初中数学函数之平面直角坐标系解析含答案

合集下载

(易错题精选)初中数学函数之平面直角坐标系难题汇编附答案

(易错题精选)初中数学函数之平面直角坐标系难题汇编附答案

(易错题精选)初中数学函数之平面直角坐标系难题汇编附答案一、选择题1.如图,小手盖住的点的坐标可能为( )A.(-1,1) B.(-1,-1) C.(1,1) D.(1,-1)【答案】D【解析】【详解】解:根据第四象限的坐标特征,易得小手盖住的点的横坐标为正,纵坐标为负,选项D符合此特征,故选:D2.若点P(x,y)在第三象限,且点P到x轴的距离为3,到y轴的距离为2,则点P的坐标是( )A.(-2,3) B.(-2,-3) C.(2,-3) D.(2,3)【答案】B【解析】【分析】根据点P到x轴的距离为3,则这一点的纵坐标是3或-3,到y轴的距离为2,那么它的横坐标是2或-2,再根据点P所处的象限即可确定点P的坐标.【详解】∵点P到x轴的距离为3,∴点的纵坐标是3或-3,∵点P到y轴的距离为2,∴点的横坐标是2或-2,又∵点P在第三象限,∴点P的坐标为:(-2,-3),故选B.【点睛】本题考查了点的坐标的几何意义,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是到x轴的距离.3.在平面直角坐标系内,若点P(3﹣m,m﹣1)在第二象限,那么m的取值范围是()A.m>1 B.m>3 C.m<1 D.1<m<3【答案】B【解析】【分析】由第二象限点的横坐标为负数、纵坐标为正数得出关于m 的不等式组,解之可得答案.【详解】∵点P (3﹣m ,m ﹣1)在第二象限,∴3-010m m ⎧⎨-⎩<①>② ,解不等式①,得:m >3,解不等式②,得:m >1,则m >3,故选:B .【点睛】本题主要考查象限内点的坐标符号特点及解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.如图,动点P 从()0,3出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P 第2018次碰到矩形的边时,点P 的坐标为( )A .()1,4B .()5,0C .()7,4D .()8,3【答案】C【解析】【分析】 理解题意,由反射角与入射角的定义作出图形,观察出反弹6次为一个循环的规律,解答即可.【详解】如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P的坐标为(7,4).故选C.【点睛】本题考查了平面直角坐标系中点的坐标规律,首先作图,然后观察出每6次反弹为一个循环,据此解答即可.5.在平面直角坐标系中,点P(x﹣3,x+3)是x轴上一点,则点P的坐标是()A.(0,6) B.(0,﹣6) C.(﹣6,0) D.(6,0)【答案】C【解析】【分析】根据x轴上的点的纵坐标为0列式计算即可得解.【详解】∵点P(x﹣3,x+3)是x轴上一点,∴x+3=0,∴x=﹣3,∴点P的坐标是(﹣6,0),故选:C.【点睛】本题考查了点的坐标,是基础题,熟记x轴上的点的纵坐标为0是解题的关键.6.如图,在菱形ABCD中,点,B C在x轴上,点A的坐标为()0,23,分别以点,A B为圆心、大于12AB的长为半径作弧,两弧相交于点,E F.直线EF恰好经过点,D则点B的坐标为()A.()1,0B.)3,0C.()2,0D.()3,0【答案】C【解析】【分析】连接DB,如图,利用基本作图得到EF垂直平分AB,则DA=DB,再根据菱形的性质得到AD∥BC,AD=AB,则可判断△ADB为等边三角形,所以∠DAB=∠ABO=60°,然后计算出OB=2,从而得到B点坐标.【详解】解:连接DB,如图,由作法得EF垂直平分AB,∴DA=DB,∵四边形ABCD是菱形,∴AD∥BC,AD=AB,∴AD=AB=DB,∴△ADB为等边三角形,∴∠DAB=60°,∴∠ABO=60°,∵A(0,23),∴OA=23,∵∠ABO=60°,∠AOB=90°,∴∠BAO=30°,∴在Rt△AOB中,AB=2OB,∵OB2+OA2=AB2,∴OB2+()232=(2OB)2,∴OB=2(舍负),∴B(2,0).故选:C.【点睛】本题考查了作图基本作图:作已知线段的垂直平分线,也考查了线段垂直平分线的性质和菱形的性质以及30°的直角三角形的特殊性质.7.如图,点P在第二象限,OP与x轴负半轴的夹角是α,且35,cos5OPα==,则P点的坐标为()A .()3,4B .()3,4-C .()4,3-D .()3,5-【答案】B【解析】【分析】 过点P 作PA ⊥x 轴于A ,利用35,cos 5OP α==求出OA ,再根据勾股定理求出PA 即可得到点P 的坐标.【详解】过点P 作PA ⊥x 轴于A ,∵35,cos 5OP α==, ∴3cos 535OA OP α=⋅=⨯=, ∴22PA OP OA =-=4,∵点P 在第二象限,∴点P 的坐标是(-3,4)故选:B.【点睛】此题考查三角函数,勾股定理,直角坐标系中点的坐标特点,解题中注意点所在象限的坐标的符号特点.8.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣5【答案】A【解析】分析:根据点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,得到4=|2a +2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.9.如果点在第四象限,那么m的取值范围是().A.B.C.D.【答案】D【解析】【分析】横坐标为正,纵坐标为负,在第四象限.【详解】解:∵点p(m,1-2m)在第四象限,∴m>0,1-2m<0,解得:m>,故选D.【点睛】坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求m的取值范围.10.如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为()A.(1,1)B.(02)C.(2,)D.(﹣1,1)【答案】D【解析】分析:根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.详解:∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理得:2,由旋转得:OB=OB1=OB2=OB32,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(02),B2(-1,1),B3(20),…,发现是8次一循环,所以2018÷8=252 (2)∴点B2018的坐标为(-1,1)故选:D.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法11.在直角坐标系中,若点P(2x-6,x-5)在第四象限,则x的取值范围是( )A.3<x<5 B.-5<x<3 C.-3<x<5 D.-5<x<-3【答案】A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P(2x-6,x-5)在第四象限,∴260 {50xx->-<,解得:3<x<5.故选:A.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.12.如果点P在第三象限内,点P到x轴的距离是4,到y轴的距离是5,那么点P的坐标是()A.(﹣4,﹣5)B.(﹣4,5)C.(﹣5,4)D.(﹣5,﹣4)【答案】D【解析】【分析】根据第三象限内点的横坐标是负数,纵坐标是负数以及点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【详解】解:∵第三象限的点P到x轴的距离是4,到y轴的距离是5,∴点P的横坐标是﹣5,纵坐标是﹣4,∴点P的坐标为(﹣5,﹣4).故选:D.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.13.在平面直角坐标系中,点P(0,﹣4)在()A.x轴上B.y轴上C.原点D.与x轴平行的直线上【答案】B【解析】【分析】根据点P的坐标为(0,﹣4)即可判断点P(0,﹣4)在y轴上.【详解】在平面直角坐标系中,点P(0,﹣4)在y轴上,故选:B.【点睛】本题考查了坐标与图形性质,熟练掌握坐标轴上点的坐标特征是解题的关键.14.若点P(a,b)在第二象限,则点Q(b,1﹣a)所在象限应该是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【分析】先根据点P(a,b)在第二象限判断出a<0,b>0,据此可得1﹣a>0,从而得出答案.【详解】∵若点P(a,b)在第二象限,∴a<0,b>0,则1﹣a>0,∴点Q(b,1-a)所在象限应该是第一象限,【点睛】本题是象限的考查,解题关键是判断横、纵坐标的正负15.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0).根据这个规律探索可得,第100个点的坐标为()A.(14,8)B.(13,0)C.(100,99)D.(15,14)【答案】A【解析】【详解】由图形可知:点的个数依次是1、2、3、4、5、…,且横坐标是偶数时,箭头朝上,∵1+2+3+…+13=91,1+2+3+…+14=105,∴第91个点的坐标为(13,0),第100个点横坐标为14.∵在第14行点的走向为向上,∴纵坐标为从第92个点向上数8个点,即为8;∴第100个点的坐标为(14,8).故选A.【点睛】本题主要考查了根据图形的变化找规律的方法,首先要分析图形中每一列的点人个数的变化规律是,1,2,3,4,5,…,由此找出第100个点所在的列,再根据奇数列是从上往下依次增加1,偶数列是从下往上依次增加1,由此即可找到第100个点所对应的坐标.16.在平面直角坐标系中,点P(-3,4)到x轴的距离为( )A.3 B.-3 C.4 D.-4【答案】C【解析】【分析】纵坐标的绝对值就是点到x轴的距离.∵|4|=4,∴点P (-3,4)到x 轴距离为4.故选C .17.在平面直角坐标系xOy 中,若点P 在第四象限,且点P 到x 轴的距离为1,到y 轴的距离为3,则点的坐标为( )A .(3,-1)B .(-3,1)C .(1,-3)D .(-1,3)【答案】A【解析】【分析】根据点到x 轴的距离是纵坐标的绝对值,到y 轴的距离是横坐标的绝对值,结合第四象限点(+,-),可得答案.【详解】解:若点P 在第四象限,且点P 到x 轴的距离为1,到y 轴的距离为3,则点的坐标为(3,-1),故选:A .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).18.P 在第二象限,P 到x 轴的距离是2,到y 轴的距离是3,则P 点的坐标是( ) A .()2,3-B .()3,2-C .()3,2D .()2,3【答案】B【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度求解即可.【详解】解:∵点P 在第二象限,且到x 轴的距离为2,到y 轴的距离为3,∴点P 的横坐标为-3,纵坐标为2,∴点P 的坐标是(-3,2).故选:B .【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度是解题的关键.19.已知点P (1﹣a ,2a+6)在第四象限,则a 的取值范围是( )A.a<﹣3 B.﹣3<a<1 C.a>﹣3 D.a>1【答案】A【解析】【分析】根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.【详解】解:∵点P(1﹣a,2a+6)在第四象限,∴10 260aa->⎧⎨+<⎩解得a<﹣3.故选A.【点睛】本题考查了点的坐标,一元一次不等式组的解法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).20.如图,若A、B两点的坐标分别为(﹣3,5)、(3,5),则点C坐标为()A.(﹣2,6)B.(﹣1,6)C.(﹣2,7)D.(﹣1,7)【答案】D【解析】【分析】根据A、B的坐标判断出y轴在AB的垂直平分线上,结合图形可得点C的纵坐标比A、B 的纵坐标大2,然后解答即可.【详解】如图所示,∵A、B两点的坐标分别为(﹣3,5)、(3,5),∴则点C坐标为(﹣1,7),故选:D.【点睛】本题考查了坐标确定位置,准确识图,判断出y轴的位置以及点C的纵坐标与点A、B的纵坐标的关系是解题的关键.。

人教版初中数学函数之平面直角坐标系技巧及练习题附答案解析

人教版初中数学函数之平面直角坐标系技巧及练习题附答案解析

2.在平面直角坐标系中,长方形 ABCD的三个顶点 A(3,2), B(1,2),C 1, 1, 则第四个
顶点 D 的坐标是( ).
A. 2,1
B. (3, 1)
C. 2,3
D. (3,1)
【答案】B 【解析】 【分析】
根据矩形的性质(对边相等且每个角都是直角),由矩形 ABCD 点的顺序得到 CD⊥AD, 可以把 D 点坐标求解出来.
∴ OA OP cos 5 3 3 , 5
∴ PA OP2 OA2 =4,
∵点 P 在第二象限, ∴点 P 的坐标是(-3,4) 故选:B.
【点睛】
此题考查三角函数,勾股定理,直角坐标系中点的坐标特点,解题中注意点所在象限的坐 标的符号特点.
8.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为 4 的正方形
A. (4, 2)
B. (2, 4)
C. (3, 2)
D. (2, 1)
【答案】A
【解析】
【分析】
根据棋子“炮”和“車”的点坐标,推断出原点位置,进而可得出“馬”的点的坐标.
【详解】
如图所示,根据“車”的点坐标为 2, 0 ,可知 x 轴在“車”所在的横线上,
又根据“炮”的点坐标 1, 2 ,可推出原点坐标如图所示,
点的坐标为()
A. 3, 4
B. 3,4
C. 4,3
D. 3, 5
【答案】B 【解析】 【分析】
过点 P 作 PA⊥x 轴于 A,利用 OP 5, cos 3 求出 OA,再根据勾股定理求出 PA 即可得 5
到点 P 的坐标. 【详解】 过点 P 作 PA⊥x 轴于 A,
∵ OP 5, cos 3 , 5
上,可以得到点 A 的坐标. 【详解】

人教版初中数学七年级数学下册第三单元《平面直角坐标系》测试题(包含答案解析)

人教版初中数学七年级数学下册第三单元《平面直角坐标系》测试题(包含答案解析)

一、选择题1.已知两点(,5)A a ,(1,)B b -且直线//AB x 轴,则( )A .a 可取任意实数,5b =B .1a =-,b 可取任意实数C .1a ≠-,5b =D .1a =-,5b ≠ 2.已知点A (0,-6),点B (0,3),则A ,B 两点间的距离是( )A .-9B .9C .-3D .3 3.在平面直角坐标系中,若点(),A a b -在第三象限,则下列各点在第四象限的是( ) A .(),a b - B .(),a b - C .(),a b -- D .(),a b 4.点()1,3P --向右平移3个单位,再向上平移5个单位,则所得到的点的坐标为( ) A .()4,2- B .()2,2 C .()4,8-- D .()2,8- 5.如图,在ABC ∆中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点B 的坐标为()1,4,则点A 的坐标为( )A .()6,3-B .()3,6-C .()4,3-D .()3,4- 6.在平面直角坐标系中,点P (−1,−2+3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A .(4,0)B .(5,0)C .(0,5)D .(5,5) 8.在平面直角坐标系中,点()3,4-在( )A .第一象限B .第二象限C .第三象限D .第四象限 9.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是( ) A .横向拉伸为原来的2倍 B .纵向拉伸为原来的2倍C .横向压缩为原来的12D .纵向压缩为原来的1210.如图,在坐标平面内,依次作点()3,1P -关于直线y x =的对称点1P ,1P 关于x 轴对称点2P ,2P 关于y 轴对称点3P ,3P 关于直线y x =对称点4P ,4P 关于x 轴对称点5P ,5P 关于y 轴对称点6P ,…,按照上述变换规律继续作下去,则点2019P 的坐标为( )A .()1,3-B .()1,3C .()3,1-D .()1,3- 11.如图,动点Р在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2019次运动后,动点Р的坐标是( )A .(2019,2)B .(2019,0)C .()2019,1D .(2020,1) 12.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .2D .16二、填空题13.小华在小明南偏西75°方向,则小明在小华______方向.(填写方位角)14.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若(1,1)P -,(2,3)Q ,则P ,Q 的“实际距离”为5,即5PS SQ +=或5PT TQ +=.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为(2,2)A ,(4,2)B -,(2,4)C --,若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______.15.若点P 位于x 轴上方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,则点P 的坐标是_____________.16.如图,正方形ABCD 的各边分别平行于x 轴或y 轴,蚂蚁甲和蚂蚁乙都由点E (3,0)出发,同时沿正方形ABCD 的边逆时针匀速运动,蚂蚁甲的速度为3个单位长度/秒,蚂蚁乙的速度为1个单位长度/秒,则两只蚂蚁出发后,蚂蚁甲第3次追上蚂蚁乙的坐标是_____.17.如图,已知1(1,0)A ,2(1,1)A ,3(1,1)A -,4(1,1)A --,5(2,1)A -,则2020A 的坐标为_______.18.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.则点2019A 的坐标是_________.19.已知P (a,b ),且ab <0,则点P 在第_________象限.20.已知线段AB 的长度为3,且AB 平行于y 轴,A 点坐标为()32,,则B 点坐标为______.三、解答题21.已知在平面直角坐标系中,ABC 三个顶点的坐标分别为:(3,1)A --,(2,4)B --,(1,3)C -.(1)作出ABC ;(2)若将ABC 向上平移3个单位后再向右平移2个单位得到111A B C △,请作出111A B C △.22.ABC 在直角坐标系中如图所示.(1)请写出点A 、B 、C 的坐标;(2)求ABC 的面积.23.正方形的边长为22,0),并写出另外三个顶点的坐标.24.画图并填空:如图,方格纸中每个小正方形的边长都为1,在方格纸内将ABC 经过一次平移后得到A B C ''', 图中标出了点B 的对应点B '.请利用网格点和直尺画图或计算:(1)在给定方格纸中画出平移后的A B C ''';(2)画出AB 边上的中线CD 及高线CE ;(3)在上述平移中,边AB 所扫过的面积为 .25.已知点P(m +2,3),Q(−5,n−1),根据以下条件确定m 、n 的值(1)P 、Q 两点在第一、三象限的角平分线上;(2)PQ ∥x 轴,且P 点与Q 点的距离为3.26.对于平面直角坐标系 xOy 中的点P (a ,b ),若点P ' 的坐标为,b a ka b k ⎛⎫++ ⎪⎝⎭(其中k 为常数,且0k ≠),则称点P '为点P 的“k 之雅礼点”.例如:P (1,4)的“2之雅礼点”为41,2142P ⎛⎫'+⨯+ ⎪⎝⎭,即P '(3,6). (1)①点P (-1,-3)的“3之雅礼点” P '的坐标为____________;②若点P 的“k 之雅礼点” P '的坐标为(2,2),请写出一个符合条件的点P 的坐标____________;(2)若点P 在x 轴的正半轴上,点P 的“k 之雅礼点”为P '点,且OPP '△为等腰直角三角形,则k 的值为____________;(3)在(2)的条件下,若关于x 的方程2kx mx mn +=+有无数个解,求m n 、的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据平行于坐标轴的坐标特点进行解答即可.【详解】解://AB x 轴,5b ∴=,1a ≠-.故答案为C .【点睛】本题主要考查了坐标与图形,即平行于x 轴的直线上的点纵坐标相同,平行于y 轴的直线上的点横坐标相同.2.B解析:B【分析】由于A 、B 点都在y 轴上,然后用B 点的纵坐标减去A 点的纵坐标可得到两点之间的距离.【详解】解:∵A (0,-6),点B (0,3),∴A ,B 两点间的距离()369=--=.故选:B .【点睛】本题考查了两点间的距离公式,熟练掌握两点间的距离公式是解题的关键.3.C解析:C【分析】直接利用各象限内点的坐标符号得出答案.【详解】解:∵点A (a ,-b )在第三象限,∴a <0,-b <0,∴-a >0,b >0,∴(),a b -在第三象限,(),a b -在第一象限,(),a b --在第四象限,(),a b 在第二象限. 故选:C .【点睛】此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.4.B解析:B【分析】根据向右平移,横坐标加,向上平移纵坐标加求出点P 对应点的坐标即可得解.【详解】解:点P (-1,-3)向右平移3个单位,再向上平移5个单位,所得到的点的坐标为(-1+3,-3+5),即(2,2),故选:B .【点睛】本题考查了坐标与图形变化-平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.5.A解析:A【分析】过点A 作x 轴的垂线交于点E ,过点B 作x 轴的垂线交于点F ,运用AAS 证明ACE CBF ∆≅∆得到AE CF =,CE BF =即可求得结论.【详解】解:过点A 作x 轴的垂线交于点E ,过点B 作x 轴的垂线交于点F ,90AEC CFB ∴∠=∠=︒90A ACE ∴∠+∠=︒,90ACB ∠=︒90ACE BCF ∴∠=∠=︒A BCF ∴∠=∠,在ACE ∆和CBF ∆中,90A BCF AEC CFB AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()ACE CBF AAS ∴∆≅∆AE CF ∴=,CE BF =,(2,0)C -,(1,4)B4BF ∴=,1(2)3CF =--=,3AE CF ∴==,4CE BF ==,426OE CE OC ∴=+=+=,()6,3A ∴-故选A .【点睛】此题考查了坐标与图形,证明ACE CBF ∆≅∆得到AE CF =,CE BF =是解决问题的关键.6.B解析:B【分析】应先判断出所求点P 的横坐标、纵坐标的符号,进而判断其所在的象限.【详解】解:∵−1<0,230,∴点P 在第二象限.故选:B .本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7.B解析:B【分析】根据题意,找出其运动规律,质点每秒移动一个单位,质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推,即可得出答案.【详解】解:由题意可知,质点每秒移动一个单位质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推,质点到达(4,0)时,共用16秒;质点到达(0,4)时,共用16+8=24秒;质点到达(0,5)时,共用25秒;质点到达(5,0)时,共用25+10=35秒故答案为:B.【点睛】本题考查整式探索与表达规律,根据题意找出规律是解题的关键.8.B解析:B【分析】根据直角坐标系中点的坐标的特点解答即可.【详解】-,∵点()3,4-在第二象限,∴点()3,4故选:B.【点睛】此题考查直角坐标系中点的坐标的符号特点,第一象限为(+,+),第二象限为(-,+),第三象限为(-,-),第四象限为(+,-).9.B解析:B【分析】根据横坐标不变,纵坐标变为原来的2倍得到整个图形将沿y轴变长,即可得出结论.如果将一个图形上各点的横坐标不变,纵坐标乘以2,则这个图形发生的变化是:纵向拉伸为原来的2倍.故选B.【点睛】本题考查了坐标与图形性质:利用点的坐标计算相应的线段的长和判断线段与坐标轴的关系.10.A解析:A【分析】根据轴对称的性质分别求出P1, P2,P3,P4,P5,P6的坐标,找出规律即可得出结论.【详解】解:∵P(-3,1),∴点P关于直线y=x的对称点P1(1,-3),P1关于x轴的对称点P2(1,3),P2关于y轴的对称点P3(-1,3),P3关于直线y=x的对称点P4(3,-1),P4关于x轴的对称点P5(3,1),P5关于y轴的对称点P6(-3,1),∴6个点后循环一次,∵当n=2019时,2019÷6=336…3,P的坐标与P3(-1,3)的坐标相同,∴2019故选:A.【点睛】本题考查的是坐标的对称变化,根据各点坐标找出规律是解答此题的关键.11.A解析:A【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为1,0,2,0,每4次一轮这一规律,进而求出即可.【详解】解:解:根据动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),∴第4次运动到点(4,0),第5次接着运动到点(5,1),…,∴横坐标为运动次数,经过第2019次运动后,动点P的横坐标为2019,纵坐标为1,0,2,0,每4次一轮,∴经过第2019次运动后,动点P的纵坐标为:2019÷4=504余3,故纵坐标为四个数中第三个,即为2,∴经过第2019次运动后,动点P的坐标是:(2019,2),故选:A.【点睛】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.12.D解析:D【解析】试题如图所示,当△ABC向右平移到△DEF位置时,四边形BCFE为平行四边形,C点与F点重合,此时C 在直线y=2x-6上,∵C(1,4),∴FD=CA=4,将y=4代入y=2x-6中得:x=5,即OD=5,∵A(1,0),即OA=1,∴AD=CF=OD-OA=5-1=4,则线段BC扫过的面积S=S平行四边形BCFE=CF•FD=16.故选D.二、填空题13.北偏东75°【分析】依据物体位置利用平行线的性质解答【详解】如图有题意得∠CAB=∵AC∥BD∴∠DBA=∠CAB=∴小明在小华北偏东75°方向故答案为:北偏东75°【点睛】此题考查了两个物体的位置解析:北偏东75°【分析】依据物体位置,利用平行线的性质解答.【详解】如图,有题意得∠CAB=75︒,∵AC∥BD,∴∠DBA=∠CAB=75︒,∴小明在小华北偏东75°方向,故答案为:北偏东75°..【点睛】此题考查了两个物体的位置的相对性,两直线平行内错角相等,分别以小明和小华的位置为观测点利用平行线的性质解决问题是解题的关键.14.(0﹣1)【分析】设M(xy)根据题意列出方程组然后求解即可解答【详解】解:设M(xy)∵M到ABC的实际距离相等∴∣2﹣x∣+∣2﹣y∣=∣4﹣x∣+∣﹣2﹣y∣=∣x+2∣+∣y+4∣解得:x=解析:(0,﹣1)【分析】设M(x,y),根据题意列出方程组,然后求解即可解答.【详解】解:设M(x,y),∵M到A,B,C的“实际距离”相等,∴∣2﹣x∣+∣2﹣y∣=∣4﹣x∣+∣﹣2﹣y∣=∣x+2∣+∣y+4∣,解得:x=0,y=﹣1,∴M(0,﹣1),故答案为:(0,﹣1).【点睛】本题考查坐标与图形,根据题意,利用数形结合思想列出方程组是解答的关键. 15.【分析】设点P 的坐标为先根据点P 的位置可得再根据点到坐标轴的距离即可得【详解】设点P 的坐标为点位于轴上方轴左侧点P 距离轴4个单位长度距离轴2个单位长度即则点P 的坐标为故答案为:【点睛】本题考查了点到 解析:(2,4)-【分析】设点P 的坐标为(,)a b ,先根据点P 的位置可得0,0a b <>,再根据点到坐标轴的距离即可得.【详解】设点P 的坐标为(,)a b ,点P 位于x 轴上方,y 轴左侧,0,0a b ∴<>,点P 距离x 轴4个单位长度,距离y 轴2个单位长度,4,2b a ∴==,4,2b a ∴=-=,即2,4a b =-=,则点P 的坐标为(2,4)-,故答案为:(2,4)-.本题考查了点到坐标轴的距离、点坐标,掌握理解点到坐标轴的距离是解题关键. 16.(﹣10)【分析】由图可知正方形的边长为4故正方形的周长为16因为蚂蚁甲和蚂蚁乙的速度分别为3个和1个单位所以用正方形的周长除以(3−1)可得蚂蚁甲第1次追上蚂蚁乙时间从而算出蚂蚁乙所走过的路程则第解析:(﹣1,0).【分析】由图可知,正方形的边长为4,故正方形的周长为16,因为蚂蚁甲和蚂蚁乙的速度分别为3个和1个单位,所以用正方形的周长除以(3−1),可得蚂蚁甲第1次追上蚂蚁乙时间,从而算出蚂蚁乙所走过的路程,则第二次和第三次相遇过程中蚂蚁乙所走过的路程和第一次是相同的,从而结合图形可求得蚂蚁甲第3次追上蚂蚁乙的坐标.【详解】解:由图可知,正方形的边长为4,故正方形的周长为16∴蚂蚁甲第1次追上蚂蚁乙时间:16÷(3﹣1)=8(秒)蚂蚁乙走的路程为:1×8=8,∴此时相遇点的坐标为:(﹣1,0),因为蚂蚁甲和蚂蚁乙的速度比为3:1,∴再经过16秒蚂蚁甲和蚂蚁乙第三次相遇,相遇点坐标为:(﹣1,0),故答案为:(﹣1,0).【点睛】本题考查了物体在平面直角坐标系中运动的规律问题,明确相遇问题的计算公式及多次相遇中物体所走路程的规律是解题的关键.17.【分析】根据题意可得各个点分别位于象限的角平分线上(A1和第四象限的点除外)逐步探索出下标和各点坐标之间的关系总结出规律根据规律推理结果【详解】通过观察可得:下标数字是4的倍数的点在第三象限∵202 解析:()505,505--【分析】根据题意可得各个点分别位于象限的角平分线上( A 1和第四象限的点除外),逐步探索出下标和各点坐标之间的关系,总结出规律,根据规律推理结果.【详解】通过观察可得:下标数字是4的倍数的点在第三象限,∵2020÷4=505,第一圈第三象限点的坐标是(-1,-1),第二圈第三象限点的坐标是(-2,-2),第三圈第三象限点的坐标是(-3,-3)……,∴点2020A 在第三象限,且转了505圈,即在第505圈上,∴2020A 的坐标为()505,505--.顾答案为:()505,505--.本题考查平面直角坐标系中找点的坐标规律,结题关键是找出坐标系中点的位置和坐标之间的对应关系以及点所在象限和下角标的关系.18.【分析】根据图象可得移动4次图形完成一个循环从而可得出点的坐标【详解】解:由图象可得移动4次图形完成一个循环即所以:故答案为:【点睛】本题考查的是点的坐标规律的探究掌握规律探究的方法是解题的关键 解析:()20191009,0A .【分析】根据图象可得移动4次图形完成一个循环,从而可得出点2019A 的坐标.【详解】解:由图象可得移动4次图形完成一个循环,201945043,20204505,∴÷=÷=()()()48122,0,4,0,6,0,,A A A()20205052,0,A ∴⨯即()20201010,0,A所以:()20191009,0.A故答案为:()20191009,0.A【点睛】本题考查的是点的坐标规律的探究,掌握规律探究的方法是解题的关键.19.二四【分析】先根据ab <0确定ab 的正负情况然后根据各象限点的坐标特点即可解答【详解】解:∵ab <0∴a >0b <0或b >0a <0∴点P 在第二四象限故答案为二四【点睛】本题主要考查了各象限点的坐标特点解析:二,四【分析】先根据ab <0确定a 、b 的正负情况,然后根据各象限点的坐标特点即可解答.【详解】解:∵ab <0∴a >0,b <0或b >0,a <0∴点P 在第二、四象限.故答案为二,四.【点睛】本题主要考查了各象限点的坐标特点,掌握第一象限(+,+)、第二象限(-,+)、第三象限(-,-)、第四象限(+,-)是解答本题的关键.20.或【分析】由AB ∥y 轴可得AB 两点的横坐标相同结合AB=3A (32)分B 点在A 点之上和之下两种情况可求解B 点的纵坐标进而可求解【详解】解:∵AB ∥y 轴∴AB 两点的横坐标相同∵A (32)∴B 点横坐标为解析:()3,1-或()3,5【分析】由AB ∥y 轴可得A ,B 两点的横坐标相同,结合AB=3,A (3,2),分B 点在A 点之上和之下两种情况可求解B 点的纵坐标,进而可求解.【详解】解:∵AB ∥y 轴,∴A ,B 两点的横坐标相同,∵A (3,2),∴B 点横坐标为3,∵AB=3,∴当B 点在A 点之上时,B 点纵坐标为2+3=5,∴B (3,5);∴当B 点在A 点之下时,B 点纵坐标为2-3=-1,∴B (3,-1).综上B 点坐标为(3,-1)或(3,5).故答案为(3,-1)或(3,5).【点睛】本题主要考查坐标与图形,运用平行于坐标轴的直线上点的特征解决问题是解题的关键.三、解答题21.(1)见解析;(2)见解析【分析】(1)先在坐标系分别描出A 、B 、C 三点,再把A 、B 、C 三点首尾相接即可得到△ABC ; (2)先算出A 、B 、C 三点经过平移得到的点坐标,再用(1)的方法即可得到需画三角形.【详解】解:(1)如图,在平面直角坐标系分别描出A 、B 、C 三点,再把A 、B 、C 三点首尾相接即得到△ABC ;(2)如上图,由题意可得点的坐标平移公式为: 1123x x y y =+⎧⎨=+⎩, ∴A 、B 、C 经过平移得到的点分别为: ()()()1111,2,0,1,3,0A B C --,∴分别描出111,,A B C 三点再首尾相接即可得到需画三角形.【点睛】本题考查平移作图及三角形定义的综合应用,熟练掌握根据平移方式确定点坐标的方法及三角形的概念是解题关键.22.(1)(2,2)A ,(1,1)B -,(2,2)C --;(2)4.【分析】(1)直接利用已知平面直角坐标系得出各点坐标即可;(2)利用割补法求解即可.【详解】解:(1)如图所示:(2,2)A ,(1,1)B -,(2,2)C --;(2)ABC ∆的面积为:11144131344114222⨯-⨯⨯-⨯⨯-⨯⨯-⨯=. 【点睛】此题主要考查了坐标与图形的性质以及三角形的面积,正确结合图形利用割补法计算三角形的面积是解题关键.23.作图见解析;()2,0-;(2;(0,2-【分析】先找到()2,0A ,根据正方形的对称性,可知A 点的对称点C 的坐标,同样可得出B 和D 的坐标;【详解】 建立坐标轴,使正方形的对称中心为原点,则()2,0A ,()2,0C -, 那么B 的坐标是()0,2,其对称点D 的坐标为()0,2-.【点睛】本题主要考查了正方形的性质和坐标与图形性质,准确判断是解题的关键.24.(1)见解析;(2)见解析;(3)34【分析】(1)首先确定A 、C 两点平移后的位置,再连接即可;(2)利用三角形中线和高的定义画图即可;(3)利用矩形面积减去多余三角形面积即可.【详解】解:(1)如下图所示;(2)如下图所示;连接AA′,BB′,边AB 所扫过的面积为:()()1111787121661172342222⨯-⨯+⨯-⨯⨯-⨯⨯-⨯+⨯=. 故答案为:34.【点睛】此题主要考查了平移变换,关键是正确确定组成图形的关键点平移后的位置. 25.(1)14m n ==-,;(2)4m =-或104n -=,【分析】(1)根据平面直角坐标系中角平分线上点的特征,x 和y 的值相等,可列等式即可求出答案;(2)由PQ ∥x 轴,即点P 和Q 纵坐标有相等,列出等式即可求解即可计算出n 的值,又P 与Q 的距离为3.直线上到一点距离等于定长的点又2个,根据绝对值的意义可列等式,化简即可计算出m 的值.【详解】解:(1)∵P 、Q 两点在第一、三象限角平分线上,∴m+2=3,n -1=-5,解得m=1,n=-4;(2)∵PQ ∥x 轴,∴n -1=3,∴n=4,又∵PQ=3,∴|m+2-(-5)|=3,解得m=-4或m=-10.∴m=-4或-10,n=4.【点睛】本题主要考查平面直角坐标系中点的特征,利用点的特征列出相应的等量关系是解决本题的关键.26.(1)①(-2,-6);②(1,1)(答案不唯一);(2)±1;(3)m=1,n=-2或m=-1,n=2【分析】(1)①根据“k 之雅礼点”的定义即可求出结论;②设点P (a ,b ),由题意可得,b a ka b k ⎛⎫++ ⎪⎝⎭=(2,2),利用赋值法令k=1,a=1,求出b 的值即可写出一个符合题意的坐标;(2)由题意可设点P (a ,0),a >0,则点P 的“k 之雅礼点” P '的坐标为(),a ka ,根据等腰直角三角形的定义可得ka = a ,从而求出k 的值;(3)根据k 的值分类讨论,根据一元一次方程解的情况即可得出结论.【详解】解:(1)①由题意可得点P (-1,-3)的“3之雅礼点” P '的坐标为31,1333-⎛⎫-+-⨯- ⎪⎝⎭即P '(-2,-6)故答案为:(-2,-6);②设点P (a ,b ),由题意可得点P 的“k 之雅礼点” P '的坐标,b a ka b k ⎛⎫++ ⎪⎝⎭=(2,2) 即22b a k ka b ⎧+=⎪⎨⎪+=⎩ 可令k=1则a +b=2当a=1时,b=1∴点P 的坐标可以为(1,1)故答案为:(1,1)(答案不唯一);(2)由题意可设点P (a ,0),a >0则点P 的“k 之雅礼点” P '的坐标为(),a ka ∴OP=a ,P P '=ka由P '与P 的横坐标相同,OPP '△为等腰直角三角形 ∴∠OP P '=90°,且OP=P P ' ∴ka = a解得k=±1故答案为±1;(3)当k=-1时,2x mx mn -+=+则()12m x mn -+=+∵该方程有无数个解∴1020m mn -+=⎧⎨+=⎩解得:12m n =⎧⎨=-⎩; 当k=1时,2x mx mn +=+则()12m x mn +=+∵该方程有无数个解∴1020m mn +=⎧⎨+=⎩解得:12m n =-=⎧⎨⎩; 综上:m=1,n=-2或m=-1,n=2【点睛】此题考查的是新定义类问题,掌握新定义、等腰直角三角形的性质和根据一元一次方程解的情况求参数是解决此题的关键.。

