《直线和圆的位置关系》的教学设计

合集下载

《直线与圆的位置关系》教案

《直线与圆的位置关系》教案

《直线与圆的位置关系》教案第一章:引言教学目标:1. 让学生了解直线与圆的位置关系的概念。

2. 引导学生通过观察和思考,探索直线与圆的位置关系。

教学内容:1. 直线与圆的定义。

2. 直线与圆的位置关系的分类。

教学步骤:1. 引入直线和圆的定义,让学生回顾相关概念。

2. 提问:直线和圆有什么关系?它们可以相交、相切还是相离?3. 引导学生观察和思考直线与圆的位置关系,让学生举例说明。

练习题目:a) 直线x=2与圆x^2+y^2=4b) 直线y=3与圆x^2+y^2=9c) 直线x+y=4与圆x^2+y^2=8第二章:直线与圆的相交教学目标:1. 让学生了解直线与圆相交的概念。

2. 引导学生通过观察和思考,探索直线与圆相交的性质。

教学内容:1. 直线与圆相交的定义。

2. 直线与圆相交的性质。

教学步骤:1. 引入直线与圆相交的概念,让学生了解相交的含义。

2. 提问:直线与圆相交时,会有什么特殊的性质?3. 引导学生观察和思考直线与圆相交的性质,让学生举例说明。

练习题目:a) 直线y=2x+3与圆x^2+y^2=16b) 直线x-y+4=0与圆x^2+y^2=16c) 直线x+y-6=0与圆x^2+y^2=36第三章:直线与圆的相切教学目标:1. 让学生了解直线与圆相切的概念。

2. 引导学生通过观察和思考,探索直线与圆相切的性质。

教学内容:1. 直线与圆相切的定义。

2. 直线与圆相切的性质。

教学步骤:1. 引入直线与圆相切的概念,让学生了解相切的含义。

2. 提问:直线与圆相切时,会有什么特殊的性质?3. 引导学生观察和思考直线与圆相切的性质,让学生举例说明。

练习题目:a) 直线y=3x+2与圆x^2+y^2=16b) 直线x-y+4=0与圆x^2+y^2=16c) 直线x+y-6=0与圆x^2+y^2=36第四章:直线与圆的相离教学目标:1. 让学生了解直线与圆相离的概念。

2. 引导学生通过观察和思考,探索直线与圆相离的性质。

名师教学设计《直线与圆的位置关系》完整教学教案

名师教学设计《直线与圆的位置关系》完整教学教案

(四)归纳总结,布置作业
本环节采用填写表格,师生协作的方式,对所学的知识进行小结,培养学生的归纳能力。
师生协作的方式
作业布置试图通过阅读、练习和思考等不同形式的教学活动,加深对所学知识的理解和运用。
作业:
(1)阅读:教材第78-80页;
(2)练习:教材第80页A组1题。
(3)思考:教材第80页B组2题。
(三)运用新知,解决问题
例题与练习是掌握、应用知识和技能所必需的,根据学生的认知特点,我设计了如下例题与练习。
1.例题分析
例1判断直线 与圆 的位置关系。
例2是教材上的例题。作为对圆与直线的位置关系的理解和初步应用,可以让学生自主完成。
判断下列各题中的直线与圆的位置关系。
(1)直线2x-3y+1=0,圆 ;
学生动手画时,教师进行巡视,当所有学生都把三种位置关系画出来时,我用计算机给同学们作演示,给定直线圆在动,使学生从运动的观点去研究问题。
学生动手画时,我进行巡视,当所有学生都把三种位置关系画出来时,我用计算机给同学们作演示,给定直线圆在动,使学生从运动的观点去研究问题。
通过观察,我们已经知道直线和圆的位置关系有三种,引导学生从直线和圆的公共点的个数来完成直线和圆的位置关系的定义。
练习1:主要反馈学生对定义本身的掌握程度,由学生抢答,培养学生的分析能力和数学语言表达能力。
判断圆与直线的位置关系。
圆的直径为10cm,直线到圆心的距离分别为
3
5
练习2我设计了一个小型对抗赛:将全班同学分为两个小组,一组出题另一组回答,答题组再出题,对方回答,依次类推。看哪个组答题既准又快,对优胜组和表现突出的同学进行表扬。
3、掌握直线和圆三种位置关系的判定方法。

