高考一轮复习变量间的相关关系与统计案例

合集下载

高三数学(文)一轮复习课件:变量间的相关关系、统计案例

高三数学(文)一轮复习课件:变量间的相关关系、统计案例
2/18/2020
某商品销售量 y(件)与销售价格 x(元/件)负相关,
则其回归方程可能是( )
A. yˆ 10x 200
B. yˆ 10x 200
C. yˆ 10x 200
D. yˆ 10x 200
【解析】 ∵商品销售量 y(件)与销售价格 x(元/件)负相 关,∴a<0,排除 B,D.又∵x=0 时,y>0 ,∴排除 C,答案为 A. 【答案】 A
10.3 变量间的相关关系、统计案例
1.两个变量的线性相关 (1)正相关 在散点图中,点散布在从 左下角 到 右上角 的区域,对于 两个变量的这种相关关系,我们将它称为正相关. (2)负相关 在散点图中,点散布在从 左上角 到 右下角 的区域,对于 两个变量的这种相关关系,我们将它称为负相关.
2/18/2020
和b为模型的_未__知__参__数___,_e__称为随机误差.
2/18/2020
(4)相关系数
n
xi- x yi- y
i=1
n
n
xi- x 2 yi- y 2
i=1
i=1
①r=____________________________;
②当r>0时,表明两个变量__正__相__关__; 当r<0时,表明两个变量__负__相___关__.
2/18/2020
有甲、乙两个班级进行数学考试,按照大于等于 85 分为优秀,85
分以下为非优秀统计成绩后,得到如下的列联表.
优秀
非优秀
总计
甲班
10
乙班
30
合计 105
已知从全部 105 人中随机抽取 1 人为优秀的概率为 2 . 7
(1)请完成上面的列联表;

【精品课件】新教材一轮复习北师大版第10章第3讲变量间的相关关系、统计案例课件

【精品课件】新教材一轮复习北师大版第10章第3讲变量间的相关关系、统计案例课件

求得回归方程^y=0.67x+54.9.
零件数 x(个) 10 20 30 40 50
加工时间 y(min) 62
75 81 89
现发现表中有一个数据看不清,请你推断出该数据的值为__6_8__.
第十章 统计、统计案例
高考一轮总复习 • 数学(新高考)
[解析] 由-x =30,得-y =0.67×30+54.9=75. 设表中的“模糊数字”为 a, 则 62+a+75+81+89=75×5,∴a=68.
第十章 统计、统计案例
高考一轮总复习 • 数学(新高考)
返回导航
5.(2019·高考全国Ⅰ卷)某商场为提高服务质量,随机调查了 50 名 男顾客和 50 名女顾客,每位顾客对该商场的服务给出满意或不满意的评 价,得到下面列联表:
满意 不满意 男顾客 40 10 女顾客 30 20
第十章 统计、统计案例
高考一轮总复习 • 数学(新高考)
考点一
相关关系的判断——自主练透
(1)(2021·四 川 资 阳 模
拟)在一次对人体脂肪含量和年龄关
系的研究中,研究人员获得了一组样
本数据,并制作成如图所示的人体脂
肪含量与年龄关系的散点图.根据该
图,下列结论中正确的是 ( )
返回导航
第十章 统计、统计案例
高考一轮总复习 • 数学(新高考)
积相近的 200 个地块,从这些地块中用简单随机抽样的方法抽取 20 个作
为样区,调查得到样本数据(xi,yi)(i=1,2,…,20),其中 xi 和 yi 分别表 示第 i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计
20
20
20
算得xi=60,yi=1 200,