(完整版)初中七年级下册平面坐标系数学附答案解析

(完整版)初中七年级下册平面坐标系数学附答案解析

一、选择题1.如图,在平面直角坐标系中,一动点从原点O 出发,按向上、向右、向下、向右的方向不断移动,每次移动一个单位,依次得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…,那么A 2018的坐标为( )A .(2018,0)B .(1008,1)C .(1009,1)D .(1009,0) 2.如图所示在平面直角坐标系中,一个动点从原点O 出发,按照向上、向右、向下、向右的方向不断重复移动,依次得到点()10,2A ,()21,2A ,()31,0A ,()42,0A ,()52,2A ,则点2019A 的坐标是( )A .()1009,0B .()1009,2C .()1008,2D .()1008,0 3.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点()1A 0,1,()2A 1,1,()3A 1,0,()4A 2,0,⋯那么点4n 1A (n +为自然数)的坐标为( )(用n 表示).A .()2n 1,1-B .()2n 1,1+C .()2n,1D .()4n 1,1+ 4.如图,在平面直角坐标系中,从点P 1(﹣1,0),P 2(﹣1,﹣1),P 3(1,﹣1),P 4(1,1),P 5(﹣2,1),P 6(﹣2,﹣2),…依次扩展下去,则P 2017的坐标为( )A .(504,504)B .(﹣504,504)C .(﹣504,﹣504)D .(﹣505,504) 5.如图,在平面直角坐标系中,一动点从原点O 出发,按向上.向右.向下.向右的方向依次平移,每次移动一个单位,得到()10,1A ,()21,1A ,()31,0A ,()42,0A ,…那么点2021A 的坐标为( )A .()505,0B .()505,1C .()1010,0D .()1010,1 6.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把P 1(y ﹣1,﹣x ﹣1)叫做点P 的友好点,已知点A 1的友好点为A 2,点A 2的友好点为A 3,点A 3的友好点为A 4,这样依次得到各点.若A 2021的坐标为(﹣3,2),设A 1(x ,y ),则x +y 的值是( )A .﹣5B .3C .﹣1D .57.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 4的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(2,4),点A 2021的坐标为( ) A .(-3,3) B .(-2,2) C .(3,-1) D .(2,4) 8.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为()()()1,0,2,0,2,1,()()()1,1,1,2,2,2……根据这个规律,第2021个点的坐标为( )A .()45,4B .()45,5C .()44,4D .()44,5 9.如图,在平面直角坐标系xOy 中,一只蚂蚁从原点O 出发向右移动1个单位长度到达点P 1;然后逆时针转向90°移动2个单位长度到达点P 2;然后逆时针转向90°,移动3个单位长度到达点P 3;然后逆时针转向90°,移动4个单位长度到达点P 4;…,如此继续转向移动下去.设点P n (x n ,y n ),n =1,2,3,…,则x 1+x 2+x 3+…+x 2021=( )A.1 B.﹣1010 C.1011 D.202110.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到长方形OABC 的边时反弹,反弹时反射角等于入射角.当小球第1次碰到长方形的边时的点为P1,第2次碰到长方形的边时的点为P2,…,第n次碰到长方形的边时的点为P n,则点P2 018的坐标是()A.(7,4)B.(3,0)C.(1,4)D.(8,3)二、填空题11.如图,一个点在第一,四象限及x轴上运动,在第1次,它从原点运动到点(1,﹣1),用了1秒,然后按图中箭头所示方向运动,即(0,0)→(1,﹣1)→(2,0)→(3,1)→…,它每运动一次需要1秒,那么第2020秒时点所在的位置的坐标是__.12.某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k棵树种植在点P k(x k,y k)处,其中x1=1,y1=1,当k≥2时,x k=x k﹣1+1﹣5([15k-]﹣[25k-]),y k=y k﹣1+[15k-]﹣[25k-],[a]表示非负实数a的整数部分,例如[2.8]=2,[0.3]=0.按此方案,则第2019棵树种植点的坐标为_____.13.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次用1A,2A,3A,4A…表示,则顶点2018A的坐标是_____.14.在平面直角坐标系中,点(,)P x y 经过某种变换后得到(1,2)P y x '-++,我们把点(1,2)P y x '-++叫做点(,)P x y 的终结点.已知点1P 的终结点为2P ,点2P 的终结点为3P ,点3P 的终结点为4P ,这样依次得到1P 、2P 、3P 、4P 、…n P 、…,若点1P 的坐标为(2,0),则点2017P 的坐标为__________.15.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探究可得,第100个点的坐标为________.16.如图,动点P 从坐标原点(0,0)出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1秒运动到点(1,0),第2秒运动到点(1,1),第3秒运动到点(0,1),第4秒运动到点(0,2)…则第2068秒点P 所在位置的坐标是_______________.17.如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点O 出发,按图中箭头所示的方向运动,第1次从原点运动到点()1,2,第2次接着运动到点()2,0,第3次接着运动到点()2,2-,第4次接着运动到点()4,2-,第5次接着运动到点()4,0,第6次接着运动到点()5,2.…按这样的运动规律,经过2021次运动后,电子蚂蚁运动到的位置的坐标是_________.18.在平面直角坐标系中,已知A (0,a ),B (b ,0),其中a ,b 满足|a ﹣2|+(b ﹣3)2=0.点M 的坐标为(32-,1),点N 是坐标轴的负半轴上的一个动点,当四边形ABOM 的面积与三角形ABN 的面积相等时,此时点N 的坐标为___________________. 19.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断移动,每移动一个单位,得到点1(0,1)A ,()21,1A ,()31,0A ,()42,0A ,…,那么点2021A 的坐标为__________.20.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O 出发,按向右、向上、向右、向下…的方向依次不断移动,每次移动1个单位,其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…第n 次移动到A n ,则A 2021的坐标是___________.三、解答题21.如图,在平面直角坐标系中,O 为坐标原点,点(,)(,0)、A a b B c ,其中,,a b c 满足22(3)40-+-+=a b c ,D 为直线AB 与y 轴的交点,C 为线段AB 上一点,其纵坐标为t .(1)求,,a b c 的值;(2)当t 为何值时,BOC 和AOD 面积的相等;(3)若点C 坐标为(-2,1),点M (m ,-3)在第三象限内,满足MOC 5 S,求m 的取值范围.(注:MOC S 表示MOC 的面积)22.如图,A 点的坐标为(0,3),B 点的坐标为(﹣3,0),D 为x 轴上的一个动点且不与B ,O 重合,将线段AD 绕点A 逆时针旋转90°得线段AE ,使得AE ⊥AD ,且AE =AD ,连接BE 交y 轴于点M .(1)如图,当点D 在线段OB 的延长线上时,①若D 点的坐标为(﹣5,0),求点E 的坐标.②求证:M 为BE 的中点.③探究:若在点D 运动的过程中,OM BD的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由.(2)请直接写出三条线段AO ,DO ,AM 之间的数量关系(不需要说明理由).23.问题情境:在平面直角坐标系xOy 中有不重合的两点A (x 1,y 1)和点B (x 2,y 2),小明在学习中发现,若x 1=x 2,则AB ∥y 轴,且线段AB 的长度为|y 1﹣y 2|;若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1﹣x 2|;(应用):(1)若点A (﹣1,1)、B (2,1),则AB ∥x 轴,AB 的长度为 .(2)若点C (1,0),且CD ∥y 轴,且CD =2,则点D 的坐标为 . (拓展): 我们规定:平面直角坐标系中任意不重合的两点M (x 1,y 1),N (x 2,y 2)之间的折线距离为d (M ,N )=|x 1﹣x 2|+|y 1﹣y 2|;例如:图1中,点M (﹣1,1)与点N (1,﹣2)之间的折线距离为d (M ,N )=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解决下列问题:(1)如图1,已知E (2,0),若F (﹣1,﹣2),则d (E ,F ) ;(2)如图2,已知E (2,0),H (1,t ),若d (E ,H )=3,则t = .(3)如图3,已知P (3,3),点Q 在x 轴上,且三角形OPQ 的面积为3,则d (P ,Q )= .24.如图1,C 点是第二象限内一点, CB y ⊥轴于B ,且()0,B b 是y 轴正半轴上一点,(),0A a 是x 轴负半x 轴上一点,且()2230, 9AOBC a b S ++-==四边形.(1)A ( ),B ( )(2)如图2,设D 为线段OB 上一动点,当AD AC ⊥时,ODA ∠的角平分线与CAE ∠的角平分线的反向延长线交于点P ,求APD ∠的度数: (注: 三角形三个内角的和为180) (3)如图3,当D 点在线段OB 上运动时,作DM AD ⊥交CB 于,,M BMD DAO ∠∠的平分线交于N ,当D 点在运动的过程中,N ∠的大小是否变化?若不变,求出其值;若变化,请说明理由.25.如图,已知()0,A a ,(),0B b ,且满足|4|60a b -++=.(1)求A 、B 两点的坐标;(2)点(),C m n 在线段AB 上,m 、n 满足5n m -=,点D 在y 轴负半轴上,连CD 交x 轴的负半轴于点M ,且MBC MOD S S ∆∆=,求点D 的坐标;(3)平移直线AB ,交x 轴正半轴于E ,交y 轴于F ,P 为直线EF 上第三象限内的点,过P 作PG x ⊥轴于G ,若20PAB A ∆=,且12GE =,求点P 的坐标.26.在平面直角坐标系中,点A ,B 的坐标分别为(﹣1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD .(1)求点C ,D 的坐标及四边形ABDC 的面积S 四边形ABDC ;(2)在y 轴上是否存在一点P ,连接PA ,PB ,使S △PAB =S 四边形ABDC ?若存在这样一点,求出点P 的坐标;若不存在,试说明理由;(3)点P 是直线BD 上一个动点,连接PC 、PO ,当点P 在直线BD 上运动时,请直接写出∠OPC 与∠PCD 、∠POB 的数量关系27.如图1,在平面直角坐标系中,A (a ,0)是x 轴正半轴上一点,C 是第四象限内一点,CB ⊥y 轴交y 轴负半轴于B (0,b ),且|a ﹣3|+(b+4)2=0,S 四边形AOBC =16.(1)求点C 的坐标.(2)如图2,设D 为线段OB 上一动点,当AD ⊥AC 时,∠ODA 的角平分线与∠CAE 的角平分线的反向延长线交于点P ,求∠APD 的度数;(点E 在x 轴的正半轴).(3)如图3,当点D 在线段OB 上运动时,作DM ⊥AD 交BC 于M 点,∠BMD 、∠DAO 的平分线交于N 点,则点D 在运动过程中,∠N 的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.28.如图,在平面直角坐标系中,点A B 、的坐标分别为(1,0)、(-2,0),现同时将点A B 、分别向上平移2个单位,再向左平移1个单位,分别得到点AB 、的对应点CD 、,连接AC 、BD 、CD .(1)若在y 轴上存在点M ,连接MA MB 、,使S △ABM =S □ABDC ,求出点M 的坐标; (2)若点P 在线段BD 上运动,连接PC PO 、,求S =S △PCD +S △POB 的取值范围; (3)若P 在直线BD 上运动,请直接写出CPO DCP BOP ∠∠∠、、的数量关系.29.如图1在平面直角坐标系中,大正方形OABC 的边长为m 厘米,小正方形ODEF 的边长为n 厘米,且|m ﹣4|+2n -=0.(1)求点B 、点D 的坐标.(2)起始状态如图1所示,将大正方形固定不动,小正方形以1厘米/秒的速度沿x 轴向右平移,如图2.设平移的时间为t 秒,在平移过程中两个正方形重叠部分的面积为S 平方厘米.①当t =1.5时,S = 平方厘米;②在2≤t ≤4这段时间内,小正方形的一条对角线扫过的图形的面积为 平方厘米; ③在小正方形平移过程中,若S =2,则小正方形平移的时间t 为 秒.(3)将大正方形固定不动,小正方形从图1中起始状态沿x 轴向右平移,在平移过程中,连接AD ,过D 点作DM ⊥AD 交直线BC 于M ,∠DAx 的角平分线所在直线和∠CMD 的角平分线所在直线交于N (不考虑N 点与A 点重合的情形),求∠ANM 的大小并说明理由. 30.如图所示,A (1,0),点B 在y 轴上,将三角形OAB 沿x 轴负方向平移,平移后的图形为三角形DEC ,点C 的坐标为(﹣3,2).(1)直接写出点E 的坐标 ;(2)在四边形ABCD 中,点P 从点O 出发,沿OB →BC →CD 移动,若点P 的速度为每秒1个单位长度,运动时间为t 秒,请解决以下问题;①当t 为多少秒时,点P 的横坐标与纵坐标互为相反数;②当t为多少秒时,三角形PEA的面积为2,求此时P的坐标【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先确定A2、A6、A10、414、…的坐标,然后归纳点的坐标的变化规律“A4n+2(1+2n,1)(n 为自然数)”,按此规律解答即可.【详解】解:由题意得:A2(1,1),A6(3,1),A10(5,1),A14 (7,1),…∴A4n+2(1+2n,1)(n为自然数).∵2018=504×4+2,∴n=504.∵1+2×504=1009,∴A2018(1009,1).故选C.【点睛】本题考查了点坐标的规律,根据点的变化特点、归纳出“A4n+1(2n,1)(n为自然数)”的规律是解答本题的关键.2.A解析:A【分析】根据图形可找出点A3、A7、A11、A15、…、的坐标,根据点的坐标的变化可找出变化规律“A4n+3(1+2n,0)(n为自然数)”,依此规律即可得出结论.【详解】解:观察图形可知:A3(1,0),A7(3,0),A11(5,0),A15(9,1),…,∴A4n+3(1+2n,0)(n为自然数).∵2019=504×4+3,∴n=504,∵1+2×504=1009,∴A 2018(1009,0).故选:A .【点睛】本题考查了规律型中点的坐标,根据点的变化找出变化规律“A 4n+3(1+2n ,0)(n 为自然数).”是解题的关键.3.C解析:C【解析】【分析】根据图形分别求出n 1=、2、3时对应的点4n 1A +的坐标,然后根据变化规律写出即可.【详解】由图可知,n 1=时,4115⨯+=,点()5A 21,, n 2=时,4219⨯+=,点()9A 41,, n 3=时,43113⨯+=,点()13A 61,,……所以,点()4n 1A 2n 1+,, 故选C .【点睛】本题考查了点的坐标的变化规律,仔细观察图形,分别求出n 1=、2、3时对应的点4n 1A +的对应的坐标是解题的关键.4.D解析:D【解析】分析:根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D 第三象限,被4除余3的点在第四象限,点P 2017的在第二象限,且纵坐标=2016÷4,再根据第二项象限点的规律即可得出结论. 本题解析:由规律可得, 2017÷4=504…1 ,∴ 点 P2017 的在第二象限的角平分线上,∵ 点 P5(−2,1), 点 P9(−3,2), 点 P13(−4,3) ,∴ 点 P2017(−505,504) ,故选D.点睛:本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键要首先确定点的大致位置,处于此位置的点的规律,推出点的坐标.5.D解析:D【分析】根据图象移动的得出移动4次一个循环,得出结果即可;【详解】根据图象可得移动4次图象完成一个循环,∵202145051÷=,∴2021A 的坐标是()()5052,11010,1⨯=;故答案选D .【点睛】本题主要考查了点的坐标规律题,准确计算是解题的关键.6.C解析:C【分析】列出部分A n 点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论;根据以上结论和A 2021的坐标为(﹣3,2),找出A 1的坐标,由此即可得出x 、y 的值,二者相加即可得出结论.【详解】解:∵A 2021的坐标为(﹣3,2),根据题意可知:A 2020的坐标为(﹣3,﹣2),A 2019的坐标为(1,﹣2),A 2018的坐标为(1,2),A 2017的坐标为(﹣3,2),…∴A 4n +1(﹣3,2),A 4n +2(1,2),A 4n +3(1,﹣2),A 4n +4(﹣3,﹣2)(n 为自然数).∵2021=505×4•••1,∵A 2021的坐标为(﹣3,2),∴A 1(﹣3,2),∴x +y =﹣3+2=﹣1.故选:C .【点睛】本题考查了规律型中的点的坐标的变化,解决该题型题目时,根据友好点的定义列出部分点的坐标,根据坐标的变化找出变化规律是关键.7.D解析:D【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A 2021的坐标即可.【详解】解:∵A 1的坐标为(2,4),∴A 2(﹣3,3),A 3(﹣2,﹣2),A 4(3,﹣1),A 5(2,4),…,依此类推,每4个点为一个循环组依次循环,∵2021÷4=505……1,∴点A 2021的坐标与A 1的坐标相同,为(2,4).故选:D .【点睛】本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.8.A解析:A【分析】根据图形和数字规律、直角坐标系的性质,首先根据题意,第1个点的坐标为:()1,0,第9个点的坐标为()3,0,第25个点的坐标为:()5,0, 再总结规律,通过计算即可得到答案.【详解】解:根据题意,第1个点的坐标为:()1,0,第9个点的坐标为()3,0,第25个点的坐标为:()5,0,······所以第()221n -个点的坐标为:()21,0n -, ∵2452025=,∴第2025个数为:()45,0∴第2021个数为第2025个数向上推4个数,即()45,4故选:A .【点睛】本题考查了直角坐标系、图形和数字规律的知识;解题的关键是熟练掌握直角坐标系、图形和数字规律的性质,从而完成求解.9.A解析:A【分析】根据各点横坐标数据得出规律,进而得出128x x x ++⋯+;经过观察分析可得每4个数的和为2-,把2020个数分为505组,求出20211011x =,即可得到相应结果.【详解】解:根据平面坐标系结合各点横坐标得出:1x 、2x 、3x 、4x 、5x 、6x 、7x 、8x 的值分别为:1,1,2-,2-,3,3,4-,4-;1284x x x ∴++⋯+=-,123411222x x x x +++=+--=-,567833442x x x x +++=+--=-,⋯,9798991002x x x x+++=-,⋯,1220202(20204)1010x x x∴++⋯+=-⨯÷=-,20211011x=,12320211x x x x∴+++⋯+=,故选:A.【点睛】此题主要考查了点的坐标特点,解决本题的关键是分析得到4个数相加的规律.10.A解析:A【解析】如图,经过6次反弹后动点回到出发点(0,3),周期是6,当点P第3次碰到矩形的边时,点P的坐标为:(8,3),∵2018=6⨯336+2,∴当点P第2018次碰到矩形的边时为第337个循环组的第2次反弹,点P2 018的坐标为(7,4).故答案为(7,4).点睛:周期性问题,要先找到最小周期,然后把目标数据写成周期形式,2018=6⨯336+2.二、填空题11.(2020,0).【分析】根据已知得出点的横坐标等于运动秒数,纵坐标从1,0,1,0依次循环,即可得出答案.【详解】解:∵(0,0)→(1,-1)→(2,0)→(3,1)→…,第4秒时点所解析:(2020,0).【分析】根据已知得出点的横坐标等于运动秒数,纵坐标从-1,0,1,0依次循环,即可得出答案.【详解】解:∵(0,0)→(1,-1)→(2,0)→(3,1)→…,第4秒时点所在位置的坐标是:(4,0),∴第5秒运动点的坐标为:(5,-1),第6秒运动点的坐标为:(6,0),第7秒运动点的坐标为:(7,1),第8秒运动点的坐标为:(8,0),∴点的横坐标等于运动秒数,纵坐标从-1,0,1,0依次循环,∴第2020秒时点所在位置的坐标是:横坐标为:2020,∵2020÷4=505,纵坐标为:0,∴第2020秒时点所在位置的坐标是:(2020,0).故答案为:(2020,0).【点睛】此题主要考查了数字变化规律以及坐标性质,根据已知得出点坐标的变化规律是解题关键.12.(4,404)【分析】分别根据所给的xk和yk的关系式找到种植点的横坐标与纵坐标的规律性的式子,然后把2019代入计算即可.【详解】解:根据题意,x1=1x2﹣x1=1﹣5[]+5[]x解析:(4,404)【分析】分别根据所给的x k和y k的关系式找到种植点的横坐标与纵坐标的规律性的式子,然后把2019代入计算即可.【详解】解:根据题意,x1=1x2﹣x1=1﹣5[15]+5[5]x3﹣x2=1﹣5[25]+5[15]x4﹣x3=1﹣5[35]+5[25]…x k﹣x k﹣1=1﹣5[15k-]+[25k-]∴x 1+(x 2﹣x 1)+(x 3﹣x 2)+(x 4﹣x 3)+…+(x k ﹣x k ﹣1)=1+1﹣5[15]+5[05]+1﹣5[25]+5[15]+1﹣5[35]+5[25]+…+1﹣5[15k -]+[25k -] ∴x k =k ﹣5[15k -] 当k =2019时,x 2019=2019﹣5[20185] =2019﹣5×403=4y 1=1y 2﹣y 1=[15]﹣[05] y 3﹣y 2=[25]﹣[15] y 4﹣y 3=[35]﹣[25] …y k ﹣y k ﹣1=[15k -]﹣[25k -] ∴y k =1+[15k -] 当k =2019时,y 2019=1+[20185]=1+403=404 ∴第2019棵树种植点的坐标为(4,404).故答案为:(4,404).【点睛】本题考查了如何根据坐标确定位置,根据题意发现点的横纵坐标的规律是解题的关键. 13.(-505,505)【解析】分析:从第1个点开始,每4个点为一个循环,由此即可确定根据下标被4除的余数得到点所在的象限,根据正方形的边长与正方形的序号之间的关系确定正方形的边长,结合点所在的象限解析:(-505,505)【解析】分析:从第1个点开始,每4个点为一个循环,由此即可确定根据下标被4除的余数得到点所在的象限,根据正方形的边长与正方形的序号之间的关系确定正方形的边长,结合点所在的象限和所在的正方形的序号确定点的坐标.详解:由图形可知,每四个所在的象限为一个循环,下标能被4整除的点在第四象限,下标被4除余1的点在第三象限,下标被4除余2的点在第二象限,下标被4除余3的点在24;第68;…,依此类推,第n =2n .2018=4×504+2,则点2018A 在第二象限,所在正方形的边长为2×504,所以点2018A 的坐标为(-505,505).故答案为(-505,505).点睛:从图形的变体中找出点所在的象限随点的下标变化的规律,再找出每一正方形的边长随正方形的序列变化的规律.14.(2,0)【详解】分析:按题中所示规律,依次往后列举出一些点的坐标,观察这些点的坐标特征求解.详解:根据题意得,P1(2,0),P2(1,4),P3(-3,3),P4(-2,-1),P5(2, 解析:(2,0)【详解】分析:按题中所示规律,依次往后列举出一些点的坐标,观察这些点的坐标特征求解. 详解:根据题意得,P 1(2,0),P 2(1,4),P 3(-3,3),P 4(-2,-1),P 5(2,0),P 6(1,4),…….可以得到从第一个点开始,每4个点的坐标为一个循环.因为2017=504×4+1,所以P 2017与P 1的坐标相同.故答案为(2,0).点睛:找数字的变化规律通常用列举法,按照一定的顺序列举一定数量的运算过程和结果,从运算过程中归纳出运算结果或运算结果的规律,当所得结果按一定的数量循环时,则可根据循环的规律来解答.15.(15,5)【详解】由图形可知:点的个数依次是1、2、3、4、5、…,且横坐标是偶数时,箭头朝上,∵1+2+3+…+13=91,1+2+3+…+14=105,∴第91个点的坐标为(13,0)解析:(15,5)【详解】由图形可知:点的个数依次是1、2、3、4、5、…,且横坐标是偶数时,箭头朝上, ∵1+2+3+…+13=91,1+2+3+…+14=105,∴第91个点的坐标为(13,0),第100个点横坐标为14.∵在第14行点的走向为向上,∴纵坐标为从第92个点向上数8个点,即为8;∴第100个点的坐标为(14,8).故答案为(14,8).点睛:本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是是一道比较容易出错的题目.16.【分析】分析点P的运动路线及所处位置的坐标规律,进而求解.【详解】解:由题意分析可得,动点P第8=2×4秒运动到(2,0)动点P第24=4×6秒运动到(4,0)动点P第48=6×8秒运解析:(45,43)【分析】分析点P的运动路线及所处位置的坐标规律,进而求解.【详解】解:由题意分析可得,动点P第8=2×4秒运动到(2,0)动点P第24=4×6秒运动到(4,0)动点P第48=6×8秒运动到(6,0)以此类推,动点P第2n(2n+2)秒运动到(2n,0)∴动点P第2024=44×46秒运动到(44,0)2068-2024=44∴按照运动路线,点P到达(44,0)后,向右一个单位,然后向上43个单位∴第2068秒点P所在位置的坐标是(45,43)故答案为:(45,43)【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.17.(1617,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-解析:(1617,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-2,-2,0,…,每5次一轮这一规律,进而求出即可.【详解】解:前五次运动横坐标分别为:1,2,2,4,4,第6到10次运动横坐标分别为:4+1,4+2,4+2,4+4,4+4,…∴第5n +1到5n +5次运动横坐标分别为:4n +1,4n +2,4n +2,4n +4,4n +4,前五次运动纵坐标分别2,0,-2,-2,0,第6到10次运动纵坐标分别为2,0,-2,-2,0,…∴第5n +1到5n +5次运动纵坐标分别为2,0,-2,-2,0,∵2021÷5=404…1,∴经过2021次运动横坐标为=4×404+1=1617,经过2021次运动纵坐标为2,∴经过2021次运动后,电子蚂蚁运动到的位置的坐标是(1617,2).故答案为:(1617,2).【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.18.(0,﹣1)或(﹣1.5,0)【分析】分点N 在x 轴的负半轴上或y 轴的负半轴上两种情况讨论即可.【详解】∵|a ﹣2|+(b ﹣3)2=0.∴a =2,b =3,∴A (0,2),B (3,0),∵解析:(0,﹣1)或(﹣1.5,0)【分析】分点N 在x 轴的负半轴上或y 轴的负半轴上两种情况讨论即可.【详解】∵|a ﹣2|+(b ﹣3)2=0.∴a =2,b =3,∴A (0,2),B (3,0),∵点M 的坐标为(32-,1), ∴四边形ABOM 的面积=S △AMO +S △ABO 12=⨯23122⨯+⨯2×392=, 当点N 在y 轴的负半轴上时,12•AN •OB 92=, ∴AN =3,ON =AN ﹣OA =1,∴点N 的坐标为(0,﹣1),当点N 在x 轴负半轴上时,12•BN •AO 92=, ∴BN =4.5,ON =BN ﹣OB =1.5,∴点N 的坐标为(﹣1.5,0), 综上所述,满足条件的点N 的坐标为(0,﹣1)或(﹣1.5,0).故答案为:(0,﹣1)或(﹣1.5,0).【点睛】本题考查了坐标与图形的性质,非负数的性质,多边形面积等知识,关键是学会利用分割法求四边形的面积,用分类讨论思想思考问题.19.【分析】由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An 的一般规律,从而可求得结果.【详解】∵,,,∴根据点的平移规律,可分别得:,,,,,,,,…,,,解析:()1010,1【分析】由题意可知,每隔四次移动重复一次,继续得出A 5,A 6,A 7,A 8,…,归纳出点A n 的一般规律,从而可求得结果.【详解】∵1(0,1)A ,()21,1A ,()31,0A ,()42,0A∴根据点的平移规律,可分别得:()52,1A ,()63,1A ,()73,0A ,()84,0A ,()94,1A ,()105,1A ,()115,0A ,()126,0A ,…,()4322,1n A n --,()4221,1n A n --,()4121,0n A n --,()42,0n A n∵2021=505×4+1∴2021A 的横坐标为2×505=1010,纵坐标为1即2021(1010,1)A故答案为:()1010,1【点睛】本题考查了平面直角坐标系中点的坐标的规律问题,点平移的坐标特征,体现了由特殊到一般的数学思想,关键是由前面若干点的的坐标寻找出规律.20.(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,解析:(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A 2021的坐标.【详解】解:A 1(1,0),A 2(1,1),A 3(2,1),A 4(2,0),A 5(3,0),A 6(3,1),…, 2021÷4=505•••1,所以A 2021的坐标为(505×2+1,0),则A 2021的坐标是(1011,0).故答案为:(1011,0).【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.三、解答题21.(1)2,3,4a b c ===-;(2)当1t =时,BOC 和AOD △面积的相等;(3)m 的取值范围是4m ≤-【分析】(1)利用非负数的性质求出a ,b ,c 即可.(2)设点D 的坐标为(0,y ),根据面积关系,构建方程求出y ,再根据△BOC 和△AOD 面积的相等,构建方程求出t 即可.(3)分两种情形:①当-2<m <0时,如图1中,②当m ≤-2时,如图2中,根据S △MOC ≥5,构建不等式求解即可.【详解】解:(1)∵|a -2|+(b -3)2=0,又∵|a -2|≥0,(b -3)2≥0≥0,∴203040a b c -=⎧⎪-=⎨⎪+=⎩, ∴a =2,b =3,c =-4;(2)设点D 的坐标为(0,y ),则S △BOD =12×BO ×OD =12×4×y =2y , S △AOD =12x A •OD =12×2y =y , S △AOB =12×OB •y A =12×4×3=6, ∵S △BOD +S △AOD =S △AOB ,即2y +y =6,解得y =2,即点D 的坐标为(0,2),∴S△BOC=12BO•y c=12×4t=2t,S△AOD=12x A•OD=12×2×2=2,∵△BOC和△AOD面积的相等,即2t=2,解得t=1,∴当t=1时,△BOC和△AOD面积的相等;(3)①当-2<m<0时,如图1中,过点C作CF⊥y轴于点F,过点M作GE⊥y轴于点E,过点C作CG⊥x轴交GE于点G,则四边形CGEF为矩形,∵S CGEF=2×4=8,S△CFO=12×2×1=1,S△EMO=12×(0−m)×3=−32m,S△CMG=12×(m+2)×4=2(m+2),∴S△MOC=S CGEF-S△CFO-S△EMO-S△CMG=8−1−(−32m)−2(m+2)=3−12m,∵S△MOC≥5,即3−12m≥5,解得m≤-4,这与-2<m<0矛盾.②当m≤-2时,如图2中,过点C作GF⊥y轴于点F,过点M作ME⊥y轴于点E,过点M作MG⊥x轴交GF于点G,则四边形MEFG为矩形,∵S GMEF=(0-m)×4=-4m,S△CFO=12×2×1=1,S△EMO=12×(0−m)×3=−32m,S△CMG=12×(−2−m)×4=−2(m+2),∴S△MOC=S CGEF-S△CFO-S△EMO-S△CMG=−4m−1−(−32m)−[−2(m+2)]=3−12m,∵S△MOC≥5,即3−12m≥5,解得m≤-4,综上所述,m的取值范围是m≤-4.【点睛】本题考查了坐标与图形的性质,三角形的面积,非负数的性质等知识,解题的关键是学会利用参数,构建方程解决问题,属于中考压轴题.22.(1)①E(3,﹣2)②见解析;③12OMBD,理由见解析;(2)OD+OA=2AM或OA﹣OD=2AM【分析】(1)①过点E作EH⊥y轴于H.证明△DOA≌△AHE(AAS)可得结论.②证明△BOM≌△EHM(AAS)可得结论.③是定值,证明△BOM≌△EHM可得结论.(2)根据点D在点B左侧和右侧分类讨论,分别画出对应的图形,根据全等三角形的判定及性质即可分别求出结论.【详解】解:(1)①过点E作EH⊥y轴于H.∵A(0,3),B(﹣3,0),D(﹣5,0),∴OA=OB=3,OD=5,∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∴△DOA≌△AHE(AAS),∴AH=OD=5,EH=OA=3,∴OH=AH﹣OA=2,∴E(3,﹣2).②∵EH⊥y轴,∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴BM=EM.③结论:OMBD=12.理由:∵△DOA≌△AHE,∴OD=AH,∵OA=OB,∴BD=OH,∵△BOM≌△EHM,∴OM=MH,∴OM=12OH=12BD.(2)结论:OA+OD=2AM或OA﹣OD=2AM.理由:当点D在点B左侧时,∵△BOM≌△EHM,△DOA≌△AHE∴OM=MH,OD=AH∴OH=2OM,OD-OB=AH-OA∴BD=OH∴BD=2OM,∴OD﹣OA=2(AM﹣AO),∴OD+OA=2AM.当点D在点B右侧时,过点E作EH⊥y轴于点H∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∵AD=AE∴△DOA≌△AHE(AAS),∴EH=AO=3=OB,OD=AH∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴OM=MH∴OA+OD= OA+AH=OH=OM+MH=2MH=2(AM+AH)=2(AM+OD)整理可得OA﹣OD=2AM.综上:OA+OD=2AM或OA﹣OD=2AM.【点睛】此题考查的是全等三角形的判定及性质、旋转的性质和平面直角坐标系,掌握全等三角形的判定及性质、旋转的性质和点的坐标与线段长度的关系是解决此题的关键.23.【应用】:(1)3;(2)(1,2)或(1,﹣2);【拓展】:(1)=5;(2)2或﹣2;(3)4或8.【分析】(应用)(1)根据若y1=y2,则AB∥x轴,且线段AB的长度为|x1−x2|,代入数据即可得出结论;(2)由CD∥y轴,可设点D的坐标为(1,m),根据CD=2,可得|0﹣m|=2,故可求出m,即可求解;(拓展)(1)根据两点之间的折线距离公式,代入数据即可得出结论;(2)根据两点之间的折线距离公式结合d(E,H)=3,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论;(3)由点Q在x轴上,可设点Q的坐标为(x,0),根据三角形的面积公式结合三角形OPQ的面积为3即可求出x的值,再利用两点之间的折线距离公式即可得出结论;【详解】(应用):(1)AB的长度为|﹣1﹣2|=3.故答案为:3.(2)由CD∥y轴,可设点D的坐标为(1,m),∵CD=2,∴|0﹣m|=2,解得:m=±2,∴点D的坐标为(1,2)或(1,﹣2).故答案为:(1,2)或(1,﹣2).(拓展):(1)d(E,F)=|2﹣(﹣1)|+|0﹣(﹣2)|=5.故答案为:=5.(2)∵E(2,0),H(1,t),d(E,H)=3,∴|2﹣1|+|0﹣t|=3,解得:t=±2.故答案为:2或﹣2.(3)由点Q 在x 轴上,可设点Q 的坐标为(x ,0),∵三角形OPQ 的面积为3, ∴12|x |×3=3,解得:x =±2.当点Q 的坐标为(2,0)时,d (P ,Q )=|3﹣2|+|3﹣0|=4;当点Q 的坐标为(﹣2,0)时,d (P ,Q )=|3﹣(﹣2)|+|3﹣0|=8.故答案为:4或8.【点睛】本题是三角形综合题目,考查了新定义、两点间的距离公式、三角形面积等知识,读懂题意并熟练运用两点间的距离及两点之间的折线距离公式是解题的关键.24.(1)A (-2,0)、B (0,3);(2)∠APD=90°;(3)∠N 的大小不变,∠N=45°【分析】(1)利用非负数的和为零,各项分别为零,求出a ,b 的值;(2)如图,作DM ∥x 轴,结合题意可设∠ADP=∠OAP=x ,∠EAF=∠CAF=∠OAP=y ,根据平角的定义可知∠OAD=90°-2y ,由平行线的性质可得∠OAD+∠ADM=180°,即90-2y+2x+90°=180°,进而可得出x=y ,再结合图形即可得出∠APD 的度数;(3)∠N 的大小不变,∠N=45°,如图,过D 作DE ∥BC ,过N 作NF ∥BC ,根据平行线的性质可知∠BMD+∠OAD=∠ADM=90°,然后根据角平分线的定义和平行线的性质,可得∠ANM=12∠BMD+12∠OAD ,据此即可得到结论. 【详解】(1)由()2230a b ++-=,可得20a 和230b ,解得2,3a b =-=∴A 的坐标是(-2,0)、B 的坐标是(0,3);(2)如图,作DM ∥x 轴根据题意,设∠ADP=∠OAP=x ,∠EAF=∠CAF=∠OAP=y ,∵∠CAD=90°,∴∠CAE+∠OAD=90°,∴2y+∠OAD=90°,∴∠OAD=90°-2y ,∵DM ∥x 轴,∴∠OAD+∠ADM=180°,∴90-2y+2x+90°=180°,。

