点数太多,
% 进行仿真预测
虽然可使网络的系统
XX1=[0.556 0.556 0.556 0.556 0.556 0.556 0.556] 误差减小,但一方面

人工神经网络是什么

人工神经网络是什么

⼈⼯神经⽹络是什么⽬录⼀、⼈⼯神经⽹络⼈⼯智能的主流研究⽅法是连接主义,通过⼈⼯构建神经⽹络的⽅式模拟⼈类智能。

⼈⼯神经⽹络(Artificial Neural Network,即ANN ),是20世纪80 年代以来⼈⼯智能领域兴起的研究热点。

它从信息处理⾓度对⼈脑神经元⽹络进⾏抽象,建⽴某种简单模型,按不同的连接⽅式组成不同的⽹络。

⼈⼯神经⽹络借鉴了⽣物神经⽹络的思想,是超级简化版的⽣物神经⽹络。

以⼯程技术⼿段模拟⼈脑神经系统的结构和功能,通过⼤量的⾮线性并⾏处理器模拟⼈脑中众多的神经元,⽤处理器复杂的连接关系模拟⼈脑中众多神经元之间的突触⾏为。

⼆、⽣物神经⽹络⼈脑由⼤约千亿个神经细胞及亿亿个神经突触组成,这些神经细胞及其突触共同构成了庞⼤的⽣物神经⽹络每个神经元伸出的突起分为树突和轴突。

树突分⽀⽐较多,每个分⽀还可以再分⽀,长度⼀般⽐较短,作⽤是接受信号。

轴突只有⼀个,长度⼀般⽐较长,作⽤是把从树突和细胞表⾯传⼊细胞体的神经信号传出到其他神经元。

⼤脑中的神经元接受神经树突的兴奋性突触后电位和抑制性突触后电位,产⽣出沿其轴突传递的神经元的动作电位。

⽣物神经⽹络⼤概有以下特点:1. 每个神经元都是⼀个多输⼊单输出的信息处理单元,神经元输⼊分兴奋性输⼊和抑制性输⼊两种类型2. 神经细胞通过突触与其他神经细胞进⾏连接与通信,突触所接收到的信号强度超过某个阈值时,神经细胞会进⼊激活状态,并通过突触向上层神经细胞发送激活细号3. 神经元具有空间整合特性和阈值特性,较⾼层次的神经元加⼯出了较低层次不具备的“新功能”4. 神经元输⼊与输出间有固定的时滞,主要取决于突触延搁外部事物属性⼀般以光波、声波、电波等⽅式作为输⼊,刺激⼈类的⽣物传感器。

三、硅基智能与碳基智能⼈类智能建⽴在有机物基础上的碳基智能,⽽⼈⼯智能建⽴在⽆机物基础上的硅基智能。

碳基智能与硅基智能的本质区别是架构,决定了数据的传输与处理是否能够同时进⾏。

人工神经网络知识概述

人工神经网络知识概述

人工神经网络知识概述人工神经网络(Artificial Neural Networks,ANN)系统是20世纪40年代后出现的。

它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信息存储、良好的自组织自学习能力等特点。

BP(Back Propagation)算法又称为误差反向传播算法,是人工神经网络中的一种监督式的学习算法。

BP 神经网络算法在理论上可以逼近任意函数,基本的结构由非线性变化单元组成,具有很强的非线性映射能力。

而且网络的中间层数、各层的处理单元数及网络的学习系数等参数可根据具体情况设定,灵活性很大,在优化、信号处理与模式识别、智能控制、故障诊断等许多领域都有着广泛的应用前景。

人工神经元的研究起源于脑神经元学说。

19世纪末,在生物、生理学领域,Waldeger等人创建了神经元学说。

人们认识到复杂的神经系统是由数目繁多的神经元组合而成。

大脑皮层包括有100亿个以上的神经元,每立方毫米约有数万个,它们互相联结形成神经网络,通过感觉器官和神经接受来自身体内外的各种信息,传递至中枢神经系统内,经过对信息的分析和综合,再通过运动神经发出控制信息,以此来实现机体与内外环境的联系,协调全身的各种机能活动。