高考数学一轮复习第十章统计与统计案例10.3变量间的相关关系、统计案例学案理

高考数学一轮复习第十章统计与统计案例10.3变量间的相关关系、统计案例学案理

§10.3 变量间的相关关系、统计案例考纲展示►1.会作两个相关变量的散点图,会利用散点图认识变量之间的相关关系. 2.了解最小二乘法的思想,能根据给出的线性回归系数公式建立线性回归方程. 3.了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用. 4.了解回归分析的基本思想、方法及其简单应用.考点1 变量间的相关关系1.常见的两变量之间的关系有两类:一类是函数关系,另一类是________;与函数关系不同,________是一种非确定性关系.答案:相关关系 相关关系2.从散点图上看,点散布在从左下角到右上角的区域内,两个变量的这种相关关系称为________,点散布在左上角到右下角的区域内,两个变量的相关关系为________.答案:正相关 负相关对回归系数的理解:解释变量;预报变量.某工厂工人月工资y (元)依劳动产值x (万元)变化的回归直线方程为y ^=900x +600,下列判断正确的是__________.①劳动产值为10 000元时,工资为500元; ②劳动产值提高10 000元时,工资提高1 500元; ③劳动产值提高10 000元时,工资提高900元; ④劳动产值为10 000元时,工资为900元. 答案:③解析:回归系数b ^的意义为:解释变量每增加1个单位,预报变量平均增加b 个单位.[典题1] (1)下列四个散点图中,变量x 与y 之间具有负的线性相关关系的是( )A BC D[答案] D[解析] 观察散点图可知,只有D 选项的散点图表示的是变量x 与y 之间具有负的线性相关关系.(2)四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且y ^=2.347x -6.423; ②y 与x 负相关且y ^=-3.476x +5.648; ③y 与x 正相关且y ^=5.437x +8.493; ④y 与x 正相关且y ^=-4.326x -4.578. 其中一定不正确的结论的序号是( ) A .①② B .②③ C .③④ D .①④ [答案] D[解析] 由回归方程y ^=b ^x +a ^知,当b ^>0时,y 与x 正相关,当b ^<0时,y 与x 负相关,∴①④一定错误.[点石成金] 相关关系的直观判断方法就是作出散点图,若散点图呈带状且区域较窄,说明两个变量有一定的线性相关性,若呈曲线型也是有相关性,若呈图形区域且分布较乱则不具备相关性.考点2 线性回归分析1.回归分析对具有________的两个变量进行统计分析的方法叫回归分析.其基本步骤是:(ⅰ)画散点图;(ⅱ)求________;(ⅲ)用回归直线方程作预报.答案:相关关系 回归直线方程 2.回归直线如果散点图中点的分布从整体上看大致在________附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.答案:一条直线3.回归直线方程的求法——最小二乘法设具有线性相关关系的两个变量x ,y 的一组观察值为(x i ,y i )(i =1,2,…,n ),则回归直线方程y ^=b ^x +a ^的系数为:⎩⎪⎨⎪⎧b ^=∑i =1nx i-x y i-y ∑i =1nx i-x2= ,a ^=y -b ^x ,其中x =1n ∑i =1n x i ,y =1n ∑i =1ny i ,(x ,y )称为样本点的________.答案:∑i =1nx i y i -n x y∑i =1nx 2i -n x 2中心4.相关系数当r >0时,表明两个变量________; 当r <0时,表明两个变量________.r 的绝对值越接近于1,表明两个变量的线性相关性________.r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常|r |大于0.75时,认为两个变量有很强的线性相关性.答案:正相关 负相关 越强[教材习题改编]已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为__________.答案:y ^=1.23x +0.08解析:设回归直线方程为y ^=1.23x +a ^, 因为回归直线必过样本点的中心(x ,y ), 将点(4,5)代入回归直线方程得a ^=0.08, 所以所求方程为y ^=1.23x +0.08.变量的相关关系:散点图;回归直线过(x ,y ).某工厂经过技术改造后,生产某种产品的产量x (吨)与相应的生产能耗y (吨标准煤)有如下几组样本数据.x 3 4 5 6 y2.5344.50.7,那么当产量x =10吨时,估计相应的生产能耗为__________吨标准煤.答案:7.35解析:先求得x =4.5,y =3.5,由y ^=0.7x +a ^过点(x ,y ),得a ^=0.35, 所以回归直线方程是y ^=0.7x +0.35.当x =10吨时,y ^=7+0.35=7.35(吨标准煤).[典题2] (1)已知x ,y 的取值如下表,从散点图可以看出y 与x 线性相关,且回归方程为y ^=0.95x +a ^,则a ^=( )x 0 1 3 4 y2.24.34.86.7A.3.25 C .2.2D .0[答案] B[解析] 由已知得x =2,y =4.5, 因为回归方程经过点(x ,y ), 所以a ^=4.5-0.95×2=2.6.(2)由某种设备的使用年限x i (年)与所支出的维修费y i (万元)的数据资料算得如下结果,∑i =15x 2i =90,∑i =15x i y i =112,∑i =15x i =20,∑i =15y i =25.①求所支出的维修费y 对使用年限x 的线性回归方程y ^=b ^x +a ^; ②(ⅰ)判断变量x 与y 之间是正相关还是负相关; (ⅱ)当使用年限为8年时,试估计支出的维修费是多少.附:在线性回归方程y ^=b ^x +a ^中,b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x 2,a ^=y -b ^x ,其中x ,y 为样本平均值.[解] ①∵∑i =15x i =20,∑i =15y i =25,∴x =15∑i =15x i =4,y =15∑i =15y i =5,∴b ^=∑i =15x i y i -5x y∑i =15x 2i -5x 2=112-5×4×590-5×42=1.2, a ^=y -b ^x =5-1.2×4=0.2.∴线性回归方程为y ^=1.2x +0.2. ②(ⅰ)由①知,b ^=1.2>0, ∴变量x 与y 之间是正相关.(ⅱ)由①知,当x =8时,y ^=9.8,即使用年限为8年时,支出维修费约是9.8万元. [点石成金] 1.正确理解计算b ^,a ^的公式和准确的计算是求线性回归方程的关键.2.回归直线方程y ^=b ^x +a ^必过样本点的中心(x ,y ).3.在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程来估计和预测.某地最近十年粮食需求量逐年上升,下表是部分统计数据:年份 2006 2008 2010 2012 2014 需求量(万吨)236246257276286(1)利用所给数据求年需求量与年份之间的回归直线方程y ^=b ^x +a ^; (2)利用(1)中所求出的回归直线方程预测该地2016年的粮食需求量.解:(1)由所给数据看出,年需求量与年份之间是近似直线上升,下面来配回归直线方程,为此对数据预处理如下:年份-2 010 -4 -2 0 2 4 需求量-257-21-111929对预处理后的数据,容易算得,x =0,y =3.2,b ^=-4×-21+-2×-11+2×19+4×29-5×0×3.2-42+-22+22+42-5×02=26040=6.5,a ^=y -b ^x =3.2. 由上述计算结果知,所求回归直线方程为 y ^-257=b ^(x -2 010)+a ^=6.5(x -2 010)+3.2, 即y ^=6.5×(x -2 010)+260.2.(2)利用(1)中所求回归直线方程,可预测2016年的粮食需求量为6.5×(2 016-2 010)+260.2=6.5×6+260.2=299.2(万吨).考点3 独立性检验1.分类变量:变量的不同“值”表示个体所属的不同类别,像这类变量称为分类变量.2.列联表:列出两个分类变量的频数表,称为列联表.假设有两个分类变量X和Y,它们的可能取值分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为2×2列联表:y1y2总计x1 a b a+bx2 c d c+d总计a+c b+d a+b+c+dK2=n ad-bc2a+b a+c b+d c+d(其中n=________为样本容量),则利用独立性检验判断表来判断“X与Y的关系”.答案:a+b+c+d(1)[教材习题改编]为调查中学生的近视情况,测得某校150名男生中有80名近视,140名女生中有70名近视.在检验这些学生眼睛近视是否与性别有关时,最有说服力的方法是________.(填序号)①回归分析;②期望与方差;③独立性检验;④概率.答案:③解析:“近视”与“性别”是两个分类变量,其是否有关,应该用独立性检验来判断.(2)[教材习题改编]在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得出“吸烟与患肺癌有关”的结论,并且有99%以上的把握认为这个结论是成立的,有下列四种说法:①100个吸烟者中至少有99人患有肺癌;②1个人吸烟,那么这人有99%的概率患有肺癌;③在100个吸烟者中一定有患肺癌的人;④在100个吸烟者中可能一个患肺癌的人也没有.其中正确说法的序号是________.答案:④对独立性检验的理解:K2的计算;对P(K2≥k0)的解释.[2017·湖南张家界模拟]某高校教“统计初步”课程的教师随机调查了选该课程的一些学生的情况,具体数据如下表:专业性别非统计专业统计专业男1310女720 为了判断主修统计专业是否与性别有关系,根据表中的数据,得到K2的观测值k=50×13×20-10×7223×27×20×30≈4.844.因为k>3.841,所以判定主修统计专业与性别有关系,那么这种判断出错的可能性为________.附表:P(K2≥k0)0.0500.0100.001k0 3.841 6.63510.828 答案:5%解析:∵k>3.841,查临界值表,得P(K2≥3.841)=0.05,故这种判断出错的可能性为5%.[典题3] (1)为了判断高中三年级学生选修文理科是否与性别有关,现随机抽取50名学生,得到2×2列联表:理科文科总计男131023女72027总计203050已知P2P(K2≥5.024)≈0.025.根据表中数据,得到K2=50×13×20-10×7223×27×20×30≈4.844,则认为选修文理科与性别有关系出错的可能性约为________.[答案]5%[解析]由K2≈4.844>3.841.故认为选修文理科与性别有关系出错的可能性约为5%.(2)[2017·江西九江模拟]某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在40分以下的学生后,共有男生300名,女生200名.现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生的成绩分为6组,得到如下所示的频数分布表.分数段[40,50)[50,60)[60,70)[70,80)[80,90)[90,100] 男39181569女64510132①估计男、女生各自的平均分(同一组数据用该组区间中点值作代表),从计算结果看,数学成绩与性别是否有关;②规定80分以上为优分(含80分),请你根据已知条件作出2×2列联表,并判断是否有90%以上的把握认为“数学成绩与性别有关”.优分 非优分 总计 男生 女生 总计100附表及公式:P (K 2≥k 0)0.100 0.050 0.010 0.001 k 02.7063.841 6.63510.828K 2=n ad -bc 2a +bc +d a +cb +d.[解] ①x 男=45×0.05+55×0.15+65×0.3+75×0.25+85×0.1+95×0.15=71.5,x 女=45×0.15+55×0.1+65×0.125+75×0.25+85×0.325+95×0.05=71.5,从男、女生各自的平均分来看,并不能判断数学成绩与性别有关.②由频数分布表可知,在抽取的100名学生中,“男生组”中的优分有15人,“女生组”中的优分有15人,据此可得2×2列联表如下:优分 非优分 总计 男生 15 45 60 女生 15 25 40 总计3070100可得K 2=100×15×25-15×45260×40×30×70≈1.79,因为1.79<2.706,所以没有90%以上的把握认为“数学成绩与性别有关”. [点石成金] 1.独立性检验的关键是正确列出2×2列联表,并计算出K 2的值. 2.弄清判断两变量有关的把握性与犯错误概率的关系,根据题目要求作出正确的回答.[2017·广西玉林、贵港联考]某市地铁即将于2015年6月开始运营,为此召开了一个价格听证会,拟定价格后又进行了一次调查,随机抽查了50人,他们的收入与态度如下; 月收入 (单位: 百元) [15, 25)[25, 35)[35, 45)[45, 55)[55, 65)[65, 75]赞成定 价者人数 1 2 3 5 3 4认为价 格偏高 者人数4812521“认为价格偏高者”的月平均收入的差距是多少(结果保留2位小数);(2)由以上统计数据填写下面的2×2列联表分析是否有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”.月收入低于 55百元的人数月收入不低于 55百元的人数总计认为价 格偏高者赞成 定价者 总计附:K 2=a +bc +d a +c b +d. P (K 2≥k 0)0.05 0.01 k 03.8416.635解:x 1=20×1+30×2+40×3+50×5+60×3+70×41+2+3+5+3+4≈50.56.“认为价格偏高者”的月平均收入为x 2=20×4+30×8+40×12+50×5+60×2+70×14+8+12+5+2+1=38.75,∴“赞成定价者”与“认为价格偏高者”的月平均收入的差距是x 1-x 2=50.56-38.75=11.81(百元).(2)根据条件可得2×2列联表如下:月收入低于55百元的人数月收入不低于55百元的人数总计认为价格偏高者29332 赞成定价者11718 总计401050 K2=50×7×29-3×11210×40×18×32≈6.27<6.635,∴没有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”.[方法技巧] 1.求回归方程,关键在于正确求出系数a^,b^,由于a^,b^的计算量大,计算时应仔细谨慎,分层进行,避免因计算而产生错误.(注意线性回归方程中一次项系数为b^,常数项为a^,这与一次函数的习惯表示不同.)2.回归分析是处理变量相关关系的一种数学方法.主要解决:(1)确定特定量之间是否有相关关系,如果有就找出它们之间贴近的数学表达式;(2)根据一组观察值,预测变量的取值及判断变量取值的变化趋势;(3)求出线性回归方程.[易错防范] 1.回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.2.独立性检验中统计量K2的观测值k的计算公式很复杂,在解题中易混淆一些数据的意义,代入公式时出错,而导致整个计算结果出错.真题演练集训1.[2015·福建卷]为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入x(万元)8.28.610.011.311.9支出y(万元) 6.27.58.08.59.8 根据上表可得回归直线方程y=b x+a,其中b=0.76,a=y-b x.据此估计,该社区一户年收入为15万元家庭的年支出为( )A.11.4万元 B.11.8万元C.12.0万元 D.12.2万元答案:B解析:由题意知,x=8.2+8.6+10.0+11.3+11.95=10,y=6.2+7.5+8.0+8.5+9.85=8,∴a^=8-0.76×10=0.4,∴当x=15时,y^=0.76×15+0.4=11.8(万元).2.[2016·新课标全国卷Ⅲ]下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1-7分别对应年份2008-2014.(1)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;(2)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:∑i=17y i=9.32,∑i=17t i y i=40.17,i=17y i-y2=0.55,7≈2.646.参考公式:相关系数r=∑i=1nt i-t y i-y∑i=1nt i-t2∑i=1ny i-y2,回归方程y^=b^t+a^中斜率和截距的最小二乘估计公式分别为b^=∑i=1nt i-t y i-y∑i=1nt i-t2,a^=y-b^t.解:(1)由折线图中数据和附注中参考数据,得t =4,∑i =17(t i -t)2=28,∑i =17y i -y2=0.55,∑i =17 (t i -t)(y i -y )=∑i =17t i y i -t∑i =17y i =40.17-4×9.32=2.89,r ≈ 2.890.55×2×2.646≈0.99.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(2)由y =9.327≈1.331及(1),得b ^=∑i =17t i -ty i -y∑i =17t i -t2=2.8928≈0.103, a ^=y -b ^t ≈1.331-0.103×4≈0.92.所以,y 关于t 的回归方程为y ^=0.92+0.10t . 将2016年对应的t =9代入回归方程,得 y ^=0.92+0.10×9=1.82.所以预测2016年我国生活垃圾无害化处理量约为1.82亿吨.3.[2015·新课标全国卷Ⅰ]某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.x y w∑i =18(x i∑i =18(w i∑i =18(x i -∑i =18(w i --x )2-w )2x )(y i -y )w )(y i -y )46.65636.8289.81.61 469108.8表中w i =x i ,w =18∑i =18x i .(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程.(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题: ①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+β u 的斜率和截距的最小二乘估计分别为β^=∑i =1nu i -uv i -v∑i =1nu i -u2,α^=v -β^u .解:(1)由散点图可以判断,y =c +d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2)令w =x ,先建立y 关于w 的线性回归方程.由于d ^=∑i =18w i -wy i -y∑i =18w i -w2=108.81.6=68, c ^=y -d ^w =563-68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w , 因此y 关于x 的回归方程为y ^=100.6+68x . (3)①由(2)知,当x =49时,年销售量y 的预报值y ^=100.6+6849=576.6,年利润z 的预报值z ^=576.6×0.2-49=66.32.②根据(2)的结果知,年利润z 的预报值 z ^=0.2(100.6+68x )-x =-x +13.6x +20.12.所以当x =13.62=6.8,即x =46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.4.[2014·新课标全国卷Ⅱ]某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如下表: 年份 2007 2008 2009 2010 2011 2012 2013 年份代号t 1 2 3 4 5 6 7 人均纯收入y2.93.33.64.44.85.25.9(1)求y 关于t 的线性回归方程;(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:b ^=∑i =1nt i -ty i -y∑i =1nt i -t2,a ^=y -b ^t .解:(1)由所给数据计算得t =17×(1+2+3+4+5+6+7)=4,y =17×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∑i =17(t i -t )2=9+4+1+0+1+4+9=28,∑i =17(t i -t)(y i -y )=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,b ^=∑i =17t i -ty i -y∑i =17t i -t2=1428=0.5, a ^=y -b ^t =4.3-0.5×4=2.3.所求回归方程为y ^=0.5t +2.3.(2)由(1)知,b ^=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t =9代入(1)中的回归方程,得 y ^=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.课外拓展阅读 统计案例问题的规范答题[典例] [2013·福建卷]某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?P (K 2≥k 0)0.100 0.050 0.010 0.001 k 02.7063.8416.63510.828附:K 2=a +bc +d a +cb +d.[审题视角] 由频率分布直方图列举基本事件,结合古典概型,求概率.利用独立性检验公式计算K 2.[解] (1)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名.所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60×0.05=3(人),记为A 1,A 2,A 3;25周岁以下组工人有40×0.05=2(人),记为B 1,B 2.从中随机抽取2名工人,所有的可能结果共有10种,它们是(A 1,A 2),(A 1,A 3),(A 2,A 3),(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).其中,至少有1名“25周岁以下组”工人的可能结果共有7种,它们是(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).故所求的概率P =710.(2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手有60×0.25=15(人),“25周岁以下组”中的生产能手有40×0.375=15(人),据此可得2×2列联表如下:生产能手 非生产能手总计 25周岁以上组 15 45 60 25周岁以下组15 25 40 总计3070100所以K 2=n ad -bc 2a +bc +d a +cb +d=100×15×25-15×45260×40×30×70=2514≈1.79. 因为1.79<2.706,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”. [答题模板] 第1步:由分层抽样计算两组工人的数目; 第2步:由频率分布直方图计算两组不足60件的人数; 第3步:列举5人抽取2人的基本事件数; 第4步,由古典概型计算概率;第5步:统计生产能手与非生产能手,列2×2列联表; 第6步:由公式计算K 2,确定答案. 归纳总结(1)分层抽样比为100500=15,故25周岁以上有300×15=60(人),25周岁以下的200×15=40(人),然后再根据频率计算“不足60件”的人数,并设定符号.(2)列2×2列联表时,其中的数字应先由频率分布直方图算出后再列表.。