(必考题)初中七年级数学下册第七单元《平面直角坐标系》知识点(答案解析)

(必考题)初中七年级数学下册第七单元《平面直角坐标系》知识点(答案解析)

一、选择题1.在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3) 2.一只跳蚤在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2021次跳到点( )A .(3,44)B .(4,45)C .(44,3)D .(45,4) 3.在平面直角坐标系中,点(2,1)A -关于y 轴对称的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限 4.下列各点中,在第二象限的是( ) A .()1,0 B .()1,1 C .()1,1- D .()1,1- 5.在平面直角坐标系中,点Q 的坐标是()35,1m m -+.若点Q 到x 轴的距离与到y 轴的距离相等,则m 的值为( )A .3B .1C .1或3D .2或3 6.如图,在棋盘上建立平面直角坐标系,若使“将”位于点(-1,-2),“象”位于点(4,-1),则“炮”位于点( )A .(2,-1)B .(-1,2)C .(-2,1)D .(-2,2) 7.点A(-π,4)在第( )象限 A .第一象限 B .第二象限 C .第三象限 D .第四象限 8.下列说法正确的是( )A .若0ab =,则点(,)P a b 表示原点B .点(1,)a 在第三象限C .已知点(3,3)A -与点(3,3)B ,则直线//AB x 轴D .若0ab >,则点(,)P a b 在第一或第三象限9.在平面直角坐标系中,点()3,4-在( )A .第一象限B .第二象限C .第三象限D .第四象限 10.将点()1,2P 向左平移3个单位后的坐标是( )A .()2,2-B .()1,1-C .()1,5D .()1,1-- 11.如图,在一单位长度为1cm 的方格纸上,依如所示的规律,设定点1A 、2A 、3A 、4A 、5A 、6A 、7A 、n A ,连接点O 、1A 、2A 组成三角形,记为1∆,连接O 、2A 、3A 组成三角形,记为2∆,连O 、n A 、1n A +组成三角形,记为n ∆(n 为正整数),请你推断,当n 为50时,n ∆的面积=( )2cmA .1275B .2500C .1225D .125012.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为( )A .(1,3)B .(5,1)C .(1,3)或(3,5)D .(1,3)或(5,1) 13.如图,线段OA ,OB 分别从与x 轴和y 轴重合的位置出发,绕着原点O 顺时针转动,已知OA 每秒转动45︒,OB 的转动速度是每秒转动30,则第2020秒时,OA 与OB 之间的夹角的度数为( )A .90︒B .145︒C .150︒D .165︒ 14.若把点A (-5m ,2m -1)向上平移3个单位后得到的点在x 轴上,则点A 在( ) A .x 轴上 B .第三象限 C .y 轴上 D .第四象限 15.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1)二、填空题16.如图,()3,3A -,()1,2P -,P 关于直线OA 的对称点为1P ,1P 关于x 轴的对称点为2P ,2P 关于y 轴的对称点为3P ,3P 关于直线OA 的对称点为4P ,4P 关于x 轴的对称点为5P ,5P 关于y 轴的对称点为6P ,6P 关于直线OA 的对称点为7P ,…,则2020P 的坐标是__________.17.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若(1,1)P -,(2,3)Q ,则P ,Q 的“实际距离”为5,即5PS SQ +=或5PT TQ +=.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为(2,2)A ,(4,2)B -,(2,4)C --,若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______.18.对于平面直角坐标系xOy中的点P(a,b),若点P的坐标为(a+kb,ka+b)(其中k 为常数,且k≠0),则称点P为点P的“k属派生点”,例如:P(1,4)的“2属派生点”为P (1+2×4,2×1+4),即P′(9,6).若点P在x轴的正半轴上,点P的“k属派生点”为点P′,且线段PP′的长度为线段OP长度的5倍,则k的值为___.19.直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点第2021次运动到的点的坐标为____________.20.如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1),…,则坐标为(﹣505,﹣505)的点是______.21.如图,在平面直角坐标系中,已如点A(1,1),B(-1,1),C(-1,-2),D(1,-2),把一根长为2019个单位长度没有弹性的细线(线的相细忽略不计)的一端固定在A →→→→的规律紧绕在四边形ABCD的边上,则细线的另一端所处,并按A B C D A在位置的点的坐标是__________.22.已知点M 在y 轴上,纵坐标为4,点P (6,﹣4),则△OMP 的面积是__. 23.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,2),且|a ﹣c|+8b -=0,将线段PQ 向右平移a 个单位长度,其扫过的面积为24,那么a+b+c 的值为_____. 24.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.则点2019A 的坐标是_________.25.如图,在平面直角坐标系中,()()()()1,1,1,1,1,2,1,2A B C D ----,把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处, 并按 A B C D A ----⋯的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是 ____.26.如果点P (a ﹣1,a +2)在x 轴上,则a 的值为_____.三、解答题27.在直角坐标系中,ABC 顶点C 的坐标为()1m ,.90C ∠=︒,//BC x 轴,直线//l y 轴,,BC a AC b ==,ABC 与111A B C △关于直线l 对称,222A B C △与111A B C △关于y 轴对称,333A B C △与222A B C △关于x 轴对称.(1)问ABC 与222A B C △通过平移能重合吗?若不能说明其理由,若能请你说出一个平移方案(平移的单位数用m 、a 表示):(2)试写出点33A B 、坐标(注:结果可用含a 、b 、m 的代数式表示).28.如图是我国南沙群岛中某个小岛的平面示意图,小明建立了平面直角坐标系后,营房的坐标为(2,5)-,哨所2的坐标为(2,2)-.(1)请将小明所做的坐标系在图上画出,并写出雷达,码头,停机坪,哨所1的坐标. (2)如果平移直角坐标系,使营房为坐标原点,值班士兵从营房出发,沿着(3,3),(1,6),(4,8),(4,7),(5,2),(1,10)---的路线巡逻,请依次写出他所经过的地方.29.如图,三角形ABC 三个顶点坐标分别是()4,3A ,()3,1B ,()1,2C ,三角形ABC 内任意一点(),M m n .(1)将三角形ABC 平移得到三角形111A B C ,点C 的对应点为()14,4C ,请画出三角形111A B C 并写出1A 的坐标;(2)若三角形PQR 是三角形ABC 经过某种变换后得到的图形.点A 的对应点为P ,点B 的对应点为Q ,点C 的对应点为R .观察变换前后各对应点之间的关系,若点M 经过这种变换后的对应为N,则点N的坐标为(______,______)(用含m,n的式子表示)30.如图,已知五边形 ABCDE 各顶点坐标分别为A(-1,-1),B(3,-1),C(3,1),D(1,3),E(-1,3)(1)求五边形 ABCDE 的面积;(2)在线段 DC 上确定一点 F,使线段 AF 平分五边形 ABCDE 的面积,求 F 点的坐标.。