神经元也和其他类型的细胞一样,包括有细胞膜、细胞质和细胞核。

但是神经细胞的形态比较特殊,具有许多突起,因此又分为细胞体、轴突和树突三部分。

细胞体内有细胞核,突起的作用是传递信息。

树突是作为引入输入信号的突起,而轴突是作为输出端的突起,它只有一个。

树突是细胞体的延伸部分,它由细胞体发出后逐渐变细,全长各部位都可与其他神经元的轴突末梢相互联系,形成所谓“突触”。

在突触处两神经元并未连通,它只是发生信息传递功能的结合部,联系界面之间间隙约为(15~50)×10米。

突触可分为兴奋性与抑制性两种类型,它相应于神经元之间耦合的极性。

每个神经元的突触数目正常,最高可达10个。

各神经元之间的连接强度和极性有所不同,并且都可调整、基于这一特性,人脑具有存储信息的功能。

什么是人工神经网络

什么是人工神经网络

什么是人工神经网络人工神经网络是一种基于机器学习的人工智能技术,它可以让计算机学习如何识别与处理复杂的数据,比如图像、音频和视频。

本文将专注介绍人工神经网络,深入讨论它的构成、工作原理以及它如今所扮演的角色。

人工神经网络是一种仿照生物神经系统的架构和功能而开发的计算机技术。

它最初的概念可以追溯到1957年,由包括Frank Rosenblatt、Marvin Minsky和John McCarthy等在内的几位科学家在系统思想和计算机科学领域开发,它实际上是受到脑神经网络结构启发而发展出来的一种技术。

人工神经网络能够以一种类似于人类“思考”的方式从大量数据中获取结果,比如分析情感、视觉识别、语音识别等。

它可以通过学习过去的经验和观察,来推断当前和未来的情况。

人工神经网络的组成主要有神经元,连接和权重。

每个神经元都有输入、激活函数和输出。

神经元是网络中不同组件的基本部分,它们可以接受、处理和转发信号,以触发期望输出。

连接则用于把不同的神经元连接起来传输信息,这些连接可以赋予不同的权值,影响输入信号的最终输出。

最后,人工神经网络的工作原理,是通过迭代输入数据,调整权重使输出更接近期望结果,并且能够通过反馈机制自我调整参数和权重,以达到期望的训练结果。

人工神经网络如今已经被许多公司和组织使用,用于处理各种任务,包括复杂的图像识别、语音识别、语言建模、自动驾驶以及计算机视觉等。

它们已经成为机器学习和自然计算中最流行的方法之一,并广泛应用于商业、政府以及军事等众多领域。

比如,人工神经网络用于语音识别,top07机器人使用神经网络解析语音,帮助用户进行语音识别;或者用于机器视觉,Google等公司使用深度学习神经网络识别图像,可以对不同的图像进行分类,有效地提升图像浏览的用户体验。

总的来说,人工神经网络是一项设计用来处理繁杂任务的数据处理技术,可以重现生物神经系统架构和功能以及学习能力。

它是一种可以从大量数据中快速获取结果的技术,如今已经得到了普遍应用,被用于各种场景中。

人工神经网络的基本原理及其应用

人工神经网络的基本原理及其应用

人工神经网络的基本原理及其应用人工神经网络(Artificial Neural Network,ANN),是一种模仿生物神经网络的人工智能技术。

它由大量的节点(也被称为神经元)和连接线组成,能够模拟人脑的信息处理方式,具有学习、记忆、推理等功能,已广泛应用于图像识别、语音识别、自然语言处理、自动化控制等领域。