变量间的相关关系-统计案例

变量间的相关关系-统计案例

高考数学知识点:变量间的相关关系-统计案例2016-04-22 15:15一、变量间的相关关系1.常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.2.从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关.典型例题1:某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:1.回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.2.由回归方程进行预报,仅是一个预报值,而不是真实发生的值.3.使用K2统计量作2×2列联表的独立性检验时,要求表中的4个数据都要大于5,在选取样本容量时一定要注意.二、两个变量的线性相关1.从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线.2.回归方程为3.求最小值而得到回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.4.相关系数,当r>0时,表明两个变量正相关;当r<0时,表明两个变量负相关.r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常|r|大于0.75时,认为两个变量有很强的线性相关性.典型例题2:1.相关关系的判断方法一是利用散点图直观判断,二是利用相关系数作出判断.2.对于由散点图作出相关性判断时,若散点图呈带状且区域较窄,说明两个变量有一定的线性相关性,若呈曲线型也是有相关性.3.由相关系数r判断时|r|越趋近于1相关性越强.三、独立性检验典型例题3:。

专题68 变量间的相关关系与统计案例-高考数学复习资料(解析版)

专题68 变量间的相关关系与统计案例-高考数学复习资料(解析版)

D.58 件
【答案】A
【解析】由题中数据,得 x =10, y =38,回归直线y^=b^x+a^过点( x , y ),且b^=-2,代入得a^=58, 则回归方程y^=-2x+58,所以当 x=6 时,y=46,故选 A.
附: K 2
n(ad bc)2

(a b)(c d)(a c)(b d)
P(K2≥k) 0.050 0.010 0.001
k
3.841 6.635 10.828
【解析】 (1)由调查数据,男顾客中对该商场服务满意的比率为 40 0.8 ,因此男顾客对该商场服务满 50
意的概率的估计值为0.8.
支出费用为 3.00 万元的家庭购买水果和牛奶的年支出费用约为( )
A.1.795 万元
B.2.555 万元
C.1.915 万元
D.1.945 万元
【答案】A
【解析】
x
1 = ×(2.09+2.15+2.50+2.84+2.92)=2.50(万元),
y
1 = ×(1.25+1.30+1.50+1.70
^
y=99+17.5×9=256.5(亿元).
(2)利用模型②得到的预测值更可靠.
理由如下:
(ⅰ)从折线图可以看出,2000 年至 2016 年的数据对应的点没有随机散布在直线 y=-30.4+13.5t 上下,
这说明利用 2000 年至 2016 年的数据建立的线性模型①不能很好地描述环境基础设施投资额的趋势.2010 年
(1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法.
--
(2)样本点的中心:对于一组具有线性相关关系的数据(x1,y1),(x2,y2),…,(xn,yn),其中(x,y)称为

