【精品】物料平衡与热平衡计算
(物料管理)物料平衡与热平衡

3电弧炉炼钢物料平衡和热平衡3.1物料平衡计算3.1.1计算所需原始数据基本原始数据:冶炼钢种及成分(见表3-1);原材料成分(见表3-2);炉料中元素烧损率(见表3-3);合金元素回收率(见表3-4);其他数据(见表3-5)。
表3-1冶炼钢种及其成分注:分母系计算时的设定值,取其成分中限。
表3-2原材料成分/%表3-3炉料中元素烧损错误!未找到引用源。
按末期含量比规格下限低0.03%〜0.10%(取0.06%)确定(一般不低于0.03%的脱碳量);错误!未找到引用源。
按末期含量的0.015%来确定。
表3-4铁水、废钢成分设定值表3-5其他数据3.1.2物料平衡基本项目收入项有:废钢、生铁、焦炭、石灰、萤石、电极、炉衬镁砖、炉顶高铝砖、火砖块、铁合金、氧气和空气。
支出项有:钢水、炉渣、炉气、挥发的铁、焦炭中挥发分。
3.1.3计算步骤以100kg金属炉料(废钢+生铁)为基础,按工艺阶段一一熔化期、氧化期和还原期分别进行计算,然后汇总成物料平衡表。
第一步:熔化期计算。
(1)确定物料消耗量:1)金属炉料配入量。
废钢和生铁按75kg和25kg搭配,不足碳量用焦炭来配。
其结果列于表3-6。
计算用原始数据见表3-2和3-5。
表3-6炉料配入量错误!未找到引用源。
碳烧损率25%。
2)其他原材料消耗量。
为了提前造渣脱磷,先加入一部分石灰(20kg/t(金属料))和矿石(10kg/t(金属料))。
炉顶、炉衬和电极消耗量见表3-5。
(2)确定氧气和空气消耗量:耗氧项包括炉料中元素的氧化,焦炭和电极中碳的氧化;而矿石则带来部分氧,石灰中CaO被自身S还原出部分氧。
前后两者之差即为所需净氧量2.458kg。
详见表3-7。
根据表3-5中的假设,应由氧气供给的氧气为100%,即2.239kg。
由此可求出氧气实际消耗量。
详见表3-8。
上述1)+2)便是熔化期的物料收入量。
表3-7净耗氧量的计算错误!未找到引用源。
令铁烧损率为2%,其中80%生成Fe2O3挥发掉成为烟尘的一部分;20%成渣。
【精品】物料平衡与热平衡计算

钢铁冶金专业设计资料(炼铁、炼钢)本钢工学院冶化教研室二00三年八月第一章物料平衡与热平衡计算物料平衡和热平衡计算是氧气顶吹转炉冶炼工艺设计的一项基本的计算,它是建立在物质和能量不灭定律的基础上的。
它以转炉作为考察对象,根据装入转炉内或参与炼钢过程的全部物料数据和炼钢过程的全部产物数据,如图1—1-1所示的收入项数据和支出项数据,来进行物料的重量和热平衡计算.通过计算,可以定量地掌握冶炼工重要参数,做到“胸中有数”.对指导生产和分析研究改进冶炼工艺,设计转炉炼钢车间等均有其重要意义.由于转炉炼钢过程是一个十分复杂的物理化学过程,很显然,要求进行精确的计算较为困难,特别是热平衡,只能是近似计算,但它仍然有十分重要的指导意义。
物料平衡和热平衡计算,一般可分为两面种方案.第一种方案是为了设计转炉及其氧枪设备以及相应的转炉炼钢车间而进行的计算,通常侧重于理论计算,特别是新设计转炉而无实际炉型可以参考的情况下;另一种方案是为了校核和改善已投产的转炉冶炼工艺参数及其设备参数或者采用新工艺新技术等,而由实测数据进行的计算,后者侧重于实测.本计算是采用第一种方案。
目前,我国顶吹转炉所采用的生铁基本上为低磷的(0.10~0。
40%)和中磷的(0.40~1。
00%)两种,对这两种不同含磷量生铁的冶炼工艺制度也不相同。
因此,下面以50吨转炉为例,分别就低磷生铁和高磷生铁两种情况,进行物料平衡和热平衡计算.1.1原始数据1。
1.1铁水成分及温度表1—1—11.1.2原材料成分表1-1—2原材料成分2 / 563 / 563 / 56表2—1-1铁水成分与温度转炉冶炼钢种常为普通碳素钢和低合金钢,在此以要求冶炼BD 3钢考虑,其成分见表2—1—31。
1。
4平均比热表1-1-41.1。
5冷却剂用废钢作冷却剂,其成份与冶炼钢种成份的中限相同。
(见表1-1-3)1。
1。
6反应热效应虽然炉内化学反应,实际上是在炉料温度和炉内上部气相温度之间的任一温度发生的,但反应热效应通常仍采用25℃作为参考温度,值得指出的是,反应热还与组分在铁水中存在形态有关,至今对参与化学反应有关的实际组成物还有不同的看法.但是,比较常用的反应热数据见表1-1—5。
炼钢过程中的物料平衡与热平衡计算

* *炼钢过程的物料均衡与热均衡计算炼钢过程的物料均衡与热均衡计算是成立在物质与能量守恒的基础上。
其主要目的是比较整个冶炼过程中物料、能量的收入项和支出项,为改良操作工艺制度,确立合理的设计参数和提升炼钢技术经济指标供给某些定量依照。
应该指出,因为炼钢系复杂的高温物理化学过程,加上测试手段有限,当前尚难以做到精准取值和计算。
只管这样,它对指导炼钢生产和设计仍有重要的意义。
本章主要联合实例论述氧气顶吹转炉和电弧炉氧化法炼钢过程物料均衡和热均衡计算的基本步骤和方法,同时列出一些供计算用的原始参照数据。
1.1物料均衡计算(1 )计算所需原始数据。
基来源始数占有:冶炼钢种及其成分(表 1 );金属料—铁水和废钢的成分(表 1);终点钢水成分(表 1 );造渣用溶剂及炉衬等原资料的成分(表2);脱氧和合金化用铁合金的成分及其回收率(表3);其余工艺参数(表4).表 1钢种、铁水、废钢和终点钢水的成分设定值成分含量 /%C Si Mn P S类型钢种 H15Mn 设定值①0.180.250.55≤0.045≤0.050铁水设定值 4.200.400.450.120.060废钢设定值0.180.250.550.0300.030终点钢水设定值②0.10印迹0.180.0200.021①本计算设定的冶炼钢种为H15Mn。
* *② [C] 和 [Si] 按实质生产状况选用;[Mn] 、[P] 和 [S] 分别按铁水中相应成分含量的30% 、10% 和 60% 留在钢水中设定。
表 2原资料成分成分含量 %CaO SiO 2MgO Al 2 O3Fe2 O 3CaF 2P2O5S CO 2H 2O C挥发灰分分类型石灰88.00 2.50 2.60 1.500.500.100.06 4.640.10萤石0.30 5.500.60 1.60 1.5088.000.900.10 1.50生白云石36.400.8025.60 1.0036.20炉衬 1.20 3.0078.80 1.40 1.6014.00焦炭0.5881.5012.40 5.52表 3 铁合金成分(分子)及其回收率(分母)成分含量 / 回收率 /%C Si Mn Al P S Fe 类型硅铁—73.00/750.50/80 2.50/00.05/1000.03/10023.92/100锰铁 6.60/90 ①0.50/7567.80/80—0.23/1000.13/10024.74/100① 10%C 与氧生产CO 2表 4其余工艺参数设定值名称参数名称参数终渣碱度%CaO/%SiO 2 =3.5渣中铁损 (铁珠 )为渣量的 6%萤石加入量为铁水量的0.5%氧气纯度99%, 余者为 N 2* *生白云石加入量为铁水量的 2.5%炉气中自由氧含量0.5%(体积比 )炉衬蚀损量为铁水量的0.3%气化去硫量占总去硫量的1/315% ,而 (Fe2O 3)/∑终渣∑ (FeO)含量(按金属中〔C〕的氧化产90%C氧化成CO,(FeO)=1/3即(FeO)=1.35(Fe 2 O 3)折算)物10%C氧化成CO 2(Fe2 O 3)=5%(FeO)=8.25%为铁水量的 1.5%(此中FeO由热均衡计算确立。
炼钢物料平衡热平衡计算概述