1. 基本原理人工神经网络的基本结构由输入层、隐藏层和输出层组成。

其中,输入层接收外部输入,隐藏层进行信息处理,输出层输出结果。

每个节点接受来自其他节点的输入,并对总输入进行加权处理,然后运用激活函数进行非线性变换,最终输出给后继节点。

加权系数和阈值是神经网络中的重要参数,它们的调整会影响神经元的输出。

神经网络的学习过程主要包括前向传播和反向传播。

前向传播是指输入数据从输入层传递到输出层的过程;反向传播是指根据输出误差对参数进行调整的过程。

通过不断迭代,神经网络的性能可以不断提高,实现更加准确的任务。

2. 应用领域2.1 图像识别图像识别是人工神经网络的常见应用之一。

通常,将图像中的每个像素作为输入,神经网络通过卷积层和池化层从原始图像中提取特征,然后通过全连接层进行分类。

例如,Google 在 2015 年发布的 ImageNet 大规模视觉识别竞赛(ImageNet Large Scale Visual Recognition Challenge,ILSVRC)中,使用了多层卷积神经网络(Convolutional Neural Network,CNN)架构,成功识别出一张图像中的物体,使得图像识别的准确率得到了显著提高。

2.2 语音识别自然语言处理业界对神经网络的应用也不断增多。

语音识别是其中的一个热点方向。

利用神经网络,可以将人类语言转化为计算机理解的信息。

语音识别的模型一般采用长短时记忆网络(Long Short-Term Memory,LSTM)结构。

LSTM 可以有效解决序列数据中存在的长距离依赖问题,提高语音的识别率。

人工神经网络概述

人工神经网络概述

参考内容二
人工神经网络(Artificial Neural Network,简称ANN)是一种模拟人类 神经系统运作的数学模型,由多个简单计算单元(即神经元)组成,通过学习方 式从数据中提取模式并预测未来数据。
一、人工神经网络的基本结构
人工神经网络的基本结构包括输入层、隐藏层和输出层。输入层负责接收外 部输入的数据,隐藏层通过一系列复杂的计算将输入转化为有意义的特征,最后 输出层将隐藏层的结果转化为具体的输出。在隐藏层中,每个神经元都通过权重 和激活函数来对输入进行转换,以产生更有意义的输出。
根据任务的不同,人工神经网络可以分为监督学习、无监督学习和强化学习 三种。监督学习是指通过输入输出对之间的映射关系来训练模型;无监督学习是 指通过聚类或降维等方式来发现数据中的潜在规律;强化学习是指通过与环境的 交互来学习策略,以达到在给定的情况下采取最优行动的目标。
四、人工神经网络的未来发展
随着深度学习技术的不断发展,人工神经网络的性能和应用范围也在不断扩 大。未来的人工神经网络将更加注重模型的可解释性和鲁棒性,同时也将更加注 重跨领域的研究和应用。此外,随着计算机硬件的不断升级和算法的不断优化, 人工神经网络的训练速度和精度也将不断提高。
三、人工神经网络的种类
根据连接方式的不同,人工神经网络可以分为前馈神经网络和反馈神经网络 两种。前馈神经网络是一种层次结构,其中每个节点只与前一层的节点相连,每 个节点的输出都是前一层的加权输入。而反馈神经网络则是一种循环结构,其中 每个节点都与前一层的节点和后一层的节点相连,每个节点的输出不仅取决于前 一层的输入,还取决于后一层的输出。
反向传播算法是一种监督学习算法,它通过比较网络的输出和真实值来计算 误差,然后将这个误差反向传播到网络中,调整每个神经元的权重以减小误差。

人工神经网络

人工神经网络

人工神经网络人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model)目录[隐藏]∙ 1 人工神经网络概述∙ 2 人工神经网络的特点∙ 3 人工神经网络的特点与优越性∙ 4 人工神经网络的主要研究方向∙ 5 人工神经网络的应用分析人工神经网络概述人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model),是对人脑或自然神经网络(Natural Neural Network)若干基本特性的抽象和模拟。

人工神经网络以对大脑的生理研究成果为基础的,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能。

国际著名的神经网络研究专家,第一家神经计算机公司的创立者与领导人Hecht Nielsen给人工神经网络下的定义就是:“人工神经网络是由人工建立的以有向图为拓扑结构的动态系统,它通过对连续或断续的输入作状态相应而进行信息处理。