人教版初中数学平面直角坐标系典型例题及答题技巧

人教版初中数学平面直角坐标系典型例题及答题技巧

人教版初中数学平面直角坐标系典型例题及答题技巧单选题1、在平面直角坐标系中,将点A(−1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是()A.(−4,−2)B.(2,2)C.(−2,2)D.(2,−2)答案:D解析:首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.解:点A(-1,2)向右平移3个单位长度得到的B的坐标为(-1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,-2),故答案为D2、下面四个点位于第四象限的是()A.(−1,2)B.(−2,−2)C.(2,5)D.(6,−2)答案:D解析:根据直角坐标系中,不同象限内点的坐标特点,依次对四个选项进行判断即可求解.A.(−1,2),因为-1<0,2>0,所以(−1,2)在第二象限,故A不符合题意B.(−2,−2),因为-2<0,所以(−2,−2)在第三象限,故B不符合题意C.(2,5),因为2>0,5>0,所以(2,5)在第一象限,故C不符合题意D.(6,−2),因为6>0,-2<0,所以(6,−2)在第四象限,故D符合题意故选:D小提示:本题考查了直角坐标系中不同象限内点的坐标特点,第四象限内的点,横坐标大于零,纵坐标小于零.3、以下能够准确表示宣城市政府地理位置的是()A.离上海市282千米B.在上海市南偏西80°C.在上海市南偏西282千米D.东经30.8°,北纬118°答案:D解析:根据点的坐标的定义,确定一个位置需要两个数据解答即可.解:能够准确表示宣城市政府地理位置的是:东经30.8°,北纬118°.故选:D.小提示:本题考查了坐标确定位置,是基础题,理解坐标的定义是解题的关键.4、在平面直角坐标系中.点P(1,﹣2)关于x轴的对称点的坐标是()A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1)答案:A解析:点P(1,-2)关于x轴的对称点的坐标是(1,2),故选A.5、某班级第3组第4排的位置可以用数对(3,4)表示,则数对(1,2)表示的位置是( )A.第2组第1排B.第1组第1排C.第1组第2排D.第2组第2排答案:C解析:每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.故某班级第3组第4排位置可以用数对(3,4)表示,则数对(1,2)表示的位置是第1组第2排,故选C.6、在下列所给出坐标的点中,在第二象限的是A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)答案:B解析:解:∵第二象限内点的横坐标是负数,纵坐标是正数,∴(2,3)、(-2,3)、(-2,-3)、(2,-3)中只有(-2,3)在第二象限.故选:B.7、如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为( )A.(2,3)B.(0,3)C.(3,2)D.(2,2)答案:D解析:解:若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为(2,2).故选D.8、如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为( )A.(2,3)B.(0,3)C.(3,2)D.(2,2)答案:D解析:解:若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为(2,2).故选D.填空题9、对于两个非零实数x,y,定义一种新的运算:x∗y=ax +by.若1∗(−1)=2,则(−2)∗2的值是__.答案:-1解析:根据新定义的运算法则即可求出答案.∵1*(-1)=2,∴a1+b−1=2,即a-b=2∴原式=a−2+b2=−12(a-b)=-1故答案为-1.小提示:本题考查代数式运算,解题的关键是熟练运用整体的思想.10、在平面直角坐标系中,将点A(−1,−2)向右平移7个单位长度,得到点B,则点B的坐标为__________.答案:(6,-2)解析:根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点B的坐标为(-1+7,-2),进而可得答案.解:将点A(-1,-2)向右平移了7个单位长度得到点B,则点B的坐标为(-1+7,-2),即(6,-2),所以答案是:(6,-2).小提示:此题主要考查了坐标与图形的变化--平移,关键是掌握点的坐标的变化规律.11、观察下列各式:√1+13=2√13,√2+14=3√14,√3+15=4√15,……请你将发现的规律用含自然数n(n≥1)的等式表示出来__________________.答案:√n+1n+2=(n+1)√1n+2(n≥1)解析:观察分析可得√1+13=(1+1)√11+2,√2+14=(2+1)√12+2,√3+15=(3+1)√13+2,则将此规律用含自然数n(n≥1)的等式表示出来是√n+1n+2=(n+1)√1n+2(n≥1)解:根据题意得:√1+13=(1+1)√11+2,√2+14=(2+1)√12+2,√3+15=(3+1)√13+2,……,发现的规律用含自然数n(n≥1)的等式表示出来是√n+1n+2=(n+1)√1n+2(n≥1).所以答案是:√n+1n+2=(n+1)√1n+2(n≥1)小提示:本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n表示的等式即可.12、若点A(m+3,m−3)在x轴上,则m=__________.答案:3解析:由题意直接根据x轴上的点的纵坐标为0列出方程求解即可.∵点A(m+3,m−3)在x轴上,∴m-3=0,∴m=3.所以答案是:3.小提示:本题考查点的坐标,熟记x轴上的点的纵坐标为0是解题的关键.13、如图,这是台州市地图的一部分,分别以正东、正北方向为x轴、y轴的正方向建立直角坐标系,规定一个单位长度表示1 km.甲、乙两人对着地图如下描述路桥区A处的位置.则椒江区B处的坐标是___.答案:(10,8√3)解析:根据题意建立如图所示的直角坐标系,则OA=2,AB=16,∠ABC=30°,所以AC=8,BC=8√3,则OC=OA+AC=10,所以B(10,8√3),故答案为(10,8√3).解答题14、适当建立直角坐标系,描出点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并用线段顺次连接各点.(1)看图案像什么?(2)作如下变化:纵坐标不变,横坐标减2,并顺次连接各点,所得的图案与原来相比有什么变化?答案:(1)“鱼”;(2)向左平移2个单位.解析:(1)描点根据顺序连线即可.(2)根据平移前后图形的形状和大小没有变化可以知道,图案大小形状没有变化,位置向左平移两个单位.解:(1)像“鱼”.(2)纵坐标不变,横坐标减2,即向左平移两个单位,根据平移前后图形的形状和大小没有变化可以知道,图案大小形状没有变化,位置向左平移两个单位.小提示:本题考查直角坐标系中描点,平移作图,细心画图即可.15、如图,方格纸中小正方形的边长均为1个单位长度,A、B均为格点.(1)在图中建立直角坐标系,使点A、B的坐标分别为(3,3)和(﹣1,0);(2)在(1)中x轴上是否存在点C,使△ABC为等腰三角形(其中AB为腰)?若存在,请直接写出所有满足条件的点C的坐标.答案:(1)答案见解析;(2)存在,点C的坐标(-6,0)或(4,0)或(7,0).解析:(1)根据点B(-1,0),判断x轴经过点B,且B右侧的点就是原点,建立坐标系即可;(2)分情形求解即可.(1)∵点B(-1,0),∴x轴经过点B,且B右侧的点就是原点,建立坐标系如图1所示;(2)存在,点C的坐标(-6,0)或(4,0)或(7,0).理由如下:∵A(3,3),B(-1,0),∴AB=√(3−(−1))2+(3−0)2=5,当AB为等腰三角形的腰时,(1)以B为圆心,以BA=5为半径画弧,角x轴于两点,原点左边的C1,右边为C2,∵AB=5,点B(-1,0),∴C1(-6,0),C2(4,0);(2)以A为圆心,以AB=5为半径画弧,角x轴于一点,原点的右边为C3,∵AB=5,点A到x轴的距离为3,(-1,0),∴等腰三角形AB C3的底边长为2√52−32=8,∴C3(7,0);综上所述,存在,点C的坐标(-6,0)或(4,0)或(7,0).小提示:本题考查了平面直角坐标系的建立,等腰三角形的判定,勾股定理,熟练掌握坐标系的特点,等腰三角形的判定,科学分类求解是解题的关键.。

初中数学一轮复习-平面直角坐标系答案

初中数学一轮复习-平面直角坐标系答案

平面直角坐标系一、选择题1. (2018 山东省东营市)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是()A.m<﹣1 B.m>2C.﹣1<m<2 D.m>﹣1【答案】C【解析】∵点P(m﹣2,m+1)在第二象限,∴,解得﹣1<m<2.故选:C.2. (2018 山东省济宁市)如图,在平面直角坐标系中,点A,C在x轴上,点C的坐标为(﹣1,0),AC=2.将Rt△ABC先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点坐标是()A.(2,2)B.(1,2)C.(﹣1,2)D.(2,﹣1)【答案】A【解析】∵点C的坐标为(﹣1,0),AC=2,∴点A的坐标为(﹣3,0),如图所示,将Rt△ABC先绕点C顺时针旋转90°,则点A′的坐标为(﹣1,2),再向右平移3个单位长度,则变换后点A′的对应点坐标为(2,2),故选:A.3. (2018 山东省青岛市)如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A、B的对应点分别是点A'、B',则点A'的坐标是()A.(﹣1,3)B.(4,0)C.(3,﹣3)D.(5,﹣1)【答案】D【解析】画图如下:则A'(5,﹣1),故选:D.4. (2018 山东省泰安市)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(2.8,3.6)B.(﹣2.8,﹣3.6)C.(3.8,2.6)D.(﹣3.8,﹣2.6)【答案】A【解析】由题意将点P向下平移5个单位,再向左平移4个单位得到P1,∵P(1.2,1.4),∴P1(﹣2.8,﹣3.6),∵P1与P2关于原点对称,∴P2(2.8,3.6),故选:A.5. (2018 山东省潍坊市)在平面直角坐标系中,点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB 放大到原来的两倍,则点P的对应点的坐标为()A.(2m,2n)B.(2m,2n)或(﹣2m,﹣2n)C.(m,n)D.(m,n)或(﹣m,﹣n)【答案】B【解析】点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为(m×2,n×2)或(m×(﹣2),n×(﹣2)),即(2m,2n)或(﹣2m,﹣2n),故选:B.6. (2018 山东省潍坊市)在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P (3,﹣300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是()A.Q(3,240°)B.Q(3,﹣120°)C.Q(3,600°)D.Q(3,﹣500°)【答案】D【解析】∵P(3,60°)或P(3,﹣300°)或P(3,420°),由点P关于点O成中心对称的点Q可得:点Q的极坐标为(3,240°),(3,﹣120°),(3,600°),故选:D.7. (2019 山东省滨州市)在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,则点B的坐标是()A.(﹣1,1)B.(3,1)C.(4,﹣4)D.(4,0)【答案】A【解析】∵将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,∴点B的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,∴B的坐标为(﹣1,1).故选:A.8. (2019 山东省滨州市)已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.【答案】C【解析】∵点P(a﹣3,2﹣a)关于原点对称的点在第四象限,∴点P(a﹣3,2﹣a)在第二象限,∴,解得:a<2.则a的取值范围在数轴上表示正确的是:.故选:C.9. (2019 山东省青岛市)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)【答案】D【解析】将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90°,则B'对应坐标为(1,﹣2),故选:D.10. (2019 山东省枣庄市)在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)【答案】A【解析】∵将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,∴点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,∴A′的坐标为(﹣1,1).故选:A.二、填空题11. (2018 山东省威海市)如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=x于点B4,…按照如此规律进行下去,点B2018的坐标为.【答案】:(22018,22017)【解析】:由题意可得,点A1的坐标为(1,2),设点B1的坐标为(a,a),,解得,a=2,∴点B1的坐标为(2,1),同理可得,点A2的坐标为(2,4),点B2的坐标为(4,2),点A3的坐标为(4,8),点B3的坐标为(8,4),……∴点B2018的坐标为(22018,22017),故答案为:(22018,22017).12. (2018 山东省潍坊市)如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D 在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为.【答案】:(﹣1,)【解析】如图,连接AM,∵将边长为1的正方形ABCD绕点A逆时针旋转30°得到正方形AB'C′D′,∴AD=AB′=1,∠BAB′=30°,∴∠B′AD=60°,在Rt△ADM和Rt△AB′M中,∵,∴Rt△ADM≌Rt△AB′M(HL),∴∠DAM=∠B′AM=∠B′AD=30°,∴DM=ADtan∠DAM=1×=,∴点M的坐标为(﹣1,),故答案为:(﹣1,).13. (2019 山东省东营市)如图,在平面直角坐标系中,△ACE是以菱形ABCD的对角线AC为边的等边三角形,AC=2,点C与点E关于x轴对称,则点D的坐标是.【答案】:(,0)【解析】:如图,∵△ACE是以菱形ABCD的对角线AC为边的等边三角形,AC=2,∴CH=1,∴AH=,∵∠ABO=∠DCH=30°,∴DH=AO=,∴OD=﹣﹣=,∴点D的坐标是(,0).故答案为:(,0).14. (2019 山东省济宁市)已知点P(x,y)位于第四象限,并且x≤y+4(x,y为整数),写出一个符合上述条件的点P的坐标.【答案】:(1,﹣2)(答案不唯一).【解析】∵点P(x,y)位于第四象限,并且x≤y+4(x,y为整数),∴x>0,y<0,∴当x=1时,1≤y+4,解得:0>y≥﹣3,∴y可以为:﹣2,故写一个符合上述条件的点P的坐标可以为:(1,﹣2)(答案不唯一).故答案为:(1,﹣2)(答案不唯一).15. (2019 山东省临沂市)在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是.【答案】(﹣2,2)【解析】∵点P(4,2),∴点P到直线x=1的距离为4﹣1=3,∴点P关于直线x=1的对称点P′到直线x=1的距离为3,∴点P′的横坐标为1﹣3=﹣2,∴对称点P′的坐标为(﹣2,2).故答案为:(﹣2,2).三、作图题16. (2017 山东省枣庄市) 如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.【解析】(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,由图形可知,∠A2C2B2=∠ACB,过点A作AD⊥BC交BC的延长线于点D,由A(2,2),C(4,﹣4),B(4,0),易得D(4,2),故AD=2,CD=6,AC==2,∴sin∠ACB===,即sin∠A2C2B2=.17. (2015 山东省枣庄市) 已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.【解析】(1)如图所示:C1(2,﹣2);故答案为:(2,﹣2);(2)如图所示:C2(1,0);故答案为:(1,0);(3)∵A2C22=20,B2C=20,A2B2=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:×20=10平方单位.故答案为:10.。

2020-2021初中数学函数之平面直角坐标系解析含答案(2)

2020-2021初中数学函数之平面直角坐标系解析含答案(2)

2020-2021初中数学函数之平面直角坐标系解析含答案(2)一、选择题1.如图,小手盖住的点的坐标可能为( )A .(-1,1)B .(-1,-1)C .(1,1)D .(1,-1)【答案】D【解析】【详解】 解:根据第四象限的坐标特征,易得小手盖住的点的横坐标为正,纵坐标为负,选项D 符合此特征,故选:D2.点P(1﹣2x ,5x ﹣1)在第四象限,则x 的范围是( )A .15x <B .12x <C .1152x <<D .12x > 【答案】A【解析】【分析】根据点的位置得出不等式组,求出不等式组的解集即可.【详解】解:∵点P (1﹣2x ,5x ﹣1)在第四象限,120510x x ->⎧∴⎨-<⎩, 解得:15x <, 故选:A .【点睛】本题考查了点的位置和解一元一次不等式组,能根据题意得出不等式组是解此题的关键.3.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为( )A .a=bB .2a+b=﹣1C .2a ﹣b=1D .2a+b=1【答案】B【解析】 试题分析:根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B .4.如图,动点P 从()0,3出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P 第2018次碰到矩形的边时,点P 的坐标为( )A .()1,4B .()5,0C .()7,4D .()8,3【答案】C【解析】【分析】 理解题意,由反射角与入射角的定义作出图形,观察出反弹6次为一个循环的规律,解答即可.【详解】如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P 第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P 的坐标为(7,4).故选C .【点睛】本题考查了平面直角坐标系中点的坐标规律,首先作图,然后观察出每6次反弹为一个循环,据此解答即可.5.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如()()()()()()1,02,02,11,11,22,2,,,,,······根据这个规律,第2019个点的纵坐标为( )A .5B .6C .7D .8【答案】B【解析】【分析】 观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束,根据此规律解答即可.【详解】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n 时,共有n 2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2019个点是(45,6),所以,第2019个点的纵坐标为6.故选:B.【点睛】本题考查了点的坐标,观察出点个数与横坐标的存在的平方关系是解题的关键.6.下列说法中,正确的是()A.点P(3,2)到x轴距离是3B.在平面直角坐标系中,点(2,﹣3)和点(﹣2,3)表示同一个点C.若y=0,则点M(x,y)在y轴上D.在平面直角坐标系中,第三象限内点的横坐标与纵坐标同号【答案】D【解析】【分析】根据点的坐标到坐标轴的距离、坐标轴上点的坐标特点及第三象限内点的坐标符号特点逐一判断可得.【详解】A、点P(3,2)到x轴距离是2,此选项错误;B、在平面直角坐标系中,点(2,﹣3)和点(﹣2,3)表示不同的点,此选项错误;C、若y=0,则点M(x,y)在x轴上,此选项错误;D、在平面直角坐标系中,第三象限内点的横坐标与纵坐标同为负号,此选项正确;故选D.【点睛】本题主要考查点的坐标,解题的关键是掌握点的坐标到坐标轴的距离、坐标轴上点的坐标特点及第三象限内点的坐标符号特点.7.已知在平面直角坐标系中,点A的坐标为(﹣3,4),下列说法正确的有()个①点A与点B(-3,﹣4)关于x轴对称②点A与点C(3,﹣4)关于原点对称③点A与点F(-4,3)关于第二象限的平分线对称④点A与点C(4,-3)关于第一象限的平分线对称A.1 B.2 C.3 D.4【答案】D【解析】【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;关于第2象限角平分线对称的点的坐标特点:横纵坐标变换位置且变为相反数;关于第1象限角平分线对称的点的坐标特点:横纵坐标变换位置.综合以上即可得答案.【详解】∵点A的坐标为(﹣3,4),∴点A关于x轴对称的点的坐标为(﹣3,﹣4),点A关于原点对称的点的坐标为(3,-4),点A关于第二象限的角平分线对称的点的坐标为(-4,3)点A关于第一象限的角平分线对称的点的坐标为(4,-3)∴①、②、③、④正确.故选:D.【点睛】此题主要考查了关于x轴、y轴、第二象限的角平分线、第一象限的角平分线对称的点的坐标规律,关键是熟练掌握点的变化规律,不要混淆.8.如图,若A、B两点的坐标分别为(﹣3,5)、(3,5),则点C坐标为()A.(﹣2,6)B.(﹣1,6)C.(﹣2,7)D.(﹣1,7)【答案】D【解析】【分析】根据A、B的坐标判断出y轴在AB的垂直平分线上,结合图形可得点C的纵坐标比A、B 的纵坐标大2,然后解答即可.【详解】如图所示,∵A、B两点的坐标分别为(﹣3,5)、(3,5),∴则点C坐标为(﹣1,7),故选:D.【点睛】本题考查了坐标确定位置,准确识图,判断出y轴的位置以及点C的纵坐标与点A、B的纵坐标的关系是解题的关键.9.在平面直角坐标系中,过点(3,2)A -画直线a x ⊥轴,过点(1,2)B -画直线b y ⊥轴,直线,a b 相交于点P ,则点P 的坐标是( )A .()3,2B .()2,3C .()3,1-D .()2,2- 【答案】A【解析】【分析】根据过点(3,2)A -画直线a x ⊥轴可以知道P 点的横坐标,根据过点(1,2)B -画直线b y ⊥轴可以知道p 点的纵坐标,由点P 的横纵坐标即可得到答案.【详解】解:∵点p 是通过点(3,2)A -画直线a x ⊥轴,过点(1,2)B -画直线b y ⊥轴得到的交点,∴点P 的横坐标与点A 的横坐标相同,即3,点P 的纵坐标与点B 的纵坐标相同,即2,因此,点p 的坐标为()3,2, 故A 为答案.【点睛】本题主要考查了与直角坐标系有关的知识,掌握向x 轴画垂线得到的点横坐标相同,向y 轴作垂线得到的点纵坐标相同是解题的关键.10.如图,在平面直角坐标系中,将正方形OABC 绕点O 逆时针旋转45°后得到正方形OA 1B 1C 1,依此方式,绕点O 连续旋转2018次得到正方形OA 2018B 2018C 2018,如果点A 的坐标为(1,0),那么点B 2018的坐标为( )A .(1,1)B .(02)C .(2-,)D .(﹣1,1)【答案】D【解析】 分析:根据图形可知:点B 在以O 为圆心,以OB 为半径的圆上运动,由旋转可知:将正方形OABC 绕点O 逆时针旋转45°后得到正方形OA 1B 1C 1,相当于将线段OB 绕点O 逆时针旋转45°,可得对应点B 的坐标,根据规律发现是8次一循环,可得结论.详解:∵四边形OABC 是正方形,且OA=1,∴B (1,1),连接OB ,由勾股定理得:OB=2,由旋转得:OB=OB1=OB2=OB3= (2)∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(0,2),B2(-1,1),B3(-2,0),…,发现是8次一循环,所以2018÷8=252 (2)∴点B2018的坐标为(-1,1)故选:D.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法11.在平面直角坐标中,点M(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】∵−2<0,3>0,∴(−2,3)在第二象限,故选B.12.点A(-4,3)和点B(-8,3),则A,B相距()A.4个单位长度B.12个单位长度C.10个单位长度D.8个单位长度【答案】A【解析】【分析】先根据A,B两点的坐标确定AB平行于x轴,再根据同一直线上两点间的距离公式解答即可.【详解】解:∵点A和点B纵坐标相同,∴AB平行于x轴,AB=﹣4﹣(﹣8)=4.故选A .13.如图,在平面直角坐标系中.四边形OABC 是平行四边形,其中()()2,03,1,A B 、将ABCD Y 在x 轴上顺时针翻滚.如:第一次翻滚得到111,AB C O Y 第二次翻滚得到1122B AO C Y ,···则第五次翻滚后,C 点的对应点坐标为( )A .(622,2+B .2,622+ C .2,622- D .(622,2- 【答案】A【解析】【分析】ABCD Y 在x 轴上顺时针翻滚,四次一个循环,推出第五次翻滚后,点A 的坐标,再利用平移的性质求出C 的对应点坐标即可.【详解】连接AC ,过点C 作CH ⊥OA 于点H ,∵四边形OABC 是平行四边形,A(2,0)、B(3,1),∴C(1,1),∴∠COA=45°,2,∴2=1,∴AH=2-1=1,∴OA=AH ,∴OC=AC ,∴∆OAC 是等腰直角三角形,∴AC ⊥OC ,∵ABCD Y 在x 轴上顺时针翻滚,四次一个循环,∴第五次翻滚后点,A 的坐标为2,0),把点A 2个单位得到点C , ∴第五次翻滚后,C 点的对应点坐标为(622,2+.故选:A .【点睛】本题主要考查图形与坐标,涉及平行四边形的性质,等腰直角三角形的性质以及平移的性质,找到点的坐标的变化规律,是解的关键.14.已知()0,2A 、()10B ,,点P 在x 轴上,且PAB ∆的面积为5,则点P 的坐标为( ) A .()6,0B .()4,0-C .()4,0-或()6,0D .无法确定【答案】C【解析】【分析】根据A 点的坐标可知BP 边上的高为2,而△PAB 的面积为5,点P 在x 轴上,说明BP=5,已知点B 的坐标,可求P 点坐标.【详解】解:∵B (1,0),A (0,2),点P 在x 轴上,∴BP 边上的高为2,又△PAB 的面积为5,∴BP=5,而点P 可能在点B (1,0)的左边或者右边,∴P (-4,0)或(6,0).故选:C .【点睛】本题考查了直角坐标系中,利用三角形的面积公式来求出三角形的底边.15.P 在第二象限,P 到x 轴的距离是2,到y 轴的距离是3,则P 点的坐标是( ) A .()2,3-B .()3,2-C .()3,2D .()2,3【答案】B【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度求解即可.【详解】解:∵点P在第二象限,且到x轴的距离为2,到y轴的距离为3,∴点P的横坐标为-3,纵坐标为2,∴点P的坐标是(-3,2).故选:B.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.16.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①f(a,b)=(-a,b),如f(1,2)=(-1,2);②g(a,b)=(b,a),如g(1,2)=(2,1);③h(a,b)=(-a,-b),如h(1,2)=(-1,-2);按照以上变换有:g(h(f (1,2)))=g(h(-1,2))=g(1,-2)=(-2,1),那么h(f(g(3,-4)))等于()A.(4,-3)B.(-4,3)C.(-4,-3)D.(4,3)【答案】C【解析】【分析】根据f(a,b)=(-a,b).g(a,b)=(b,a).h(a,b)=(-a,-b),可得答案.【详解】由已知条件可得h(f(g(3,-4)))= h(f(-4,3))= h(4,3)=(-4,-3)故选:C【点睛】本题考查了点的坐标,利用f(a,b)=(-a,b).g(a,b)=(b,a).h(a,b)=(-a,-b)是解题关键.17.在平面直角坐标系中.对于平面内任一点(m,n),规定以下两种变换:①f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);②g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1).按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(3,2)]等于()A.(3,2) B.(3.﹣2) C.(﹣3,2) D.(﹣3,﹣2)【答案】C【解析】【分析】根据f、g的规定进行计算即可得解.【详解】g[f(3,2)]=g(3,﹣2)=(﹣3,2).故选C.【点睛】本题考查了点的坐标,读懂题目信息,理解f、g的运算方法是解题的关键.18.在直角坐标系中,若点P(2x-6,x-5)在第四象限,则x的取值范围是( )A.3<x<5 B.-5<x<3 C.-3<x<5 D.-5<x<-3【答案】A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P(2x-6,x-5)在第四象限,∴260 {50xx->-<,解得:3<x<5.故选:A.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.19.如图,若OABCY的顶点O,A,C的坐标分别为(0,0),(4,0),(1,3),则顶点B 的坐标为()A.(4,1)B.(5,3)C.(4,3)D.(5,4)【答案】B【解析】【分析】根据平行四边形的性质,以及点的平移性质,即可求出点B的坐标.【详解】解:∵四边形OABC是平行四边形,∴OC∥AB,OA∥BC,∴点B的纵坐标为3,∵点O向右平移1个单位,向上平移3个单位得到点C,∴点A向右平移1个单位,向上平移3个单位得到点B,∴点B的坐标为:(5,3);故选:B.【点睛】本题考查了平行四边形的性质,点坐标平移的性质,解题的关键是熟练掌握平行四边形的性质进行解题.20.如图,已知A :(1,0).A 2(1,-1),A 3(-1,-l).A 4 (-1, 1), A 5 (2, 1),...则点A 2020的坐标是( )A .(506,505)B .(-505,-505)C .(505,-505)D .(-505,505)【答案】D【解析】【分析】 经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加-1,纵坐标依次加1;在第三象限的点的横坐标依次加-1,纵坐标依次加-1,在第四象限的点的横坐标依次加1,纵坐标依次加-1,第二,三,四象限的点的横纵坐标的绝对值都相等,并且第三,四象限的横坐标等于相邻4的整数倍的各点除以4再加上1,由此即可求出点A 2020【详解】解:易得4的整数倍的各点如:4812,,A A A∵20204505÷=,∴点2020A 在第二象限,∴2020A 是第二象限的第505个点,∴2020A 的坐标为(-505,505),故选:D【点睛】本题考查了点的坐标规律,属于规律型,考查点的坐标,首先确定象限,再找出点之间的规律.。