炼钢物料平衡热平衡计算概述炼钢物料平衡和热平衡计算是炼钢过程中非常重要的工作。
炼钢过程中涉及多种原料和产品,在确保炉况稳定和冶炼效果良好的前提下,需要对原料的投入和产物的产出进行平衡计算。
炼钢物料平衡计算的目的是确定钢铁冶炼过程中各种原料的投入量,确保原料的充分利用以及合理投放。
平衡计算的依据是材料的质量守恒定律,即进入的物料的质量必须等于产出物料的质量。
在炼钢过程中,主要的原料包括铁矿石、废钢、废铁等,而产出的物料则包括粗钢、渣钢、炉渣等。
通过对原料的投入量和产出物料的重量进行平衡计算,可以了解到炼钢过程中原料的利用率以及产物的产出量,从而对冶炼效果进行评估和优化。
热平衡计算是指对炼钢过程中的热量进行平衡计算。
炼钢过程中需要对炉内的温度进行控制,以确保冶炼反应能够正常进行。
在炼钢过程中,原料和加热介质(如燃料)的输入会带来热量的输入,而冶炼过程中的反应则会导致热量的输出,主要包括燃烧、还原和吸热反应等。
通过对输入和输出热量的平衡计算,可以确定炉内的热量分布和热量损失,进而对炉内温度进行控制和优化。
炼钢物料平衡和热平衡计算是炼钢过程中冶炼稳定性和经济效益的重要保障。
通过这些计算,可以了解到原料的利用率和产物的产出量,从而提高冶炼效果和产品质量。
同时,通过热平衡计算可以实时监测炉内的温度变化,及时发现和解决温度异常问题,确保冶炼过程的可控性和稳定性。
因此,炼钢物料平衡和热平衡计算是炼钢过程中不可或缺的重要环节。
炼钢物料平衡和热平衡计算在炼钢过程中起着非常重要的作用。
通过这些计算,冶炼厂可以更好地了解和控制物料的投入和产物的产出,实现冶炼过程的稳定运行和优化效果。
首先,炼钢物料平衡计算能够确保原料的充分利用和合理投放。
在炼钢过程中,钢厂会使用不同的原料,如铁矿石、废钢、废铁等。
这些原料的投入量需要经过平衡计算来确定,以确保原料的利用率最大化。
通过平衡计算,可以了解到每种原料的投入量,避免过量或不足的情况发生。
改好的物料平衡及热平衡计算

改好的物料平衡及热平衡计算第二篇物料平衡及热平衡计算一.物料平衡计算1.1原始条件⑵燃料成分,%种类 FCd AdVd Std H 2O 焦碳 85.85 12.76 1.39 0.69 4.12 煤粉 76.63 10.93 12.44 0.47 挥发分品种 CO 2 CO CH 4 H 2 N 2 O 2 V 焦 23.02 22.45 3.88 20.29 29.36V 煤43.1714.748.09⑶确定冶炼条件 Rd=0.45 风温:1100度炉尘 20kg/t铁水:1500度炉渣:1500度炉顶煤气温度:200度一配料计算1 矿石和溶剂的用量计算设矿石为X ,溶剂为Y由Fe 平衡:945.16+945.16×0.003/0.997+20×0.415=0.5897X+0.0138Y+320×0.1276×0.0425+160×0.1093×0.024由碱度R0.06030.52363200.12760.03541600.10930.04200.06091.14.80.061140.01863200.12760.51691600.10930.6023200.0643602.8X Y X Y ++??+??-?=++??+??-?-?由以上两式解,得 X=1617,Y=63.853 1.4.炉渣成分的计算⑴炉渣中CaO 的量: G CaO 渣=131.866kg/t ⑵炉渣中SiO 2的量:G SiO2=119.878kg/t ⑶炉渣中FeO 的量: G FeO 渣=945.16×0.00372* 3.66/0.99756kg t=⑷炉渣中MgO 的量:G MgO 渣=0.0235×1617+0.0086×63.853+320×0.1276×0.0157+160×0.10 93×0.0135-20×0.0421=38.584 kg/t ⑸炉渣中MnO 的量:G MnO 渣=0.0017×1617×71/55×50%=1.07kg/t式中: 50%—锰元素在炉渣中的分配率⑹炉渣中Al 2O 3的量:故G Al2O3渣=0.0154×1617+0.0087×563.853+320×0.1276×0.3773+160×0.1 093×0.3133-20×0.0019=45.714kg/t ⑺炉渣中S 的量: G S 渣原料﹑燃料带入的S 总量:S 1 =0.0033×1617+320×0.0069+160×0.0047=3.493 kg/t 进入生铁的S 量: S 2 =1000S%=1000×0.026%=0.26kg/t 进入煤气的S 量: S 3 = G S 5%=3.493×0.05=0.175kg/t 进入炉尘的S: S 4=20×0.0013=0.026kg/t进入炉渣的S:S= 3.493-0.175-0.26-0.026=3.032kg/t⑴生铁含磷[P]:[P]=(0.0056×1617-0.0013×20) ?1000100=0.088⑵生铁含锰[Mn]: 故[Mn]=1.07×7155×1000100=0.080⑶生铁含碳[C]:[C]= 100-94.516-0.48-0.08-0.026-0.088=4.81 2..物料平衡计算 2.1.风量的计算 C 直=2824×4.8+5512×2.16+6260×0.88+5612×0.45×948.74=96.57kg3200.85851600.766396.580.7%3200.85851600.7663200.214 446.74245.94.C K g =?+?--?+?-?-=燃()V O2=3245.94*22.4229.5424m=.2104.0015.05.0)015.01(21.02=?+-?=O2321071O V V mO ==风1386.75G V r K g=?=风风空气2.2炉顶煤气成分及数量的计算⑴甲烷的体积V CH4① 由燃料碳素生成的甲烷的量为:V CH4碳=2.78×322.4 5.1912m=② 焦炭挥发分中的甲烷的量为:V CH4焦=320×0.0139×0.0388×22.4/16=0.24 ③ 故V CH4=5.19+0.24=5.43m 3 ⑵氢的体积V H2① 风口燃烧生成:V H2=V 风×0.015=16.073m② 焦碳和煤粉中带入的:V H2=(320×0.0139×0.2029+160×0.1244×0.4317)×22.4/2=106.35 3m ③ 生成CH 4的H 2V H2=2.78×22.4/12×2=10.383m ④ 参加还原的H 2 V H2=(a+b)40%=48.973m 故V H2=①+②-③-④=63.073m⑶二氧化碳的体积V CO2 ①间接还原生成a:Fe 2O 3+CO →2FeO+CO 2V CO2 =(0.786×1617+0.0197×63.853-20×0.2144)=177.60m 3 ② FeO + H 2 → Fe + H 2O72 22.4γH ×945.16*725648.99 所以γH =0.1295V CO2=945.16×22.4/56×(1-0.45-γH 2)=158.98③石灰石分解产生的CO 2量为:V CO2分=G 熔CO 2%熔22.4/44=0.4208Y ×22.4/44=13.68 m 3④焦炭挥发分中CO 2的量为:V CO2挥= 380×0.0139×0.2302×22.4/44=0.62 m 3故V CO2=①+②+③+④=350.016 m 3⑷一氧化碳的体积V CO① 分口前碳素燃烧生成的CO 量为:V CO 燃=G C 燃22.4/12=245.94×22.4/12=459.09m 3② 间接还原消耗的CO 量为:V=336.58m 3③ 焦炭挥发分中的CO 量为:V CO 挥=320×0.0139×0.2245×24/28=0.799m 3 ④ 直接还原生成CO 量为:V CO 间=96.57×22.4/12=180.26m 3 故V CO = ①+④+③-②=303.35m 3 ⑸氮气体积V N2①鼓风带入的N 2量为:V N2风=1071×(1-0.015)×79%=833.4 m 3②焦炭和煤粉带入的N 2量为:V N2焦+煤=(320×0.0139×0.2936+160×0.1244×0.1474)×22.4/28=3.39 m 3故V N2= V N2风+ V N2焦+煤=836.79m 330.2246440.1946280.5369280.040520.0035161.36/22.4kg mρ?+?+?+?+?==煤气 1.361558.6562119.77G kg=?=煤气二.热平衡计算1热量收入Q 收⑴碳素氧化放热Q C① 碳素氧化为放出的热量Q CO2+COQ CO2+CO =(303.35-0.799)×5241.72+(177.60+158.98)×17869.5=7601347.45kJ式中 17869.5—C 氧化CO 2为放热,kJ/m 3 式中 5241.72—C 氧化CO 为放热,kJ/ m 3 ⑵鼓风带入的热量Q 风Q=(1071×98%×98.5%×1.4233+1071×98%×1.5%×1.7393)×1100=1648727.32kJ式中Q 空气—在11000C 下空气的热容量,其值为1.4233kJ/(m 3×0C) Q 水汽—在11000C 下水汽的热容量,其值为1.7393kJ/(m 3×0C)⑶氢氧化放出热:Q H2=(48.97+2.78×22.4/12)×10788.58=640302.22 kJ式中10788.58氢氧化水为放热,kJ/ m 3 ⑷成渣热Q 渣:石灰石分解产生的CaO 和MgO 与SiO 2反应热。
物料平衡与热平衡计算