” 这一定义是恰当的。

人工神经网络的研究,可以追溯到1957年Rosenblatt提出的感知器模型(Perceptron) 。

它几乎与人工智能——AI(Artificial Intelligence)同时起步,但30余年来却并未取得人工智能那样巨大的成功,中间经历了一段长时间的萧条。

直到80年代,获得了关于人工神经网络切实可行的算法,以及以Von Neumann体系为依托的传统算法在知识处理方面日益显露出其力不从心后,人们才重新对人工神经网络发生了兴趣,导致神经网络的复兴。

目前在神经网络研究方法上已形成多个流派,最富有成果的研究工作包括:多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。

人工神经网络是在现代神经科学的基础上提出来的。

它虽然反映了人脑功能的基本特征,但远不是自然神经网络的逼真描写,而只是它的某种简化抽象和模拟。

人工神经网络简介

人工神经网络简介
4
Page 4
神经网络模型
神经元模型
输入输出关系:
xi jiu j i
j 1 n
ω是连接神经元的权值
θ是神经元的阈值
x可认为是神经元的净输入
5
yi f ( xi )
Page 5
神经网络模型
f ( x) 是传递函数,或称为激励函数,其作用有:
1. 控制输入对输出的激活作用; 2. 对输入输出进行函数转换; 3. 将可能的无限域输入转换成有限域的输出;
Page 17
17
BP神经网络
总结
BP网络实现了一个从输入到输出的非线性映射,即F: Rn→Rm,f(x)=y。对于样本集合:输入xi(xi∈Rn)和yi(yi∈Rm), 可认为存在某一映射g,使得: g(xi)=yi i=1,2,...n BP神经网络就是寻找逼近映射g的最佳映射f过程。
人工神经网络简介
刘章
人工神经网络
人工神经网络(artificial neural network,缩写 ANN),简称神经网络(neural network,缩 写NN),是一种模仿生物神经网络的结构 和功能的数学模型或计算模型。神经网络由 大量的人工神经元联结进行计算。大多数情 况下人工神经网络能在外界信息的基础上改 变内部结构,是一种自适应系统。
Page 10
10
神经网络的学习方式
神经网络的学习方法
2.无监督学习方法 神经网络仅仅是根据其输入调整神经元连接间的权
重和阈值,此时的学习评价标准隐含在内部。
Page 11
11
BP神经网络
反向传播网络(Back-Propagation Network),简称BP网络。

BP人工神经网络的基本原理模型与实例

BP人工神经网络的基本原理模型与实例

w14
0.2+(0.9) (-0.0087)(1)=0.192
w15
-0.3+(0.9) (-0.0065)(1)=-0.306
w24
0.4+(0.9) (-0.0087)(0)=0.4
w25
0.1+(0.9) (-0.0065)(0)=0.1
w34
-0.5+(0.9) (-0.0087)(1)=-0.508
8.1人工神经网络旳基本概念
人工神经网络在本质上是由许多小旳非线性函数构成 旳大旳非线性函数,反应旳是输入变量到输出变量间旳复 杂映射关系。先给出单个人工神经网络旳一般模型描述:
8.1人工神经网络旳基本概念
先来看一种单一输入旳神经元模型 输入变量:x1 连接权重:w1 激活函数:f (·)
x1 w1
w1x1 f (·)
8.1人工神经网络旳基本概念
8.1人工神经网络旳基本概念
单极sigmoid函数
8.1人工神经网络旳基本概念
双曲函数
8.1人工神经网络旳基本概念
增长激活阈值后旳神经元模型 输入变量:x1 连接权重:w1 激活函数:f (·)
x1 w1
w1x1-θ f (·)
-1
小练习:请你算一算,当初始输入、权重和激活阈值为如下数值时,该神 经元旳净输入和输出分别是多少?
2.反向传播 反向传播时,把误差信号按原来正向传播旳通路反向
传回,并对每个隐层旳各个神经元旳权系数进行修改,以 望误差信号趋向最小。
8.2 误差反向传播(BP)神经网 络
8.2 误差反向传播(BP)神经网 络
x1 x2
x3
单元 j 6
1 w14
Err4=