《直线与圆的位置关系》教学设计

《直线与圆的位置关系》教学设计

《直线与圆的位置关系》教学设计一、教学内容解析《直线与圆的位置关系》是圆与方程这一章的重要内容,它是学生在初中平面几何中已学过直线与圆的三种位置关系,以及在前面几节学习了直线与圆的方程的基础上,从代数角度,运用坐标法进一步研究直线与圆的位置关系,体会数形结合思想,初步形成代数法解决几何问题的能力,并逐渐内化为学生的习惯和基本素质,为以后学习直线与圆锥曲线的知识打下基础.本节课内容共一个课时.教学过程中,让学生利用已有的知识,自主探索用坐标法去研究直线与圆的位置关系的方法,体验有关的数学思想,培养学生“用数学”以及合作学习的意识.二、教学目标设置由于本节课在初中已有涉及,教师准备“学案”先让学生提前思考,归纳出直线与圆的三种位置关系以及代数与几何的两种判定方法.通过学生的观察、分析、概括,促使学生把解析几何中用方程研究曲线的思想与初中已掌握的圆的几何性质相结合,从而把传授知识和培养能力融为一体,完成本节课的教学目标.三、学生学情分析在经历直线、圆的方程学习后,学生已经具备了一定的用方程研究几何对象的能力,因此,我在教学中通过提供的丰富的数学学习环境,创设便于观察和思考的情境,给他们提供自主探究的空间,使学生经历完整的数学学习过程,引导学生在已有数学认知结构的基础上,通过积极主动的思维而将新知识内化到自己的认知结构中去.同时为他们施展创造才华搭建一个合理的平台,使他们感知学习数学的快乐.高中数学教学的重要目标之一是提高学生的数学思维能力,通过不同形式的探究活动,让学生亲身经历知识的发生和发展过程,从中领悟解决问题的思想方法,不断提高分析和解决问题的能力,使数学学习变成一种愉快的探究活动,从中体验成功的喜悦,不断增强探究知识的欲望和热情,养成一种良好的思维品质和习惯.根据本节课的教学内容和我所教学生的实际,本节课的教学目标确定为以下三个方面:知识与技能目标:(1)理解直线与圆三种位置关系.(2)掌握用圆心到直线的距离d与圆的半径r比较,以及通过方程组解的个数判断直线与圆位置关系的方法.过程与方法目标:(1)通过对直线与圆的位置关系的探究活动,经历知识的建构过程,培养学生独立思考、自主探究、动手实践、合作交流的学习方式.(2)强化学生用坐标法解决几何问题的意识,培养学生分析问题和灵活解决问题的能力.情感、态度与价值观目标:通过对本节课知识的探究活动,加深学生对坐标法解决几何问题的认识,从而领悟其中所蕴涵的数学思想,体验探索中成功的喜悦,激发学习热情,养成良好的学习习惯和品质,培养学生的创新意识和科学精神.四、教学策略分析本节课以问题为载体,学生活动为主线,让学生利用已有的知识,自主探究,培养学生主动学习的习惯.通过建立数学模型、数形结合,提高学生分析问题和解决问题的能力,进一步培养学生的数学素质;通过对直线与圆的位置关系判断方法的探究,进一步提高学生的思维能力和归纳能力.在教学方法的选择上,采用教师组织引导,学生自主探究、动手实践、小组合作交流的学习方式,力求体现教师的设计者、组织者、引导者、合作者的作用,突出学生的主体地位.五、课前准备:直线与圆的位置关系学案(附后)例如图,已知直线直线与圆已知过点,求直线的方程.(课件)六、教学评价设计新课程强调学习过程的评价,因此,在对学生学习结果评价的同时,更应高度重视学生学习过程中的参与度、自信心、合作意识、独立思考的能力及学习的兴趣等.根据本节课的特点,我从以下几个方面进行教学评价:通过问题情境,激发学生的学习兴趣,使学生找到要学的与以学知识之间的联系;问题串的设置可让学生主动参与到学习中来;在判断方法的形成与应用的探究中,师生的相互沟通调动学生的积极性,培养团队精神;知识的生成和问题的解决,培养学生独立思考的能力,激发学生的创新思维;通过练习检测学生对知识的掌握情况;根据学生在课堂小结中的表现和课后作业情况,查缺补漏,以便调控教学.。

《直线和圆的位置关系》教案

《直线和圆的位置关系》教案

《直线和圆的位置关系》教学设计教学目标:1、探索并掌握直线和圆的三种位置关系及其判定方法。

2、通过观察、类比、探究直线和圆的位置关系,向学生渗透数形结合的思想,培养学生观察分析问题和发现创新的能力。

3、让学生经历观察、发现、探究等数学活动,并能够在运用数学知识解答实际问题的过程中获得成功体验,建立学习的自信心。

教学重点:经历探索直线和圆的位置关系的过程,得出直线和圆的三种位置关系并能用数量关系表述这三种位置关系。

教学难点:通过数量关系判断直线和圆的位置关系。

教学方法:探究法、小组讨论法、对比法课型:新授课课时:1课时教学准备:课堂导学案、多媒体课件、圆环、白纸教学过程:一、复习整合,提出问题1.点和圆的位置关系。

2.点和直线的位置关系。

3.平面上两条直线的位置关系。

二、合作交流,探究新知(一)探究问题:直线和圆有什么位置关系?用什么标准进行判断?探究思路:类比探究点和圆位置关系的思路操作办法:在纸上画一条直线l, 小组合作在纸面移动手中的圆环,记录、交流、归纳、小组汇报。

探究要点:1.猜想:直线与圆有______种位置关系。

2.画图:请你用图形展示出你找到的直线和圆的几种位置关系。

3.思考:你能用什么标准界定这几种位置关系的?(二)点评与小结:1.收获①:平面上直线与圆有三种位置关系。

收获②:能正确的在纸上画出直线与圆的3种位置关系。

收获③:可用两种方法判断直线与圆的位置关系。

a.根据定义,由的个数来判断;b.根据性质,由的关系来判断。

2.疑问①:怎样用准确的语言描述和定义直线和圆的3种位置关系?疑问②:由数量关系(距离与半径的大小比较)可以判断直线与圆位置关系,那么如果确定位置关系能否得出相应的数量关系?三、自主学习,获得新知1.自主学习课本96页,获得直线与圆的三种位置关系的标准概念。

(解决疑问①)2.议一议:如果⊙O的半径为r,圆心到直线的距离为d,在直线和圆的三种位置关系中,d和r之间又有怎样的数量关系呢?请大家动手作出图形并量出d和r的长度。

浙教版数学九年级下册2.1《直线与圆的位置关系》教学设计1

浙教版数学九年级下册2.1《直线与圆的位置关系》教学设计1

浙教版数学九年级下册2.1《直线与圆的位置关系》教学设计1一. 教材分析《直线与圆的位置关系》是浙教版数学九年级下册第2章第1节的内容。

本节主要介绍了直线与圆的位置关系,包括相离、相切和相交三种情况,并学习了判断直线与圆位置关系的方法。

通过本节的学习,为学生后续学习圆与圆的位置关系、圆的切线等内容打下基础。

二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和判定有一定的了解。

但直线与圆的位置关系较为抽象,需要学生具备较强的空间想象能力和逻辑思维能力。

在导入环节,可以利用生活中的实例激发学生的学习兴趣,引导学生主动探究直线与圆的位置关系。

三. 教学目标1.理解直线与圆的位置关系,掌握判断直线与圆位置关系的方法。

2.能够运用直线与圆的位置关系解决实际问题。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.直线与圆的位置关系的判断方法。