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.钢铁冶金专业设计资料(炼铁、炼钢)本钢工学院冶化教研室二00三年八月第一章物料平衡与热平衡计算物料平衡和热平衡计算是氧气顶吹转炉冶炼工艺设计的一项基本的计算,它是建立在物质和能量不灭定律的基础上的。
它以转炉作为考察对象,根据装入转炉内或参与炼钢过程的全部物料数据和炼钢过程的全部产物数据,如图1-1-1所示的收入项数据和支出项数据,来进行物料的重量和热平衡计算。
通过计算,可以定量地掌握冶炼工重要参数,做到“胸中有数”。
对指导生产和分析研究改进冶炼工艺,设计转炉炼钢车间等均有其重要意义。
由于转炉炼钢过程是一个十分复杂的物理化学过程,很显然,要求进行精确的计算较为困难,特别是热平衡,只能是近似计算,但它仍然有十分重要的指导意义。
物料平衡和热平衡计算,一般可分为两面种方案。
第一种方案是为了设计转炉及其氧枪设备以及相应的转炉炼钢车间而进行的计算,通常侧重于理论计算,特别是新设计转炉而无实际炉型可以参考的情况下;另一种方案是为了校核和改善已投产的转炉冶炼工艺参数及其设备参数或者采用新工艺新技术等,而由实测数据进行的计算,后者侧重于实测。
本计算是采用第一种方案。
目前,我国顶吹转炉所采用的生铁基本上为低磷的(0.10〜0.40%)和中磷的(0.40〜1.00%)两种,对这两种不同含磷量生铁的冶炼工艺制度也不相同。
因此,下面以50吨转炉为例,分别就低磷生铁和高磷生铁两种情况,进行物料平衡和热平衡计算。
1.1原始数据表 1-1-1表1-1-2原材料成分表2-1-1铁水成分与温度转炉冶炼钢种常为普通碳素钢和低合金钢,在此以要求冶炼BD3钢考虑,其成分见表2-1-31-1-4用废钢作冷却剂,其成份与冶炼钢种成份的中限相同。
(见表1-1-3)虽然炉内化学反应,实际上是在炉料温度和炉内上部气相温度之间的任一温度发生的,但反应热效应通常仍采用25 C作为参考温度,值得指出的是,反应热还与组分在铁水中存在形态有关,至今对参与化学反应有关的实际组成物还有不同的看法。
(物料管理)物料平衡与热平衡

3电弧炉炼钢物料平衡和热平衡3.1 物料平衡计算3.1.1 计算所需原始数据基本原始数据:冶炼钢种及成分(见表3-1);原材料成分(见表3-2);炉料中元素烧损率(见表3-3);合金元素回收率(见表3-4);其他数据(见表3-5)。
确定(一般不低于0.03%的脱碳量);错误!未找到引用源。
按末期含量的0.015%来确定。
3.1.2 物料平衡基本项目收入项有:废钢、生铁、焦炭、石灰、萤石、电极、炉衬镁砖、炉顶高铝砖、火砖块、铁合金、氧气和空气。
支出项有:钢水、炉渣、炉气、挥发的铁、焦炭中挥发分。
3.1.3 计算步骤以100kg金属炉料(废钢+生铁)为基础,按工艺阶段——熔化期、氧化期和还原期分别进行计算,然后汇总成物料平衡表。
第一步:熔化期计算。
(1)确定物料消耗量:1)金属炉料配入量。
废钢和生铁按75kg和25kg搭配,不足碳量用焦炭来配。
其结果列于表3-6。
计算用原始数据见表3-2和3-5。
错误!未找到引用源。
碳烧损率25%。
2)其他原材料消耗量。
为了提前造渣脱磷,先加入一部分石灰(20kg/t(金属料))和矿石(10kg/t(金属料))。
炉顶、炉衬和电极消耗量见表3-5。
(2)确定氧气和空气消耗量:耗氧项包括炉料中元素的氧化,焦炭和电极中碳的氧化;而矿石则带来部分氧,石灰中CaO被自身S还原出部分氧。
前后两者之差即为所需净氧量2.458kg。
详见表3-7。
根据表3-5中的假设,应由氧气供给的氧气为100%,即2.239kg。
由此可求出氧气实际消耗量。
详见表3-8。
上述1)+2)便是熔化期的物料收入量。
23尘的一部分;20%成渣。
在这20%中,按3:1的比例分别生成(FeO )和(Fe 2O 3)。
(3)确定炉渣量:炉渣源于炉料中Si 、Mn 、P 、Fe 等元素的氧化产物,炉顶和炉衬的蚀损,焦炭和电极中的灰分,以及加入的各种熔剂。
结果见表3-9。
(4)确定金属量:金属量Qi=金属炉料重+矿石带入的铁量-炉料中C、Si、Mn、P和Fe的烧损量+焦炭配入的碳量=100-2.7425+0.42=97.6775kg。
《化工设计》 第三章物料衡算和热量衡算

