最新沪科版八年级数学下知识点(简要)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学下知识点总结
一、二次根式
1.二次根式的概念
形如()的式子叫做二次根式。
在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前
提条件,如,,等是二次根式,而,等都不是二次根式。
2.二次根式的性质
即:一个数的平方的算术平方根等于这个数的绝对值。
化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身;若a是负数,则等于a的相反数-a。
3.最简二次根式
分母不含根号。
4.二次根式的乘法和除法
√ab=√a·√b(a≥0,b≥0)√a·√b=√ab(a≥0,b≥0)
√a÷√b=√a÷b(a≥0,b>0)
5.二次根式的加法和减法
(1)同类二次根式
把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。
(2)合并同类二次根式
把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。(3)二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。
6.分母有理化
√a/√b=√a×√b/√b×√b=√ab/b
注意:(1)根式中不能含有分母(2)分母中不能含有根式。
二、代数方程
1、整式:单项式和多项式统称整式。
一元整式方程:只有一个未知数且两边都是关于未知数的整式。
一元n次方程:含未知数项的最高次数n
2、二项方程
a x n +
b = 0 (a ≠0 ,b ≠0 , n是正整数)
3、无理方程
方程中含有根式,且被开方数是含有未知数的代数式。
4、有理方程
整式方程和分式方程统称有理方程。
5、一元二次方程
(1)一元二次方程的一般形式: a≠0时,ax2+bx+c=0
(2)一元二次方程根的判别式:Δ=b2-4ac叫一元二次方程根的判别式.
Δ>0 有两个不等的实根;Δ=0 有两个相等的实根;
Δ<0 无实根;Δ≥0 有两个实根(等或不等). (3)一元二次方程的解法
直接开平方法(也可以使用因式分解法)
2(0)
x a a
=≥解为:x=
因式分解法:提公因式分,平方公式,平方差,十字相乘法
配方法
公式法
①根据一元二次方程的一般式:20 (0)
++=≠,确定出a、b、c
ax bx c a
②求出24
∆=-,并判断方程解的情况。
b ac
③代公式:
2
1,2
4
b b ac
x
-±-
=(要注意符号)
三、一次函数
1.一次函数:y = kx + b (k、b是常数,且k≠0)
x = 0时,y = b,b 为截距;y = 0 时, x = -b/k
2.常值函数:y = c (c 为常数)
3.一次函数性质:
k>0,y 随x的增大而增大(成正比);
k﹤0,y 随x的增大而减小(成反比)。
4.函数的应用--------应用题的类型题之一(设增长率为x):
(1)平均增长率x:第一年为 a , 第二年为a(1+x) , 第三年为a(1+x)2.
(2)年折旧率x:原值为a ,第n年的净值 = a(1-x)n 注:假设每年在上一年基础上折旧,相当于负增长率。
四、四边形
(一)关系结构图
(二)知识点
1.平行四边形的性质(重点):
ABCD
是平行四边形⇒⎪⎪⎪⎩⎪
⎪⎪⎨⎧.
54321
)邻角互补()对角线互相平分;()两组对角分别相等;
()两组对边分别相等;()两组对边分别平行;(
2.平行四边形的判定(难点):
.
A
B
D
O
C
A B
C
D
O
3. 矩形的性质: 因为ABCD
是矩形⇒⎪⎩
⎪
⎨⎧.3;
2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所( (4)是轴对称图形,它有两条对称轴. 4矩形的判定:
(1)有一个角是直角的平行四边形; (2)有三个角是直角的四边形; (3)对角线相等的平行四边形; (4)对角线相等且互相平分的四边形。 5. 菱形的性质: 因为ABCD
是菱形⇒⎪⎩
⎪
⎨⎧.321角)对角线垂直且平分对()四个边都相等;
(有通性;)具有平行四边形的所(
6. 菱形的判定:
⎪⎭
⎪
⎬⎫
+边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321⇒菱形.
7.正方形的性质:
ABCD
是正方形⇒⎪⎩
⎪
⎨⎧.321
分对角)对角线相等垂直且平(角都是直角;
)四个边都相等,四个(有通性;)具有平行四边形的所(
8. 正方形的判定:
A
D
B
C
O
C
D
B
A
O