2.直线与圆位置关系在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例导入,激发学生的学习兴趣。

2.启发式教学法:引导学生主动探究直线与圆的位置关系,培养学生的空间想象能力和逻辑思维能力。

3.案例教学法:通过典型例题,让学生掌握判断直线与圆位置关系的方法。

4.小组合作学习:鼓励学生相互讨论,共同解决问题。

六. 教学准备1.教学课件:制作直观生动的课件,帮助学生理解直线与圆的位置关系。

2.实例图片:准备一些生活中的实例图片,用于导入和巩固环节。

3.练习题:挑选一些典型习题,让学生在课堂上练习。

七. 教学过程1.导入(5分钟)利用生活实例,如自行车的轮子、太阳的位置等,引导学生思考直线与圆的位置关系。

展示课件,让学生初步了解直线与圆的位置关系。

2.呈现(10分钟)展示直线与圆的位置关系的图片,引导学生观察并总结出直线与圆的相离、相切和相交三种情况。

讲解判断直线与圆位置关系的方法,如圆心到直线的距离与圆的半径之间的关系。

3.操练(10分钟)让学生分组讨论,每组找一个实例,运用所学的方法判断直线与圆的位置关系。

直线和圆的位置关系教学设计

直线和圆的位置关系教学设计

《直线和圆的位置关系》教学设计
教学设计说明
本节课的教学目标是,使学生掌握直线和圆的三种位置关系的性质与判定,
重点是直线和圆的相切关系,难点是直线和圆的三种位置关系的性质和判定的运用。

在教学过程中,注意培养学生运用运动变化的观点观察几何图形的辨证思想,培养学生观察概括及分析问题的能力。

在复习提问中,安排了点和圆的位置关系与数量特征,为下面研究直线和圆的位置关系打下基础,在观察直线和圆的位置关系时,注意发挥学生的主体作用,由学生概括出直线和圆的三种位置关系,在研究直线和圆的位置关系的数量特征时,启发学生回忆点和圆的位置关系的数量特征,运用类比推理找到直线和圆的位置关系的数量特征。

这样既可以使学生直接参与到课堂教学中来,培养他们的观察、概括分析能力,同时渗透了类比推理方法使学生在研究类似问题时有章可循。

在小结列表过程中,培养学生的概括能力和总结能力,以及运用数学语言的能力。

5.1直线与圆的位置关系 一等奖创新教案_1

5.1直线与圆的位置关系 一等奖创新教案_1

5.1直线与圆的位置关系一等奖创新教案《直线与圆的位置关系》教学设计一、教学目标:1.知识目标:掌握判断直线与圆的位置关系的两种方法;解决与位置关系相关的问题,如,弦长、切线方程等;2.能力目标:能够几何问题代数化,代数问题几何化;3.情感目标:形成“数学是相互联系、统一的整体”的数学观。

二、教学重点、难点:重点:掌握几何法和解析法判断直线与圆的位置关系难点:灵活运用“数形结合”来解决直线与圆的位置关系三、教学方法探究式教学法、讲练结合、情景教学四、学情分析通过初中的学习,直线与圆的位置关系已有感性认识,学生已经知道直线与圆有三种位置关系,并且从直线与圆的直观感受上,学生已经懂得“利用直线与圆的交点的个数及圆心到直线的距离与圆的半径的大小比较”来研究直线与圆的位置关系。

高中要求学生能够利用直线与圆的方程,定量来进行判断,解决问题的主要方法是解析法,而解析法的思想方法学生不熟悉。

本节课,学生将进一步挖掘直线与圆的位置关系中的“数”的关系。

五、教学过程1.情景导入借用“大漠孤烟直,长河落日圆”引出日落情景,把太阳比做圆,地平面作为水平线,引出本节课题内容:直线与圆的三种位置关系。

2. 引入课题引导探究:通过几何画图,观察直线与圆的位置关系,进而引出判断直线与圆的位置关系。

(1)直线与圆的位置关系圆与直线的交点个数:几何判定法:(1)直线与圆__相交__,有两个公共点;设r为圆的半径,d为圆心到直线的距离:(2)直线与圆__相切__,只有一个公共点;(1)d>r 圆与直线__相离__;(3)直线与圆__相离__,没有公共点.(2)d=r 圆与直线__相切__;(3)d0 直线与圆__相交__;(2)Δ=0 直线与圆__相切__;(3)Δ。

数学《直线与圆的位置关系》教案

数学《直线与圆的位置关系》教案

数学《直线与圆的位置关系》教案教学目标:1. 了解直线与圆的位置关系,熟练掌握直线与圆的切线、割线、切点、割点等概念。

2. 掌握直线与圆的位置关系的基础推理方法,能够灵活运用数学知识解决相关的问题。

3. 培养学生观察、分析的能力,增强学生的实际操作能力和动手能力。

教学重难点:1. 直线与圆的切线、割线、切点、割点等概念的理解和掌握。

2. 直线与圆的位置关系的基础推理方法的应用。

教学方法:1. 讲授法和实践法相结合。

2. 采用板书、多媒体等方式进行教学。

3. 鼓励学生积极思考、多动手实践。

教学内容:1. 直线与圆的位置关系的定义。

2. 直线与圆的切线、割线、切点、割点等概念的讲解。

3. 直线与圆的位置关系的基础推理方法的应用。

教学过程:一、引入通过实际例子引出今天的教育内容:小明在修建一条直线公路的时候,发现公路穿过了一块广场,广场的中央是一个圆形花坛。

这时候,我们就需要了解直线与圆的位置关系了。

二、学习内容1. 直线与圆的位置关系的定义2. 直线与圆的切线、割线、切点、割点等概念的讲解3. 直线与圆的位置关系的基础推理方法的应用三、学习方法1. 讲授法和实践法相结合,从例子入手,以实际问题为导向,让学生掌握知识。