对于没有化学反应的过程,一般上列写各组分的衡算方程, 只有涉及化学反应量,才列写出各元素的衡算方程。
• 稳态过程(连续),体系内无物料积累。
F
x f1
P
xp1
W
xw1
F
x f2
P xp2
W
xw2
7.将物料衡算结果列成输入-输出物料表(物料平 衡表),画出物料平衡图。
物料衡算表
组分
输入
质量,kg/d
组分
输出
质量,kg/d
杂质 合计
杂质 合计
8.校核计算结果(结论)。
五、无化学反应的物料衡算
• 在系统中,物料没有发生化学反应的过程, 称为无反应过程。
(三)、物料衡算基准 物料衡算过程,必须选择计算基准,并在整个运算
中保持一致。若基准选的好,可使计算变得简单。
①时间基准 (单位时间可取1d、1h或1s等等)。 ②批量基准; ③质量基准 例如: 可取某一基准物流的质量为100Kg
为基准计算。 ④物质的量基准; ⑤标准体积基准;
(四)、物料衡算的基本程序
100.00
解:
水F1 1200kg/h
吸 收 塔
混合气体F2,1.5 (mol)%丙酮
空气F3
蒸 馏 塔
冷凝器
废料F5:丙酮5%,
95% 水
产品F4 丙酮99%,水1%
本系统包括三个单元.即吸收塔、蒸馏塔和冷凝器。由于 除空气进料外的其余组成均是以质量百分数表示的,所以 将空气-丙酮混合气进料的摩尔百分数换算为质量百分数。 基准:100kmol气体进进料。
第2章炼钢过程的物料平衡和热平衡计算

第2章炼钢过程的物料平衡和热平衡计算炼钢是通过将生铁加热到高温,然后进行氧化还原反应来去除杂质的过程。
在炼钢过程中,物料平衡和热平衡是非常重要的计算,以确保过程的稳定性和效率。
首先,让我们来看一下炼钢过程中的物料平衡计算。
物料平衡是指在炼钢过程中输入和输出物料的量之间的平衡。
在炼钢过程中,主要的输入物料是生铁、石灰石、废钢等,而主要的输出物料是炼钢渣、废气和钢水等。
物料平衡计算可以通过考虑每个输入和输出物料的质量来完成。
首先需要确定每个输入物料的质量,并计算出每个输入物料的总量。
然后需要确定每个输出物料的质量,并计算出每个输出物料的总量。
最后,通过比较输入和输出物料的总量,可以确定物料平衡是否达到。
在炼钢过程中,石灰石主要用于吸附硫化物和冶炼渣的形成,废钢用于加碳和提供合金元素。
当炼钢渣形成时,一些杂质也会被吸附在渣中,从而净化钢水。
因此,通过控制输入物料的质量,并进行物料平衡计算,可以确保炼钢过程中的物料平衡。
其次,让我们来看一下炼钢过程中的热平衡计算。
热平衡是指在炼钢过程中输入和输出热量之间的平衡。
在炼钢过程中,主要的输入热量是燃料的燃烧热量,而主要的输出热量是废气和钢水。
热平衡计算可以通过考虑每个输入和输出热量的量来完成。
首先需要确定每个输入热量的量,并计算出每个输入热量的总量。
然后需要确定每个输出热量的量,并计算出每个输出热量的总量。
最后,通过比较输入和输出热量的总量,可以确定热平衡是否达到。
在炼钢过程中,需要控制燃料的燃烧速率和炉内气体的流动速率,以确保输入和输出热量的平衡。
此外,还可以通过热回收和余热利用来提高热平衡效果。
例如,可以使用余热回收装置来回收废气中的热能,并将其用于加热其他冷却介质。
综上所述,物料平衡和热平衡计算是炼钢过程中非常重要的计算。
通过控制输入物料的质量和量,并考虑输入和输出热量的平衡,可以确保炼钢过程的稳定性和效率。
此外,还可以使用其他技术和设备来提高物料平衡和热平衡效果,以进一步提高炼钢过程的效率。
转炉物料平衡与热平衡计算.

转炉物料平衡与热平衡计算简介转炉是冶金行业中常见的设备之一,主要用于高炉炼铁的后续工序。
转炉的工作原理是利用高温将铁水中的杂质进行氧化还原反应,从而得到高纯度的钢水。
为了确保炉内反应的正常进行,需进行物料平衡和热平衡的计算。
本文将介绍转炉物料平衡和热平衡的计算方法,并给出一个示例,以帮助读者更好地理解。
转炉物料平衡计算方法转炉物料平衡是指通过对转炉输入和输出物料的数量进行统计,计算转炉内的物料平衡情况。
物料平衡计算的基本原理是质量守恒定律,即输入物料的总质量必须等于输出物料的总质量。
物料平衡计算的步骤如下:1.确定转炉的输入物料,包括铁水、矿石、废钢等。
2.统计输入物料的质量。
3.确定转炉的输出物料,包括钢水、废气、炉渣等。
4.统计输出物料的质量。
5.比较输入物料的总质量和输出物料的总质量,若两者相等,则物料平衡成立;若不相等,则存在物料的损失或增加。
下面以一个具体的例子来说明转炉物料平衡的计算过程。
假设一个转炉的输入物料包括1000kg的铁水、200kg的矿石和100kg的废钢。
经过转炉反应后,得到800kg的钢水、400kg的废气和100kg的炉渣。
通过统计计算,我们可以得到输入物料的总质量为1000kg + 200kg + 100kg = 1300kg,输出物料的总质量为800kg + 400kg + 100kg = 1300kg。
两者相等,说明物料平衡成立。
转炉热平衡计算方法转炉热平衡是指通过对转炉内的能量输入和输出进行统计,计算转炉的热平衡情况。
热平衡计算的基本原理是能量守恒定律,即输入能量的总量必须等于输出能量的总量。
热平衡计算的步骤如下:1.确定转炉的输入能量,包括燃料的热值、还原剂的热值等。
2.统计输入能量的总量。
3.确定转炉的输出能量,包括钢水的热值、废气的热值等。
4.统计输出能量的总量。
5.比较输入能量的总量和输出能量的总量,若两者相等,则热平衡成立;若不相等,则存在能量的损失或增加。
gsc的物料平衡和热平衡计算

gsc的物料平衡和热平衡计算GSC(高炉煤气干燥除尘系统)是一种用于高炉喷吹系统的煤气清洁设备,它的物料平衡和热平衡计算是非常重要的。
1. 物料平衡计算GSC中的物料平衡计算主要是指干燥、粉碎、输送和回收等过程中各种物料的量的计算。
其计算方法如下:(1)4种物料的流量计算GSC中的4种物料分别是煤气、煤粉、水分和粉尘。
它们的流量应分别进行计算,其中煤气和煤粉的计算方法为:煤气和煤粉流量 =煤气和煤粉的质量控制 + 称量误差校正。
而水分和粉尘的计算方法为:水分和粉尘流量 = 流速测量器读数× 面积。
(2)各物料的贮存计算GSC中的各种物料都需要进行贮存,它们的贮存时间应进行计算。
计算公式为:贮存物料的总质量 = 流量× 时间。
(3)水分的蒸发计算GSC中的水分会随着煤气一起被带出去,需要进行计算。
计算公式为:水分的蒸发量 = 含水量× 煤气的质量。
2. 热平衡计算GSC中的热平衡计算主要是指煤气、煤粉和水分等热量的计算。
其方法如下:(1)煤气的热量计算煤气的热量可以通过其温度、压力和流量进行计算。
计算公式为:煤气的热量 = 煤气流量× 煤气的热值。
(2)煤粉的热量计算煤粉的热量可以通过其温度和质量进行计算。
计算公式为:煤粉的热量 = 煤粉的质量× 煤粉的比热× 煤粉的温度。
(3)水分的热量计算水分的热量可以通过其水份含量、温度和质量进行计算。
计算公式为:水分的热量 = 水分的质量× (水分的温度 - 煤气的温度)×水的比热。
综上所述,GSC的物料平衡和热平衡计算是其正常运行的基础和保障,这也说明物料和热量的平衡管理对于高炉的稳定和效率非常重要。
转炉热平衡和物料平衡的计算