新初中数学函数之平面直角坐标系难题汇编含答案解析

新初中数学函数之平面直角坐标系难题汇编含答案解析

新初中数学函数之平面直角坐标系难题汇编含答案解析一、选择题1.在平面直角坐标系中,点P (0,﹣4)在( )A .x 轴上B .y 轴上C .原点D .与x 轴平行的直线上【答案】B【解析】【分析】根据点P 的坐标为(0,﹣4)即可判断点P (0,﹣4)在y 轴上.【详解】在平面直角坐标系中,点P (0,﹣4)在y 轴上,故选:B .【点睛】本题考查了坐标与图形性质,熟练掌握坐标轴上点的坐标特征是解题的关键.2.在平面直角坐标系中,长方形ABCD 的三个顶点()(32),(12),1,1,A B C ---,,则第四个顶点D 的坐标是( ).A .()2,1-B .(3,1)-C .()2,3-D .(3,1)-【答案】B【解析】【分析】根据矩形的性质(对边相等且每个角都是直角),由矩形ABCD 点的顺序得到CD ⊥AD ,可以把D 点坐标求解出来.【详解】解:根据矩形ABCD 点的顺序可得到CD ⊥AD , 又∵()(32),(12),1,1,A B C ---,, ∴A 、B 纵坐标相等,B 、C 横坐标相等,∴A 、D 横坐标相等,即3;D 、C 纵坐标相等,即-1,因此(31)D -,【点睛】本题主要考查了矩形的性质和直角坐标系的基本概念,利用矩形四个角都是直角、对边相等是解题的关键.3.如果点M (3a ﹣9,1+a )是第二象限的点,则a 的取值范围在数轴上表示正确的是( )A .B.C.D.【答案】A【解析】试题分析:点在第二象限的条件是:横坐标是负数,纵坐标是正数.解:∵点M(3a﹣9,1+a)是第二象限的点,∴,解得﹣1<a<3.在数轴上表示为:.故选A.考点:在数轴上表示不等式的解集;解一元一次不等式组;点的坐标.4.点P(a,b)在y轴右侧,若P到x轴的距离是2,到y轴的距离是3,则点P的坐标为()A.(﹣3,2)B.(﹣2,3)C.(3,2)或(3,﹣2)D.(2,3)或(2,﹣3)【答案】C【解析】【分析】根据点P在y轴右侧可知点P在第一象限或第四象限,结合点P到x轴的距离是2可知点P的纵坐标是2或2-,而再根据其到y轴的距离是3得出点P的横坐标是3,由此即可得出答案.【详解】∵点P在y轴右侧,∴点P在第一象限或第四象限,又∵点P到x轴的距离是2,到y轴的距离是3,-,横坐标是3,∴点P的纵坐标是2或2-),∴点P的坐标是(3,2)或(3,2故选:C.【点睛】本题主要考查了直角坐标系中各象限内点的坐标特征,熟练掌握相关概念是解题关键.5.已知点A 的坐标为(a +1,3﹣a ),下列说法正确的是( )A .若点A 在y 轴上,则a =3B .若点A 在一三象限角平分线上,则a =1C .若点A 到x 轴的距离是3,则a =±6D .若点A 在第四象限,则a 的值可以为﹣2【答案】B【解析】【分析】依据坐标轴上的点、一三象限角平分线上的点以及不同象限内点的坐标特征,即可得出结论.【详解】解:A .若点A 在y 轴上,则a +1=0,解得a =﹣1,故本选项错误;B .若点A 在一三象限角平分线上,则a +1=3﹣a ,解得a =1,故本选项正确;C .若点A 到x 轴的距离是3,则|3﹣a |=3,解得a =6或0,故本选项错误;D .若点A 在第四象限,则a +1>0,且3﹣a <0,解得a >3,故a 的值不可以为﹣2; 故选:B .【点睛】本题主要考查了坐标轴上的点、一三象限角平分线上的点以及不同象限内点的坐标特征,解题时注意:横轴上点的纵坐标为0,纵轴上点的横坐标为0.6.如图,点P 在第二象限,OP 与x 轴负半轴的夹角是α,且35,cos 5OP α==,则P 点的坐标为()A .()3,4B .()3,4-C .()4,3-D .()3,5-【答案】B【解析】【分析】 过点P 作PA ⊥x 轴于A ,利用35,cos 5OP α==求出OA ,再根据勾股定理求出PA 即可得到点P 的坐标.【详解】过点P作PA⊥x轴于A,∵35,cos5 OPα==,∴3cos535OA OPα=⋅=⨯=,∴22PA OP OA=-=4,∵点P在第二象限,∴点P的坐标是(-3,4)故选:B.【点睛】此题考查三角函数,勾股定理,直角坐标系中点的坐标特点,解题中注意点所在象限的坐标的符号特点.7.若点M的坐标为2-a b|+1),则下列说法中正确的是()A.点M在x轴正半轴上B.点M在x轴负半轴上C.点M在y轴正半轴上D.点M在y轴负半轴上【答案】C【解析】【分析】首先根据二次根式的定义及绝对值的性质分别判断出点M的横、纵坐标的符号;然后根据坐标轴上点的坐标特征进行分析即可作出判断.【详解】2a-有意义,则-a2≥0,∴a=0.∵|b|≥0,∴|b|+1>0,∴点M在y轴的正半轴上.故选C.【点睛】本题考查的是点的坐标的知识,解题关键是熟练掌握坐标轴上点的坐标特征.8.如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为()A.(1,1)B.(0,2)C.(20,)D.(﹣1,1)【答案】D【解析】分析:根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.详解:∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理得:2,由旋转得:OB=OB1=OB2=OB32,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(02),B2(-1,1),B3(20),…,发现是8次一循环,所以2018÷8=252 (2)∴点B2018的坐标为(-1,1)故选:D.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法9.如图,在平面直角坐标系中,点O是坐标原点,四边形ABOC是正方形,其中,点A 在第二象限,点,B C在x轴、y轴上.若正方形ABOC的面积为36,则点A的坐标是( )A .()6,6-B .()6,6-C .()6,6-D .()6,6- 【答案】B【解析】【分析】 由正方形的面积可以把正方形的边长计算出来,根据点A 在第二象限和,B C 在x 轴、y 轴上,可以得到点A 的坐标.【详解】解:∵正方形ABOC 的面积为36,∴假设正方形ABOC 的边长为x ,则236x =,解得6x =或者6x =-(舍去),又∵点A 在第二象限,因此,A 点坐标为()6,6-,点,B C 在x 轴、y 轴上,故B 为答案.【点睛】本题主要考查了正方形的性质、正方形的面积公式以及直角坐标系的基本特点,知道正方形面积能反过来求正方形的边长是解题的关键.10.如图,直线m ⊥n ,在某平面直角坐标系中,x 轴∥m ,y 轴∥n ,点A 的坐标为(-4,2),点B 的坐标为(2,-4),则坐标原点为( )A .O 1B .O 2C .O 3D .O 4【答案】A试题分析:因为A 点坐标为(-4,2),所以,原点在点A 的右边,也在点A 的下边2个单位处,从点B 来看,B (2,-4),所以,原点在点B 的左边,且在点B 的上边4个单位处.如下图,O 1符合.考点:平面直角坐标系.11.已知点P (1﹣a ,2a+6)在第四象限,则a 的取值范围是( )A .a <﹣3B .﹣3<a <1C .a >﹣3D .a >1【答案】A【解析】【分析】根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.【详解】解:∵点P (1﹣a ,2a+6)在第四象限, ∴10260a a ->⎧⎨+<⎩解得a <﹣3.故选A .【点睛】本题考查了点的坐标,一元一次不等式组的解法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).12.若点(24,24)P m m -+在y 轴上,那么m 的值为( )A .2B .2-C .2±D .0【答案】A【解析】【分析】依据点P (2m-4,2m+4)在y 轴上,其横坐标为0,列式可得m 的值.∵P (2m-4,2m+4)在y 轴上,∴2m-4=0,解得m=2,故选:A .【点睛】此题考查点的坐标,解题关键在于掌握y 轴上点的横坐标为0.13.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0).根据这个规律探索可得,第100个点的坐标为( )A .(14,8)B .(13,0)C .(100,99)D .(15,14)【答案】A【解析】【详解】由图形可知:点的个数依次是1、2、3、4、5、…,且横坐标是偶数时,箭头朝上, ∵1+2+3+…+13=91,1+2+3+…+14=105,∴第91个点的坐标为(13,0),第100个点横坐标为14.∵在第14行点的走向为向上,∴纵坐标为从第92个点向上数8个点,即为8;∴第100个点的坐标为(14,8).故选A .【点睛】本题主要考查了根据图形的变化找规律的方法,首先要分析图形中每一列的点人个数的变化规律是,1,2,3,4,5,…,由此找出第100个点所在的列,再根据奇数列是从上往下依次增加1,偶数列是从下往上依次增加1,由此即可找到第100个点所对应的坐标.14.如果(,)p a b ab +在第二象限,那么点(,)Q a b -在第( )象限A .一B .二C .三D .四【解析】【分析】由点P 在第二象限得到a+b<0,ab>0,即可得到a 与b 的符号,由此判断点Q 所在的象限.【详解】∵点P 在第二象限,∴a+b<0,ab>0,∴a<0,b<0,∴-a>0,∴点(,)Q a b 在第四象限,故选:D.【点睛】此题考查象限中点的坐标特点,熟记每个象限中的点坐标特点是解题的关键.15.根据下列表述,能确定位置的是( )A .天益广场南区B .凤凰山北偏东42oC .红旗影院5排9座D .学校操场的西面【答案】C【解析】【分析】根据有序数对可以确定坐标位置对各选项分析判断后利用排除法求解.【详解】解:A 、天益广场南区,不能确定位置,故本选项错误;B 、凤凰山北偏东42o ,没有明确具体位置,故本选项错误;C 、红旗影院5排9座,能确定位置,故本选项正确;D 、学校操场的西面,不能确定位置,故本选项错误;故选:C .【点睛】本题考查了坐标位置的确定,有序数对可以确定一个具体位置,即确定一个位置需要两个条件,二者缺一不可.16.如图,象棋盘上,若“将”位于点(1,﹣2),“象”位于点(5,0),则炮位于点( )A .(﹣1,1)B .(﹣1,2)C .(﹣2,1)D .(﹣2,2)【解析】【分析】根据“将”的位置向左平移一个单位所得直线是y轴,向上平移2个单位所得直线是x轴,根据“炮”的位置,可得答案.【详解】解:根据题意可建立如图所示坐标系,由坐标系知炮位于点(﹣2,1),故选:C.【点睛】本题考查了坐标确定位置,利用“将”的位置向左平移一个单位所得直线是y轴,向上平移2个单位所得直线是x轴是解题关键.17.如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为()2,3,则菱形OABC的面积是()A6B13C 3132D.313【答案】D【解析】【分析】作CH⊥x轴于点H,利用勾股定理求出OC的长,根据菱形的性质可得OA=OC,即可求解.【详解】如图所示,作CH⊥x轴于点H,∵四边形OABC 是菱形,∴OA =OC ,∵点C 的坐标为()2,3,∴OH =2,CH =3,∴OC =22OH CH +=2223+=13∴菱形OABC 的面积=OA·CH =313 故选:D【点睛】本题考查菱形的性质、勾股定理、坐标与图形的性质、菱形的面积公式,解题的关键是学会添加辅助线,构造直角三角形.18.如图,在平面直角坐标系中,三角形AOB 的三个顶点的坐标分别是(1,3)A ,(0,0)O ,(2,0)B ,第一次将三角形AOB 变换成三角形11AOB ,1(2,3)A ,1(4,0)B ;第二次将三角形11AOB 变换成三角形22A OB ,2(4,3)A ,2(8,0)B ;第三次将三角形22A OB 变换成三角形33A OB …,则2020B 的横坐标是( )A .20192B .20202C .20212D .20222【答案】C【解析】【分析】 对于A 1,A 2,A n 坐标找规律可将其写成竖列,比较从而发现A n 的横坐标为2n ,而纵坐标都是3,B n 的纵坐标总为0,横坐标为2n+1,即可得到2020B 的横坐标.【详解】解:因为B (2,0),B 1(4,0),B 2(8,0),B 3(16,0)…纵坐标不变,为0, 同时横坐标都和2有关为2n+1,那么B 的坐标为2020B (20212,0);故选:C .【点睛】本题考查了学生观察图形及总结规律的能力,解题的关键是找到点B 横坐标都与2有关的规律.19.在平面直角坐标系中.对于平面内任一点(m ,n ),规定以下两种变换: ①f (m ,n )=(m ,﹣n ),如f (2,1)=(2,﹣1);②g (m ,n )=(﹣m ,﹣n ),如g (2,1)=(﹣2,﹣1).按照以上变换有:f[g (3,4)]=f (﹣3,﹣4)=(﹣3,4),那么g[f (3,2)]等于( )A .(3,2)B .(3.﹣2)C .(﹣3,2)D .(﹣3,﹣2)【答案】C【解析】【分析】根据f 、g 的规定进行计算即可得解.【详解】g [f (3,2)]=g (3,﹣2)=(﹣3,2).故选C .【点睛】本题考查了点的坐标,读懂题目信息,理解f 、g 的运算方法是解题的关键.20.在平面直角坐标系中,以原点为中心,把点()2,3A 逆时针旋转180︒,得到点B ,则点B 的坐标为( )A .()2,3-B .()2,3--C .(2,3)-D .(3,2)--【答案】B【解析】【分析】根据中心对称的性质解决问题即可.【详解】由题意A ,B 关于O 中心对称,∵A (2,3),∴B (-2,-3),故选:B .【点睛】此题考查中心对称,坐标与图形的变化,解题的关键是熟练掌握基本知识,属于中考常考题型.。

人教版初中数学七年级数学下册第三单元《平面直角坐标系》测试(含答案解析)

人教版初中数学七年级数学下册第三单元《平面直角坐标系》测试(含答案解析)

一、选择题 1.如图是北京市地图简图的一部分,图中“故宫”、“颐和园”所在的区域分别是( )D E F 6颐和园 奥运村 7故宫 日坛 8天坛 C .E7,D6 D .E6,D7 2.已知点32,)6(M a a -+.若点M 到两坐标轴的距离相等,则a 的值为( ) A .4 B .6- C .1-或4 D .6-或23 3.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 2C 3C 2,…按如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是( )A .(2n ﹣1,2n ﹣1)B .(2n ﹣1,2n ﹣1)C .(2n ﹣1,2n ﹣1)D .(2n ﹣1,2n ﹣1)4.在平面直角坐标系中,若点(),A a b -在第三象限,则下列各点在第四象限的是( ) A .(),a b -B .(),a b -C .(),a b --D .(),a b 5.在平面直角坐标系中,点A 的坐标为(-4,3),AB ∥y 轴,AB=5,则点B 的坐标为( )A .(1,3)B .(-4,8)C .(-4,8)或(-4,-2)D .(1,3)或(-9,3) 6.已知点 M 到x 轴的距离为 3,到y 轴的距离为2,且在第四象限内,则点M 的坐标为( )A .(-2,3)B .(2,-3)C .(3,2)D .不能确定 7.如图,在ABC ∆中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点B 的坐标为()1,4,则点A 的坐标为( )A .()6,3-B .()3,6-C .()4,3-D .()3,4- 8.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,……,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为( ) A .(-3,1) B .(0,-2) C .(3,1) D .(0,4)9.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-,D .(0,4)- 10.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2021次运动后,动点P 的坐标是( )A .(2021,0)B .(2020,1)C .(2021,1)D .(2021,2) 11.已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在x 轴的上方,则点P 的坐标为( )A .(2,3)B .(3,2)C .(2,3)或(-2,3)D .(3,2)或(-3,2) 12.已知点M (12,﹣5)、N (﹣7,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( )A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交 二、填空题13.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B .C .D 处的其它甲虫,规定:向上向右走为正,向下向左走为负、如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A C →(______,______),B C →(______,______),C →______(1+,______);(2)若图中另有两个格点M .N ,且M A →(3,4)a b --,M N →(5,2)a b --,则N A →应记为______.14.若线段AB 的端点为()1,3-,()1,3,线段CD 与线段AB 关于x 轴轴对称,则线段CD 上任意一点的坐标可表示为___________.15.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.16.在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a 2-2b 的值为______.17.如图,在平面直角坐标系中,已如点A (1,1),B (-1,1),C (-1,-2),D (1,-2),把一根长为2019个单位长度没有弹性的细线(线的相细忽略不计)的一端固定在A 处,并按A B C D A →→→→的规律紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标是__________.18.已知点(1,0)A 、(0,2)B ,点P 在x 轴上,且PAB △的面积为5,则点P 的坐标为__________.19.如图,若棋盘中“帅”的坐标是(0,1),“卒”的坐标是(2,2),则“马”的坐标是________.20.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.则点2019A 的坐标是_________.三、解答题21.如图,在平面直角坐标系中,四边形OABC 各顶点的坐标分别是()0,0O ,()0,12A ,()10,8B -,()14,0C -,求四边形OABC 的面积.22.在平面直角坐标系中,ABC 的位置如图所示,把ABC 先向左平移2个单位,再向下平移4个单位可以得到A B C '''.(1)画出三角形A B C ''',并写出,,A B C '''三点的坐标;(2)求A B C '''的面积.23.如图,已知三角形,ABC 把三角形ABC 先向上平移3个单位长度,再向右平移2个单位长度,得到三角形'''A B C .(1)在图中画出三角形'''A B C ,并写出',','A B C 的坐标;(2)连接,AO BO ,求三角形ABO 的面积;(3)在y 轴上是否存在一点P ,使得三角形BCP 与三角形ABC 面积相等?若存在请直接写出点P 的坐标;若不存在,请说明理由.24.如图,三角形ABC 三个顶点坐标分别是()4,3A ,()3,1B ,()1,2C ,三角形ABC 内任意一点(),M m n .(1)将三角形ABC 平移得到三角形111A B C ,点C 的对应点为()14,4C ,请画出三角形111A B C 并写出1A 的坐标;(2)若三角形PQR 是三角形ABC 经过某种变换后得到的图形.点A 的对应点为P ,点B 的对应点为Q ,点C 的对应点为R .观察变换前后各对应点之间的关系,若点M 经过这种变换后的对应为N ,则点N 的坐标为(______,______)(用含m ,n 的式子表示)25.已知点P(m +2,3),Q(−5,n−1),根据以下条件确定m 、n 的值(1)P 、Q 两点在第一、三象限的角平分线上;(2)PQ ∥x 轴,且P 点与Q 点的距离为3.26.如图,∠ABC 在建立了平面直角坐标系的方格纸中,方格纸中的每个小方格都是边长为1个单位长度的正方形.(1)请写出三角形ABC 各顶点的坐标;(2)直接写出三角形ABC 的面积;(3)把三角形ABC 平移得到A B C '''∆,点B 经过平移后对应点为()6,5B ',请在图中画出A B C '''∆.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】直接利用已知网格得出“故宫”、“颐和园”所在位置.【详解】如图所示:图中“故宫”、“颐和园”所在的区域分别是:E7,D6.故选:C .【点睛】此题主要考查了坐标确定位置,正确理解位置的意义是解题关键.2.C解析:C【分析】由点M 到两坐标轴的距离相等可得出32=6a a -+,求出a 的值即可.【详解】解:∵点M 到两坐标轴的距离相等, ∴32=6a a -+∴32=6a a -+,()32=-6a a -+∴a=4或a=-1.故选C .【点睛】 本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出32=6a a -+,注意不要漏解.3.D解析:D【分析】由123B B B ,,的规律写出n B 的坐标.【详解】∵点B 1的坐标为(1,1),点B 2的坐标为(3,2),∴点B 3的坐标为(7,4),∴Bn 的横坐标是:2n ﹣1,纵坐标是:2n ﹣1.则B n 的坐标是(2n ﹣1,2n ﹣1). 故选:D .【点睛】本题考查点的坐标规律探索,观察图形前面某些点的坐标,找出规律后再写出图形一般点的坐标.4.C解析:C【分析】直接利用各象限内点的坐标符号得出答案.【详解】解:∵点A (a ,-b )在第三象限,∴a <0,-b <0,∴-a >0,b >0,∴(),a b -在第三象限,(),a b -在第一象限,(),a b --在第四象限,(),a b 在第二象限. 故选:C .【点睛】此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.5.C解析:C【分析】线段AB ∥x 轴,A 、B 两点横坐标相等,B 点可能在A 点上边或者下边,根据AB 长度,确定B 点坐标即可.【详解】∵AB ∥y 轴,∴A 、B 两点横坐标都为-5,点A 的坐标为(-4,3),又∵AB=5,∴当B 点在A 点上边时,B (-4,8),当B 点在A 点下边时,B (-4,-2);故选:C .【点睛】本题考查了坐标与图形的性质,平行于y 轴的直线上的点横坐标相等,要求能根据两点相对的位置及两点距离确定点的坐标.6.B解析:B【分析】根据第四象限内的点的坐标第四象限(+,-),可得答案.【详解】解:M 到x 轴的距离为3,到y 轴距离为2,且在第四象限内,则点M 的坐标为(2,-3),故选:B .【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 7.A解析:A【分析】过点A 作x 轴的垂线交于点E ,过点B 作x 轴的垂线交于点F ,运用AAS 证明ACE CBF ∆≅∆得到AE CF =,CE BF =即可求得结论.【详解】解:过点A 作x 轴的垂线交于点E ,过点B 作x 轴的垂线交于点F ,90AEC CFB ∴∠=∠=︒90A ACE ∴∠+∠=︒,90ACB ∠=︒90ACE BCF ∴∠=∠=︒A BCF ∴∠=∠,在ACE ∆和CBF ∆中,90A BCF AEC CFB AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()ACE CBF AAS ∴∆≅∆AE CF ∴=,CE BF =,(2,0)C -,(1,4)B4BF ∴=,1(2)3CF =--=,3AE CF ∴==,4CE BF ==,426OE CE OC ∴=+=+=,()6,3A ∴-故选A .【点睛】此题考查了坐标与图形,证明ACE CBF ∆≅∆得到AE CF =,CE BF =是解决问题的关键.8.B解析:B【分析】根据题目已知条件先表示出6个坐标,观察其中的规律即可得出结果.【详解】解:由题可得:A 1(3,1),A 2(0,4),A 3(-3,1),A 4(0,-2),A 5(3,1),A 6(0,4)…, 所以是四个坐标一次循环,2020÷4=505,所以是一个循环的最后一个坐标,故A 2020(0,-2),故选:B【点睛】本题主要考查的是找规律,根据题目给的已知条件找出规律是解题的关键.9.A解析:A【分析】直接利用关于x 轴上点的坐标特点得出m 的值,进而得出答案.【详解】 解:点224P m m +(,﹣)在x 轴上,240m ∴﹣=,解得:2m =,24m ∴+=,则点P 的坐标是:()4,0.故选A .【点睛】此题主要考查了点的坐标,正确得出m 的值是解题关键.10.C解析:C【分析】分析点P的运动规律找到循环规律即可.【详解】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,因为2021=505×4+1所以,前505次循环运动点P共向右运动505×4=2020个单位,剩余一次运动向右走1个单位,且纵坐标为1.故点P坐标为(2021,1)故选:C.【点睛】本题是平面直角坐标系下的坐标规律探究题,解答关键是利用数形结合解决问题.11.D解析:D【分析】先判断出点P在第一或第二象限,再根据点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值求解.【详解】解:∵点P在x轴上方,∴点P在第一或第二象限,∵点P到x轴的距离为2,到y轴的距离为3,∴点P的横坐标为3或-3,纵坐标为2,∴点P的坐标为(-3,2)或(3,2).故选D.【点睛】本题考查点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.12.D解析:D【分析】由点M、N的坐标得出点M、N的纵坐标相等,据此知直线MN∥x轴,继而得出直线MN⊥y轴,从而得出答案.【详解】解:∵点M(12,-5)、N(-7,-5),∴点M、N的纵坐标相等,∴直线MN∥x轴,则直线MN⊥y轴,故选:D.【点睛】本题主要考查坐标与图形性质,熟记纵坐标相同的点在平行于y 轴的直线上是解题的关键.二、填空题13.【分析】(1)根据向上向右走均为正向下向左走均为负分别写出各点的坐标即可;(2)根据已知条件可知从而得到点向右走个格点向上走个格点到点反过来即可得到答案【详解】解:(1)∵规定:向上向右走为正向下向 解析:3+ 4+ 2+ 0 D 2- ()2,2--【分析】(1)根据向上向右走均为正,向下向左走均为负分别写出各点的坐标即可;(2)根据已知条件,可知5(3)2a a ---=,2(4)2b b ---=,从而得到点A 向右走2个格点,向上走2个格点到点N ,反过来即可得到答案.【详解】解:(1)∵规定:向上向右走为正,向下向左走为负∴A C →记为()3,4++,B C →记为()2,0+,C D →记为()1,2+-;(2)∵()3,4→--M A a b ,()5,2→--M N a b∴5(3)2a a ---=,2(4)2b b ---=∴点A 向右走2个格点,向上走2个格点到点N∴N A →应记为()2,2--.故答案是:(1)3+,4+,2+,0,D ,2-;(2)()2,2--【点睛】本题考查了利用坐标确定点的位置的方法,解题的关键是正确的理解从一个点到另一个点移动时,如何用坐标表示.14.(x-3)()【分析】关于x 轴对称点的坐标特点是横坐标相同纵坐标互为相反数即可求解【详解】解:∵线段AB 的端点为线段CD 与线段AB 关于x 轴轴对称∴线段CD 的端点为∴线段CD 上任意一点的坐标可表示为(解析:(x ,-3)(1x 1-≤≤).【分析】关于x 轴对称点的坐标特点是横坐标相同,纵坐标互为相反数,即可求解.【详解】解:∵线段AB 的端点为()1,3-,()1,3,线段CD 与线段AB 关于x 轴轴对称, ∴线段CD 的端点为()1,3--,()1,3-,∴线段CD 上任意一点的坐标可表示为(x ,-3)(1x 1-≤≤).故答案为:(x ,-3)(1x 1-≤≤).【点睛】此题主要考查利用关于x轴对称点的坐标特点来解题,正确理解轴对称的性质是解题关键.15.(ab)【分析】利用已知得出图形的变换规律进而得出经过第2020次变换后所得A点坐标与第4次变换后的坐标相同求出即可【详解】解:∵在平面直角坐标系中对△ABC进行循环往复的轴对称变换∴对应图形4次循解析:(a,b).【分析】利用已知得出图形的变换规律,进而得出经过第2020次变换后所得A点坐标与第4次变换后的坐标相同求出即可.【详解】解:∵在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,∴对应图形4次循环一周,∵2020÷4=505,∴经过第2020次变换后所得A点坐标与第4次变换后的坐标相同,故其坐标为:(a,b).故答案为:(a,b).【点睛】此题主要考查了关于坐标轴以及原点对称点的性质,得出A点变化规律是解题关键.16.-1【分析】根据点A和点B的坐标以及对应点的坐标确定出平移的方法从而求出ab的值再代入代数式进行计算即可【详解】解:∵A(10)A1(2a)B(02)B1(b3)∴平移方法为向右平移1个单位向上平移解析:-1【分析】根据点A和点B的坐标以及对应点的坐标确定出平移的方法,从而求出a、b的值,再代入代数式进行计算即可.【详解】解:∵A(1,0),A1(2,a),B(0,2),B1(b,3),∴平移方法为向右平移1个单位,向上平移1个单位,∴a=0+1=1,b=0+1=1,∴a2 2b=1²-2×1=-1;故答案为:-1.【点睛】本题考查了坐标与图形变化,注意到平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.(10)【分析】根据点的坐标求出四边形ABCD的周长然后求出另一端是绕第几圈后的第几个单位长度从而确定答案【详解】∵A(11)B(-11)C(-1-2)D(1-2)∴AB=1-(-1)=2BC=1-解析:(1,0)【分析】根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【详解】∵A(1,1),B(-1,1),C(-1,-2),D(1,-2),∴AB=1-(-1)=2,BC=1-(-2)=3,CD=1-(-1)=2,DA=1-(-2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2019÷10=201…9,∴细线另一端在绕四边形第202圈的第9个单位长度的位置,即在DA上从点D 向上2个单位长度所在的点的坐标即为所求,也就是点(1,0),故答案为:(1,0).【点睛】本题考查了规律型——点的坐标,根据点的坐标求出四边形ABCD一周的长度,从而确定2019个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.18.(-40)或(60)【分析】设P(m0)利用三角形的面积公式构建绝对值方程求出m即可;【详解】如图设P(m0)由题意:•|1-m|•2=5∴m=-4或6∴P (-40)或(60)故答案为:(-40)或解析:(-4,0)或(6,0)【分析】设P(m,0),利用三角形的面积公式构建绝对值方程求出m即可;【详解】如图,设P(m,0),由题意:12•|1-m|•2=5,∴m=-4或6,∴P(-4,0)或(6,0),故答案为:(-4,0)或(6,0)【点睛】此题考查三角形的面积、坐标与图形性质,解题的关键是学会利用参数构建方程解决问题.19.(-22)【分析】根据帅和卒的坐标得出原点的位置即可求得马的坐标【详解】如图所示:马的坐标是:(-22)故答案为(-22)【点睛】本题考查了坐标确定位置正确得出原点的位置是解题关键解析:(-2,2)【分析】根据“帅”和“卒”的坐标得出原点的位置,即可求得“马”的坐标.【详解】如图所示:“马”的坐标是:(-2,2).故答案为(-2,2).【点睛】本题考查了坐标确定位置,正确得出原点的位置是解题关键.20.【分析】根据图象可得移动4次图形完成一个循环从而可得出点的坐标【详解】解:由图象可得移动4次图形完成一个循环即所以:故答案为:【点睛】本题考查的是点的坐标规律的探究掌握规律探究的方法是解题的关键 解析:()20191009,0A .【分析】根据图象可得移动4次图形完成一个循环,从而可得出点2019A 的坐标.【详解】解:由图象可得移动4次图形完成一个循环,201945043,20204505,∴÷=÷=()()()48122,0,4,0,6,0,,A A A()20205052,0,A ∴⨯即()20201010,0,A所以:()20191009,0.A故答案为:()20191009,0.A【点睛】本题考查的是点的坐标规律的探究,掌握规律探究的方法是解题的关键.三、解答题21.116OABC S =四边形【分析】过B 作BD ⊥x 轴,垂足为D ,根据A ,B ,C ,O 四点坐标求解CD ,BD ,OD ,OA 的长,再利用BCD OABC OABD S SS =+四边形四边形可求解.【详解】 解:过B 作BD ⊥x 轴,垂足为D ,∵B (-10,8),∴D (-10,0),∴OD=10,BD=8,∵A (0,12),C (-14,0),∴OC=14,OA=12,∴CD=4,∴S 四边形OABC =S △BCD +S 四边形OABD =12BD•CD+12(BD+OA)•OD =12×8×4+12(8+12)×10 =16+100=116.【点睛】本题主要考查三角形的面积,点的坐标,作辅助线将四边形转化为直角三角形和梯形是解题的关键.22.(1)画图见解析,()()()4,2,0,4,1,1A B C '''----;(2)7【分析】(1)首先确定A 、B 、C 三点平移后的位置,然后再连接即可;(2)利用矩形面积减去周围多余三角形的面积即可.【详解】(1)如图所示,A B C '''∆即为所求,由图可知:()()()4,2,0,4,1,1A B C '''----(2)11135152413222A B C S '''∆=⨯-⨯⨯-⨯⨯-⨯⨯ 5315422=--- 7=【点睛】本题主要考查了作图平移变换,关键是正确确定组成图形的关键点平移后的位置.23.(1)画图见解析,()()0,41,,,1,1(3A B C '''-);(2)72;(3)存在,()0,1P 或()0,5P -【分析】 (1)先将A 、B 、C 三点按题意平移得到对应点,然后再顺次连接,最后直接写出坐标即可;(2)先将△AOB 拼成正方形BDEF ,然后再用正方形的面积减去三个正方形的面积即可; (3)根据同底等高的三角形面积相等解答即可.【详解】解:()1如图所示,三角形'A B C ''即为所求()()0,41,,,1,1(3A B C '''-);()2BDEF ABO ABD AEO BFO S S S S S =---长方形三角形三角形三角形三角形11133132123222=⨯-⨯⨯-⨯⨯-⨯⨯ 72=;()3设P (0,p )∵△BCP 与△ABC 同底等高。