2. 采用板书、多媒体等方式进行教学,以图形为主,直观、形象。

3. 鼓励学生积极思考、多动手实践,参与课堂讨论。

四、学习重点难点1. 直线与圆的切线、割线、切点、割点等概念的理解和掌握。

2. 直线与圆的位置关系的基础推理方法的应用。

五、学习结果1. 了解直线与圆的位置关系。

2. 掌握直线与圆的切线、割线、切点、割点等概念。

3. 熟练应用数学知识解决直线与圆的位置关系相关的问题。

六、作业1. 完成课后习题。

2. 预习下一节课内容。

《直线与圆的位置关系》教案

《直线与圆的位置关系》教案

《直线与圆的位置关系》教案一、教学目标知识与技能:1. 让学生掌握直线与圆的位置关系,理解直线与圆相交、相切、相离的概念。

2. 学会运用直线与圆的位置关系解决实际问题。

过程与方法:1. 通过观察、分析、推理等方法,探索直线与圆的位置关系。

2. 培养学生的空间想象能力和逻辑思维能力。

情感态度与价值观:1. 激发学生对数学的兴趣,培养学生的探究精神。

2. 培养学生运用数学知识解决实际问题的能力。

二、教学重点与难点重点:1. 直线与圆的位置关系的判定。

2. 直线与圆相交、相切、相离的性质。

难点:1. 直线与圆的位置关系的推理论证。

2. 运用直线与圆的位置关系解决实际问题。

三、教学准备教具:1. 直尺、圆规、铅笔。

2. 直线与圆的位置关系的图片或模型。

学具:1. 直尺、圆规、铅笔。

2. 直线与圆的位置关系的练习题。

四、教学过程1. 导入:1.1 教师出示一些直线与圆的位置关系的图片或模型,让学生观察。

1.2 学生分享观察到的直线与圆的位置关系。

2. 探究:2.1 教师引导学生通过画图、观察、分析、推理等方法,探索直线与圆的位置关系。

3. 讲解:3.1 教师根据学生的探究结果,讲解直线与圆的位置关系的判定方法和性质。

3.2 教师通过例题,讲解如何运用直线与圆的位置关系解决实际问题。

4. 练习:4.1 学生独立完成练习题,巩固所学知识。

4.2 教师选取部分学生的练习题进行点评,解答学生的疑问。

五、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对直线与圆的位置关系的理解和运用能力。

关注学生在学习过程中的情感态度,激发学生的学习兴趣,培养学生的探究精神。

六、教学拓展1. 教师引导学生思考:直线与圆的位置关系在实际生活中有哪些应用?2. 学生举例说明直线与圆的位置关系在实际生活中的应用,如自行车轮子与地面的关系、篮球筐与投篮线的关系等。

七、课堂小结八、作业布置1. 完成课后练习题,巩固直线与圆的位置关系的知识。

直线与圆的位置关系》教案

直线与圆的位置关系》教案

直线与圆的位置关系》教案直线与圆的位置关系》教案教学目标:1、认识和理解直线与圆的三种位置关系,能够用定义来判断直线与圆的位置关系。

2、掌握圆的切线的判定方法和性质,能够判断一条直线是否是圆的切线,培养逻辑推理能力。

3、了解切线长的概念和定理,能够应用切线长的知识解决简单问题。

教学重点:1、直线和圆的三种位置关系。

2、切线的性质定理和判定定理。

3、切线长定理。

教学难点:1、直线和圆的位置关系的性质与应用。

2、运用切线的判定定理解决问题。

3、应用切线长定理。

教学过程:一、直线和圆的三种位置关系1、复导入、回顾旧知回顾点和圆的位置关系,以及判断方法。

2、创设情境,提出问题通过唐诗和观察太阳升起的过程,引出直线和圆的位置关系。

3、探究发现,建构知识练一:在纸上画圆,利用直尺移动直线,观察直线和圆的位置关系,得出相离、相切、相交的定义和判别依据。

练二:利用所学知识判断直线和圆的位置关系,并进行数量分析。

练三:复点到直线的距离和垂线段的概念。

二、圆的切线1、复导入、回顾旧知回顾圆的性质和定理。

2、创设情境,提出问题通过实例引出圆的切线的概念和判定方法。

3、探究发现,建构知识练一:通过实验和观察,得出圆的切线的性质和定理。

练二:运用切线的判定方法判断一条直线是否是圆的切线,综合运用切线的性质解决问题。

练三:介绍切线长的概念和定理,并应用切线长的知识解决简单问题。

三、课堂练和作业练一:判断直线和圆的位置关系。

练二:判断一条直线是否是圆的切线。

作业:应用所学知识解决相关问题。

通过以上教学过程,学生能够掌握直线和圆的位置关系、圆的切线的判定方法和性质,以及切线长的概念和定理,并能够应用所学知识解决相关问题。

例1如图24-43,Rt△ABC的斜边AB=10cm,∠A=30°。

求以点C为圆心作圆,当半径为多少时,AB与⊙C相切。

另外,以点C为圆心、半径分别为4cm和5cm作两个圆,这两个圆与斜边AB分别有怎样的位置关系?解:(1)过点C作边AB上的高CD。

直线与圆的位置关系教案(2篇)

直线与圆的位置关系教案(2篇)

直线与圆的位置关系教案(2篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲发言、策划方案、合同协议、心得体会、计划规划、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, speeches, planning plans, contract agreements, insights, planning, emergency plans, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!直线与圆的位置关系教案(2篇)作为一无名无私奉献的教育工作者,就不得不需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。

直线与圆位置关系教案

直线与圆位置关系教案

直线与圆位置关系教案【篇一:直线与圆的位置关系(教案)】《直线与圆的位置关系》的教学设计一、教学课题:人民教育出版社出版的普通高中课程标准实验教科书a版数学②第四章第二节“直线与圆的位置关系”第一课时。

二、设计要点:学生在初中平面几何中已学过直线与圆的三种位置关系,在前面几节课学习了直线与圆的方程,因此,本节课主要以问题为载体,通过教师几个环节的设问,让学生利用已有的知识,自己去探究用坐标法研究直线与圆的位置关系的方法。

用过学生的参与和一个个问题的解决,让学生体验有关的数学思想,提高学生自主学习、分析问题和解决问题的能力,培养学生“用数学”及合作学习的意识。

三、教学目标:1.知识目标:能根据给定直线、圆的方程判断直线与圆的位置关系,并解决相关的问题; 2.能力目标:通过理论联系实际培养学生建模能力,培养学生数形结合思想与方程的思想; 3.情感目标:通过学生的自主探究,培养学生学习的主动性和合作交流的学习习惯。

四、教学重点、难点、关键:(1)重点:用坐标法判断直线与圆的位置关系(2)难点:学生对用方程组的解来判断直线与圆的位置关系方法的理解(3)关键:展现数与形的关系,启发学生思考、探索。