第一部分转炉物料平衡和热平衡计算(一)原始数据(收集或给定)一、铁水成分和温度表1-1刚中[P、S]影响渣质,喷溅和炉容比,[Si]影响炼铁焦比和转炉废钢加入量(目前要求[Si]<0.80%)二、原材料成分(参[2] 、[4]、规程及[6]166)表1-2三、冶炼钢种和废钢成分表1-3四、平均比热表1-4五、反应热效率(认为25℃与炼铁温度下两者数值近似)表1-5*参氧气转换炉炼钢原理(美),冶金工业出版社74年版75页六、有关参数的选用1、渣中铁珠占渣重的8%;2、金属中90%[C] →CO 10%[C]→CO2;3、喷溅铁损占铁水量的1%;4、炉气平均温度1450℃;含自愿氧0.5%;烟尘量占铁水量的1.6% 其中有77%FeO和20%Fe2O3;(作课程设计时刻改为;烟尘量占铁水量的1.16%。
参[4]31)5、炉衬侵蚀占铁水量的0.5%;6、氧气成分为98.5%O2和1.5%N;(作课程设计时可改为:99.5%O2和0.5%N2,参[4]31)。
(二)物料平衡计算由铁水成分冶炼钢种可选用单渣发不留渣的操作。
为简化计算,物料平衡以100kg铁水为计算基础。
一、炉渣量及炉渣成分的计算炉渣来自元素的氧化,造渣材料和炉衬侵蚀等。
1.铁水中各元素的氧化量%表1-6说明:[Si]——碱性渣操作时终点[Si]量为痕迹;[P]——单渣发去磷约90%(±5%);[Mn]——终点余锰量约30~40%,这里实测为30%;[S]——转炉去硫约30~50%,这里取40%;[C]——终点碳与钢种及磷量有关,要求出钢后加铁合金增碳的量能满足钢的规格中限,即:[C]终点=[C]中限—[C]增碳这里取[C]终=0.15%,可满足去磷保碳与增碳两个条件。
2、铁水中各元素的氧化量,耗氧量和氧化产物量的计算。
表1-73.造渣剂成分及数量:(选自国内有关生产炉)1)矿石成分及重量的计算(1.0kg矿石/100kg铁水)表1-8S*:反应式为[S]+( CaO)= (CaS)+[O]其中:(CaS)重为0.001×7232=0.002[㎏][S]消耗(CaO) 重为0.001×5632=0.002[㎏][O]微量,可不计。
化工中物料衡算和热量衡算公式

化工中物料衡算和热量衡算公式物料衡算和热量衡算物料衡算根据质量守恒定律,以生产过程或生产单元设备为研究对象,对其进出口进行定量计算称为物料平衡。
通过物料平衡计算,可以计算出原材料和产品之间的数量转换关系,以及各种原材料的消耗量,各种中间产品和副产品的产量、消耗量和组成。
物质平衡的基础物料衡算的基础是物质的质量守恒定律,即进入一个系统的全部物料量必等于离开系统的全部物料量,再加上过程中的损失量和在系统中的积累量。
∑g1=∑g2+∑g3+∑g4∑g2:--输人物料量总和;∑g3:--输出物料量总和;∑g4:--物料损失量总和;∑g5:--物料积累量总和。
当系统中的物质积累为零时,上述公式可写成:∑G1=∑G2+∑G3物料衡算是所有工艺计算的基础,通过物料衡算可确定设备容积、台数、主要尺寸,同时可进行热量衡算、管路尺寸计算等。
物料衡算的基准(1)对于批量操作过程,通常以一批原材料作为计算基准。
(2)对于连续式操作的过程,可以采用单位时间产品数量或原料量为基准进行计算。
物料衡算的结果应列成原材料消耗定额及消耗量表。
消耗定额是指每吨产品或一定数量的产品(如每公斤注射剂、每万片等)消耗的原材料量;消耗量是指每年或每天消耗的原材料量。
制剂车间的消耗定额及消耗量计算时应把原料、辅料及主要包装材料一起算入。
热量衡算药品生产过程包括化学过程和物理过程,这些过程往往伴随着能量的变化,因此必须进行能量平衡。
此外,由于生产中一般不存在轴功,或轴功的影响相对较小,能量平衡本质上是热平衡。
生产过程中产生的热量或冷却能力会增加或降低材料温度。
为了确保生产过程在一定温度下进行,外部世界必须向生产系统添加或排出热量。
通过热平衡计算,可以计算待加热或冷却设备的热量,以确定加热或冷却介质的数量以及设备传输的热量。
热平衡的基础热量衡算按能量守恒定律\在无轴功条件下,进入系统的热量与离开热量应该平衡\,在实际中对传热设备的衡算可由下式表示Q1+Q2+Q3=Q4+Q5+Q6(1-1),式中:Q1——被加工材料带入设备的总热量,kJ;q2-加热剂或冷却剂与设备和物料传递的热量(符号规定加热剂加入热量为\,冷却剂吸收热量为\),kj;q3-过程的热效率,(符号规定过程放热为\;过程吸热为\)q4-反应终了时物料的焓(输出反应器的物料的焓)q5-设备部件所消耗的热量,kj;Q6——周围设备损失的热量,也称为热损失,kJ;热量衡算的基准可与物料衡算相同,即对间歇生产可以以每日或每批处理物料基准。
炼钢过程中的物料平衡与热平衡计算

炼钢过程中的物料平衡与热平衡计算炼钢是一种重要的冶金工艺,通过加热和处理铁矿石和其他原料,从而将其转化为钢铁。
在炼钢过程中,物料平衡和热平衡的计算是保证炼钢过程顺利进行的关键。
1.物料平衡计算物料平衡计算是指在炼钢过程中,对原料和产物之间的质量变化进行控制和监测。
物料平衡计算的基本原理是质量守恒定律,即物质在任何化学反应和过程中,质量不能被创造或破坏。
在炼钢过程中,主要的原料包括铁矿石、废钢和其他合金。
物料平衡计算的目的是确定原料和产物之间的质量变化以及原料的流量。
以基本的炼钢炉为例,物料平衡计算可以分为三个主要步骤:1)原料质量和流量测量:测量并记录原料的质量和流量,包括铁矿石、废钢和其他合金的输入。
2)化学反应和质量变化计算:根据炼钢过程中的化学反应,计算原料和产物之间的质量变化。
这包括原料的表面吸附、化学反应和挥发物的产生。
3)产物质量和流量测量:测量并记录产物的质量和流量,包括钢铁和炉渣的输出。
通过这些步骤,可以得到原料和产物之间的质量平衡关系。
通过不断调整原料的输入和产物的输出,可以确保炼钢过程中的物料平衡。
热平衡计算是指在炼钢过程中,通过计算热量的吸收和释放,以确保炉内的温度可以达到所需的炼钢温度。
在炼钢过程中,有几种主要的热量转移方式,包括辐射、传导、对流和蒸发。
热平衡计算的基本原理是能量守恒定律,即能量不能被创造或破坏。
热平衡计算可以分为以下几个步骤:1)炉内温度测量:通过在炉内安装温度传感器,可以测量和记录炉内的温度分布。
2)热量输入和输出计算:通过测量原料的热量输入和产物的热量输出,可以计算总的热量平衡。
热量输入包括燃料燃烧生成的热量和化学反应产生的热量。
热量输出包括炉渣的热量、废气的热量以及钢铁的热量。
3)热量转移计算:通过计算炉内热量的传导、辐射、对流和蒸发,可以确定炉内的热量分布。
这可以通过数学模型和计算方法进行计算。
通过热平衡计算,可以确定炉内的温度分布,并根据需要进行调整。
物料平衡与热平衡计算