2020版高考数学(文)一轮复习变量间的相关关系与统计案例

2020版高考数学(文)一轮复习变量间的相关关系与统计案例

第三节变量间的相关关系与统计案例 一、基础知识批注——理解深一点1.变量间的相关关系(1)常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.体现的不一定是因果关系.(2)从散点图上看,点散布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关;点散布在左上角到右下角的区域内,两个变量的这种相关关系为负相关.2.两个变量的线性相关(1)从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)回归方程为y ^=b ^x +a ^,其中b ^=∑i =1n (x i -x )(y i -y )∑i =1n(x i -x)2=∑i =1nx i y i -n x y∑i =1nx 2i -n x2, a ^=y -b ^x .回归直线y ^=b ^x +a ^必过样本点的中心(x ,y ),这个结论既是检验所求回归直线方程是否准确的依据,也是求参数的一个依据. (3)通过求Q =∑i =1n(y i -bx i -a )2的最小值而得到回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小,这一方法叫做最小二乘法.(4)相关系数:当r >0时,表明两个变量正相关; 当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常|r |大于0.75时,认为两个变量有很强的线性相关性.3.独立性检验 (1)2×2列联表设X ,Y 为两个变量,它们的取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(2×2列联表)如下:y 1 y 2 总计 x 1aba +bx 2 c d c +d 总计a +cb +da +b +c +d(2)独立性检验利用随机变量K 2(也可表示为χ2)的观测值k =n (ad -bc )2(a +b )(c +d )(a +c )(b +d )(其中n =a +b +c+d 为样本容量)来判断“两个变量有关系”的方法称为独立性检验.独立性检验是对两个变量有关系的可信程度的判断,而不是对其是否有关系的判断.二、常用结论汇总——规律多一点(1)求解回归方程的关键是确定回归系数a ^,b ^,应充分利用回归直线过样本中心点 (x ,y ).(2)根据K 2的值可以判断两个分类变量有关的可信程度,若K 2越大,则两分类变量有关的把握越大.(3)根据回归方程计算的y ^值,仅是一个预报值,不是真实发生的值.三、基础小题强化——功底牢一点(一)判一判(对的打“√”,错的打“×”)(1)散点图是判断两个变量是否相关的一种重要方法和手段.( )(2)回归直线方程y ^=b ^x +a ^至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点.( ) (3)若事件X ,Y 关系越密切,则由观测数据计算得到的K 2的观测值越小.( ) (4)两个变量的相关系数的绝对值越接近于1,它们的相关性越强.( ) 答案:(1)√ (2)× (3)× (4)√ (二)选一选1.已知变量x 和y 满足关系y ^=-0.1x +1,变量y ^与z 正相关.则下列结论中正确的是( )A .x 与y ^负相关,x 与z 负相关 B .x 与y ^正相关,x 与z 正相关 C .x 与y ^正相关,x 与z 负相关 D .x 与y ^负相关,x 与z 正相关 答案:A2.两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数R 2如下,其中拟合效果最好的模型是( )A .模型1的相关指数R 2为0.98B .模型2的相关指数R 2为0.80C .模型3的相关指数R 2为0.50D .模型4的相关指数R 2为0.25 答案:A (三)填一填3.已知x ,y 的取值如下表,从散点图可以看出y 与x 具有线性相关关系,且回归方程为y ^=0.95x +a ^,则a ^=________.x 0 1 3 4 y2.24.34.86.7解析:∵回归直线必过样本点的中心(x ,y ),又x =2,y =4.5,代入回归方程,得a ^=2.6.答案:2.64.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下列联表:理科 文科 男 13 10 女720已知P (K 2≥3.841)≈0.05,P (K 2≥5.024)≈0.025.根据表中数据,得到K 2的观测值k =50×(13×20-10×7)223×27×20×30≈4.844.则认为选修文科与性别有关系出错的可能性为________.解析:K 2的观测值k ≈4.844,这表明小概率事件发生.根据假设检验的基本原理,应该断定“是否选修文科与性别之间有关系”成立,并且这种判断出错的可能性约为5%.答案:5%考点一 回归分析考法(一) 求线性回归方程[典例] (2019·湘东五校联考)已知具有相关关系的两个变量x ,y 的几组数据如下表所示:x2 4 6 8 10y 3 6 7 10 12(1)请根据上表数据在网格纸中绘制散点图;(2)请根据上表数据,用最小二乘法求出y 关于x 的线性回归方程y ^=b ^x +a ^,并估计当x =20时y 的值.参考公式:b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x2,a ^=y -b ^x .[解] (1)散点图如图所示:(2)依题意,x =15×(2+4+6+8+10)=6,y =15×(3+6+7+10+12)=7.6,∑i =15x 2i =4+16+36+64+100=220,∑i =15x i y i =6+24+42+80+120=272,∴b ^=∑i =15x i y i -5 x y∑i =15x 2i -5 x2=272-5×6×7.6220-5×62=4440=1.1, ∴a ^=7.6-1.1×6=1,∴线性回归方程为y ^=1.1x +1,故当x =20时,y =23.考法(二) 相关系数及应用[典例] 如图是我国2012年至2018年生活垃圾无害化处理量(单位:亿吨)的折线图.由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明. 参考数据:∑i =17y i =9.32,∑i =17t i y i =40.17,∑i =17(y i -y )2=0.55, 7≈2.646.参考公式:相关系数r =∑i =1n(t i -t )(y i -y )∑i =1n(t i -t )2∑i =1n(y i -y )2.[解] 由折线图中数据和参考数据及公式得t =4,∑i=17(t i -t)2=28,∑i =17(y i -y )2=0.55,∑i =17(t i -t )(y i -y )=∑i =17t i y i -t ∑i =17y i =40.17-4×9.32=2.89,r ≈2.890.55×2×2.646≈0.99.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.[解题技法]1.线性回归分析问题的类型及解题方法 (1)求线性回归方程:①利用公式,求出回归系数b ^,a ^.②待定系数法:利用回归直线过样本点中心求系数. (2)利用回归方程进行预测:把回归直线方程看作一次函数,求函数值.(3)利用回归直线判断正、负相关:决定正相关还是负相关的是系数b ^.2.模型拟合效果的判断(1)残差平方和越小,模型的拟合效果越好. (2)相关指数R 2越大,模型的拟合效果越好.(3)回归方程的拟合效果,可以利用相关系数判断,当|r |越趋近于1时,两变量的线性相关性越强.[题组训练]1.(2019·惠州调研)某商场为了了解毛衣的月销售量y (件)与月平均气温x (℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:月平均气温x /℃ 17 13 8 2 月销售量y /件24334055由表中数据算出线性回归方程y ^=b ^x +a ^中的b ^=-2,气象部门预测下个月的平均气温约为6 ℃,据此估计该商场下个月毛衣销售量约为( )A .46件B .40件C .38件D .58件解析:选A 由题中数据,得x =10,y =38,回归直线y ^=b ^x +a ^过点(x ,y ),且b ^=-2,代入得a ^=58,则回归方程y ^=-2x +58,所以当x =6时,y =46,故选A.2.近期,某公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每天使用扫码支付的人次,用x 表示活动推出的天数,y 表示每天使用扫码支付的人次,统计数据如下表:x 1 2 3 4 5 6 7 y601102103406601 0101 960根据以上数据,绘制了散点图.参考数据:yv∑i =17x i y i∑i =17x i v i100.54其中v i =lg y i ,v =17∑i =17v i .(1)根据散点图判断,在推广期内,y =a +bx 与y =c ·d x (c ,d 均为大于零的常数)哪一个适宜作为扫码支付的人次y 关于活动推出天数x 的回归方程类型(给出判断即可,不必说明理由)?(2)根据(1)的判断结果及上表中数据,建立y 关于x 的回归方程,并预测活动推出第8天使用扫码支付的人次.参考公式:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v ^=α^+β^μ的斜率和截距的最小二乘估计公式分别为β=∑i =1nu i v i -n u v∑i =1nu 2i -n u2,α^=v -β^U .解:(1)根据散点图可以判断,y =c ·d x 适宜作为扫码支付的人次y 关于活动推出天数x 的回归方程类型.(2)y =c ·d x 两边同时取常用对数,得lg y =lg(c ·d x )=lg c +x lg d , 设lg y =v ,则v =lg c +x lg d . ∵x =4,v =2.54,∑i =17x 2i =140,∴lg d =∑i =17x i v i -7 x v∑i =17x 2i -7 x2≈78.12-7×4×2.54140-7×42=0.25,把(4,2.54)代入v =lg c +x lg d ,得lg c =1.54, ∴v ^=1.54+0.25x ,∴y ^=101.54+0.25x =101.54·(100.25)x .把x =8代入上式,得y ^=101.54+0.25×8=103.54=103×100.54=3 470,∴y 关于x 的回归方程为y ^=101.54·(100.25)x ,活动推出第8天使用扫码支付的人次为3 470.考点二 独立性检验[典例] (2018·全国卷Ⅲ节选)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:超过m不超过m第一种生产方式 第二种生产方式(2)根据(1)中的列联表,能否有99%的把握认为两种生产方式的效率有差异? 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),[解] (1)由茎叶图知m =79+812=80.列联表如下:超过m 不超过m第一种生产方式 15 5 第二种生产方式515(2)因为K 2=40(15×15-5×5)220×20×20×20=10>6.635,所以有99%的把握认为两种生产方式的效率有差异.[解题技法]2个明确(1)明确两类主体; (2)明确研究的两个问题 2个关键(1)准确画出2×2列联表; (2)准确求解K 23个步骤(1)根据样本数据制成2×2列联表;(2)根据公式K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),计算K 2的值;(3)查表比较K 2与临界值的大小关系,作统计判断[题组训练]1.(2019·沧州模拟)某班主任对全班50名学生进行了作业量的调查,数据如表:认为作业量大认为作业量不大总计 男生 18 9 27 女生 8 15 23 总计262450已知P (K 2≥3.841)≈0.05,P (K 2≥5.024)≈0.025,P (K 2≥6.635)≈0.010.则________(填“有”或“没有”)97.5%的把握认为“学生的性别与认为作业量大 有关”.解析:因为K 2=50×(18×15-8×9)226×24×27×23≈5.059>5.024,所以有97.5%的把握认为“学生的性别与认为作业量大有关”. 答案:有2.为考察某种疫苗预防疾病的效果,进行动物试验,得到统计数据如下:未发病 发病 总计 未注射疫苗 20 x A 注射疫苗 30 y B 总计5050100现从所有试验动物中任取一只,取到“注射疫苗”动物的概率为25.(1)求2×2列联表中的数据x ,y ,A ,B 的值.(2)绘制发病率的条形统计图,并判断疫苗是否影响到了发病率?(3)能否在犯错误的概率不超过0.001的前提下认为疫苗有效?附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d .临界值表:P (K 2≥k 0)0.05 0.01 0.005 0.001 k 03.8416.6357.87910.828解:(1)设“从所有试验动物中任取一只,取到‘注射疫苗’动物”为事件M , 由已知得P (M )=y +30100=25, 所以y =10,则B =40,x =40,A =60. (2)未注射疫苗发病率为4060=23≈0.67,注射疫苗发病率为1040=14=0.25.发病率的条形统计图如图所示,由图可以看出疫苗影响到了发病率.(3)因为K 2=100×(20×10-40×30)260×40×50×50≈16.67>10.828.所以能在犯错误的概率不超过0.001的前提下认为疫苗有效.[课时跟踪检测]A 级——保大分专练1.对变量x ,y 有观测数据(x i ,y i )(i =1,2,…,10),得散点图如图①,对变量u ,v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图如图②.由这两个散点图可以判断( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关解析:选C 由散点图可得两组数据均线性相关,且图①的线性回归方程斜率为负,图②的线性回归方程斜率为正,则由散点图可判断变量x 与y 负相关,u 与v 正相关.2.(2019·长沙模拟)为了解某社区居民购买水果和牛奶的年支出费用与购买食品的年支出费用的关系,随机调查了该社区5户家庭,得到如下统计表:购买食品的年支出费用x /万元 2.092.152.502.842.92购买水果和牛奶的年支出费用y /万元1.251.301.501.701.75根据上表可得回归方程y =b x +a ,其中b =0.59,a =y -b x ,据此估计,该社区一户购买食品的年支出费用为3.00万元的家庭购买水果和牛奶的年支出费用约为( )A .1.795万元B .2.555万元C .1.915万元D .1.945万元解析:选A x =15×(2.09+2.15+2.50+2.84+2.92)=2.50(万元),y =15×(1.25+1.30+1.50+1.70+1.75)=1.50(万元),其中b ^=0.59,则a ^=y -b ^ x =0.025,y ^=0.59x +0.025,故年支出费用为3.00万元的家庭购买水果和牛奶的年支出费用约为y ^=0.59×3.00+0.025=1.795(万元).3.下面四个命题中,错误的是( )A .从匀速传递的产品生产流水线上,质检员每15分钟从中抽取一件产品进行某项指标检测,这样的抽样是系统抽样B .对分类变量X 与Y 的随机变量K 2的观测值k 来说,k 越大,“X 与Y 有关系”的把握程度越大C .两个随机变量相关性越强,则相关系数的绝对值越接近于0D .在回归直线方程y ^=0.4x +12中,当解释变量x 每增加一个单位时,预报变量平均增加0.4个单位解析:选C 两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1,故C 错误.4.春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:附表及公式:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d .A .有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”B .在犯错误的概率不超过1%的前提下,认为“该市居民能否做到‘光盘’与性别无关”C .在犯错误的概率不超过1%的前提下,认为“该市居民能否做到‘光盘’与性别有关”D .有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关”解析:选A 由列联表得到a =45,b =10,c =30,d =15,则a +b =55,c +d =45,a +c =75,b +d =25,ad =675,bc =300,n =100,计算得K 2的观测值k = n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=100×(675-300)255×45×75×25≈3.030.因为2.706<3.030<3.841,所以有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”.5.为了研究工人的日平均工作量是否与年龄有关,从某工厂抽取了100名工人,且规定日平均生产件数不少于80件者为“生产能手”,列出的2×2列联表如下:有________以上的把握认为“工人是否为‘生产能手’与工人的年龄有关”. 解析:由2×2列联表可知,K 2=100×(25×30-10×35)240×60×35×65≈2.93,因为2.93>2.706,所以有90%以上的把握认为“工人是否为‘生产能手’与工人的年龄有关”.答案:90%6.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:则y 关于t 的回归方程是________________.解析:由表中数据得n =5,t =1n ∑i =1n t i =155=3,y =1n ∑i =1n y i =365=7.2.又∑i =1nt 2i -n t 2=55-5×32=10, ∑i =1nt i y i -n t y =120-5×3×7.2=12.从而b ^=∑i =1nt i y i -n t y∑i =1nt 2i -n t2=1210=1.2, a ^=y -b ^t =7.2-1.2×3=3.6, 故所求回归方程为y ^=1.2t +3.6. 答案:y ^=1.2t +3.67.某电视厂家准备在元旦举行促销活动,现根据近七年的广告费与销售量的数据确定此次广告费支出.广告费支出x (万元)和销售量y (万台)的数据如下:(2)若用y =c +d x 模型拟合y 与x 的关系,可得回归方程y ^=1.63+0.99x ,经计算线性回归模型和该模型的R 2分别约为0.75和0.88,请用R 2说明选择哪个回归模型更好;(3)已知利润z 与x ,y 的关系为z =200y -x .根据(2)的结果,求当广告费x =20时,销售量及利润的预报值.参考公式:回归直线y ^=a ^+b ^x 的斜率和截距的最小二乘估计分别为b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x2=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2,a ^=y -b ^x .参考数据:5≈2.24.解:(1)∵x =8,y =4.2,∑i =17x i y i =279.4,∑i =17x 2i =708,∴b ^=∑i =17x i y i -7x y∑i =17x 2i -7x2=279.4-7×8×4.2708-7×82=0.17,a ^=y -b ^x =4.2-0.17×8=2.84, ∴y 关于x 的线性回归方程为y ^=0.17x +2.84.(2)∵0.75<0.88且R 2越大,反映残差平方和越小,模型的拟合效果越好, ∴选用y ^=1.63+0.99x 更好.(3)由(2)知,当x =20时,销售量的预报值y ^=1.63+0.9920≈6.07(万台),利润的预报值z =200×(1.63+0.9920)-20≈1 193.04(万元).B 级——创高分自选1.(2018·江门一模)为探索课堂教学改革,江门某中学数学老师用“传统教学”和“导学案”两种教学方式分别在甲、乙两个平行班进行教学实验.为了解教学效果,期末考试后,分别从两个班级各随机抽取20名学生的成绩进行统计,得到如下茎叶图.记成绩不低于70分者为“成绩优良”.(1)请大致判断哪种教学方式的教学效果更佳,并说明理由;(2)构造一个教学方式与成绩优良的2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”.附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.临界值表:P(K2≥k0)0.100.050.0250.010k0 2.706 3.841 5.024 6.635解:(1)“导学案”教学方式教学效果更佳.理由1:乙班样本数学成绩大多在70分以上,甲班样本数学成绩70分以下的明显更多.理由2:甲班样本数学成绩的平均分为70.2;乙班样本数学成绩的平均分为79.05.理由3:甲班样本数学成绩的中位数为68+722=70,乙班样本数学成绩的中位数为77+782=77.5.(2)2×2列联表如下:甲班乙班总计成绩优良101626成绩不优良10414总计202040由上表数据可得K2=40×(10×4-10×16)220×20×26×14≈3.956>3.841,所以能在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”.2.(2019·广州调研)某基地蔬菜大棚采用无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X(单位:小时)都在30小时以上,其中不足50小时的有5周,不低于50小时且不超过70小时的有35周,超过70小时的有10周.根据统计,该基地的西红柿增加量y (千克)与使用某种液体肥料的质量x (千克)之间的对应数据为如图所示的折线图.(1)依据折线图计算相关系数r (精确到0.01),并据此判断是否可用线性回归模型拟合y 与x 的关系;(若|r |>0.75,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较高,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪运行台数受周光照量X 限制,并有如下关系:元;若某台光照控制仪未运行,则该台光照控制仪周亏损1 000元.若商家安装了3台光照控制仪,求商家在过去50周的周总利润的平均值.相关系数公式:r =∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2∑i =1n(y i -y )2,参考数据:0.3≈0.55,0.9≈0.95. 解:(1)由已知数据可得x =2+4+5+6+85=5,y =3+4+4+4+55=4.因为∑i =15(x i -x )(y i -y )=(-3)×(-1)+0+0+0+3×1=6,∑i =15(x i -x )2=(-3)2+(-1)2+02+12+32=25,∑i =15(y i -y )2=(-1)2+02+02+02+12=2,所以相关系数r =∑i =15(x i -x )(y i -y )∑i =15(x i -x)2 ∑i =15(y i -y )2=625×2=0.9≈0.95. 因为|r |>0.75,所以可用线性回归模型拟合y 与x 的关系. (2)由条件可得在过去50周里,当X >70时,共有10周,此时只有1台光照控制仪运行,每周的周总利润为1×3 000-2×1 000=1 000(元).当50≤X≤70时,共有35周,此时有2台光照控制仪运行,每周的周总利润为2×3 000-1×1 000=5 000(元).当30<X<50时,共有5周,此时3台光照控制仪都运行,每周的周总利润为3×3 000=9 000(元).所以过去50周的周总利润的平均值为1 000×10+5 000×35+9 000×550=4 600(元),所以商家在过去50周的周总利润的平均值为4 600元.。