五、教学方法与手段:1.教学方法:探究式教学法2。

教学手段:多媒体、实物投影仪六、教学过程:1.创设情境,提出问题教师利用多媒体展示如下问题:问题:一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西50km处,受到影响的范围是半径长为30km 的圆形区域,已知港口位于台风中心正北50km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?教师提出:利用初中所学的平面几何知识,你能解决这个问题吗?请同学们动手试一下。

设计意图:让学生从数学角度看日常生活中的问题,体验数学与生活的密切联系,激发学生的探索热情。

2.切入主题,提出课题(1)由学生将问题数学建模,展示平面几何解决方法,得出结论。

教学设计《直线与圆的位置关系》精选全文

教学设计《直线与圆的位置关系》精选全文

可编辑修改精选全文完整版《直线与圆的位置关系》教学设计这个问题而使教学偏离重点,必要时可使用信息技术工具解决这个问题. 教 学 目 标知识与技能:了解直线与圆的三种位置关系的含义及图示.过程与方法:学会用两种方法判断直线与圆的位置关系.当直线与圆有公共点时,能通过联解方程组得出直线与圆的公共点的坐标.情感态度价值观:通过直线与圆的位置关系的代数化处理,使学生进一步理解到坐标系是联系“数”与“形”的桥梁,从而更深刻地体会坐标法思想.重 点 用解析法判断直线与圆的位置关系难 点 理解能够通过直线与圆的方程所组成的方程组的解来确定它们的位置关系 教 法启发式 探究式教学用具 多媒体 课 时 2课时教学活动 师生活动设计意图1.问题情境问题1.一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西70km处,受影响的范围是半径长为50km 的圆形区域.已知港口位于台风中心正北70km 处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?2.揭示课题——直线与圆的位置关系问题2.前面问题能够转化为直线圆的位置关系问题.请问,直线与圆的位置关系有几种?在平面几何中,我们怎样判断直线与圆的位置关系呢?直线与圆的位置关系公共点个数 d 与r 的关系图形相交两个r d让学生实行讨论、交流,启发学生由图形获取判断直线与圆的位置关系的直观认知,引入新课.引导学生回忆义务教育阶段判断直线与圆的位置关系的思想过程.能够展示表格,使问题直观形象.让学生感受台风这个实际问题中所蕴含的直线与圆的位置关系,思考解决问题的方案。

通过实际问题引入,让学生体会生活中的数学,突出研究直线与圆的位置关系的重要意义。

从已有的知识经验出发,建立新旧知识之间的联系,构建学生学习的最近发展区,不断加深对问题的理解。

相切 一个r d =相离 没有r d >3.直线与圆位置关系的判断问题3:方法一是用平面几何知识判断直线与圆的位置关系,你能根据直线与圆的方程判断它们之间的位置关系吗?问题4:这是利用圆心到直线的距离d 与半径r 的大小关系判别直线与圆的位置关系(称此法为“dr 法”).请问用“dr 法”的一般步骤如何? 步骤:(1)建立平面直角坐标系;(2)求出直线方程,圆心坐标与圆的半径r ; (3)求出圆心到直线的距离d(4)比较d 与r 的大小,确定直线与圆的位置关系.①当r d >时,直线l 与圆C 相离; ②当r d =时,直线l 与圆C 相切; ③当r d <时,直线l 与圆C 相交. 问题5:对于平面直角坐标系中的直线0:1111=++C y B x A l 和0:2222=++C y B x A l ,联立方程组 00222111=++=++C y B x A C y B x A ,我们有如下一些结论:①1l 与2l 相交,⇔方程组有唯一解;通过教师追问,引起学生思考.教师引导学生分析归纳引导学生用直线与圆的方程判断直线与圆的位置关系,体验坐标法的思想方法。

《直线和圆的位置关系》教学设计

《直线和圆的位置关系》教学设计

《直线和圆的位置关系》教学设计《直线和圆的位置关系》教学设计(精选5篇)教学设计是把教学原理转化为教学材料和教学活动的计划。

教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。

今天应届毕业生店铺为大家编辑整理了《直线和圆的位置关系》教学设计,希望对大家有所帮助。

《直线和圆的位置关系》教学设计篇1一、素质教育目标㈠知识教学点⒈使学生理解直线和圆的位置关系。

⒉初步掌握直线和圆的位置关系的数量关系定理及其运用。

㈡能力训练点⒈通过对直线和圆的三种位置关系的直观演示,培养学生能从直观演示中归纳出几何性质的能力。

⒉在7.1节我们曾学习了“点和圆”的位置关系。

⑴点P在⊙O上OP=r⑵点P在⊙O内OP<r⑶点P在⊙O外OP>r初步培养学生能将这个点和圆的位置关系和点到圆心的距离的数量关系互相对应的理论迁移到直线和圆的位置关系上来。

㈢德育渗透点在用运动的观点揭示直线和圆的位置关系的过程中向学生渗透,世界上的一切事物都是变化着的,并且在变化的过程中在一定的条件下是可以相互转化的。

二、教学重点、难点和疑点⒈重点:使学生正确理解直线和圆的位置关系,特别是直线和圆相切的关系,是以后学习中经常用到的一种关系。

⒉难点:直线和圆的位置关系与圆心到直线的距离和圆的关径大小关系的对应,它既可做为各种位置关系的判定,又可作为性质,学生不太容易理解。

⒊疑点:为什么能用圆心到直线的距离九圆的关径大小关系判断直线和圆的位置关系?为解决这一疑点,必须通过图形的演示,使学生理解直线和圆的位置关系必转化成圆心到直线的距离和圆的关径的大小关系来实现的。

三、教学过程㈠情境感知⒈欣赏网页flash动画,《海上日出》提问:动画给你形成了怎样的几何图形的印象?⒉演示z+z超级画板制作《日出》的简易动画,给学生形成直线和圆的位置关系的印象,像这样平面上给定一条定直线和一个运动着的圆,它们之间虽然存在着若干种不同的位置关系,如果从数学角度,它的若干位置关系能分为几大类?请同学们打开练习本,画一画互相研究一下。

九年级数学《直线和圆的位置关系》教案

九年级数学《直线和圆的位置关系》教案

教案标题:直线和圆的位置关系一、教学目标:1.了解直线与圆之间的位置关系;2.掌握直线与圆相交,切线和割线的概念及性质;3.能够利用直线和圆的位置关系解决相关问题。