钢铁冶金专业设计资料(炼铁、炼钢)本钢工学院冶化教研室二00三年八月第一章物料平衡与热平衡计算物料平衡和热平衡计算是氧气顶吹转炉冶炼工艺设计的一项基本的计算,它是建立在物质和能量不灭定律的基础上的。
它以转炉作为考察对象,根据装入转炉内或参与炼钢过程的全部物料数据和炼钢过程的全部产物数据,如图1-1-1所示的收入项数据和支出项数据,来进行物料的重量和热平衡计算。
通过计算,可以定量地掌握冶炼工重要参数,做到“胸中有数”。
对指导生产和分析研究改进冶炼工艺,设计转炉炼钢车间等均有其重要意义。
由于转炉炼钢过程是一个十分复杂的物理化学过程,很显然,要求进行精确的计算较为困难,特别是热平衡,只能是近似计算,但它仍然有十分重要的指导意义。
物料平衡和热平衡计算,一般可分为两面种方案。
第一种方案是为了设计转炉及其氧枪设备以及相应的转炉炼钢车间而进行的计算,通常侧重于理论计算,特别是新设计转炉而无实际炉型可以参考的情况下;另一种方案是为了校核和改善已投产的转炉冶炼工艺参数及其设备参数或者采用新工艺新技术等,而由实测数据进行的计算,后者侧重于实测。
本计算是采用第一种方案。
目前,我国顶吹转炉所采用的生铁基本上为低磷的(0.10~0.40%)和中磷的(0.40~1.00%)两种,对这两种不同含磷量生铁的冶炼工艺制度也不相同。
因此,下面以50吨转炉为例,分别就低磷生铁和高磷生铁两种情况,进行物料平衡和热平衡计算。
1.1原始数据1.1.1铁水成分及温度表1-1-11.1.2原材料成分. . ...v .. ..表1-1-2 原材料成分表2-1-1铁水成分与温度转炉冶炼钢种常为普通碳素钢和低合金钢,在此以要求冶炼BD 3钢考虑,其成分见表2-1-31.1.4平均比热表1-1-41.1.5冷却剂用废钢作冷却剂,其成份与冶炼钢种成份的中限相同。
(见表1-1-3)1.1.6反应热效应虽然炉内化学反应,实际上是在炉料温度和炉内上部气相温度之间的任一温度发生的,但反应热效应通常仍采用25℃作为参考温度,值得指出的是,反应热还与组分在铁水中存在形态有关,至今对参与化学反应有关的实际组成物还有不同的看法。
物料平衡与热平衡计算

5889.4
2616。9
8250.7
6767.2
4522.6
1677。9
1200。1
1150。5
1758.1
1594.6
495.0
1162。1
80.6
107.2
C
Si
P
Mn
Fe
Fe
Fe
Fe
SiO2
P2O5
FeO
MnO
﹡通常近似认为是Fe+ O2=FeO
1.1。7其它数据的选取(根据国内同类转炉的实测数据选取)
2CaO+SiO2=2CaO·SiO2
4CaO+P2O5=4CaO·P2O5
FeO+SiO2=FeO·SiO2
MnO+SiO2=MnO·SiO2
31397。0
99063.5
190015。2
280133.5
92007。4
63727。3
64430。0
196910.0
267243。4
29780。2
165013。2
熔化潜热
千卡/公斤
液态或气态平均比热
千卡/公斤·度
生铁
钢
炉渣
烟尘
矿石
炉气
CO2
SO2
O2
N2
H2O
0。178
0.167
0.238
52
655050 Nhomakorabea0.20
0。20
0。298
0.349
0.558
0。555
0。365
0。346
0。489
1.1。5冷却剂
用废钢作冷却剂,其成份与冶炼钢种成份的中限相同。(见表1—1-3)
炼钢过程物料平衡和热平衡计算

炼钢过程物料平衡和热平衡计算炼钢过程是将生铁或者其他铁合金通过熔炼等一系列工艺操作得到所需成分和性能的钢的过程。
在炼钢过程中,物料平衡和热平衡计算是非常重要的。
物料平衡计算是炼钢过程中的一项重要工作,其目的是通过计算物料的进出量,确定每个工序中原料和产物的平衡情况,以便控制和优化炼钢过程。
炼钢过程中常用的物料平衡计算方法有材料平衡和元素平衡两种。
材料平衡计算主要是根据原料的进出量和成分,以及每个工序中材料的变化情况,来计算各种物料的平衡情况。
以炼钢高炉为例,其主要原料是铁矿石、焦炭和空气,通过冶金反应得到生铁和炉渣。
在材料平衡计算中,需要考虑到进料的质量和数量,以及冶金反应中矿石的还原程度、焦炭的燃烧程度等因素。
通过对每个工序中原料和产物的物料平衡计算,可以确定炉内各种物料的流动情况和变化规律,以便优化炼钢过程,提高钢的质量和产量。
元素平衡计算是针对炼钢过程中的元素进行的平衡计算。
炼钢过程中,除了铁、碳、硅、锰等主要元素外,还有许多杂质元素,如磷、硫、氧等。
元素平衡计算需要考虑每个工序中元素的进出量,以及元素在冶金反应中的分配情况。
通过元素平衡计算,可以确定炼钢过程中每个工序的杂质元素的分布情况,以便进行相应的处理和控制,保证钢的质量符合要求。
热平衡计算是炼钢过程中的另一个重要工作,其目的是通过计算炼钢过程中的热量进出量,了解各个工序的热平衡情况,以便合理利用热能,优化炼钢过程。
炼钢过程中产生的热量主要有焦炭燃烧产生的热量、冶金反应放热产生的热量、热风和燃料的预热热量等。
热平衡计算中需要考虑的因素有炉内热量的进出量、热量的耗散和损失等。
通过热平衡计算,可以确定每个工序中热量的平衡情况,以便根据热量的分布和变化,进行相应的热能利用优化。
在炼钢过程中进行物料平衡和热平衡计算,可以帮助把握炼钢过程中材料和热量的变化规律,从而更好地控制和优化整个过程。
这对于提高炼钢质量、降低成本具有重要意义。
同时,物料平衡和热平衡计算也为炼钢过程的模拟和仿真提供了基础数据,为炼钢工艺的改进和创新提供了理论依据。
转炉炼钢物料平衡与热平衡计算