2023年高考数学(理科)一轮复习——变量间的相关关系与统计案例

2023年高考数学(理科)一轮复习——变量间的相关关系与统计案例
(2)样本点的中心:对于一组具有线性相关关系的数据(x1,y1),(x2,y2),…, (xn,yn),其中___(_x-_,__-y_)__称为样本点的中心. (3)相关系数 当r>0时,表明两个变量___正__相__关___; 当r<0时,表明两个变量__负__相__关____. r的绝对值越接近于1,表明两个变量的线性相关性__越__强____.
索引
角度2 非线性回归方程及应用
例2 (2022·郑州调研)人类已经进入大数据时代.目前,数据量级已经从TB(1 TB =1 024 GB)级别跃升到PB(1 PB=1 024 TB),EB(1 EB=1 024 PB)乃至ZB(1 ZB=1 024 EB)级别.国际数据公司(IDC)研究结果表明,2008年全球产生的数 据量为0.49 ZB,2009年数据量为0.8 ZB,2010年增长到1.2 ZB,2011年数据 量更是高达1.82 ZB.下表是国际数据公司(IDC)研究的全球近6年每年产生的 数据量(单位:ZB)及相关统计量的值:
(1)“ 名 师 出 高 徒 ” 可 以 解 释 为 教 师 的 教 学 水 平 与 学 生 的 水 平 成 正 相 关 关
系.( √ ) (2)通过回归直线方程y^=b^x+a^可以估计预报变量的取值和变化趋势.( √ ) (3)只有两个变量有相关关系,所得到的回归模型才有预测价值.( √ ) (4)事件 X,Y 关系越密切,则由观测数据计算得到的 K2 的观测值越大.( √ )
索引
4.(2020·全国Ⅰ卷)某校一个课外学习小组为研究某作物种子的发芽率y和温度 x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数 据(xi,yi)(i=1,2,…,20)得到下面的散点图: 由此散点图,在10 ℃至40 ℃之间,下面四个回归方程类型中最适宜作为发