二、教学重难点:1.直线与圆相交、切线和割线的定义和性质;2.运用直线与圆的位置关系解决问题。

三、教学准备:1.教学课件、教学素材;2.黑板、粉笔。

四、教学过程:Step 1 引入新知识(5分钟)教师向学生出示一张图片,其中有一个直线和一个圆,请学生观察并描述直线与圆的位置关系。

教师辅助学生进行讨论,引导学生从相交、切线和割线的角度来描述直线与圆的位置关系。

根据学生的回答,介绍和概括直线与圆的三种位置关系。

Step 2 直线与圆的相交(20分钟)1.教师通过学生的引导,向学生介绍直线与圆相交的两种情况:交于两点和交于一个点。

2.教师示范并解释:直线与圆相交,其交点一定位于圆上,交于两点时,直线称为“割线”;交于一个点时,直线称为“切线”。

3.引导学生通过观察和思考,总结并归纳直线和圆相交的性质。

4.给出一些直线和圆相交的实例进行讨论和分析,并解释其中的性质。

Step 3 直线与圆的切线(25分钟)1.学生通过观察图片和实例,引导学生从图形上进行总结和归纳:直线与圆相切于一个点时,直线称为“切线”。

2.教师向学生介绍切线的性质:切线与半径垂直,且切线和半径的夹角为90°。

3.教师通过示范和解释,引导学生通过绘制半径来确定切线的位置。

4.给出一些直线与圆相切的实例进行分析,并解释其性质。

Step 4 直线与圆的割线(25分钟)1.学生通过观察和思考,引导学生从图形上进行总结和归纳:直线与圆挂交于两点时,直线称为“割线”。

2.辅助学生进行讨论和分析,引导他们归纳割线的性质:割线和割线外部任意一条射线的夹角相等;割线中间的弦等于或小于直径,割线两端的弦等于或大于直径。

3.给出一些直线与圆相割的实例进行分析,并解释割线的性质。

Step 5 课堂练习(15分钟)1.分组进行小组合作,完成练习题。

直线和圆的位置关系数学教案

直线和圆的位置关系数学教案

直线和圆的位置关系数学教案
标题:直线与圆的位置关系
一、教学目标
1. 理解并掌握直线与圆的位置关系的概念。

2. 掌握判断直线与圆位置关系的方法。

3. 培养学生的空间想象能力,提高学生解决实际问题的能力。

二、教学重难点
重点:直线与圆的位置关系的理解及应用。

难点:根据条件判断直线与圆的位置关系。

三、教学过程
1. 导入新课:
通过实例引入,如:在日常生活中我们经常会遇到直线与圆的位置关系的问题,比如篮球运动员投篮时,球的运动轨迹就是一个抛物线,而篮球框是一个圆形。

那么如何确定球是否会进入篮筐呢?这就需要我们学习直线与圆的位置关系的知识。

2. 新课讲解:
(1) 直线与圆的位置关系:相交、相切、相离。

(2) 判断方法:利用点到直线的距离公式,比较圆心到直线的距离与半径的大小关系。

3. 练习巩固:
设计一些练习题,让学生自己动手操作,通过实践来理解和掌握直线与圆的位置关系。

4. 小结:
回顾本节课所学的内容,强调重点和难点。

5. 作业:
设计一些相关的题目作为家庭作业,让学生在课后继续复习和巩固所学知识。

四、教学反思
教师要时刻关注学生的学习情况,对教学效果进行反思和调整,以达到最佳的教学效果。

“直线和圆的位置关系”教学设计

“直线和圆的位置关系”教学设计

“直线和圆的位置关系”教学设计“直线和圆的位置关系”教学设计篇一:“直线和圆位置关系”教学设计一、教学内容人教版义务教育课程标准实验教科书九年级上册第二十四章24.2.2直线和圆的位置关系(第一课时)二、教学目标1.知识与技能目标使学生理解直线和圆相交、相切、相离的概念,掌握直线和圆的位置关系的性质和判定。

2.过程与方法目标经历观察、操作、了解直线和圆位置关系的过程,理解分类、数形结合,培养观察、分析和概括的能力。

3.情感与能力目标通过直线和圆的相对运动,揭示直线和圆的位置关系,培养学生运动变化的辩证唯物主义观点,增强学生应用数学的意识。

三、重点与难点重点是掌握直线和圆的三种位置关系的性质与判定。

难点是如何引导学生发现隐含在图形中的两个数量d和r并加以比较。

四、教学方法运用自主交流、引导发现、练习提高等方法。

五、教学设计1.结合实际,情境导入篇二:《圆和圆的位置关系》教学设计表第四届全国中小学新媒体新技术教学应用研讨会暨基于交互技术的教学观摩活动教学设计表注:此模板可另附纸,字数1500-2000字,为教学案例和教学论文的发表奠定基础。

篇三:圆与圆位置关系教学设计24.2.3圆与圆的位置关系教材依据“圆与圆的位置关系”是义务教育课程标准实验教科书《数学》人教版九年级上册,第二十四章第24.2.3节。

设计思路(1)指导思想:以培养学生的自主学习、创新能力以及“数形结合”思想和“类比讨论”思想。

(2)设计理念:学生的发展是新课程标准实施的出发点和归宿,课程改革的重点是面向全体学生,以学生的发展为主体,转变学生的学习方式。

“圆与圆的位置关系”这一课题,以全新的自主的学习方式让学生接受问题挑战,充分展示自己的观点和见解,给学生创设一种宽松、愉快、和谐、民主的科研氛围,让学生感受“两圆位置关系”的探究发现过程,体验成功的快乐,为终身学习与发展打下基础。