资料来源:热动09-2班作业联盟转炉炼钢物料平衡与热平衡1.物料平衡:加入转炉的生铁成分含量:(选取100kg生铁)C:4.00% Si:1.30% Mn:1.00% P:0.06% S:0.05% 加入转炉铁水的温度1270°C,转炉炼钢必须练成含0.10%C的钢温度为1625°C。
(1)加入物料的损失计算:由转炉中金属含炭量与炉渣中FeO含量的关系曲线可知当金属中含0.10%C时炉渣中FeO含量为18.5%有炉渣中FeO与Mn总计50%,所以的含量为:50%-18.5%=31.5% 在金属池中温度为1625°C进行吹炼Si和Mn参加氧化还原反应。
Mn+FeO= MnO+Fe 反应的平衡常数K s Mn=[Mn][FeO]/[MnO] t=1625°C。
查表得K s Mn=0.097∴[ Mn]= [ MnO] K s Mn/[ FeO]=0.097*31.5/18.5=0.165%Si+2FeO=SiO2+2Fe 反应的平衡常数K s Si= [Si][FeO]2t=1625°C。
查表得K s Si=11.5∴[Si] =K s Si/[FeO]2=11.5/18.52=0.034%吹炼结果所得金属中下列成分含量:C:0.10% Mn:0.165% Si:0.034%由于炼钢液体钢的收得率为93%,(浸出物收得率E(%) =浸出物(kg)/ 投料总量(kg)×100%)各成分的损失:C:4.00-0.93×0.1=3.97kgMn:1.00-0.93×0.165=0.85kgSi:1.3-0.93×0.034=1.27kg由锰与氧化铁的还原反应铁的损失:Fe:Mn损×[ FeO]/[ MnO]=0.85×18.5/31.5=0.5 kg∴总的损失量为:M损=3.97+0.85+1.27+0.5=6.59(2)氧化还原反应消耗氧气量和产物的量:在不加入废钢和矿石时,约有1/9的C燃烧生成CO2氧的利用率为99%。
炼钢过程中地物料平衡与热平衡计算