(旧教材适用)2023高考数学一轮总复习第十章统计统计案例第3讲变量间的相关关系与统计案例课件

(旧教材适用)2023高考数学一轮总复习第十章统计统计案例第3讲变量间的相关关系与统计案例课件

抽取次序 9 10 11 12 13 14 15 16 零件尺寸 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95




-x

1 16
16
x
i

9.97

s

i=1
1 16
16
xi--x 2

i=1
0.050 0.010
k0
3.841 6.635
附:K2=a+bcn+add-ab+cc2b+d.
0.005 7.879
0.001 10.828
解析 根据题目所给数据得到如下 2×2 列联表:
乐观
不乐观
总计
国内代表
60
40
100
国外代表
40
60
100
总计
100
100
200
则 K2=20100×0×6100×0×601-004×0×104002=8>6.635,所以有 99%的把握认为是否
∵y 与 x 的相关系数近似为 0.9966,说明 y 与 x 的线性相关程度相当强,
∴可以用线性回归模型拟合 y 与 x 的关系.
(3)建立 y 关于 x 的回归方程,预测第 5 年的销售量约为多少?
参考数据:
∑4
i=1
yi--y 2≈32.7,
5≈2.24,i∑=4 1xiyi=418.
参考公式:
(3)回归分析 ①定义:对具有 □06 相关关系的两个变量进行统计分析的一种常用方法. ②样本点的中心:在具有线性相关关系的数据(x1,y1),(x2,y2),…, (xn,yn)中,-x =1n(x1+…+xn),-y =1n(y1+…+yn),a^ =-y -b^ -x ,(-x ,-y ) 称为样本点的中心.

高考数学一轮复习 第九章 统计与统计案例 第二节 变量的相关性与统计案例讲义(含解析)-人教版高三全

高考数学一轮复习 第九章 统计与统计案例 第二节 变量的相关性与统计案例讲义(含解析)-人教版高三全

第二节 变量的相关性与统计案例突破点一 回归分析[基本知识]1.变量间的相关关系(1)常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.(2)从散点图上看,点散布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点散布在左上角到右下角的区域内,两个变量的相关关系为负相关.2.两个变量的线性相关 回归直线从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫做回归直线回归方程回归方程为y ^=b ^x +a ^,其中b ^=∑i =1nx i y i -n x - y-∑i =1nx 2i -n x -2, a ^=y --b ^x -最小二乘法通过求Q =∑i =1ny i -bx i -a2的最小值而得到回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小,这一方法叫做最小二乘法 相关系数当r >0时,表明两个变量正相关;当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强;r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常|r |大于时,认为两个变量有很强的线性相关性[基本能力]一、判断题(对的打“√”,错的打“×”)(1)相关关系与函数关系都是一种确定性的关系,也是一种因果关系.( ) (2)“名师出高徒”可以解释为教师的教学水平与学生的水平成正相关关系.( ) (3)只有两个变量有相关关系,所得到的回归模型才有预测价值.( ) 答案:(1)× (2)√ (3)√ 二、填空题1.已知x ,y 的取值如下表,从散点图可以看出y 与x 具有线性相关关系,且回归方程为y ^x +a ^,则a ^=________.x 0 1 3 4 y2.两个变量y 与x 的回归模型中,分别选择了4个不同模型,经计算得到它们的相关系数r 的值如下表,其中拟合效果最好的模型是________.模型模型1模型2模型3模型4 r答案:模型13.已知变量x ,y 之间具有线性相关关系,其回归方程为y ^=-3+b ^x ,若∑i =110x i =17,∑i =110yi=4,则b ^的值为________.答案:2[全析考法]考法一 相关关系的判断[例1] (1)(2019·某某某某月考)在下列各图中,两个变量具有相关关系的图是( )A .①②B .①③C .②③D .②④(2)(2019·某某一中一模)若对于变量x 的取值为3,4,5,6,7时,变量y 对应的值依次分别为4.0,2.5,-0.5,-1,-2;若对于变量u 的取值为1,2,3,4时,变量v 对应的值依次分别为2,3,4,6,则变量x 和y ,变量u 和v 的相关关系是( )A .变量x 和y 是正相关,变量u 和v 是正相关B .变量x 和y 是正相关,变量u 和v 是负相关C .变量x 和y 是负相关,变量u 和v 是负相关D .变量x 和y 是负相关,变量u 和v 是正相关[解析] (1)①为函数关系;②为正相关关系;③为负相关关系;④没有明显相关性. (2)变量x 增加,变量y 减少,所以变量x 和y 是负相关;变量u 增加,变量v 增加,所以变量u 和v 是正相关,故选D.[答案] (1)C (2)D [方法技巧]判断相关关系的2种方法(1)散点图法:如果所有的样本点都落在某一函数的曲线附近,变量之间就有相关关系.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系.(2)相关系数法:利用相关系数判定,|r |越趋近于1相关性越强.考法二 线性回归分析[例2] (2018·全国卷Ⅱ)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,…,17)建立模型①:y ^t ;根据2010年至2016年的数据(时间变量t 的值依次为1,2,…,7)建立模型②:y ^t .(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.[解] (1)利用模型①,可得该地区2018年的环境基础设施投资额的预测值为y ^=-30.4+13.5×19=226.1(亿元).利用模型②,可得该地区2018年的环境基础设施投资额的预测值为y ^=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠. 理由如下:(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线yt 上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y ^t 可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.(以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分) [方法技巧]1.回归直线方程中系数的2种求法 (1)公式法:利用公式,求出回归系数b ^,a ^.(2)待定系数法:利用回归直线过样本点中心(x -,y -)求系数. 2.回归分析的2种策略(1)利用回归方程进行预测:把回归直线方程看作一次函数,求函数值. (2)利用回归直线判断正、负相关:决定正相关还是负相关的是回归系数b ^.[集训冲关]1.[考法一]四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且y ^x -6.423; ②y 与x 负相关且y ^x +5.648; ③y 与x 正相关且y ^x +8.493; ④y 与x 正相关且y ^x -4.578.其中一定不正确的结论的序号是( ) A .①② B .②③ C .③④D .①④解析:选D 正相关指的是y 随x 的增大而增大,负相关指的是y 随x 的增大而减小,故不正确的为①④.2.[考法二]二手车经销商小王对其所经营的A 型号二手汽车的使用年数x 与销售价格y (单位:万元/辆)进行整理,得到如下数据:z =ln yz 关于x 的折线图,如图所示:(1)由折线图可以看出,可以用线性回归模型拟合z 与x 的关系,请用相关系数加以说明;(2)求y 关于x 的回归方程,并预测某辆A 型号二手车当使用年数为9年时售价约为多少.(b ^,a ^小数点后保留两位有效数字)参考公式:b ^=∑i =1nx i -x-y i -y-∑i =1nx i -x-2=∑i =1nx i y i -n x - y-∑i =1nx 2i -n x -2,a ^=y --b ^x -,r =∑i =1nx i -x-y i -y-∑i =1nx i -x-2∑i =1ny i -y-2.参考数据:∑i =16x i y i =187.4,∑i =16x i z i =47.64,∑i =16x 2i =139,∑i =16x i -x-2=4.18,∑i =16y i -y-2=13.96,∑i =16z i -z-2=1.53,ln 1.46≈0.38.解:(1)由题意,知x -=16×(2+3+4+5+6+7)=4.5,z -=16×(3+2.48+2.08+1.86+1.48+1.10)=2,又∑i =16x i z i =47.64,∑i =16x i -x-2=4.18,i =16z i -z-2=1.53,∴r =47.64-6×4.5×2 4.18×1.53=-, 6.395 4)≈-0.99,∴z 与x 的相关系数大约为-0.99,说明z 与x 的线性相关程度很高. (2)b ^=47.64-6×4.5×22=-,17.5)≈-0.36, ∴a ^=z --b ^x -=2+0.36×4.5=3.62, ∴z 与x 的线性回归方程是z ^x +3.62, 又z =ln y ,∴y 关于x 的回归方程是y ^=e x. 令x =9,得y ^=e =e ,∵ln 1.46≈0.38,∴y ^=1.46,即预测某辆A 型号二手车当使用年数为9年时售价约为1.46万元.突破点二 独立性检验[基本知识]1.分类变量变量的不同“值”表示个体所属的不同类别,像这类变量称为分类变量. 2.列联表列出两个分类变量的频数表,称为列联表.假设有两个分类变量X 和Y ,它们的可能取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(称为2×2列联表)为y 1 y 2 总计x 1 a b a +b x 2c d c +d 总计a +cb +da +b +c +dK 2=n ad -bc 2a +bc +d a +cb +d(其中n =a +b +c +d 为样本容量),可利用独立性检验判断表来判断“X 与Y 的关系”.[基本能力]一、判断题(对的打“√”,错的打“×”)(1)事件X ,Y 关系越密切,则由观测数据计算得到的K 2的值越大.( )(2)由独立性检验可知,有99%的把握认为物理成绩优秀与数学成绩有关,某人数学成绩优秀,则他有99%的可能物理优秀.( )答案:(1)√ (2)× 二、填空题1.下面是2×2列联表:y 1 y 2总计 x 1 a21 73 x 22225 47 总计b46120则表中a ,b 的值分别为________.解析:∵a +21=73,∴a =52,又a +22=b ,∴b =74. 答案:52,742.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:理科 文科 男 13 10 女720已知P (K 2≥3.841)≈0.05,P (K 2≥5.024)≈0.025. 根据表中数据,得到K 2的观测值k =50×13×20-10×7223×27×20×30≈4.844.则认为选修文科与性别有关系出错的可能性为________.答案:5%3.(2019·某某质检)某班主任对全班30名男生进行了作业量多少的调查,数据如下表:认为作业多认为作业不多总计 喜欢玩电脑游戏 12 8 20 不喜欢玩电脑游戏2 8 10 总计141630该班主任据此推断男生认为作业多与喜欢玩电脑游戏有关系,则这种推断犯错误的概率不超过________.[典例] (2018·全国卷Ⅲ)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由.(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m 和不超过m的工人数填入下面的列联表:超过m 不超过m第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:K2=n ad-bc2a+b c+d a+c b+d,[解] (1)第二种生产方式的效率更高.理由如下:(ⅰ)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80 min,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79 min.因此第二种生产方式的效率更高.(ⅱ)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5 min,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5 min.因此第二种生产方式的效率更高.(ⅲ)由茎叶图可知:用第一种生产方式的工人完成生产任务所需平均时间高于80 min;用第二种生产方式的工人完成生产任务所需平均时间低于80 min.因此第二种生产方式的效率更高.(ⅳ)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布.又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少.因此第二种生产方式的效率更高.(以上给出了4种理由,答出其中任意一种或其他合理理由均可得分)(2)由茎叶图知m =79+812=80.列联表如下:超过m 不超过m第一种生产方式 15 5 第二种生产方式515(3)因为K 2=4015×15-5×5220×20×20×20=10>6.635,所以有99%的把握认为两种生产方式的效率有差异.[方法技巧](1)独立性检验的关键是正确列出2×2列联表,并计算出K 2的值.(2)独立性检验是对两个变量有关系的可信程度的判断,而不是对它们是否有关系的判断.[针对训练]1.(2019·某某某某一模)在吸烟与患肺癌这两个分类变量的独立性检验的计算中,下列说法正确的是( )A .若K 2的观测值为k =6.635,在犯错误的概率不超过0.01的前提下认为吸烟与患肺癌有关系,那么在100个吸烟的人中必有99人患有肺癌B .由独立性检验可知,在犯错误的概率不超过0.01的前提下认为吸烟与患肺癌有关系时,我们说某人吸烟,那么他有99%的可能患有肺癌C .若从统计量中求出在犯错误的概率不超过0.01的前提下认为吸烟与患肺癌有关系,是指有1%的可能性使得判断出现错误D .以上三种说法都不正确解析:选C 独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.若从统计量中求出在犯错误的概率不超过0.01的前提下认为吸烟与患肺癌有关系,是指有1%的可能性使得判断出现错误.故选C.2.(2019·池州模拟)某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制的频率分布直方图如图所示.规定80分以上者晋级成功,否则晋级失败(满分为100分).(1)求图中a 的值;(2)估计该次考试的平均分x -(同一组中的数据用该组的区间中点值代表);(3)根据已知条件完成下面2×2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关.晋级成功 晋级失败总计 男 16女50 总计⎝⎛⎭⎪⎫参考公式:K 2=n ad -bc 2a +bc +d a +cb +d,其中n =a +b +c +dP (K 2≥k )k解:(1)由频率分布直方图中各小长方形面积总和为1,得(2a +0.020+0.030+0.040)×10=1,解得a =0.005.(2)由频率分布直方图知各小组的中点值依次是55,65,75,85,95, 对应的频率分别为0.05,0.30,0.40,0.20,0.05,则估计该次考试的平均分为x -=55×0.05+65×0.3+75×0.4+85×0.2+95×0.05=74(分).(3)由频率分布直方图知,晋级成功的频率为0.2+0.05=0.25,故晋级成功的人数为100×0.25=25,填写2×2列联表如下:晋级成功 晋级失败 总计 男 16 34 50 女 9 41 50 总计2575100K 2=100×16×41-34×9225×75×50×50≈2.613>2.072,所以有85%的把握认为“晋级成功”与性别有关.word。