(3)教材分析:《圆与圆的位置关系》是本章的第2.3节,是学生在学习了圆的主要性质和点与圆、直线与圆的位置关系后再进行较复杂的图形位置关系的学习。

《直线与圆的位置关系》 教学设计

《直线与圆的位置关系》 教学设计

《直线与圆的位置关系》教学设计一、教学目标1、知识与技能目标理解直线与圆的三种位置关系:相交、相切、相离。

掌握直线与圆的位置关系的判定方法,能根据圆心到直线的距离与圆的半径的大小关系来判断直线与圆的位置关系。

能运用直线与圆的位置关系解决相关的数学问题。

2、过程与方法目标通过观察、类比、猜想、验证等数学活动,培养学生的观察能力、思维能力和动手操作能力。

经历探索直线与圆的位置关系的过程,体会数学中的转化思想、分类讨论思想和数形结合思想。

3、情感态度与价值观目标让学生在探索直线与圆的位置关系的过程中,感受数学的严谨性和数学与生活的密切联系,激发学生学习数学的兴趣。

通过小组合作学习,培养学生的合作意识和团队精神。

二、教学重难点1、教学重点直线与圆的三种位置关系的判定方法。

运用直线与圆的位置关系解决相关的数学问题。

2、教学难点理解圆心到直线的距离与圆的半径的大小关系与直线与圆的位置关系之间的内在联系。

运用分类讨论思想和数形结合思想解决直线与圆的位置关系的综合问题。

三、教学方法讲授法、演示法、讨论法、探究法四、教学过程1、创设情境,引入新课展示生活中直线与圆的位置关系的图片,如太阳从地平线升起、自行车的车轮与地面的关系等,引导学生观察并思考直线与圆的位置关系有哪些。

2、探索新知引导学生在纸上画一个圆,然后画一条直线,让学生通过移动直线,观察直线与圆的位置关系。

学生分组讨论,交流自己观察到的结果,教师巡视指导。

教师总结学生的讨论结果,得出直线与圆的三种位置关系:相交、相切、相离。

引导学生思考如何用数量关系来描述直线与圆的位置关系。

教师讲解圆心到直线的距离的概念,并演示如何计算圆心到直线的距离。

让学生通过计算圆心到直线的距离与圆的半径的大小关系,来判断直线与圆的位置关系。

3、巩固练习给出一些直线与圆的方程,让学生判断它们的位置关系。

让学生完成课本上的相关练习题,教师巡视指导,及时纠正学生的错误。

4、拓展提高给出一些直线与圆的位置关系的综合问题,如求直线方程、圆的方程等,让学生分组讨论,合作解决。

人教版九年级数学上册24.2.2《直线和圆的位置关系》教学设计

人教版九年级数学上册24.2.2《直线和圆的位置关系》教学设计

人教版九年级数学上册24.2.2《直线和圆的位置关系》教学设计一. 教材分析《直线和圆的位置关系》是人教版九年级数学上册第24章第2节的内容。

本节课主要学习了直线和圆的位置关系,包括相交、相切和相离三种情况,以及判断直线和圆位置关系的方法。

这部分内容是学生进一步学习圆的性质和几何图形的对称性的基础,对于提高学生的空间想象能力和解决问题的能力具有重要意义。

二. 学情分析九年级的学生已经掌握了基本的代数和几何知识,具备一定的逻辑思维能力和空间想象能力。

但是,对于直线和圆的位置关系的理解还需要进一步引导和培养。

因此,在教学过程中,需要关注学生的学习情况,引导学生通过观察、操作、思考、讨论等方式,逐步掌握直线和圆的位置关系。

三. 教学目标1.知识与技能:使学生掌握直线和圆的位置关系,学会判断直线和圆位置关系的方法。

2.过程与方法:通过观察、操作、思考、讨论等活动,培养学生的空间想象能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作意识和交流沟通能力。

四. 教学重难点1.重点:直线和圆的位置关系,判断直线和圆位置关系的方法。

2.难点:理解直线和圆相交、相切、相离的内在联系,以及应用到实际问题中。

五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,引导学生主动探索直线和圆的位置关系。

2.互动法:教师学生进行小组讨论,鼓励学生发表自己的观点,培养学生的团队协作意识和交流沟通能力。

3.实践法:教师引导学生进行实际操作,通过观察、操作、思考等活动,巩固所学知识。

六. 教学准备1.教学课件:制作直观、生动的课件,帮助学生更好地理解直线和圆的位置关系。

2.教学素材:准备一些实际的例子,让学生能够将所学知识应用到实际问题中。

3.课堂练习:设计一些有关直线和圆位置关系的练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过展示一些实际的例子,让学生观察直线和圆的位置关系,引发学生的思考,引出本节课的主题。

《直线和圆的位置关系》优秀教学设计精选全文

《直线和圆的位置关系》优秀教学设计精选全文

可编辑修改精选全文完整版《直线和圆的位置关系》优秀教学设计《直线和圆的位置关系》优秀教学设计作为一名为他人授业解惑的教育工作者,时常需要用到教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。