人工神经网络技术简介

人工神经网络技术简介

人工神经网络技术简介人工神经网络(Artificial Neural Network,简称ANN)是一种模拟人类神经系统的计算模型,它基于大脑神经元之间相互连接的原理,用于模拟和解决各类复杂问题。

本文将对人工神经网络技术进行简要介绍。

一、神经网络的基本原理神经网络是由大量的人工神经元组成的集合,这些神经元通过互相连接的权重来模拟神经系统中的突触传递信息。

神经网络通常分为输入层、隐藏层和输出层三个部分。

输入层接收外界输入的信号,通过隐藏层的计算和处理,最终得到输出层的结果。

神经网络的运作类似于人脑对信息的处理。

每个神经元接收到来自其他神经元传递过来的信息,并通过激活函数对这些信息进行处理后传递给下一层的神经元。

激活函数可以是简单的线性函数或者非线性函数,常用的有Sigmoid、ReLU等。

二、神经网络的应用领域1. 图像识别与处理:神经网络在计算机视觉领域有着广泛的应用,例如人脸识别、图像分类、目标检测等。

2. 自然语言处理:神经网络在文本分类、语音识别和机器翻译等方面的应用已经取得了显著的成果。

3. 金融预测:神经网络可以通过对历史数据的学习和分析,对未来的股市指数、汇率等进行预测。

4. 药物发现:神经网络可以对大量的药物分子进行模拟和筛选,提高新药研发的效率。

5. 游戏智能:神经网络可以用于训练游戏智能体,使其能够自主学习和适应不同的游戏环境。

三、神经网络的训练方法神经网络的训练是指通过已知输入和输出数据,通过调整神经元之间的连接权重,使得网络能够正确地预测输出结果。

常用的训练方法有:1. 反向传播算法:反向传播是神经网络中最常用也是最基本的训练算法。

它通过将网络的预测输出与真实输出进行比较,然后根据误差计算梯度并反馈给网络,以更新权重。

2. 遗传算法:遗传算法通过模拟生物的进化过程,通过选择、交叉和变异等操作,不断改进网络的性能。

3. 支持向量机:支持向量机在训练神经网络时可以作为一种辅助方法,用于优化分类问题。

人工神经网络的原理及优化方法

人工神经网络的原理及优化方法

人工神经网络的原理及优化方法随着计算机技术的不断发展,人工智能技术也得到了长足的发展。

人工神经网络作为人工智能技术的一个重要分支,广泛应用于语音识别、图像识别、机器翻译等领域。

本文将从人工神经网络的原理入手,介绍人工神经网络的优化方法。

一、人工神经网络的原理人工神经网络(Artificial Neural Network,ANN)是一种由神经元和之间联系组成的网络结构,其基本结构类似于生物神经元。