最新高考数学(理)一轮复习讲义 变量间的相关关系、统计案例

最新高考数学(理)一轮复习讲义 变量间的相关关系、统计案例

B.52,50
C.52,74
D.74,52
解析:选 C.因为 a+21=73,所以 a=52.又 a+22=b,所以 b=74.
3.(必修 3P90 例题改编)某研究机构对高三学生的记忆力 x 和判断力 y 进行统计分析,
所得数据如表:
x 6 8 10 12 y23 5 6 则 y 对 x 的线性回归直线方程为( )
回归直线方程为^y=0.7x-2.3.故选 C.
一、思考辨析 判断正误(正确的打“√”,错误的打“×”) (1)相关关系与函数关系都是一种确定性的关系,也是一种因果关系.( ) (2)利用散点图可以直观判断两个变量的关系是否可以用线性关系表示.( ) (3)只有两个变量有相关关系,所得到的回归模型才有预测价值.( ) (4)事件 X,Y 的关系越密切,由观测数据计算得到的 K2 的观测值越大.( ) (5)通过回归方程y^=b^x+a^可以估计和观测变量的取值和变化趋势.( ) 答案:(1)× (2)√ (3)√ (4)√ (5)√ 二、易错纠偏 常见误区|K(1)混淆相关关系与函数关系; (2)对独立性检验 K2 值的意义不清楚; (3)不知道回归直线必过样本点中心. 1.两个变量的相关关系有①正相关,②负相关,③不相关,则下列散点图从左到右分 别反映的变量间的相关关系是( )
A.回归分析
B.均值与方差
C.独立性检验
D.概率
解析:选 C.“近视”与“性别”是两类变量,其是否有关,应用独立性检验判断.
2.(选修 2­3P97 练习改编)下面是 2×2 列联表:
y1 y2 合计
x1
a 21 73
x2
22 25
47
合计 b 46 120Fra bibliotek则表中 a,b 的值分别为( )