炼钢过程中地物料平衡与热平衡计算在炼钢过程中,地物料平衡和热平衡计算是非常重要的。
地物料平衡计算主要涉及到原料的投入和产物的产出,在炼钢过程中需要控制和调节各种原料的投入,以保证炼钢过程的稳定和高效。
而热平衡计算则是指在炼钢过程中需要对能量的输入和输出进行平衡计算,以确保炼钢过程的能量利用效率和炼钢产能的提高。
下面将分别对地物料平衡和热平衡计算进行详细介绍。
一、地物料平衡计算地物料平衡计算是指在炼钢过程中需要对原料的投入和产物的产出进行平衡计算,以确保炼钢过程中各种物料的投入和产出的平衡。
在炼钢过程中常用的原料包括铁矿石、焦炭、石灰石和废钢等。
这些原料在炼钢过程中通过高炉或电炉进行加热和冶炼,产生的产物包括生铁、钢水和炉渣等。
地物料平衡计算的基本原理是根据材料的质量守恒定律,即投入材料的质量等于产出材料和废料的质量之和。
在炼钢过程中,根据各种原料的成分和投入量,可以推算出产物的产出量,以及产物的成分和质量。
通过地物料平衡计算,可以及时发现炼钢过程中的材料流失和材料的不平衡现象,从而及时调整和控制原料的投入,保持炼钢过程的平衡和高效。
对地物料平衡进行计算时,需要考虑各种原料的成分和质量,以及炼钢过程中的各种反应和转化。
另外,还需要引入炉渣和炉气等因素进行计算,以确保炼钢过程中各种物料的平衡和流通。
地物料平衡计算通常采用质量平衡和物质平衡两种方法进行计算,以保证计算结果的准确性和可靠性。
热平衡计算是指在炼钢过程中需要对能量的输入和输出进行平衡计算,以确保炼钢过程的能量利用效率和炼钢产能的提高。
在炼钢过程中,需要对原料的加热、熔化和冷却等过程进行能量的输入和输出的计算。
通过热平衡计算,可以评估炼钢过程中的能量损失和能量利用效率,从而寻找能源的优化和节约的途径。
热平衡计算的基本原理是根据能量守恒定律和热力学原理对炼钢过程中的能量流动进行计算和分析。
在炼钢过程中,能量的输入主要包括燃烧炉料和化学反应的放热等,能量的输出主要包括炉气的排放和产物的冷却等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢铁冶金专业设计资料(炼铁、炼钢)本钢工学院冶化教研室二00三年八月第一章物料平衡与热平衡计算物料平衡和热平衡计算是氧气顶吹转炉冶炼工艺设计的一项基本的计算,它是建立在物质和能量不灭定律的基础上的。
它以转炉作为考察对象,根据装入转炉内或参与炼钢过程的全部物料数据和炼钢过程的全部产物数据,如图1—1-1所示的收入项数据和支出项数据,来进行物料的重量和热平衡计算.通过计算,可以定量地掌握冶炼工重要参数,做到“胸中有数”.对指导生产和分析研究改进冶炼工艺,设计转炉炼钢车间等均有其重要意义.由于转炉炼钢过程是一个十分复杂的物理化学过程,很显然,要求进行精确的计算较为困难,特别是热平衡,只能是近似计算,但它仍然有十分重要的指导意义。
物料平衡和热平衡计算,一般可分为两面种方案.第一种方案是为了设计转炉及其氧枪设备以及相应的转炉炼钢车间而进行的计算,通常侧重于理论计算,特别是新设计转炉而无实际炉型可以参考的情况下;另一种方案是为了校核和改善已投产的转炉冶炼工艺参数及其设备参数或者采用新工艺新技术等,而由实测数据进行的计算,后者侧重于实测.本计算是采用第一种方案。
目前,我国顶吹转炉所采用的生铁基本上为低磷的(0.10~0。
40%)和中磷的(0.40~1。
00%)两种,对这两种不同含磷量生铁的冶炼工艺制度也不相同。
因此,下面以50吨转炉为例,分别就低磷生铁和高磷生铁两种情况,进行物料平衡和热平衡计算.1.1原始数据1。
1.1铁水成分及温度表1—1—11.1.2原材料成分表1-1—2原材料成分2 / 563 / 563 / 56表2—1-1铁水成分与温度转炉冶炼钢种常为普通碳素钢和低合金钢,在此以要求冶炼BD 3钢考虑,其成分见表2—1—31。
1。
4平均比热表1-1-41.1。
5冷却剂用废钢作冷却剂,其成份与冶炼钢种成份的中限相同。
(见表1-1-3)1。
1。
6反应热效应虽然炉内化学反应,实际上是在炉料温度和炉内上部气相温度之间的任一温度发生的,但反应热效应通常仍采用25℃作为参考温度,值得指出的是,反应热还与组分在铁水中存在形态有关,至今对参与化学反应有关的实际组成物还有不同的看法.但是,比较常用的反应热数据见表1-1—5。
表1—1—5﹡通常近似认为是Fe+21O 2=FeO1.1.7其它数据的选取(根据国内同类转炉的实测数据选取) 1.渣中铁珠量为渣量的5%~8%,本设计取8%。
2.金属中碳的氧化假定为:80%~90%的碳氧化成CO ,20%~10%的碳氧化成CO 2。
3.喷溅铁损为铁水量的0.7%~1。
0%,本设计取1。
0%。
4.取炉气平均温度1450℃,炉气中自由氧含量为0.5%,烟尘量铁珠量的1.6%,其中FeO =77%,Fe 2O 3=20%。
5.氧气成分为98.5%O 2,1。
5%N 2。
6.炉衬侵蚀量为铁水量的0。
5%. 1.2物料平衡计算根据铁水成份,渣料质量以及冶炼钢种,采用单渣不留渣操作,通常首先以100公斤铁水为计算基础,然后再折算成100公斤金属料。
1.2。
1炉渣量及其成份的计算炉渣来自金属中元素的氧化产物,渣料以及炉衬侵蚀等。
1.铁水中各元素氧化量(见表2-2—1)表1-2-1终点钢水成份是根据同类转炉冶炼钢种的实际数据选取,其中: [C]:应根据冶炼钢种含碳量的中限和预估计的脱氧剂的增碳量(0。
2~0.3)之差来确定终点钢水含碳量,取0。
150%。
[Si]:在碱性转炉炼钢法中,铁水中的硅几乎全部被氧化,随同加入的其它材料带入的SiO2一起进入炉渣中,故终点钢水硅的含量为痕迹。
[Mn]:终点钢水残锰量,一般为铁水中锰含量的30%~40%,取30%.[P]:采用低磷铁水操作,铁水中磷约85~95%进入炉渣,在此取铁水中磷的90%进入炉渣,10%留在钢中.同时要考虑钢包中回磷的因素. [S]:氧气转炉内去硫率不高,一般在30~50%的范围,取40%。
.各元素氧化量、耗氧量及其氧化产物量见表1—2—2。
表1—2-28 / 56﹡指生成的CaS量10 / 563.造渣剂成分及数量50吨氧气转炉加入造渣剂数量,是根据国内同类转炉有关数据选取: 1)矿石加入量及成分矿石加入量为1。
00公斤/100公斤铁水,其成分及重量见表1-2-3表1—2—3﹡S 以[S ]+(CaO )=(CaO)+[O ]的形式反应,其中生成CaS 量为0。
001×3272=0.002公斤,消耗CaO 量为0。
001×3256=0。
002公斤,生成微量氧为0.001×3216=0。
001公斤.2)萤石加入量及成分萤石加入量为0。
50公斤/100公斤铁水,其成分及重量见表2-2-4表1—2-4﹡P 以2[P]+25{O 2}=(P 2O 5)的形式进行反应,其中生成P 2O 5量为0。
003×62142=0。
007公斤,消耗氧量为0。
003×6280=0。
004公斤。
﹡﹡S 微量,忽略之。
3)炉衬侵蚀量为0。
50公斤/100公斤铁水,其成分及重量见表1—2—5表1-2-5被浸蚀的炉衬中碳的氧化,同金属中碳的氧化成CO ,CO 2的比例相同,即:CCO 0。
025×90%×1228=0。
053公斤CCO 20。
025×10%×1244=0。
009公斤 其消耗氧气量为:0。
053×2816=0.030公斤0。
009×4432=0.007公斤共消耗氧气量为0。
03+0.007=0.037公斤 4)生白云石加入量及成份为了提高转炉炉衬寿命,在加入石灰造渣的同时,添加一部分白云作造渣剂,其目的是提高炉渣中MgO 的含量。
初期渣中(MgO )含量增高,使炉渣的熔点和粘度明显降低,减缓或阻碍石灰颗粒表面的硅酸二钙层(2CaO ·SiO 2)的形成,从而加速石灰的熔解.同时,能减少初期渣中的(FeO )含量或者中和一部分氧化铁,因此降低了炉渣的有效氧化能力。
这样就使得焦油白云石炉衬中碳的氧化作用减慢,有利于提高炉衬浸蚀能力。
另外,提高炉渣中的(MgO)含量,降低了炉渣对炉衬的浸蚀能力,在吹炼后期随着炉渣碱度的提高,其粘度相应提高,使得炉壁容易挂渣,从而保护避免受浸蚀,也有利于提高炉衬寿命。
生产实践表明,渣中(MgO )含量为6~8%时,其效果较好。
为此,必须保证渣中(MgO )含量在6~8%之间来计算白云石加入量。
经试算后取生白云石加入量为2。
0~3.0/100公斤铁水,本设计取3.0,其成份及重量见表1—2-6表1—2—6烧减是指生白云石(MgCO 3·CaCO 3)分解后而生产的CO 2气体。
5)炉渣碱度和石灰加入量取终渣碱度R=)(%)(%2SiO CaO =2.8~4.0取3.5首先计算由上述造渣剂以及铁水中各元素氧化产物而进入炉渣中的SiO 2和CaO 的重量,然后再计算石灰加入量。
渣中已存在的∑(SiO 2)量=铁水中Si 氧化生成的SiO 2量+炉衬带入的SiO 2量+矿石带入的SiO 2量+萤石带入的SiO 2量+白云石带入的SiO 2量=1.821+0.010+0。
056+0.030+0。
014=1。
931公斤。
渣中已存在的∑(CaO )量=白云石带入的CaO 量+炉衬带入的CaO 量+矿石带入的CaO 量—铁水中S 成渣消耗的CaO 量—矿石中S 成渣消耗的CaO 量=0。
925+0.27+0。
010-0.018—0.002=1。
185公斤。
石灰加入量=有效)(%)()(2CaO CaO SiO RX ∑∑-=石灰石灰22%%)()(SiO RX CaO CaO SiO RX --∑∑=%66.15.3%08.91185.1931.15.3X X --=6.537公斤加入石灰所代入的各成份及重量见表1-2-7。
表1-2—7﹡S 以[S ]+(CaO )=(CaS )+[O]的形式反应,其中生成(CaS )量为0。
004×3272=0.009,生成氧量为0。
004×3216=0。
002公斤;消耗(CaO )量为0。
004×3256=0。
007公斤。
烧减是指未烧透的CaCO 3经受热分解所产生的CO 2气体量. 6)终点氧化铁的确定终渣中氧化铁的含量与钢水的终点含碳量和终渣的碱度有关,根据生产实践数据,终点钢水含碳量为0。
15%和终渣碱度为3。
5时,终渣中(Fe 2O 3)=5%和(FeO)=10%。
7)终渣量及其成份表1-2—8中不计(FeO )和(Fe 2O 3)在内的炉渣重量为:(CaO+MgO+SiO 2+P 2O 5+MnO+Al 2O 3+CaF 2+CaS ) =7.152+0.904+2。
039+0.316+0.524+0.127+0.445+0。
034 =11.541公斤已知渣中氧化铁量为15%,则渣中其它成份之和为100%-15%=85% 故炉渣总重量为%85541.11=13.578公斤由此可知: (FeO )的重量=13.578×10%=1.358公斤,其中铁重=1.358×7256=1。
056公斤(Fe 2O 3)的重量=13.578×5%=0。
679公斤,其中铁重量=0.679×160112=0.474公斤将(FeO)和(Fe2O3)的值分别填入表2-3—2中。
终渣量及其成份见表1-2—8。
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除15 / 56 表1—2-8﹡5.947=石灰中CaO含量—石灰中S自耗CaO重量=5。
954-0。
007=5。
947﹡和﹡﹡是元素铁被氧化成氧化亚铁和三氧化二铁的重量.1。
2.2矿石、烟尘中的铁及重量假定矿石中∑(FeO )全部被还原成铁,则:矿石带入铁量=1。
00×(29.40%×7256+61。
80%×160112)=0。
661公斤 烟尘带走铁量=1.60×(77%×7256+20%×160112)=1.182公斤矿石代入的氧量=1.00×(29。
40%×7216+61。
8%×16048)=0。
251公斤烟尘消耗氧量=1。
60×(77%×7216+20%×16048)=0.370公斤1。
2.3炉气成份及重量表1-2—9表1-2-9中各项的计算如下;CO 的重量=铁水中的C 被氧化成CO 的重量+炉衬中的C 被氧化成CO 的重量=8.610+0.053=8。
663公斤CO 2的重量=铁水中的C 被氧化成CO 2的重量+炉衬中的C 被氧化成CO 2的重量+白云石烧减的重量+石灰烧减的=1.503+0。