每个神经元接收来自其他神经元的信号,通过处理后输出信息到下一层神经元。

模拟了人脑神经元之间相互连接的模式。

在人工神经网络中,每个神经元都有权重和偏差值。

权重决定了该神经元的重要程度,而偏差值则可以对神经元的输出进行平移。

神经元的输入信号经过加权处理,并加上偏差值之后,再通过激活函数进行非线性变换。

人工神经网络最终的输出结果,就是所有神经元经过计算后的结果。

人工神经网络的训练过程,是利用已知数据集来调整神经网络中的权重和偏差值,以使得神经网络的输出结果尽可能接近于真实结果。

常用的神经网络训练算法包括反向传播算法、遗传算法、模拟退火等。

二、人工神经网络的优化方法人工神经网络的优化方法,旨在提高神经网络的准确性和泛化能力。

常用的优化方法包括以下几种:1. 权重初始化权重的初始化方案对神经网络的训练过程起着至关重要的作用。

一般来说,权重应该随机初始化,以避免过拟合和局部最优解。

常用的权重初始化方法包括高斯分布、均匀分布、正交初始化等,其中正交初始化是一种使用较少的初始化方式。

2. 优化函数优化函数是指在训练神经网络时,通过反向传播算法来更新权重和偏差值时所使用的损失函数。

常用的优化函数包括均方误差、交叉熵、KL散度等。

不同的优化函数对神经网络的训练效果有明显的影响。

3. DropoutDropout是一种随机性的正则化手段,它能够减少神经网络的过拟合现象。

这种方法在训练神经网络时,随机地将一些神经元的输出置为0,并将其忽略。

人工神经网络算法(基础精讲)

人工神经网络算法(基础精讲)
上述的分类方法是对目前常见的神经网络结构的概括和抽象, 实际应用的神经网络可能同时兼有其中的一种或几种形式。
26
二、人工神经网络的 学习方法
27
2.1学习机理
学习机理
人工神经网络信息处理可以用数学过程来说明,这个过程可以 分为两个阶段:执行阶段和学习阶段。
学习是智能的基本特征之一,人工神经网络最具有吸引力的特 点是它能从环境中学习的能力,并通过改变权值达到预期的目的。 神经网络通过施加于它的权值和阈值调节的交互过程来学习它的环 境,人工神经网络具有近似于与人类的学习能力,是其关键的方面 之一。
net= wi xi
输出
11
1.5人工神经元模型
上面的神经元模型可以用一个数学表达式进行抽象与概括,从 而得到神经元的数学模型:
n
o f wjxj
j 1
w x 神经元的网络输入记为net,即
n
net=
jj
j 1
12
1.5人工神经元模型
有时为了方便起见,常把-Ɵ也看成是恒等于1的输入X0 的权值 ,这时上面的数学模型可以写成:
神经元和神经网络的关系是元素与整体的关系。 人工神经网络中的神经元常称为节点或处理单元,每个节点均 具有相同的结构,其动作在时间和空间上均同步。
22
1.7人工神经网络模型 人工神经网络的基本属性
1)非线性 2)非局域性 3)非定常性 4)非凸性
23
1.7人工神经网络模型
神经网络模型
神经元的连接方式不同,网络的拓扑结构也不同,人工神经网 络的拓扑结构是决定人工神经网络特征的第二要素,根据神经元之 间连接的拓扑结构不同,可将人工神经网络分成两类,即分层网络 和相互连接型网络。
WT j
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人工神经网络
1.简介
人工神经网络(ANN)技术是一种信息处理范式,灵感来自于生物神经系统的方式,如大脑、处理信息。

这拍拉的DIGM关键的元素是一款新颖的结构的信息处理系统。

它是由大量的高度互连处理单元(神经元都)工作在和谐中要解决的具体问题。

像人一样,学习结合起来,通过实例说明。

一个人工神经网络被配置为某一特定的应用,如模式识别或数据分类,通过一个学习的过程。

学习在生物体系需要调整突触连接之间的神经元都存在。

结合起来,这是有据可查的。

在更多的实际统计数据的模糊神经网络的非线性建模工具。

它们能被用于模型复杂的输入-输出关系或发现模式在数据。

本文将简要介绍有关知识安和打好基础,为进一步研究。

2.人工神经网络的特点
神经网络模型,拥有的卓越的能力也衍生意义是从复杂的或不精确数据,可被用于提取模式和趋势发现太过于复杂以致难以被任何人类或其它计算机技术注意到。