最新人教版初中数学七年级数学下册第三单元《平面直角坐标系》测试卷(含答案解析)(2)

最新人教版初中数学七年级数学下册第三单元《平面直角坐标系》测试卷(含答案解析)(2)

一、选择题1.在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3) 2.在平面直角坐标系中,与点P 关于原点对称的点Q 为()1,3-,则点P 的坐标是( ) A .()1,3B .()1,3--C .()1,3-D .()1,3- 3.在平面直角坐标系中,点A 的坐标为(-4,3),AB ∥y 轴,AB=5,则点B 的坐标为( )A .(1,3)B .(-4,8)C .(-4,8)或(-4,-2)D .(1,3)或(-9,3) 4.点(,)M x y 在第二象限,且230,40x y -=-=,则点M 的坐标是( )A .(3,2)-B .(3,2)-C .(2,3)-D .(2,3)- 5.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A .(4,0)B .(5,0)C .(0,5)D .(5,5) 6.如图,在平面直角坐标系中,、、A B C 三点的坐标分别是()()()1,2,4,2,2,1--,若以A B C D 、、、为顶点的四边形为平行四边形,则点D 的坐标不可能是( )A .()7,1-B .()3,1--C .()1,5D .()2,5 7.将点()1,2P 向左平移3个单位后的坐标是( )A .()2,2-B .()1,1-C .()1,5D .()1,1--8.如图是医院、公园和超市的平面示意图,超市B 在医院O 的南偏东25︒的方向上,且到医院的距离为300m ,公园A 到医院O 的距离为400m .若∠90AOB =︒,则公园A 在医院O 的( )A .北偏东75︒方向上B .北偏东65︒方向上C .北偏东55︒方向上D .北偏西65°方向上9.如图,在一单位长度为1cm 的方格纸上,依如所示的规律,设定点1A 、2A 、3A 、4A 、5A 、6A 、7A 、n A ,连接点O 、1A 、2A 组成三角形,记为1∆,连接O 、2A 、3A 组成三角形,记为2∆,连O 、n A 、1n A +组成三角形,记为n ∆(n 为正整数),请你推断,当n 为50时,n ∆的面积=( )2cmA .1275B .2500C .1225D .1250 10.在下列点中,与点A(-2,-4)的连线平行于y 轴的是( ) A .(2,-4)B .(4,-2)C .(-2,4)D .(-4,2) 11.已知点P (m ,n )在第三象限,则点Q (-m ,│n│)在( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限 12.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .82D .16二、填空题13.某人从A 点沿北偏东60︒的方向走了100米到达点B ,再从点B 沿南偏西10︒的方向走了100米到达点C ,那么点C 在点A 的南偏东__度的方向上.14.在平面直角坐标系中,与点A (5,﹣1)关于y 轴对称的点的坐标是_____. 15.已知点A (2m +,3-)和点B (4,1m -),若直线//AB x 轴,则m 的值为______.16.点P 先向左平移4个单位,再向上平移1个单位,得到点Q(2,-3),则点P 坐标为__ 17.三角形A′B′C′是由三角形ABC 平移得到的,点A(-1,4)的对应点为A′(1,-1),若点C′的坐标为(0,0),则点C′的对应点C 的坐标为______.18.下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x 轴和y 轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.19.如图,在平面直角坐标系xOy 中,将四边形ABCD 先向下平移,再向右平移得到四边形A 1B 1C 1D 1,已知A (﹣3,5),B (﹣4,3),A 1(3,3),则B 1的坐标为_____.20.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示,则点A 400的坐标为_______.三、解答题21.如图,已知每个小正方形的边长均为1的网格中有一个三角形.()1请你画出这个三角形向上平移3个单位长度,所得到的'''∆A B C()2请以'A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B,点C及','B C 的坐标.22.如图,在平面直角坐标系中,△ABC的顶点C的坐标为(1,3).(1)请直接写出点A、B的坐标.(2)若把△ABC向上平移3个单位,再向右平移2个单位得△A′B′C′,画出△A′B′C′;(3)直接写出△A′B′C′各顶点的坐标;(4)求出△ABC的面积23.如图,在平面直角坐标系中,Rt△ABC 的三个顶点分别是 A(﹣3,2),B(0,4),C(0,2).(1)将△ABC 以点 O 为旋转中心旋转 180°,画出旋转后对应的△A1B1C1;(2)平移△ABC,使对应点 A2的坐标为(0,﹣4),写出平移后对应△A2B2C2的中B2,C2点坐标.24.如图,在平面直角坐标系中,OAB ∆的顶点都在格点上,把OAB ∆平移得到111O A B ∆,在OAB ∆内一点()1,1M 经过平移后的对应点为()13,5M -.(1)画出111O A B ∆;(2)点1B 到y 轴的距离是____个单位长;(3)求111O A B ∆的面积.25.如图(1),在平面直角坐标系中,点A ,B 的坐标分别为(﹣1,0),(3,0),将线段AB 先向上平移2个单位长度,再向右平移1个单位长度,得到线段CD ,连接AC ,BD ,构成平行四边形ABDC .(1)请写出点C 的坐标为 ,点D 的坐标为 ,S 四边形ABDC ;(2)点Q 在y 轴上,且S △QAB =S 四边形ABDC ,求出点Q 的坐标;(3)如图(2),点P 是线段BD 上任意一个点(不与B 、D 重合),连接PC 、PO ,试探索∠DCP 、∠CPO 、∠BOP 之间的关系,并证明你的结论.26.已知()4,0A ,点B 在x 轴上,且5AB =.(1)直接写出点B 的坐标;(2)若点C 在y 轴上,且10ABC S =△,求点C 的坐标.(3)若点()3,2D a a -+,且15ABD S =,求点D 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据A 点的坐标及对应点的坐标可得线段AB 向右平移4个单位,然后可得B′点的坐标.【详解】∵A (-1,-1)平移后得到点A′的坐标为(3,-1),∴向右平移4个单位,∴B (1,2)的对应点B′坐标为(1+4,2),即(5,2).故答案为:(5,2).【点睛】本题主要考查了坐标与图形的变化-平移,关键是掌握平移的规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.2.D解析:D【分析】在平面直角坐标系中,关于原点对称的两点的横坐标和纵坐标均互为相反数即可求得.【详解】∵与点P 关于原点对称的点Q 为()1,3-,∴点P 的坐标是:()1,3-.故选D .【点睛】本题考查平面直角坐标系中点的对称性,掌握关于原点对称的两点的横坐标和纵坐标均互为相反数是解题关键.3.C解析:C【分析】线段AB ∥x 轴,A 、B 两点横坐标相等,B 点可能在A 点上边或者下边,根据AB 长度,确定B 点坐标即可.【详解】∵AB ∥y 轴,∴A 、B 两点横坐标都为-5,点A 的坐标为(-4,3),又∵AB=5,∴当B 点在A 点上边时,B (-4,8),当B 点在A 点下边时,B (-4,-2);故选:C .【点睛】本题考查了坐标与图形的性质,平行于y 轴的直线上的点横坐标相等,要求能根据两点相对的位置及两点距离确定点的坐标.4.A解析:A【分析】先解绝对值方程和平方根确定x 、y 的值,然后根据第二象限坐标特点确定M 的坐标即可.【详解】解:∵230,40x y -=-=∴x=±3,y=±2∵点(,)M x y 在第二象限∴x <0,y >0∴x=-3,y=2∴M 点坐标为(-3.2).故答案为A .【点睛】本题考查了解绝对值方程和平方根以及直角坐标系内点坐标的特征,掌握坐标系内点坐标的特征是解答本题的关键. 5.B解析:B【分析】根据题意,找出其运动规律,质点每秒移动一个单位,质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推,即可得出答案.【详解】解:由题意可知,质点每秒移动一个单位质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推,质点到达(4,0)时,共用16秒;质点到达(0,4)时,共用16+8=24秒;质点到达(0,5)时,共用25秒;质点到达(5,0)时,共用25+10=35秒故答案为:B.【点睛】本题考查整式探索与表达规律,根据题意找出规律是解题的关键.6.D解析:D【分析】根据平行四边形的性质可知:平行四边形的对边平行且相等,连接各个顶点,数形结合,可以做出D点可能的坐标,利用排除法即可求得答案.【详解】解:数形结合可得点D的坐标可能是(﹣3,﹣1),(7,﹣1),(1,5);但不可能是(2,5)故选:D.【点睛】本题考查平行四边形的性质和直角坐标系,考查学生解题的综合能力,解题的关键是在直角坐标系中画出可能的平行四边形.7.A解析:A【分析】向左平移3个长度单位长度,即点P 的横坐标减3,纵坐标不变可得结论.【详解】解:点P (1,2)向左平移3个长度单位后,坐标为(1-3,2),即(-2,2). 故选:A .【点睛】本题考查了坐标系中点的平移规律,在平面直角坐标系中,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.8.B解析:B【解析】分析:首先根据勾股定理得出公园A 到超市B 的距离为500m ,再计算出∠AOC 的度数,进而得到∠AOD 的度数.本题∵∠AOB=90°,∴3002+4002=5002,∴公园A 到超市B 的距离为500m∵超市在医院的南偏东25°的方向,∴∠COB=90°−25°=65°,∴∠AOC=90°−65°=25°,∴∠AOD=90°−25°=65°,故选B.9.A解析:A【分析】 根据图形计算发现:第一个三角形的面积是11212⨯⨯=,第二个三角形的面积是12332⨯⨯=,第三个图形的面积是13462⨯⨯=,即第n 个图形的面积是1(1)2n n +,即可求得,△n 的面积.【详解】由题意可得规律:第n 个图形的面积是1(1)2n n +, 所以当n 为50时, n 的面积()150********=⨯⨯+=. 故选:A .【点睛】此题主要考查了点的坐标变化规律,通过计算前面几个具体图形的面积发现规律是解题关键.10.C解析:C【分析】平行于y轴的直线上所有点的横坐标相等,根据这一性质进行选择.【详解】∵平行于y轴的直线上所有点的横坐标相等,已知点A(-2,-4)横坐标为-2,所以结合各选项所求点为(-2,4),故答案选C.【点睛】本题考查了平行于坐标轴的直线上点的坐标特点,解本题的关键在于熟知平行于x轴的直线上所有点的纵坐标相等,平行于y轴的直线上所有点的横坐标相等.11.A解析:A【分析】根据第三象限点的横坐标与纵坐标都是负数,确定-m>0,│n│>0,再判断点Q所在的象限即可.【详解】∵点P(m,n)在第三象限,∴m<0,n<0,∴-m>0,│n│>0,∴点Q(-m,│n│)在第一象限,故选A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).12.D解析:D【解析】试题如图所示,当△ABC向右平移到△DEF位置时,四边形BCFE为平行四边形,C点与F点重合,此时C 在直线y=2x-6上,∵C (1,4),∴FD=CA=4,将y=4代入y=2x-6中得:x=5,即OD=5,∵A (1,0),即OA=1,∴AD=CF=OD-OA=5-1=4,则线段BC 扫过的面积S=S 平行四边形BCFE =CF•FD=16.故选D .二、填空题13.55【分析】在直角坐标系下现根据题意确定AB 点的位置和方向最后确定C 点的位置和方向依次连接ABC 三点根据角之间的关系求出∠5的度数即可【详解】根据题意作图:∵从A 点沿北偏东60°的方向走了100米到解析:55【分析】在直角坐标系下现根据题意确定A 、B 点的位置和方向,最后确定C 点的位置和方向.依次连接A 、B 、C 三点,根据角之间的关系求出∠5的度数即可.【详解】根据题意作图:∵从A 点沿北偏东60°的方向走了100米到达点B ,从点B 沿南偏西10°的方向走了100米到达点C ,∴∠1+∠2=60°,AB=BC=100,∴∠2=50°,且△ABC 是等腰三角形,∴∠BAC=180502︒-︒=65°, ∴∠5=180°-65°-60°=55°, ∴点C 在点A 的南偏东55°的方向上.故答案为:55.【点睛】本题考查了直角坐标系的建立和运用,运用直角坐标系来确定点的位置和方向.14.(-5-1)【分析】考查平面直角坐标系点的对称性质【详解】解:点A (mn )关于y 轴对称点的坐标A′(-mn )∴点A (5-1)关于y 轴对称的点的坐标为(-5-1)故答案为:(-5-1)【点睛】此题考查解析:(-5,-1).【分析】考查平面直角坐标系点的对称性质.【详解】解:点A (m ,n )关于y 轴对称点的坐标A′(-m ,n )∴点A (5,-1)关于y 轴对称的点的坐标为(-5,-1).故答案为:(-5,-1).【点睛】此题考查平面直角坐标系点对称的应用.15.【分析】根据平行于轴的直线上的点的纵坐标相同列出方程求解即可【详解】∵点A ()B (4)直线AB ∥x 轴∴解得故答案为:【点睛】本题考查了坐标与图形性质熟记平行于轴的直线上的点的纵坐标相同是解题的关键 解析:2-【分析】根据平行于x 轴的直线上的点的纵坐标相同,列出方程求解即可.【详解】∵点A (2m +,3-),B (4,1m -),直线AB ∥x 轴,∴13m -=-,解得2m =-.故答案为:2-.【点睛】本题考查了坐标与图形性质,熟记平行于x 轴的直线上的点的纵坐标相同是解题的关键. 16.(6-4)【分析】直接利用平移中点的变化规律求解即可平移中点的变化规律是:横坐标右移加左移减;纵坐标上移加下移减【详解】设点P 的坐标为()由题意得:求得所以点P 的坐标为()故答案为:()【点睛】本题解析:(6,-4)【分析】直接利用平移中,点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】设点P 的坐标为(x ,y ),由题意,得:42x -=,13y +=-,求得6x =,4y =-,所以点P 的坐标为(6,4-).).故答案为:(6,4【点睛】本题考查了坐标与图形变化-平移,用到的知识点为:左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.17.(-25)【分析】根据点A(-14)的对应点为A′(1-1)可以得出变化规律再将点C′按照此变化规律即可得出C点的坐标【详解】解:∵点A(-14)的对应点为A′(1-1)∴此题变化规律是为(x+2y解析:(-2,5)【分析】根据点A(-1,4)的对应点为A′(1,-1),可以得出变化规律,再将点C′按照此变化规律即可得出C点的坐标.【详解】解:∵点A(-1,4)的对应点为A′(1,-1),∴此题变化规律是为(x+2,y-5),∴C′(0,0)的对应点C的坐标分别为(-2,5),故答案为:(-2,5).【点睛】本题考查了平移中点的变化规律,横坐标右移加,左移减;纵坐标上移加,下移减.左右移动改变点的横坐标,上下移动改变点的纵坐标.18.(-31)【分析】根据右安门的点的坐标可以确定直角坐标系中原点在正阳门建立直角坐标系即可求解【详解】根据右安门的点的坐标为(−2−3)可以确定直角坐标系中原点在正阳门∴西便门的坐标为(−31)故答案解析:(-3,1)【分析】根据右安门的点的坐标可以确定直角坐标系中原点在正阳门,建立直角坐标系即可求解.【详解】根据右安门的点的坐标为(−2,−3),可以确定直角坐标系中原点在正阳门,∴西便门的坐标为(−3,1),故答案为(−3,1);【点睛】此题考查坐标确定位置,解题关键在于建立直角坐标系.19.(21)【分析】根据A 和A1点的坐标得到平移路径向下平移2个单位再向右平移6个单位根据同样路径即可确定B1的坐标【详解】由A (﹣35)A1(33)可知四边形ABCD 先向下平移2个单位再向右平移6个单解析:(2,1).【分析】根据A 和A 1点的坐标,得到平移路径向下平移2个单位,再向右平移6个单位,根据同样路径即可确定B 1的坐标.【详解】由A (﹣3,5),A 1(3,3)可知四边形ABCD 先向下平移2个单位,再向右平移6个单位得到四边形A 1B 1C 1D 1,∵B (﹣4,3),∴B 1的坐标为(2,1),故答案为:(2,1).【点睛】本题考查了坐标变换,要先根据已知条件确定平移路径,然后根据平移路径判断坐标变化情况是本题的关键.20.(2000)【分析】根据图象可得移动4次图形完成一个循环从而可得出点的坐标【详解】解:由图象可得移动4次图形完成一个循环即所以:故答案为:【点睛】本题考查的是点的坐标规律的探究掌握规律探究的方法是解 解析:(200,0)【分析】根据图象可得移动4次图形完成一个循环,从而可得出点400A 的坐标.【详解】解:由图象可得移动4次图形完成一个循环,4004100∴÷= ,()()()48122,0,4,0,6,0,,A A A …()4001002,0,A ∴⨯即()400200,0,A所以:()400200,0A .故答案为:()400200,0A【点睛】本题考查的是点的坐标规律的探究,掌握规律探究的方法是解题的关键.三、解答题21.(1)见解析;(2)见解析,()()()()1,1,'1,2,3,4,'3,1B B C C ---【分析】(1)把3个顶点向上平移3个单位,顺次连接个顶点即可;(2)以点'A为坐标原点,建立平面直角坐标系,找到所求点的坐标即可.【详解】解:()1如图,()2坐标系如图:()()()()---B BC C1,1,'1,2,3,4,'3,1【点睛】在平面直角坐标系中,图形的平移与图形上某点的平移相同,注意上下移动改变点的纵坐标,下减,上加.22.(1)A(-1,-1),B(4,2);(2)图见解析;(3)A′(1,2),B′(6,5),C′(3,6);(4)7.【分析】(1)根据网格即可写出点A、B的坐标;(2)根据平移的性质即可把△ABC向上平移3个单位,再向右平移2个单位得到△A'B'C';(3)根据网格即可写出△A′B′C′各顶点的坐标;(4)利用矩形面积减去周围多于三角形的面积即可..【详解】解:(1)点A的坐标为:(-1,-1),点B的坐标为:(4,2);(2)平移后的△A′B′C′如图所示;(3)点A′的坐标为:(1,2),点B′的坐标为:(6,5),点C′的坐标为:(3,6); (4)△ABC 的面积:111452453137222⨯-⨯⨯-⨯⨯-⨯⨯=. 【点睛】本题主要考查坐标与图形变化—平移.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 23.(1)如图所示,△A 1B 1C 1 即为所求见解析;(2)如图所示见解析,△A 2B 2C 2 即为所求,其中 B 2 点坐标为(3,﹣2),C 2 点坐标为(3,﹣4).【分析】根据旋转作图的步骤:①定点一一旋转中心;②旋转方向;③旋转角度.再根据旋转的性质进行操作即可画出旋转之后的图形;接下来再根据平移作图的一般步骤,作出平移之后的图形,相信你能画出来.【详解】(1)如图所示,△A 1B 1C 1 即为所求.(2)如图所示,△A 2B 2C 2 即为所求,其中 B 2 点坐标为(3,﹣2),C 2 点坐标为(3,﹣4).【点睛】本题主要考查旋转和平移的知识点,解题的关键是要注意坐标的平移方法,24.(1)见解析;(2)6;(3)9.【分析】(1)首先根据()1,1M 和()13,5M -可判定三角形的平移变化,然后根据图像信息可得知(0,0),(2,4),(4,1)O A B -,进而得出111(2,6),(0,2),(6,5)O A B ---,即可画出三角形; (2)点1B 到y 轴的距离即为点1B 的横坐标,由(1)中可得知;(3)利用矩形的面积减去111O A B ∆周围三角形的面积,即可得解.【详解】解:(1)由已知条件,可得111O A B ∆是OAB ∆先向右平移2个单位,再向下平移6个单位得到的,根据图像信息,可知(0,0),(2,4),(4,1)O A B -∴111(2,6),(0,2),(6,5)O A B ---连接三点,即可得到111O A B ∆,如图所示:(2)由(1)中知,1(6,5)B -,所以点1B 到y 轴的距离即为6个单位长;(3)111111642436149222O A B S =⨯-⨯⨯-⨯⨯-⨯⨯=△. 【点睛】此题主要考查图形的平移,熟练掌握,即可解题.25.(1)(0,2),(4,2),8;(2)Q (0,4)或Q (0,﹣4);(3)∠CPO =∠DCP +∠BOP ,证明见解析【分析】(1)根据平移直接得到点C ,D 坐标,用面积公式计算S 四边形ABDC 即可;(2)设出Q 的坐标,OQ =|m |,用S △QAB =S 四边形ABDC 建立方程,解方程即可; (3)作PE ∥AB 交 y 轴 于 点 E ,利用两直线平行,内错角相等即可得出结论.【详解】解:(1)∵线段AB 先向上平移2个单位长度,再向右平移1个单位长度,得到线段CD ,且A (﹣1,0),B (3,0),∴C (0,2),D (4,2);∵AB =4,OC =2,∴S 四边形ABDC =AB ×OC =4×2=8;故答案为:(0,2);(4,2);8;(2)∵点Q 在y 轴上,设Q (0,m ),∴OQ =|m |,∴S △QAB =12×AB ×OQ =12×4×|m |=2|m |, ∵S 四边形ABDC =8,∴2|m |=8,∴m =4或m =﹣4,∴Q (0,4)或Q (0,﹣4).(3)如图,∵线段CD 是线段AB 平移得到,∴CD ∥AB ,作PE ∥AB 交 y 轴 于 点 E ,∴CD ∥PE ,∴∠CPE =∠DCP ,∵PE ∥AB ,∴∠OPE =∠BOP ,∴∠CPO =∠CPE +∠OPE =∠DCP +∠BOP ,∴∠CPO =∠DCP +∠BOP .【点睛】本题主要考查了线段的平移及平行线的性质,掌握平行线的性质并作出辅助线是解题的关键.26.(1)()1,0B -或()9,0;(2)()0,4C或()0,4-;(3)()1,6D 或()11,6D -- 【分析】(1)由题意知A 和B 都在x 轴上,根据两点间的距离可得B 的坐标;(2)设点C 的坐标为()0,C y ,则1102ABC S AB y =⋅⋅=△,求解即可; (3)由题意可得15122ABD A S B a =⋅⋅=+△,求出a 的值代入即可. 【详解】解:(1)∵()4,0A ,点B 在x 轴上,且5AB =,∴()1,0B -或()9,0;(2)设()0,C y ,则1102ABC S AB y =⋅⋅=△, 解得4y =±,∴点C 的坐标为()0,4C 或()0,4-;(3)根据题意可得15122ABD A S B a =⋅⋅=+△, 解得4a =或8a =-,∴点D 的坐标为()1,6D 或()11,6D --.【点睛】本题考查坐标与图形,掌握三角形的面积公式是解题的关键.。