那么你有了解过教学设计吗?下面是小编精心整理的《直线和圆的位置关系》优秀教学设计,仅供参考,欢迎大家阅读。

《直线和圆的位置关系》优秀教学设计1教学目标:(一)教学知识点:1.了解直线与圆的三种位置关系。

2.了解圆的切线的概念。

3.掌握直线与圆位置关系的性质。

(二)过程目标:1.通过多媒体让学生可以更直观地理解直线与圆的位置关系。

2.通过让学生发现与探究来使学生更加深刻地理解知识。

(三)感情目标:1.通过图形可以增强学生的感观能力。

2.让学生说出解题思路提高学生的语言表达能力。

教学重点:直线与圆的位置关系的性质及判定。

教学难点:有无进入暗礁区这题要求学生将实际问题转化为直线与圆的位置关系的判定,有一定难度,是难点。

教学过程:一、创设情境,引入新课请同学们看一看,想一想日出是怎么样的?屏幕上出现动态地模拟日出的情形。

(把太阳看做圆,把海平线看做直线。

)师:你发现了什么?(希望学生说出直线与圆有三种不同的位置关系,如果学生没有说到这里,我可以直接问学生,你觉得直线与圆有几种不同的位置关系。

)让学生在本子上画出直线与圆三种不同的位置图。

(如图)师:你又发现了什么?(希望学生回答出有第一个图直线与圆没有公共点,第二个图有一个公共点,而第三个有两个公共点,如果没有学生没有发现到这里,我可以引导学生做答)二、讨论知识,得出性质请同学们想一想:如果已知直线l与圆的位置关系分别是相离、相切、相交时,圆心O到直线l的距离d与圆的半径r有什么关系设圆心到直线的距离为d,圆的半径为r让学生讨论之后再与学生一起总结出:当直线与圆的位置关系是相离时,dr当直线与圆的位置关系是相切时,d=r当直线与圆的位置关系是相交时,d知识梳理:直线与圆的位置关系图形公共点d与r的大小关系相离没有r相切一个d=r相交两个d三、做做练习,巩固知识抢答,我能行活动:1、已知圆的`直径为13cm,如果直线和圆心的距离分别为(1)d=4.5cm(2)d=6.5cm(3)d=8cm,那么直线和圆有几个公共点?为什么?(让个别学生答题)师:第一题是已知d与r问直线与圆之间的位置关系,而下面这题是已知d与位置关系求r,那又该如何做呢?请大家思考后作答:2、已知圆心和直线的距离为4cm,如果圆和直线的关系分别为以下情况,那么圆的半径应分别取怎样的值?(1)相交;(2)相切;(3)相离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《直线和圆的位置关系》的教学设计
一教学目标
㈠知识教学点⒈使学生理解直线和圆的位置关系。

⒉初步掌握直线和圆的位置关系的数量关系定理及其使用。

㈡水平训练点
⒈通过对直线和圆的三种位置关系的直观演示,培养学生能从直观演示中归纳出几何性质的水平。

⒉在7.1节我们曾学习了“点和圆”的位置关系。

⑴点P在⊙O上OP=r
⑵点P在⊙O内OP<r
⑶点P在⊙O外OP>r
初步培养学生能将这个点和圆的位置关系和点到圆心的距离的数量关系互相对应的理论迁移到直线和圆的位置关系上来。

㈢德育渗透点
在用运动的观点揭示直线和圆的位置关系的过程中向学生渗透,世界上的一切事物都是变化着的,并且在变化的过程中在一定的条件下是能够相互转化的。

二、教学重点、难点和疑点
⒈重点:使学生准确理解直线和圆的位置关系,特别是直线和圆相切的关系,是以后学习中经常用到的一种关系。

⒉难点:直线和圆的位置关系与圆心到直线的距离和圆的关径大小关系的对应,它既可做为各种位置关系的判定,又可作为性质,学生不太容易理解。

⒊疑点:为什么能用圆心到直线的距离九圆的关径大小关系判断直线和圆的位置关系?为解决这个疑点,必须通过图形的演示,使学生理解直线和圆的位置关系必转化成圆心到直线的距离和圆的关径
的大小关系来实现的。

三、教学过程
㈠情境感知
⒈欣赏网页flash动画,《海上日出》
提问:动画给你形成了怎样的几何图形的印象?
⒉演示z+z超级画板制作《日出》的简易动画,给学生形成直线和圆的位置关系的印象,像这样平面上给定一条定直线和一个运动着的圆,它们之间虽然存有着若干种不同的位置关系,如果从数学角度,它的若干位置关系能分为几大类?请同学们打开练习本,画一画互相研究一下。

⒊活动:学生动手画,老师巡视。

当所有学生都把三种位置关系画出来时,用幻灯机给同学们作演示,并引导由现象到本质的观察,最终老师指导学生从直线和圆的公共点的个数来完成直线和圆的位
置关系的定义。

⒋直线和圆的位置关系的定义。

①直线和圆有两个公共点时,叫做直线和圆相交,直线叫做圆的割线。

②直线和圆有唯一公共点时,叫做直线和圆相切,直线叫圆的切线,唯一的公共点叫做切点。

③直线和圆没有公共点时,叫做直线和圆相离。

㈡重点、难点的学习与目标完成过程,
⒈利用z+z超级画板的变量动画,改变圆的半径的大小,使直线与圆的位置关系发生改变,并请学生识别,巩固定义。

⒉提问:刚刚的变化,是什么引起直线与圆的位置关系的改变的?除从直线和圆的公共点的个数来判断直线和圆的位置关系外,是否还有其它的判定方法呢?
⒊教师引导学生回忆:怎样判定点和圆的位置关系?学生回答后,提出我们能否在这里套用?
⒋学生小组讨论后,汇总成果。

引导学生从点和圆的位置关系去考察,特别是从点到圆心的距离与圆的半径的关系去考察。

若该直线ι到圆心O的距离为d,⊙O半径为r,利用z+z的超级画板的变量动画展示,很容易得到所需的结果。

①直线ι和⊙O相交d<r
②直线ι和⊙O相切d=r
③直线ι和⊙O相离d>r
提问:反过来,上述命题成立吗?
㈢尝试练习
⒈练习一:已知圆的直径为12cm,如果直线和圆心的距离
为⑴ 5.5cm;⑵6cm;⑶8cm 那么直线和圆有几个公共点?为什么?
⒉练习二:已知⊙O的半径为4cm,直线ι上的点A满足OA=4cm,能否判断直线ι和⊙O相切?为什么?
评析:利用“z+z”超级画板演示图形,并指导学生发现。

当OA 不是圆心到直线的距离时,直线ι和⊙O相交;当OA是圆心到直线的距离时,直线ι是⊙O的切线。

⒊经过以上练习,谈谈你的学习体会。

强调说明定理中是圆心到直线的距离,这是容易出错的地方,要注意!
㈣例题学习(P104)
在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?
⑴r=2cm ⑵r=2.4cm ⑶r=3cm
⒈学生独立思考后,小组交流。

⒉教师引导学生分析:题中所给的Rt△在已知条件下各元素已为定值,以直角顶点C为圆心的圆,随半径的持续变化,将与斜边AB所在的直线产生各种不同的位置关系,协助学生分析好,d是点C到AB所在直线的距离,也就是直角三角形斜边上的高CD。

如何求CD呢?
⒊学生讨论,并完成解答过程,用幻灯机投影学生成果。

⒋用z+z超级画板的变量动点,验证结果,巩固直线与圆的位置关系的定义.
⒌变式训练:若要使⊙C与AB边只有一个公共点,这时⊙C的半径r有什么要求?
学生讨论,并用z+z超级画板的变量动画引导。

㈣话说收获:
为了培养学生阅读教材的习惯,请学生看教材P.103—104,从中总结出本课学习的主要内容有:
四、作业
P105练习2 P115习题A 2、3。

相关文档
最新文档