一个受过训练的神经网络可以被认为是一个“专家”在信息范畴内,才能来来作分析。

这位专家就可以被用来提供给测感和给定新的有兴趣环境,然后提问“假如如此”的问题。

神经网络的其他优点包括:
自适应学习能力:学习如何做任务的基础上,给出了初始数据训练或经验。

自组织:一个人工神经网络可以创造自己的组织或表示它收到的信息时的学习时间。

实时操作:安计算可以对并联,和特殊的硬件设备被设计和制造,充分利用这一能力。

通过冗余信息容错编码:局部破坏网络导致相应的降解性能。

然而,一些网络能力甚至可以保留与主要网络伤害。

3.一个简单的神经元和复杂的神经元
一个简单神经元
一种人工神经元是一种装置与许多输入和一个输出,如图。

3-26。

神经元的有两种模式的操作:培养模式和使用模式。

在训练模式中,神经元可以训练的射击(或没有),为特定的输入方式。

在使用模式,当一个教输入模式检测到输入、输出成为其关联的输出电流。

如果输入模式不属于这教的名单输入方式、烧成规则是用来确定是否发生火灾或不是。

射击规则是在神经网络的一个重要概念。

一个射击规则决定了一个人如何计算一个神经
元是否应该火任何输入模式。

它涉及到所有的输入方式,不仅的节点进行训练的。

一个简单的射击规则都可以用海明距离实现技术。

规则如下:
对一个节点取一个训练模式集合作为输入,其中的一些模式会引起激发(记为有导师集1),另外的那些不会引发激发(记为有导师集0)。

如果不在这个集合中的模式引起该节点激发,则表明这些模式中与有导师集1最近的模式数目要多于与有导师集0最近的模式数目。

如果这两种模式数目平衡,则此模式为未定义状态。

一个复杂的神经元
以前的神经元,什么都不做常规计算机不做了。

一种更加复杂的神经元(见图)。

3-27中所表现的一样。

从先前的模型的区别是,投入是“加强”每个感觉输入在影响决策的重量是依赖于特定的输入。

一种输入的重量是一个数乘以输入时给出了加权的输入。

这些加权的输入,然后加上在一起,如果他们超过预先设定的阈值,该神经元就反射。

其他任何情况下神经元不会射击。

图3-27,提出了一种j th神经元结构。

输出y j和输入X j = (x1, x2,...x n*.)之间的关系为
阈值和f()特征函数有很多可选择的形式。

以数学术语,神经元放电当且仅当XW1j···X2W2j + + + XnWnj >θj。

加上输入的重量和阈值。

这使得神经元一个非常灵活的和强大的。

神经元的有能力适应特定的情况下,通过改变其重量和/或阈值。

各种算法存在,导致了“适应”;神经元传给最常用的伊洛瓦底江三角洲规则和背面的误差传播。

前者是用于前馈网络,后者适用于反馈网络。

4.神经元网络体系结构
前馈网络
前馈anns允许信号只有一种形式传输,从输入对输出。

这里不存在一种反馈(回路)如下。

任何层的输出不会影响同一层。

前馈anns趋于直线前进的网络,将输入与输出。

他们正在越来越广泛地应用于模式识别方法。

这种类型的组织也被称之为“自下而上”或“自上而下”的。

反馈网络
反馈网络在两个方向通过引入相连的网络会有信号传输。

反馈网络都是很强大的和可得十分复杂。

反馈网络都是动态的,他们的“国家”是不断变化的,直到他们达到平衡的观点。

他们仍在平衡点,直到输入的变化和新的平衡需要被发现。

反馈体系结构也被叫作互动或复发,虽然后者一词常用于表示反馈连接在单层组织。

网络层
最常见的类型的人工神经网络是由三层单位;一层“输入”单位被连接到一层“隐”单位,这是连接到一层“输出”单位(见图.3-28)
输入单元的活动的原始信息代表输入网络。