(易错题精选)初中数学函数之平面直角坐标系难题汇编含答案

(易错题精选)初中数学函数之平面直角坐标系难题汇编含答案

(易错题优选)初中数学函数之平面直角坐标系难题汇编含答案一、选择题1.以下结论:① 坐标为 3 的点在经过点( 3,0) 且平行于y轴的直线上;② m0时,点 P m2 ,m 在第四象限;③点 (3,4) 对于y轴对称的点的坐标是( 3, 4);④ 在第一象限的点N到 x 轴的距离是1,到y轴的距离是2,则点N的坐标为(2,1).此中正确的选项是().A.①③B.②④C.①④D.②③【答案】 C【分析】【剖析】依照点的坐标的观点,对于坐标轴对称的点的特色以及不一样象限内点的坐标特色,即可获得正确结论.【详解】① 横坐标为 3 的点在经过点( 3,0)且同等于 y 轴的直线上,故正确;②当 m0时,点 P m2 , m 在第四象限或第一象限,故错误;③与点(3,4 ) 对于y对称点的坐标是(3, 4) ,故错误;④在第一象限的点 N 到x轴的距离是1,到y轴的距离是 2,则点N的坐标为(2,1),故正确.应选: C.【点睛】本题考察了点的坐标的观点,对于坐标轴对称的点的特色以及不一样象限内点的坐标特色.2.如图,在平面直角坐标系中,点O 是坐标原点,四边形ABOC 是正方形,此中,点A 在第二象限,点B, C在 x 轴、y 轴上.若正方形ABOC 的面积为36,则点 A 的坐标是()A.6,6B.6,6C.6, 6D.6,6【答案】 B【剖析】由正方形的面积能够把正方形的边长计算出来,依据点 A 在第二象限和B,C 在 x 轴、y轴上,能够获得点A的坐标.【详解】解:∵正方形ABOC 的面积为 36,∴假定正方形ABOC 的边长为x,则x236 ,解得 x 6 或许 x 6 (舍去),又∵点 A 在第二象限,所以, A 点坐标为6,6 ,点B,C在x轴、y轴上,故 B为答案.【点睛】本题主要考察了正方形的性质、正方形的面积公式以及直角坐标系的基本特色,知道正方形面积能反过来求正方形的边长是解题的重点.3.在平面直角坐标系中,长方形ABCD 的三个极点 A(3,2), B(1,2),C1, 1 , 则第四个极点 D 的坐标是()..2,1. (3, 1).2,3. (3,1)A B C D【答案】 B【分析】【剖析】依据矩形的性质(对边相等且每个角都是直角),由矩形ABCD 点的次序获得CD⊥ AD,能够把 D 点坐标求解出来.【详解】解:依据矩形ABCD 点的次序可获得CD⊥AD,又∵ A(3,2), B( 1,2),C 1, 1 ,∴A、B 纵坐标相等, B、 C 横坐标相等,∴A、D 横坐标相等,即3; D、C 纵坐标相等,即所以 D (3, 1)-1,【点睛】本题主要考察了矩形的性质和直角坐标系的基本观点,利用矩形四个角都是直角、对边相等是解题的重点 .4.若点A( a+1, b﹣ 2)在第二象限,则点B(﹣ a, 1﹣ b)在()A.第一象限【答案】 DB.第二象限C.第三象限D.第四象限剖析:直接利用第二象限横纵坐标的关系得出a, b 的符号,从而得出答案.详解:∵点A(a+1,b-2 )在第二象限,∴a+1<0 ,b-2> 0,解得: a< -1, b> 2,则-a>1 ,1-b< -1,故点 B(-a, 1-b)在第四象限.应选 D.点睛:本题主要考察了点的坐标,正确记忆各象限内点的坐标符号是解题重点.5.在平面直角坐标系中,点P x, y 经过某种变换后获得点P ' y1, x 2,我们把点P'y 1, x2叫做点P x, y 的终结点.已知点P1的终结点为 P2,点 P2的终结点为P3 , 点 P3的终结点为 P4,这样挨次获得P1, P2 , P3, P4 ,, P n.若点P1的坐标为 (5,0), 则P2017点的坐标为 ()A.2,0B.3,0C.4,0D.5,0【答案】 D【分析】【剖析】依据题意先求出P1 , P2 , P3 , P4 , P5 L 的坐标,而后找到规律,利用规律即可求出答案.【详解】∵点 P1的坐标为(5,0),依据题意有∴ P2 (1,7), P3 (6,3), P4 ( 2,4), P5 (5,0),因而可知, P n点的坐标是四个一循环,Q 2017 4 504L 1 ,∴P2017 点的坐标为5,0 ,应选: D.【点睛】本题主要考察点的坐标的规律,找到规律是解题的重点.6.假如点P m,3在第二象限,那么点Q3,m在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】 C【分析】【剖析】依据第二象限的横坐标小于零可得m 的取值范围,从而判断Q 点象限 .【详解】解:由点P m,3在第二象限可得应选择 C.【点睛】本题考察了各象限内坐标的符号特色m<0,再由.-3<0和m< 0 可知Q 点在第三象限,7.如图,在平面直角坐标系中,以O 为圆心,适合长为半径画弧,交x 轴于点 M ,交 y 轴于点 N,再分别以点M、 N 为圆心,大于1MN 的长为半径画弧,两弧在第二象限交于2点 P.若点 P 的坐标为( 2a, b+1),则 a 与 b 的数目关系为()A. a=b B. 2a+b=﹣ 1C. 2a﹣ b=1D. 2a+b=1【答案】 B【分析】试题剖析:依据作图方法可得点P 在第二象限角均分线上,则 P 点横纵坐标的和为0,即 2a+b+1=0,∴2a+b=﹣ 1.应选 B.8.在平面直角坐标系内,若点P(3﹣ m, m﹣ 1)在第二象限,那么m 的取值范围是()A. m> 1B. m> 3C. m< 1D. 1< m<3【答案】B【分析】【剖析】由第二象限点的横坐标为负数、纵坐标为正数得出对于m 的不等式组,解之可得答案.【详解】∵点 P( 3﹣ m, m﹣1)在第二象限,3-m<0①∴m1>0②,解不等式①,得: m> 3,解不等式②,得: m> 1,则 m> 3,应选:B.【点睛】本题主要考察象限内点的坐标符号特色及解一元一次不等式组,正确求出每一个不等式解集是基础,熟知 “同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的重点.9.点 P 的坐标为 (2a ,3a 6) ,且到两坐标轴的距离相等,则点P 的坐标为 ()A . (3,3)B . (3, - 3)C . (6,- 6)D . (3, 3) 或 (6,-6)【答案】 D【分析】【剖析】依据点 P 到两坐标轴的距离相等可得其点的横坐标与纵坐标的绝对值相等,据此进一步求解即可 .【详解】∵点 P 到两坐标轴的距离相等,∴ 2 a 3a 6 ,即: 2 a 3a6 或 2 a 3a 6 ,∴ a 1 或 a4 ,∴P 点坐标为: (3, 3) 或 (6, - 6)应选: D.【点睛】本题主要考察了坐标系中点的坐标的应用,娴熟掌握有关观点是解题重点.10. 在平面直角坐标系中,若一个点的横纵坐标互为相反数,则该点必定不在(A .直线 y=-x 上 B .直线 y=x 上)C .双曲线 y=1 D .抛物线 y=x 2上x【答案】 C 【分析】【剖析】【详解】解: A 、若此点坐标是( 0, 0)时,在直线 y=-x 上,故本选项错误;B 、若此点坐标是( 0, 0)时,在直线 y=x 上,故本选项错误;C 、由于双曲线 y=1上的点一定切合 xy=1,故 x 、y 同号与已知矛盾,故本选项正确;xD 、若此点坐标是( 0, 0)时,在抛物线 y=x 2 上,故本选项错误.应选 C . 【点睛】本题考察反比率函数图象上点的坐标特色;一次函数图象上点的坐标特色;二次函数图象上点的坐标特色.11.如,在平面直角坐系中,三角形AOB 的三个点的坐分是A(1,3) ,O(0,0) ,B(2,0),第一次将三角形AOB 成三角形AOB, A1 (2,3), B1 (4,0);第二11次将三角形 AOB成三角形 A OB,A2 (4,3) , B2 (8,0);第三次将三角形 A OB 112222成三角形 A OB⋯B2020的横坐是()33,A.22019B.22020C.22021D.22022【答案】 C【分析】【剖析】于 A12n坐找律可将其写成列,比从而n n ,而坐,A,A A 的横坐2都是 3, B n的坐0,横坐2n+1,即可获得 B2020的横坐.【解】解:因 B( 2, 0), B1 4 0),B280),B3 160⋯0,(,(,(,)坐不,同横坐都和 2 有关 2n+1,那么 B 的坐 B2020(22021, 0);故: C.【点睛】本考了学生察形及律的能力,解的关是找到点 B 横坐都与 2 有关的律.12.已知平面内不一样的两点A( a+2,4)和 B( 3, 2a+2)到 x 的距离相等, a 的( )A. 3B. 5C.1 或 3D.1 或 5【答案】 A【分析】剖析:依据点A( a+ 2, 4)和 B( 3,2a+ 2)到 x 的距离相等,获得4= |2a +2| ,即可解答.解:∵点A(a+2, 4)和 B( 3, 2a+ 2)到 x 的距离相等,∴4= |2a + 2| , a+ 2≠3,解得: a= - 3,故 A.点睛:考点的坐的有关知;用到的知点:到x 和 y 的距离相等的点的横坐相等或互相反数.13.我知道:四形拥有不定性.如,在平面直角坐系中, 4 的正方形ABCD 的边 AB 在x轴上, AB 的中点是坐标原点O ,固定点A,B,把正方形沿箭头方向推,使点 D 落在y轴正半轴上点¢)D 处,则点C的对应点C的坐标为(A.2 3,2B.4,2C.4,2 3D.2,2 3【答案】 C【分析】【剖析】由已知条件获得AD′=AD=4, AO= 1AB=2,依据勾股定理获得OD′ =AD2OA2 2 3 ,2于是获得结论.【详解】∵AD′=AD=4,1AO= AB=2,2∴OD′= AD2OA2 2 3 ,∵C′D′=4, C′D∥′AB,∴C′( 4, 2 3 ),应选 C.【点睛】考察了正方形的性质,坐标与图形的性质,勾股定理,正确的辨别图形是解题的重点.14.课间操时,小华、小军和小刚的地点如下图,假如小华的地点用地点用 (2,1)表示,那么小刚的地点能够表示为()(0,0)表示,小军的A. (5,4)B. (4,5)C. (3,4)D. (4,3)【答案】 D【分析】依据已知两点的坐标确立平面直角坐标系,而后确立其余各点的坐标即可解答.【详解】假如小华的地点用( 0, 0)表示,小军的地点用( 2, 1)表示,如下图就是以小华为原点的平面直角坐标系的第一象限,所以小刚的地点为(4, 3).应选 D.【点睛】本题利用平面直角坐标系表示点的地点,重点是由已知条件正确确立坐标轴的地点.15.若点P(2 m4,2 m 4) 在y轴上,那么m 的值为()A.2B.2C.2D. 0【答案】 A【分析】【剖析】依照点 P( 2m-4, 2m+4)在 y 轴上,其横坐标为0,列式可得m 的值.【详解】∵P( 2m-4 ,2m+4)在 y 轴上,∴2m-4=0 ,解得 m=2,应选: A.【点睛】本题考察点的坐标,解题重点在于掌握y 轴上点的横坐标为0.16.依据以下表述,能确立地点的是()A.红星电影院第 2 排B.北京市四环路C.北偏东30° D.东经 118 °,北纬 40°【答案】 D【分析】解:在平面内,点的地点是由一对有序实数确立的,只有 D 能确立一个地点,点睛:本题考察了在平面内,怎样表示一个点的地点的知识点.17.已知A 0,2、B10,,点P在 x 轴上,且PAB 的面积为5,则点P的坐标为(). 6,0.4,0.4,0 或 6,0.没法确立A B C D【答案】 C【分析】【剖析】依据 A 点的坐标可知BP 边上的高为2,而△PAB的面积为5,点 P 在 x 轴上,说明BP=5,已知点 B 的坐标,可求P 点坐标.【详解】解:∵ B(1, 0), A(0, 2),点 P 在 x 轴上,∴BP 边上的高为2,又△PAB的面积为 5,∴B P=5,而点 P 可能在点B(1 ,0)的左侧或许右侧,∴P( -4, 0)或( 6, 0).应选: C.【点睛】本题考察了直角坐标系中,利用三角形的面积公式来求出三角形的底边.18.如图,象棋盘上,若“将”位于点(1,﹣2),“象”位于点(5,0),则炮位于点()A.(﹣ 1, 1)B.(﹣ 1, 2)C.(﹣ 2,1)D.(﹣ 2, 2)【答案】 C【分析】【剖析】依据“将”的地点向左平移一个单位所得直线是y 轴,向上平移 2 个单位所得直线是x 轴,依据“炮”的地点,可得答案.【详解】解:依据题意可成立如下图坐标系,由坐标系知炮位于点(﹣2, 1),应选: C.【点睛】本题考察了坐标确立地点,利用“将”的地点向左平移一个单位所得直线是y 轴,向上平移2 个单位所得直线是x 轴是解题重点.19.在平面直角坐标系中,以A(0, 2), B(﹣ 1, 0), C( 0.﹣ 2), D 为极点结构平行四边形,以下各点中,不可以作为极点 D 的坐标是()A.(﹣ 1, 4)B.(﹣ 1,﹣ 4)C.(﹣ 2,0)D.( 1, 0)【答案】 C【分析】【剖析】依据平行四边形的判断,能够解决问题.【详解】若以 AB 为对角线,则BD∥ AC,BD=AC=4,∴D( -1,4)若以 BC为对角线,则BD∥ AC, BD=AC=4,∴D( -1,-4)若以 AC 为对角线, B, D 对于 y 轴对称,∴D( 1, 0)应选 C.【点睛】本题考察了平行四边形的判断,重点是娴熟利用平行四边形的判断解决问题.20.在平面直角坐标系中,点P(x﹣ 3, x+3)是x 轴上一点,则点P 的坐标是()A. (0, 6)B. (0,﹣ 6)C. (﹣ 6,0)D. (6, 0)【答案】 C【分析】【剖析】依据 x 轴上的点的纵坐标为0 列式计算即可得解.【详解】∵点 P( x﹣3 ,x+3)是 x 轴上一点,∴x+3= 0,(易错题精选)初中数学函数之平面直角坐标系难题汇编含答案∴x=﹣ 3,∴点 P 的坐标是(﹣6, 0),应选: C.【点睛】本题考察了点的坐标,是基础题,熟记x 轴上的点的纵坐标为0 是解题的重点.。

2020年中考数学专题复习卷 平面直角坐标系(含解析)

2020年中考数学专题复习卷 平面直角坐标系(含解析)

平面直角坐标系一、选择题1.在平面直角坐标系中,点P(-1,2)所在的象限是()A. 第一象限B. 第二象限 C. 第三象限 D. 第四象限2.点P(x﹣1,x+1)不可能在()A. 第一象限B. 第二象限 C. 第三象限 D. 第四象限3.在平面直角坐标系中,点P(-2,x2+1)所在的象限是()A. 第一象限B. 第二象限 C. 第三象限 D. 第四象限4.在平面直角坐标系的第二象限内有一点,点到轴的距离为3,到轴的距离为4,则点的坐标是()A. B.C.D.5.在平面直角坐标系中,以原点为对称中心,把点A(3,4)逆时针旋转90°,得到点B,则点B的坐标为()A.(4,-3)B.(-4,3)C.(-3,4)D.(-3,-4)6. 抛物线(m是常数)的顶点在()A. 第一象限B. 第二象限 C. 第三象限 D. 第四象限7. 在平面直角坐标系中,点关于原点的对称点的坐标是()A. B.C.D.8. 已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是()A. 有两个相等的实数根B. 有两个不相等的实数根 C. 没有实数根 D. 无法判断9.如果直线AB平行于y轴,则点A,B的坐标之间的关系是()A. 横坐标相等B. 纵坐标相等C. 横坐标的绝对值相等D. 纵坐标的绝对值相等10.如图,CB=1,且OA=OB,BC⊥OC,则点A在数轴上表示的实数是()A. B. ﹣C.D. ﹣11. 小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是()A. (﹣2,1)B. (﹣1,1) C. (1,﹣2) D. (﹣1,﹣2)12.如图,小手盖住的点的坐标可能为()A. (-4,-5)B. (-4,5) C. (4,5) D. (4,-5)二、填空题13.如果在y轴上,那么点P的坐标是________ .14.平面直角坐标系内,点P(3,-4)到y轴的距离是 ________15.已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=________.16.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为________。

新初中数学函数之平面直角坐标系解析含答案

新初中数学函数之平面直角坐标系解析含答案

新初中数学函数之平面直角坐标系解析含答案一、选择题1.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D ¢处,则点C 的对应点C '的坐标为( )A .()23,2B .()4,2C .(4,23D .(2,23 【答案】C【解析】【分析】 由已知条件得到AD′=AD=4,AO=12AB=2,根据勾股定理得到2223AD OA '-=于是得到结论.【详解】∵AD ′=AD=4, AO=12AB=2, ∴OD ′2223AD OA '-=∵C ′D ′=4,C′D′∥AB ,∴C ′(4,3),故选C .【点睛】考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.2.在平面直角坐标系中,长方形ABCD 的三个顶点()(32),(12),1,1,A B C ---,,则第四个顶点D 的坐标是( ).A .()2,1-B .(3,1)-C .()2,3-D .(3,1)-【答案】B【解析】【分析】根据矩形的性质(对边相等且每个角都是直角),由矩形ABCD 点的顺序得到CD ⊥AD ,可以把D 点坐标求解出来.【详解】解:根据矩形ABCD 点的顺序可得到CD ⊥AD ,又∵()(32),(12),1,1,A B C ---,, ∴A 、B 纵坐标相等,B 、C 横坐标相等,∴A 、D 横坐标相等,即3;D 、C 纵坐标相等,即-1,因此(31)D -,【点睛】本题主要考查了矩形的性质和直角坐标系的基本概念,利用矩形四个角都是直角、对边相等是解题的关键.3.如果点在第四象限,那么m 的取值范围是( ). A .B .C .D .【答案】D【解析】【分析】横坐标为正,纵坐标为负,在第四象限.【详解】解:∵点p (m ,1-2m )在第四象限,∴m >0,1-2m <0,解得:m >,故选D .【点睛】坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求m 的取值范围.4.点P (a ,b )在y 轴右侧,若P 到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标为( )A .(﹣3,2)B .(﹣2,3)C .(3,2)或(3,﹣2)D .(2,3)或(2,﹣3)【答案】C【解析】【分析】根据点P 在y 轴右侧可知点P 在第一象限或第四象限,结合点P 到x 轴的距离是2可知点P 的纵坐标是2或2-,而再根据其到y 轴的距离是3得出点P 的横坐标是3,由此即可得出答案.【详解】∵点P 在y 轴右侧,∴点P 在第一象限或第四象限,又∵点P 到x 轴的距离是2,到y 轴的距离是3,∴点P 的纵坐标是2或2-,横坐标是3,∴点P 的坐标是(3,2)或(3,2-),故选:C .【点睛】本题主要考查了直角坐标系中各象限内点的坐标特征,熟练掌握相关概念是解题关键.5.如果点P (),3m 在第二象限,那么点Q ()3,m -在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】【分析】根据第二象限的横坐标小于零可得m 的取值范围,进而判定Q 点象限.【详解】解:由点P (),3m 在第二象限可得m <0,再由-3<0和m <0可知Q 点在第三象限, 故选择C.【点睛】本题考查了各象限内坐标的符号特征.6.如图,动点P 从()0,3出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P 第2018次碰到矩形的边时,点P 的坐标为( )A .()1,4B .()5,0C .()7,4D .()8,3【答案】C【解析】【分析】 理解题意,由反射角与入射角的定义作出图形,观察出反弹6次为一个循环的规律,解答即可.【详解】如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P 第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P 的坐标为(7,4).故选C .【点睛】本题考查了平面直角坐标系中点的坐标规律,首先作图,然后观察出每6次反弹为一个循环,据此解答即可.7.如图,ABCDEF 是中心为原点O ,顶点A ,D 在x 轴上,半径为4的正六边形,则顶点F 的坐标为( )A .()2,23B .()2,2-C .()2,23-D .()1,3- 【答案】C【解析】【分析】 连接OF ,设EF 交y 轴于G ,那么∠GOF=30°;在Rt △GOF 中,根据30°角的性质求出GF ,根据勾股定理求出OG 即可.【详解】解:连接OF ,在Rt △OFG 中,∠GOF=13603026⨯=o o ,OF=4. ∴GF=2,OG=23.∴F (-2,23).故选C .【点睛】本题利用了正六边形的对称性,直角三角形30°的角所对的边等于斜边的一半,勾股定理等知识,熟练掌握正六边形的对称性是解答本题的关键.8.在平面直角坐标系中,若干个半径为2个单位长度,圆心角为60︒的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为2个单位长度/秒,点在弧线上的速度为23π个单位长度/秒,则2019秒时,点P 的坐标是( )A .()2019,0B .()2019,3C .()2019,3-D .()2018,0【答案】C【解析】【分析】 如图,过半径OA 的端点A 作AB x ⊥轴于点B ,设第n 秒运动到点n P (n 为自然数),根据锐角三角函数和扇形的弧长公式求得414+34+442(41,3),(42,0),(43,3),(44,0)n n n n P n P n P n P n +++++-+,根据201945043=⨯+即可求解点P 的坐标.【详解】如图,过半径OA 的端点A 作AB x ⊥轴于点B ,设第n 秒运动到点n P (n 为自然数)2,60OA AOB ︒=∠=Qsin 3cos 1AB OA AOB OB OA AOB ∴=⋅∠==⋅∠=,圆心角为60°的扇形的弧长为60221803ππ⨯= 12345(13),(2,0),(3,3)(4,0),3),,P P P P P ∴-L1244(41,3),n n P n P ++∴+4+34+4(42,0),(43,3),(44,0)n n n P n P n ++-+201945043=⨯+Q∴2019秒时,点P 的坐标为()2019,3-故答案为:C .【点睛】本题考查了坐标类的规律题,掌握各点坐标的规律是解题的关键.9.如图,在平面直角坐标系上有个点(1,0)P ,点P 第1次向上跳动1个单位至点1(1,1)P ,紧接着第2次向左跳动2个单位至点2(1,1)P -,第3次向上跳动1个单位到达3(1,2)P -,第4次向右跳动3个单位到达4(2,2)P ,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点2019P 的坐标为( ).A .(505,1010)B .(505,505)-C .(505,1010)-D .(505,505)-【答案】C【解析】【分析】 设第n 次跳动至点Pn ,根据部分点An 坐标的变化找出变化规律“P 4n (n +1,2n ),P 4n +1(n +1,2n +1),P 4n +2(−n−1,2n +1),P 4n +3(−n−1,2n +2)”,依此规律结合2019=504×4+3即可得出点P 2019的坐标.【详解】设第n 次跳动至点Pn ,观察发现:P (1,0),P 1(1,1),P 2(−1,1),P 3(−1,2),P 4(2,2),P 5(2,3),P 6(−2,3),P 7(−2,4),P 8(3,4),P 9(3,5),…,∴P 4n (n +1,2n ),P 4n +1(n +1,2n +1),P 4n +2(−n−1,2n +1),P 4n +3(−n−1,2n +2)(n 为自然数).∵2019=504×4+3,∴P 2019(-504-1,504×2+2),即(505,1010)-.故选:C .【点睛】本题考查了规律型中点的坐标,根据部分点An 坐标的变化找出变化规律“P 4n (n +1,2n ),P 4n +1(n +1,2n +1),P 4n +2(−n−1,2n +1),P 4n +3(−n−1,2n +2)(n 为自然数)”是解题的关键.10.如图,若A、B两点的坐标分别为(﹣3,5)、(3,5),则点C坐标为()A.(﹣2,6)B.(﹣1,6)C.(﹣2,7)D.(﹣1,7)【答案】D【解析】【分析】根据A、B的坐标判断出y轴在AB的垂直平分线上,结合图形可得点C的纵坐标比A、B 的纵坐标大2,然后解答即可.【详解】如图所示,∵A、B两点的坐标分别为(﹣3,5)、(3,5),∴则点C坐标为(﹣1,7),故选:D.【点睛】本题考查了坐标确定位置,准确识图,判断出y轴的位置以及点C的纵坐标与点A、B的纵坐标的关系是解题的关键.11.在平面直角坐标系中,A,B,C三点坐标分别是(0,0),(4,0),(3,2),以A,B,C三点为顶点画平行四边形,则第四个顶点不可能在().A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】A点在原点上,B点在横轴上,C点在第一象限,根据平行四边形的性质:两组对边分别平行,可知第四个顶点可能在第一、二、四象限,不可能在第三象限,故选C12.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为()A.(5,4) B.(4,5) C.(3,4) D.(4,3)【答案】D【解析】【分析】根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标即可解答.【详解】如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D.【点睛】本题利用平面直角坐标系表示点的位置,关键是由已知条件正确确定坐标轴的位置.13.如果点P在第三象限内,点P到x轴的距离是4,到y轴的距离是5,那么点P的坐标是()A.(﹣4,﹣5)B.(﹣4,5)C.(﹣5,4)D.(﹣5,﹣4)【答案】D【解析】【分析】根据第三象限内点的横坐标是负数,纵坐标是负数以及点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【详解】解:∵第三象限的点P 到x 轴的距离是4,到y 轴的距离是5,∴点P 的横坐标是﹣5,纵坐标是﹣4,∴点P 的坐标为(﹣5,﹣4).故选:D.【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.14.如图,在菱形OABC 中,30AOC ∠=︒,4OA =,以O 为坐标原点,以OA 所在的直线为x 轴建立平面直角坐标系,如图.按以下步骤作图:①分别以点A ,B 为圆心,以大于2AB 的长为半径作弧,两弧相交于点M ,N ;②作直线MN 交BC 于点P .则点P 的坐标为( )A .(4,2)B .438,23⎛⎫- ⎪ ⎪⎝⎭C .234,23⎛⎫+ ⎪ ⎪⎝⎭D .()33,2 【答案】C【解析】【分析】 延长BC 交y 轴于点D 可求OD ,CD 的长,进一步求出BD 的长,再解直角三角形BPE ,求得BP 的长,从而可确定点P 的坐标.【详解】延长BC 交y 轴于点D ,MN 与AB 将于点E ,如图,∵四边形OABC 是菱形,∠AOC=30°,∴OA=OC=AB=BC=4,BC ∥OA ,∠ABC=30°,∴∠OCD=∠AOC=30°,∴OD=12OC=2,即点P 的纵坐标是2. ∴3∴BD=BC+CD=4+23,∵MN是AB的垂直平分线,∴BE=12AB=2,∴BP=43cos303BE==︒∴DP=BD-BP=4+23-43=4+23.∴点P的坐标为234,23⎛⎫+⎪⎪⎝⎭故选C.【点睛】此题主要考查了坐标与图形的性质,也考查了菱形的性质和解直角三角形.15.如图,在平面直角坐标系中.四边形OABC是平行四边形,其中()()2,03,1,A B、将ABCDY在x轴上顺时针翻滚.如:第一次翻滚得到111,AB C OY第二次翻滚得到1122B AO CY,···则第五次翻滚后,C点的对应点坐标为()A.(622,2+B.2,622+C.2,622-D.(622,2-【答案】A【解析】【分析】ABCDY在x轴上顺时针翻滚,四次一个循环,推出第五次翻滚后,点A的坐标,再利用平移的性质求出C的对应点坐标即可.【详解】连接AC,过点C作CH⊥OA于点H,∵四边形OABC是平行四边形,A(2,0)、B(3,1),∴C(1,1),∴∠COA=45°,OC=AB=2, ∴OH= OC÷2=1,∴AH=2-1=1,∴OA=AH ,∴OC=AC ,∴∆OAC 是等腰直角三角形,∴AC ⊥OC , ∵ABCD Y 在x 轴上顺时针翻滚,四次一个循环,∴第五次翻滚后点,A 的坐标为(6+22,0),把点A 向上平移2个单位得到点C , ∴第五次翻滚后,C 点的对应点坐标为()622,2+.故选:A .【点睛】本题主要考查图形与坐标,涉及平行四边形的性质,等腰直角三角形的性质以及平移的性质,找到点的坐标的变化规律,是解的关键.16.如图所示,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A(2, 0)同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位长度秒匀速运动,物体乙按顺时针方向以2个单位长度秒匀速运动,则两个物体运动后的第2020次相遇点的坐标是( )A .(2,0)B .(-1,-1)C .( -2,1)D .(-1, 1)【答案】D【解析】【分析】利用行程问题中的相遇问题,由于长方形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答;【详解】∵A (2,0),四边形BCDE 是长方形,∴B (2,1),C (-2,1),D (-2,-1),E (2,-1),∴BC=4,CD=2,∴长方形BCDE 的周长为()2422612⨯+=⨯=,∵甲的速度为1,乙的速度为2,∴第一次相遇需要的时间为12÷(1+2)=4(秒),此时甲的路程为1×4=4,甲乙在(-1,1)相遇,以此类推,第二次甲乙相遇时的地点为(-1,-1),第三次为(2,0),第四次为(-1,1),第五次为(-1,-1),第六次为(2,0),L L ,∴甲乙相遇时的地点是每三个点为一个循环,∵202036733÷=L ,∴第2020次相遇地点的坐标为(-1,1);故选D.【点睛】本题主要考查了规律型:点的坐标,掌握甲乙运动相遇时点坐标的规律是解题的关键.17.已知点P 位于y 轴右侧,距y 轴3个单位长度,位于x 轴上方,距离x 轴4个单位长度,则点P 坐标是( )A .(3,4)B .(-3,4)C .(-4,3)D .(4,3)【答案】A【解析】【分析】根据题意,P 点应在第一象限,横、纵坐标为正,再根据P 点到坐标轴的距离确定点的坐标.【详解】解:∵P 点位于y 轴右侧,x 轴上方,∴P 点在第一象限,又∵P 点距y 轴3个单位长度,距x 轴4个单位长度,∴P 点横坐标为3,纵坐标为4,即点P 的坐标为(3,4).故选A .【点睛】本题考查了点的位置判断方法及点的坐标几何意义.18.如图,在平面直角坐标系中,三角形AOB 的三个顶点的坐标分别是(1,3)A ,(0,0)O ,(2,0)B ,第一次将三角形AOB 变换成三角形11AOB ,1(2,3)A ,1(4,0)B ;第二次将三角形11AOB 变换成三角形22A OB ,2(4,3)A ,2(8,0)B ;第三次将三角形22A OB 变换成三角形33A OB …,则2020B 的横坐标是( )A .20192B .20202C .20212D .20222【答案】C【解析】【分析】 对于A 1,A 2,A n 坐标找规律可将其写成竖列,比较从而发现A n 的横坐标为2n ,而纵坐标都是3,B n 的纵坐标总为0,横坐标为2n+1,即可得到2020B 的横坐标.【详解】解:因为B (2,0),B 1(4,0),B 2(8,0),B 3(16,0)…纵坐标不变,为0, 同时横坐标都和2有关为2n+1,那么B 的坐标为2020B (20212,0);故选:C .【点睛】本题考查了学生观察图形及总结规律的能力,解题的关键是找到点B 横坐标都与2有关的规律.19.若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( )A .(3,0)B .(3,0)或(–3,0)C .(0,3)D .(0,3)或(0,–3)【答案】B【解析】【分析】根据x 轴上点的纵坐标为0,可得P 点的纵坐标,根据点P 到y 轴的距离是点的横坐标的绝对值,可得答案.【详解】由x 轴上的点P ,得P 点的纵坐标为0,由点P 到y 轴的距离为3,得P 点的横坐标为3或-3,∴点P 的坐标为(3,0)或(-3,0),故选B .【点睛】本题考查了点的坐标,利用y 轴上点的横坐标为得出P 点的横坐标是解题关键,注意点到x 轴的距离是点的纵坐标的绝对值.20.下列结论:①坐标为3-的点在经过点(3,0)-且平行于y 轴的直线上;②0m ≠时,点()2,P m m -在第四象限;③点()3,4-关于y 轴对称的点的坐标是(3,4)--;④在第一象限的点N 到x 轴的距离是1,到y 轴的距离是2,则点N 的坐标为(2,1). 其中正确的是( ).A .①③B .②④C .①④D .②③ 【答案】C【解析】【分析】依据点的坐标的概念,关于坐标轴对称的点的特征以及不同象限内点的坐标特征,即可得到正确结论.【详解】①横坐标为3-的点在经过点(3,0)-且平等于y 轴的直线上,故正确;②当0m ≠时,点()2,P m m -在第四象限或第一象限,故错误;③与点()3,4-关于y 对称点的坐标是(3,4),故错误;④在第一象限的点N 到x 轴的距离是1,到y 轴的距离是2,则点N 的坐标为(2,1),故正确.故选:C .【点睛】本题考查了点的坐标的概念,关于坐标轴对称的点的特征以及不同象限内点的坐标特征.。