高考数学一轮总复习 9.4变量间的相关关系与统计案例课件

高考数学一轮总复习 9.4变量间的相关关系与统计案例课件
3.了解独立性检验(只要求 2×2 列联表)的基本思想、方法及其 简单应用.
4.了解回归分析的基本思想、方法及其简单应用.
完整版ppt
3
备考知考情
1.以客观题的形式考查求线性回归方程系数或利用线性回归 分析的方程进行预测,在给出临界值的情况下判断两个变量是否 有关.
2.在解答题中常与频率分布结合考查线性回归方程的建立及 应用和独立性检验的应用.
答案 C
完整版ppt
18
知识点二
独立性检验
4.在 2012 伦敦奥运会期间,某网站针对性别是否与看奥运会 直播有关进行了一项问卷调查,得出如下表格:
是否看奥运会直播
性别 男女
看奥运会直播
6 000 2 000
不看奥运会直播
2 000 2 000
完整版ppt
19
则 K2=( )
A.700 B.750
C.800 D.850
解析 由题意知,
K2=12
0006 000×2 000-2 000×2 0002 8 000×4 000×8 000×4 000
ห้องสมุดไป่ตู้
=750.
答案 B
完整版ppt
20
5.某校为了研究学生的性别和对待某一活动的态度(支持和
不支持两种态度)的关系,运用 2×2 列联表进行独立性检验,经
这类变量称为分类变量.
2.列联表:列出两个分类变量的频数表,称为列联表.假设
有两个分类变量 X 和 Y,它们的可能取值分别为{x1,x2}和{y1,y2}, 其样本频数列联表(称为 2×2 列联表)为:
完整版ppt
11
y1
y2
x1
a
b
总计 a+b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3讲 变量间的相关关系与统计案例【2015年高考会这样考】以选择题或填空题的形式考查回归分析及独立性检验中的基本思想方法及其简单应用. 【复习指导】高考在该部分的主要命题点就是回归分析和独立性检验的基础知识和简单应用.复习时要掌握好回归分析和独立性检验的基本思想、方法和基本公式.基础梳理1.相关关系的分类从散点图上看,点散布在从左下角到右上角的区域内,对于两个变量的这种相关关系,我们将它称为正相关;点散布在从左上角到右下角的区域内,两个变量的这种相关关系称为负相关. 2.线性相关从散点图上看,如果这些点从整体上看大致分布在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫回归直线. 3.回归方程(1)最小二乘法:使得样本数据的点到回归直线的距离平方和最小的方法叫最小二乘法.(2)回归方程:两个具有线性相关关系的变量的一组数据: (x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归方程为y ^=b^x +a ^,则 ⎩⎪⎨⎪⎧b ^=∑i =1n (x i-x )(y i-y )∑i =1n (x i-x )2=∑i =1nx i y i-n xy∑i =1nx 2i-n x2,a^=y -b ^ x .其中,b 是回归方程的斜率,a 是在y 轴上的截距. 4.样本相关系数r=∑i=1n(x i-x)(y i-y)∑i=1n(x i-x)2∑i=1n(y i-y)2,用它来衡量两个变量间的线性相关关系.(1)当r>0时,表明两个变量正相关;(2)当r<0时,表明两个变量负相关;(3)r的绝对值越接近1,表明两个变量的线性相关性越强;r的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常当|r|>0.75时,认为两个变量有很强的线性相关关系.5.线性回归模型(1)y=bx+a+e中,a、b称为模型的未知参数;e称为随机误差.(2)相关指数用相关指数R2来刻画回归的效果,其计算公式是:R2=,R2的值越大,说明残差平方和越小,也就是说模型的拟合效果越好.在线性回归模型中,R2表示解释变量对预报变量变化的贡献率,R2越接近于1,表示回归效果越好.6.独立性检验(1)用变量的不同“值”表示个体所属的不同类别,这种变量称为分类变量.例如:是否吸烟,宗教信仰,国籍等.(2)列出的两个分类变量的频数表,称为列联表.(3)一般地,假设有两个分类变量X和Y,它们的值域分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为:2×2列联表y1y2总计x1 a b a+bx2 c d c+d总计a+c b+d a+b+c+dK2=n(ad-bc)2(a+b)(a+c)(c+d)(b+d)(其中n=a+b+c+d为样本容量),可利用独立性检验判断表来判断“x与y的关系”.这种利用随机变量K2来确定在多大程度上可以认为“两个分类变量有关系”的方法称为两个分类变量的独立性检验.两个规律(1)函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.(2)当K2≥3.841时,则有95%的把握说事A与B有关;当K2≥6.635时,则有99%的把握说事件A与B有关;当K2≤2.706时,则认为事件A与B无关.三个注意(1)回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的回归直线方程才有实际意义,否则,求出的回归直线方程毫无意义.(2)线性回归方程中的截距和斜率都是通过样本数据估计而来的,存在误差,这种误差会导致预报结果的偏差;而且回归方程只适用于我们所研究的样本总体.(3)独立性检验的随机变量K2=3.841是判断是否有关系的临界值,K2≤3.841应判断为没有充分证据显示事件A与B有关系,而不能作为小于95%的量化值来判断.双基自测1.(人教A版教材习题改编)下面哪些变量是相关关系().A.出租车车费与行驶的里程B.房屋面积与房屋价格C.身高与体重D.铁块的大小与质量解析A,B,D都是函数关系,其中A一般是分段函数,只有C是相关关系.答案 C2.对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图(1);对变量u,v有观测数据(u i、v i)(i=1,2,…,10),得散点图(2).由这两个散点图可以判断().A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关解析由题图(1)可知,各点整体呈递减趋势,x与y负相关;由题图(2)可知,各点整体呈递增趋势,u与v正相关.答案 C3.(2012·南昌模拟)某商品销售量y(件)与销售价格x(元/件)负相关,则其回归方程可能是().A.y^=-10x+200B.y^=10x+200C.y^=-10x-200D.y^=10x-200解析因为销量与价格负相关,由函数关系考虑为减函数,又因为x,y不能为负数,再排除C,故选A.答案 A4.(2012·枣庄模拟)下面是2×2列联表:y1y2合计x1 a 2173x2222547合计 b 46120则表中a,b的值分别为(A.94,72 B.52,50 C.52,74 D.74,52解析∵a+21=73,∴a=52,又a+22=b,∴b=74.答案 C5.在一项打鼾与患心脏病的调查中,共调查了1 671人,经过计算K2的观测值k =27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是________的(有关,无关).解析由观测值k=27.63与临界值比较,我们有99%的把握说打鼾与患心脏病有关.答案有关考向一相关关系的判断【例1】►山东鲁洁棉业公司的科研人员在7块并排、形状大小相同的试验田上对某棉花新品种进行施化肥量x对产量y影响的试验,得到如下表所示的一组数据(单位:kg):施化肥量x 15202530354045棉花产量y 330345365405445450455(1)(2)判断是否具有相关关系.[审题视点] (1)用x轴表示化肥施用量,y轴表示棉花产量,逐一画点.(2)根据散点图,分析两个变量是否存在相关关系.解(1)散点图如图所示(2)由散点图知,各组数据对应点大致都在一条直线附近,所以施化肥量x与产量y 具有线性相关关系.利用散点图判断两个变量是否有相关关系是比较简便的方法.在散点图中如果所有的样本点都落在某一函数的曲线上,就用该函数来描述变量之间的关系.即变量之间具有函数关系.如果所有的样本点落在某一函数的曲线附近,变量之间就有相关关系;如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系.【训练1】根据两个变量x,y之间的观测数据画成散点图如图所示,这两个变量是否具有线性相关关系________(填“是”与“否”).解析从散点图看,散点图的分布成团状,无任何规律,所以两个变量不具有线性相关关系.答案否考向二独立性检验【例2】►(2010·全国新课标)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:性别男女是否需要志愿者需要4030不需要160270(1)(2)能否有99%的把握认为该地区老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区老年人中,需要志愿者提供帮助的老年人的比例?说明理由.附:P(K2≥k)0.0500.0100.001k 3.841 6.63510.828K2=n (ad-bc)2(a+b)(c+d)(a+c)(b+d)[审题视点] 第(2)问由a=40,b=30,c=160,d=270,代入公式可求K2,由K2的值与6.635比较断定.第(3)问从抽样方法说明.解(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要志愿者提供帮助的老年人的比例的估计值为70500=14%.(2)K2=500×(40×270-30×160)270×430×200×300≈9.967.由于9.967>6.635,所以有99%的把握认为该地区老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层,采用分层抽样方法,这要比采用简单随机抽样方法更好.独立性检验的步骤:(1)根据样本数据制成2×2列联表;(2)根据公式K2=n(ad-bc)2(a+b)(a+c)(b+d)(c+d)计算K2的观测值;(3)比较K2与临界值的大小关系作统计推断.【训练2】某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:甲厂:分组[29.86,29.90)[29.90,29.94)[29.94,29.98)[29.98,30.02)[30.02,30.06)[30.06,30.10)[30.10,30.14)频数1263861829261 4分组[29.86,[29.90,[29.94,[29.98,[30.02,[30.06,[30.10,(2)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”.附 K 2=n ((a +b )(c +d )(a +c )(b +d ),解 (1)360500×100%=72%;乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为320500×100%=64%. (2)K 2=1 000×(360×180-320×140)500×500×680×320≈7.35>6.635,所以有99%的把握认为“两个分厂生产的零件的质量有差异”.考向三 线性回归方程【例3】►(2012·菏泽模拟)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据.y 2.534 4.5(1)(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y^=b^x+a^;(3)已知该厂技改前生产100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程.预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)[审题视点] (2)问利用公式求a^、b^,即可求出线性回归方程.(3)问将x=100代入回归直线方程即可.解(1)由题设所给数据,可得散点图如图所示.(2)由对照数据,计算得:∑i=14x2i=86,x=3+4+5+64=4.5(吨),y=2.5+3+4+4.54=3.5(吨).已知∑i=14x i y i=66.5,所以,由最小二乘法确定的回归方程的系数为:b^=∑i=14x i y i-4x·y∑i=14x2i-4x2=66.5-4×4.5×3.586-4×4.52=0.7,a^=y-b^x=3.5-0.7×4.5=0.35.因此,所求的线性回归方程为y^=0.7x+0.35.(3)由(2)的回归方程及技改前生产100吨甲产品的生产能耗,得降低的生产能耗为:90-(0.7×100+0.35)=19.65(吨标准煤).在解决具体问题时,要先进行相关性检验,通过检验确认两个变量是否具有线性相关关系,若它们之间有线性相关关系,再求回归直线方程.【训练3】(2011·江西)为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:父亲身高x/cm174176176176178儿子身高y/cm175175176177177则y对x的线性回归方程为().A.y=x-1 B.y=x+1C.y=88+12x D.y=176解析由题意得x=174+176+176+176+1785=176(cm),y=175+175+176+177+1775=176(cm),由于(x,y)一定满足线性回归方程,经验证知选C.答案 C阅卷报告15——数据处理不当导致计算错误而失分【问题诊断】由于大多数省市高考要求不准使用计算器,而线性回归问题和独立性检验问题仍是近几年新课标高考的常考点,并且大多是考查考生的计算能力,就计算方面常有不少考生因计算出错而失分.【防范措施】平时训练时首先养成勤于动手的习惯,亲自动手计算,再者考场上要保持心态放松,做题时细心认真,最终可减少错误的发生.【示例】►(2011·安徽)某地最近十年粮食需求量逐年上升,下表是部分统计数据:年份2002200420062010(1)利用所给数据求年需求量与年份之间的回归直线方程y =bx +a ;(2)利用(1)中所求出的直线方程预测该地2012年的粮食需求量.实录 (1)x =2 006,y =236+246+257+276+2865=260.2. b =(2002-2006)(236-260.2)+(2004-2006)(246-260.2)+(2006-2006)(257-260.2)(2002-2006)2+(2004-2006)2+(2006-2006)2+(2008-2006)2+(2010-2006)2+(2008-2006)(276-260.2)+(2010-2006)(286-260.2)(2002-2006)2+(2004-2006)2+(2006-2006)2+(2008-2006)2+(2010-2006)2=6.2,错因 求b 时计算出错,b 值不准确.a =y -b x =260.2-6.2×2 006=-12 177. ∴y ^=6.2x -12 177.(2)y ^=6.2×2 012-12 177=297.4.正解 (1)由所给数据看出,年需求量与年份之间是近似直线上升,下面来配回归直线方程,为此对数据预处理如下:x =0,y =3.2,b =(-4)×(-21)+(-2)×(-11)+2×19+4×29-5×0×3.2(-4)2+(-2)2+22+42-5×02=26040=6.5,a =y -b x =3.2.由上述计算结果,知所求回归直线方程为y -257=b (x -2 006)+a =6.5(x -2 006)+3.2,即y ^=6.5(x -2 006)+260.2.①(2)利用直线方程①,可预测2012年的粮食需求量为6.5(2 012-2 006)+260.2=6.5×6+260.2=299.2(万吨).。

相关文档
最新文档