每个单元的活动是由隐藏的活动上输入单元和权重间的连接输入和隐藏的单位。

输出设备(如打印机)的行为取决于隐藏的活动单元和权重的隐层和输出单元。

这个简单的类型的网络很有趣,因为隐藏的单位都可以自由地去建构自己的陈述输入的。

的连接权值确定的输入层和隐单位,如果每个人都是活跃的隐藏的单位,然后通过改变这些权重,隐藏的单位可以选择代表是什么的。

我们还区分单层和多层体系结构的实现。

在单层结构中,所有的单位被连接到另一个,构成最一般条件下的更大的潜力,是多层递阶结构计算功率比组织。

在多层网络,单位往往就是被层,而不是全球号。

5.学习过程
信息被储存在权值矩阵W的神经网络。

权重的测量是学习。

根据学习进行方式,我们能区分出两种主要类型的神经网络:
·固话网络:权重是不能改变的,即。

dW/dt = 0.
·自适应网:能够改变自己的权。

即。

dW/df≠0.
·监督式学习包括外部老师,所以各输出单元反应的话告诉其设定的输入信号应当。

在学习过程中全局信息可能被需要。

监督式学习典范的修正错误的知识,包括强化学习和随机学习。

一个重要的问题是有关监督式学习的问题,即误差收敛e。

对应的之间的误差,计算单位价格预期。

这样做的目的是为了确定一套重量误差最小化。

一次著名的方法是很常见的,这对许多学习范例是最小平方主站软件收敛性。

·无监督学习使用没有外部的老师,是基于本地信息。

它也被认为是自组织,在这个意义上说,它自我组织数据呈现在网络和检测他们的紧急集体性质。

赫布型(Hebbian)典范的非监督的学习是学习和竞争学习。

我们说一种神经网络学习的学习阶段和线下的运作阶段是截然不同的。

一种基于神经网络的在线学习和操作,如果它可以学习在同一时间内。

通常,监督式学习进行离线,而非监督的学习进行在线。

传递函数
ANN的行为既取决于权重和投入产出功能(传递函数),这是指定的,直到这功能通常分
为三类:线性(或坡道、)阈值和非特异性功能,输出线性单元活动是成正比的加权总输出。

为单位,输出阈值的设定两个层次,这取决于输入高于或少于某一阈值。

为18.75%单位,输出连续不断的而不是线性的输入的变化。

单位承担更多相似之处(18.75%)到真实的神经元都比线性和阈值的单元,但必须考虑到所有三个粗糙近似。

为了使神经网络执行某种特定的任务,我们必须选择怎样——给予单位被欺诈,另一个人,然后我们必须树立起重量在“连接正确。

连接确定它是否可以让一个单位去影响另一个人。

指定的强度指标的权重的影响。

我们会教三层网络来完成一项特定的任务上采用下列程序:
1)提出了网络训练的例子,由活动的一组输入单位一起活动的理想模式对输出的单位。

2)我们决定如何紧密地结合在一起,网络的实际输出匹配任何你想要的结果。

3)我们改变的重量,每个连接的网络产生一个好的逼近所期望的输出。

6.神经网络的应用
神经网络有广泛的适用性,现实世界的商业带来的问题。

事实上,它们已经被成功应用于众多行业领域。

自从在识别神经网络是最好的投资方式或趋势在数据.他们非常适合用于预测或预测需求包括:
·销售预测
·工业过程控制
·客户研究
·数据验证
·风险管理
·目标营销
ANN也被用于下列具体的范例:在通信识别扬声器;诊断肝炎;回收因电信而错误的软件;解释汉语词汇;海底矿山检测;纹理分析;三维物体的识别,手写单词识别;和面部识别。

7.结论
电脑世界从神经网络可以获得很多。

通过学习例子能力使得它们很灵活和强大。

此外,不需要去为了执行一项特殊任务而设计一种算法,例如,不需要去了解任务内部机制。

他们也非常合适实时系统,因为他们快速反应和由于他们的平行结构的计算时间。

神经网络也有利于其他领域的研究,例如神经学和心理学。

他们有规律地被用于有机体的样机部件和用于调查大脑的内部机理。

也许在神经网络最令人兴奋的方面是有一开“有意识”的网络可能被生产出来的可能性。

很多科学家辨论知觉是一种“机械”属性和“自觉”的神经网络是一种真实的可能性。

相关文档
最新文档