2020-2021初中数学函数之平面直角坐标系难题汇编附答案

2020-2021初中数学函数之平面直角坐标系难题汇编附答案

2020-2021初中数学函数之平面直角坐标系难题汇编附答案一、选择题1.如图,小手盖住的点的坐标可能为( )A .(-1,1)B .(-1,-1)C .(1,1)D .(1,-1)【答案】D【解析】【详解】 解:根据第四象限的坐标特征,易得小手盖住的点的横坐标为正,纵坐标为负,选项D 符合此特征,故选:D2.如图,在平面直角坐标系上有个点(1,0)P ,点P 第1次向上跳动1个单位至点1(1,1)P ,紧接着第2次向左跳动2个单位至点2(1,1)P -,第3次向上跳动1个单位到达3(1,2)P -,第4次向右跳动3个单位到达4(2,2)P ,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点2019P 的坐标为( ).A .(505,1010)B .(505,505)-C .(505,1010)-D .(505,505)-【答案】C【解析】【分析】 设第n 次跳动至点Pn ,根据部分点An 坐标的变化找出变化规律“P 4n (n +1,2n ),P 4n +1(n +1,2n +1),P 4n +2(−n−1,2n +1),P 4n +3(−n−1,2n +2)”,依此规律结合2019=504×4+3即可得出点P 2019的坐标.【详解】设第n 次跳动至点Pn ,观察发现:P (1,0),P 1(1,1),P 2(−1,1),P 3(−1,2),P 4(2,2),P 5(2,3),P 6(−2,3),P 7(−2,4),P 8(3,4),P 9(3,5),…,∴P 4n (n +1,2n ),P 4n +1(n +1,2n +1),P 4n +2(−n−1,2n +1),P 4n +3(−n−1,2n +2)(n 为自然数).∵2019=504×4+3,∴P 2019(-504-1,504×2+2),即(505,1010)-.故选:C .【点睛】本题考查了规律型中点的坐标,根据部分点An 坐标的变化找出变化规律“P 4n (n +1,2n ),P 4n +1(n +1,2n +1),P 4n +2(−n−1,2n +1),P 4n +3(−n−1,2n +2)(n 为自然数)”是解题的关键.3.若点A (a+1,b ﹣2)在第二象限,则点B (﹣a ,1﹣b )在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】分析:直接利用第二象限横纵坐标的关系得出a ,b 的符号,进而得出答案.详解:∵点A (a+1,b-2)在第二象限,∴a+1<0,b-2>0,解得:a <-1,b >2,则-a >1,1-b <-1,故点B (-a ,1-b )在第四象限.故选D .点睛:此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.4.如图,在平面直角坐标系中,()11A ,,()11B ,-,()12C --,,()12D -,,把一条长为2019个单位长度且没有弹性的细线(线的粗细不略不计)的一端固定在点A 处,并按A B C D A -----…的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是( )A .(1,0)B .(1,1)C .(-1,1)D .(-1,-2)【答案】A【解析】【分析】根据点的坐标求出四边形ABCD 的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【详解】解:∵A (1,1),B (-1,1),C (-1,-2),D (1,-2),∴AB=1-(-1)=2,BC=1-(-2)=3,CD=1-(-1)=2,DA=1-(-2)=3,∴绕四边形ABCD 一周的细线长度为2+3+2+3=10,2019÷10=201…9,∴细线另一端在绕四边形第202圈的第9个单位长度的位置,即细线另一端所在位置的点的坐标是(1,0).故选:A .【点睛】本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD 一周的长度,从而确定2019个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.5.点P(1﹣2x ,5x ﹣1)在第四象限,则x 的范围是( )A .15x <B .12x <C .1152x <<D .12x > 【答案】A【解析】【分析】根据点的位置得出不等式组,求出不等式组的解集即可.【详解】解:∵点P (1﹣2x ,5x ﹣1)在第四象限,120510x x ->⎧∴⎨-<⎩, 解得:15x <, 故选:A .【点睛】本题考查了点的位置和解一元一次不等式组,能根据题意得出不等式组是解此题的关键.6.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为( )A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1【答案】B【解析】试题分析:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B.7.在平面直角坐标系中,点P(x﹣3,x+3)是x轴上一点,则点P的坐标是()A.(0,6) B.(0,﹣6) C.(﹣6,0) D.(6,0)【答案】C【解析】【分析】根据x轴上的点的纵坐标为0列式计算即可得解.【详解】∵点P(x﹣3,x+3)是x轴上一点,∴x+3=0,∴x=﹣3,∴点P的坐标是(﹣6,0),故选:C.【点睛】本题考查了点的坐标,是基础题,熟记x轴上的点的纵坐标为0是解题的关键.8.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5【答案】A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.9.如图,正方形ABCD的顶点A(1,1),B(3,1),规定把正方形ABCD“先沿x轴翻折,再向左平移1个单位”为一次变换,这样连续经过2019次变换后,正方形ABCD的顶点C的坐标为()A.(﹣2018,3)B.(﹣2018,﹣3)C.(﹣2016,3)D.(﹣2016,﹣3)【答案】D【解析】【分析】首先由正方形ABCD,顶点A(1,1)、B(3,1)、C(3,3),然后根据题意求得第1次、2次、3次变换后的点C的对应点的坐标,即可得规律:第n次变换后的点C的对应点的为:当n为奇数时为(3-n,-3),当n为偶数时为(3-n,3),继而求得把正方形ABCD连续经过2019次这样的变换得到正方形ABCD的点C的坐标.【详解】∵正方形ABCD,顶点A(1,1)、B(3,1),∴C(3,3).根据题意得:第1次变换后的点C的对应点的坐标为(3﹣1,﹣3),即(2,﹣3),第2次变换后的点C的对应点的坐标为:(3﹣2,3),即(1,3),第3次变换后的点C的对应点的坐标为(3﹣3,﹣3),即(0,﹣3),第n次变换后的点C的对应点的为:当n为奇数时为(3﹣n,﹣3),当n为偶数时为(3﹣n,3),∴连续经过2019次变换后,正方形ABCD的点C的坐标变为(﹣2016,﹣3).故选D.【点睛】此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的点C的对应点的坐标为:当n为奇数时为(3-n,-3),当n为偶数时为(3-n,3)是解此题的关键.10.如图,甲处表示2街6巷的十字路口,乙处表示6街1巷的十字路口.如果用(2,6)表示甲处的位置,那么“(2,6)→(3,6)→(4,6)→(5,6)→(6,6)→(6,5)→(6,4)→(6,3)→(6,2)→(6,1)”表示从甲处到乙处的一种路线(规定:只能沿线向下和向右运动),则从甲处到乙处的路线中经过丙处的走法共有()A.38种B.39种C.40种D.41种【答案】C【解析】【分析】先确定从甲到丙的路线,再确定从丙到乙的路线,两种路线的乘积即为所求.【详解】解:从甲到丙有4条路线,从丙到乙有10条路线,∴从甲处到乙处经过丙处的走法共有4×10=40种,故选:C.【点睛】本题考查坐标确定位置;能够用列举法求出甲到丙,丙到乙的路线方案是解题的关键.11.点P(a,b)在第四象限,则点P到x轴的距离是()A.a B.b C.|a| D.|b|【答案】D【解析】∵点P(a,b)在第四象限,∴b<0,∴点P到x轴的距离是|b|.故选D.12.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为()A.(5,4) B.(4,5) C.(3,4) D.(4,3)【答案】D【解析】根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标即可解答.【详解】如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D .【点睛】本题利用平面直角坐标系表示点的位置,关键是由已知条件正确确定坐标轴的位置.13.在平面直角坐标系xOy 中,对于点(),P x y ,我们把点()1,1P y x '-++叫做点P 的伴随点.已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得到点123,,,,,n A A A A L L .若点1A 的坐标为()3,1,则点2019A 的坐标为( ) A .()0,2-B .()0,4C .()3,1D .()3,1-【答案】D【解析】【分析】根据“伴随点”的定义依次求出各点,每4个点为一个循环组依次循环,用2019除以4,根据商和余数的情况确定点A 2019的坐标即可.【详解】解:A 1的坐标为(3,1),则A 2(-1+1,3+1)=(0,4),A 3(-4+1,0+1)=(-3,1),A 4(0,-2),A 5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2019÷4=504…3,∴点A 2019的坐标与A 3的坐标相同,为(-3,1),故选D.本题考查点的坐标规律,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.14.如图所示,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A(2, 0)同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位长度秒匀速运动,物体乙按顺时针方向以2个单位长度秒匀速运动,则两个物体运动后的第2020次相遇点的坐标是( )A .(2,0)B .(-1,-1)C .( -2,1)D .(-1, 1)【答案】D【解析】【分析】 利用行程问题中的相遇问题,由于长方形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答;【详解】∵A (2,0),四边形BCDE 是长方形,∴B (2,1),C (-2,1),D (-2,-1),E (2,-1),∴BC=4,CD=2,∴长方形BCDE 的周长为()2422612⨯+=⨯=,∵甲的速度为1,乙的速度为2,∴第一次相遇需要的时间为12÷(1+2)=4(秒),此时甲的路程为1×4=4,甲乙在(-1,1)相遇,以此类推,第二次甲乙相遇时的地点为(-1,-1),第三次为(2,0),第四次为(-1,1),第五次为(-1,-1),第六次为(2,0),L L ,∴甲乙相遇时的地点是每三个点为一个循环,∵202036733÷=L ,∴第2020次相遇地点的坐标为(-1,1);【点睛】本题主要考查了规律型:点的坐标,掌握甲乙运动相遇时点坐标的规律是解题的关键.15.如图,在直角坐标系内,正方形如图摆放,已知顶点 A(a ,0),B(0,b) ,则顶点C 的坐标为( )A .(-b ,a + b)B .(-b ,b - a)C .(-a ,b - a)D .(b ,b -a)【答案】B【解析】【分析】 根据题意首先过点C 作CE ⊥y 轴于点E ,易得△AOB ≌△BEC ,然后由全等三角形的性质,证得CE=OB=b ,BE=OA=a ,继而分析求得答案.【详解】解:如图,过点C 作CE ⊥y 轴于点E ,∵四边形ABCD 是正方形,∴AB=BC ,∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠ABO+∠BAO=90°,∴∠CBE=∠BAO ,在△ABO 和△BCE 中,90AOB CEB BAO CBE AB BC ⎧⎪⎨⎪∠∠︒∠∠⎩==== ∴△AOB ≌△BEC (AAS ),∴BE=OA=a ,CE=OB=b ,∴OE=OB-BE=b-a ,∴顶点C 的坐标为:(-b ,b-a ).故选:B .本题考查正方形的性质以及全等三角形的判定与性质.注意掌握辅助线的作法以及注意掌握数形结合思想的应用.16.P 在第二象限,P 到x 轴的距离是2,到y 轴的距离是3,则P 点的坐标是( ) A .()2,3-B .()3,2-C .()3,2D .()2,3【答案】B【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度求解即可.【详解】解:∵点P 在第二象限,且到x 轴的距离为2,到y 轴的距离为3,∴点P 的横坐标为-3,纵坐标为2,∴点P 的坐标是(-3,2).故选:B .【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度是解题的关键.17.如图,在平面直角坐标系中,四边形OABC 是菱形,点C 的坐标为()2,3,则菱形OABC 的面积是( )A 6B 13C 3132D .313【答案】D【解析】【分析】 作CH ⊥x 轴于点H ,利用勾股定理求出OC 的长,根据菱形的性质可得OA =OC ,即可求解.【详解】如图所示,作CH ⊥x 轴于点H ,∵四边形OABC 是菱形,∴OA =OC ,∵点C 的坐标为()2,3,∴OH =2,CH =3,∴OC =22OH CH +=2223+=13 ∴菱形OABC 的面积=OA·CH =313 故选:D【点睛】本题考查菱形的性质、勾股定理、坐标与图形的性质、菱形的面积公式,解题的关键是学会添加辅助线,构造直角三角形.18.m mn -有意义,那么直角坐标系中 P(m,n)的位置在( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【解析】【分析】先根据二次根式与分式的性质求出m,n 的取值,即可判断P 点所在的象限.【详解】依题意的-m≥0,mn >0,解得m <0,n <0,故P(m,n)的位置在第三象限,故选C.【点睛】此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.19.在平面直角坐标系中.对于平面内任一点(m ,n ),规定以下两种变换: ①f (m ,n )=(m ,﹣n ),如f (2,1)=(2,﹣1);②g (m ,n )=(﹣m ,﹣n ),如g (2,1)=(﹣2,﹣1).按照以上变换有:f[g (3,4)]=f (﹣3,﹣4)=(﹣3,4),那么g[f (3,2)]等于( )A .(3,2)B .(3.﹣2)C .(﹣3,2)D .(﹣3,﹣2)【答案】C【解析】【分析】根据f、g的规定进行计算即可得解.【详解】g[f(3,2)]=g(3,﹣2)=(﹣3,2).故选C.【点睛】本题考查了点的坐标,读懂题目信息,理解f、g的运算方法是解题的关键.20.下列说法中,正确的是()A.点P(3,2)到x轴距离是3B.在平面直角坐标系中,点(2,﹣3)和点(﹣2,3)表示同一个点C.若y=0,则点M(x,y)在y轴上D.在平面直角坐标系中,第三象限内点的横坐标与纵坐标同号【答案】D【解析】【分析】根据点的坐标到坐标轴的距离、坐标轴上点的坐标特点及第三象限内点的坐标符号特点逐一判断可得.【详解】A、点P(3,2)到x轴距离是2,此选项错误;B、在平面直角坐标系中,点(2,﹣3)和点(﹣2,3)表示不同的点,此选项错误;C、若y=0,则点M(x,y)在x轴上,此选项错误;D、在平面直角坐标系中,第三象限内点的横坐标与纵坐标同为负号,此选项正确;故选D.【点睛】本题主要考查点的坐标,解题的关键是掌握点的坐标到坐标轴的距离、坐标轴上点的坐标特点及第三象限内点的坐标符号特点.。

人教版初中数学七年级数学下册第三单元《平面直角坐标系》测试题(含答案解析)

人教版初中数学七年级数学下册第三单元《平面直角坐标系》测试题(含答案解析)

一、选择题1.一只跳蚤在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2021次跳到点( )A .(3,44)B .(4,45)C .(44,3)D .(45,4) 2.如图,将一颗小星星放置在平面直角坐标系中第二象限内的甲位置,先将它绕原点O 旋转180︒到乙位置,再将它向上平移2个单位长到丙位置,则小星星顶点A 在丙位置中的对应点A '的坐标为( )A .()3,1-B .()1,3C .()3,1D .()3,1- 3.若点(),A m n 到y 轴的距离是它到x 轴距离的两倍,则( ).A .2m n =B .2m n =C .2m n =D .2m n = 4.如图,在ABC ∆中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点B 的坐标为()1,4,则点A 的坐标为( )A .()6,3-B .()3,6-C .()4,3-D .()3,4- 5.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.下列说法正确的是( )A .若0ab =,则点(,)P a b 表示原点B .点(1,)a 在第三象限C .已知点(3,3)A -与点(3,3)B ,则直线//AB x 轴D .若0ab >,则点(,)P a b 在第一或第三象限7.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-, D .(0,4)-8.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( )A .(5,4)B .(4,5)C .(3,4)D .(4,3) 9.在下列点中,与点A(-2,-4)的连线平行于y 轴的是( ) A .(2,-4) B .(4,-2) C .(-2,4) D .(-4,2) 10.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为( )A .(1,3)B .(5,1)C .(1,3)或(3,5)D .(1,3)或(5,1) 11.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,...,第n 次移动到n A .则22020OA A ∆的面积是( )A .210112mB .2505mC .220092mD .2504m 12.在平面直角坐标系中,点A (0,a ),点B (0,4﹣a ),且A 在B 的下方,点C(1,2),连接AC ,BC ,若在AB ,BC ,AC 所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a 的取值范围为( )A .﹣1<a ≤0B .0<a ≤1C .1≤a <2D .﹣1≤a ≤1二、填空题13.某人从A 点沿北偏东60︒的方向走了100米到达点B ,再从点B 沿南偏西10︒的方向走了100米到达点C ,那么点C 在点A 的南偏东__度的方向上.14.点(1,1)P -向左平移2个单位,向上平移3个单位得1P ,则点1P 的坐标是________. 15.在电影院内找座位,将“4排3号”简记为(4,3),则(8,7)表示______16.点P 先向左平移4个单位,再向上平移1个单位,得到点Q(2,-3),则点P 坐标为__ 17.若不在第一象限的点(),22A x x -+到两坐标轴距离相等,则A 点坐标为 _________. 18.如图所示,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动1个单位长度,依次得到点1(0,1)P ,2(1,1)P ,3(1,0)P,4(1,1)P -,5(2,1)P -,6(2,0)P ,…,则点2020P 的坐标是______.19.如图,已知点A 的坐标为(−2,2),点C 的坐标为(2,1),则点B 的坐标是____.20.若x ,y 为实数,且满足330x y -++=,则 A(x ,y)在第____象限三、解答题21.如图,在平面直角坐标系中,四边形OABC 各顶点的坐标分别是()0,0O ,()0,12A ,()10,8B -,()14,0C -,求四边形OABC 的面积.22.已知,在平面直角坐标系中,三角形ABC 三个顶点的坐标分别为()5,6A ,()2,3B -,()3,1C .请在所给的平面直角坐标系中按要求完成以下问题:(1)画出三角形ABC ;(2)将三角形ABC 先向下平移6个单位长度,再向左平移3个单位长度后得到的三角形111A B C (点1A ,1B ,1C 分别是点A ,B ,C 移动后的对应点)请画出三角形111A B C ;并判断线段AC 与11A C 位置与数量关系.23.已知点(1,5)A a -和(2,1)B b -.试根据下列条件求出a ,b 的值.(1)A ,B 两点关于y 轴对称;(2)A ,B 两点关于x 轴对称;(3)AB ‖x 轴24.如图,中国象棋中对“象”的走法有一定的限制,只能走“田”字.若此时“象”的坐标为()2,4--“帅”的坐标为()0,4-,建立直角坐标系并试写出此“象”下一步可能走到的各位置的坐标.25.如图,在平面直角坐标系中,点C(-1,0),点A(-4,2),AC⊥BC且AC=BC,求点B的坐标.26.如图(1),在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),将线段AB先向上平移2个单位长度,再向右平移1个单位长度,得到线段CD,连接AC,BD,构成平行四边形ABDC.(1)请写出点C的坐标为,点D的坐标为,S四边形ABDC;(2)点Q在y轴上,且S△QAB=S四边形ABDC,求出点Q的坐标;(3)如图(2),点P是线段BD上任意一个点(不与B、D重合),连接PC、PO,试探索∠DCP、∠CPO、∠BOP之间的关系,并证明你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】由题目中所给的跳蚤运动的特点找出规律,即可解答.【详解】由图可得,(0,1)表示1=12次后跳蚤所在位置;(0,2)表示8=(2+1)2−1次后跳蚤所在位置;(0,3)表示9=32次后跳蚤所在位置;(0,4)表示24=(4+1)2−1次后跳蚤所在位置;…∴(0,44)表示(44+1)2−1=2024次后跳蚤所在位置,则(3,44)表示第2021次后跳蚤所在位置.故选:A.【点睛】本题主要考查点的坐标问题,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.2.C解析:C【分析】根据图示可知A点坐标为(-3,1),它绕原点O旋转180°后得到的坐标为(3,-1),根据平移“上加下减”原则,向上平移2个单位得到的坐标为(3,1).【详解】解:根据图示可知A点坐标为(-3,1)根据绕原点O旋转180°横纵坐标互为相反数∴旋转后得到的坐标为(3,-1)根据平移“上加下减”原则∴向下平移2个单位得到的坐标为(3,1)故选C.【点睛】本题考查平面直角坐标系中点的对称点的坐标,掌握与原点对称和平移原则是解题的关键.3.C解析:C【分析】根据分别表示点到x轴的距离和到y轴的距离,再根据到y轴的距离是它到x轴距离的两倍列式即可.【详解】解:点(),A m n 到y 轴的距离是它到x 轴距离的两倍.则2m n =,故选C .【点睛】本题考查了点的坐标,熟记点到y 轴的距离,再根据到y 轴的距离是它到x 轴距离的两倍列式是解题的关键.4.A解析:A【分析】过点A 作x 轴的垂线交于点E ,过点B 作x 轴的垂线交于点F ,运用AAS 证明ACE CBF ∆≅∆得到AE CF =,CE BF =即可求得结论.【详解】解:过点A 作x 轴的垂线交于点E ,过点B 作x 轴的垂线交于点F ,90AEC CFB ∴∠=∠=︒90A ACE ∴∠+∠=︒, 90ACB ∠=︒90ACE BCF ∴∠=∠=︒A BCF ∴∠=∠,在ACE ∆和CBF ∆中,90A BCF AEC CFB AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()ACE CBF AAS ∴∆≅∆AE CF ∴=,CE BF =,(2,0)C -,(1,4)B4BF ∴=,1(2)3CF =--=,3AE CF ∴==,4CE BF ==,426OE CE OC ∴=+=+=,()6,3A ∴-故选A .【点睛】此题考查了坐标与图形,证明ACE CBF ∆≅∆得到AE CF =,CE BF =是解决问题的关键.5.D解析:D【解析】解:点P 的坐标为(3,﹣1),那么点P 在第四象限,故选D .6.D解析:D【分析】直接利用坐标系中点的坐标特点以及平行于坐标轴的直线上点的关系分别分析得出答案.【详解】解:A 、若ab=0,则a=0或b=0,所以点P (a ,b )表示在坐标轴上的点,故此选项不符合题意;B 、当a >0时,点(1,a )在第一象限,故此选项不符合题意;C 、已知点A (3,-3)与点B (3,3),A ,B 两点的横坐标相同,则直线AB ∥y 轴,故此选项不符合题意;D 、若ab >0,则a 、b 同号,故点P (a ,b )在第一或三象限,故此选项符合题意. 故选:D .【点睛】此题主要考查了坐标与图形的性质,正确把握点的坐标特点是解题的关键.7.A解析:A【分析】直接利用关于x 轴上点的坐标特点得出m 的值,进而得出答案.【详解】 解:点224P m m +(,﹣)在x 轴上,240m ∴﹣=,解得:2m =,24m ∴+=,则点P 的坐标是:()4,0.故选A .【点睛】此题主要考查了点的坐标,正确得出m 的值是解题关键.8.D解析:D【分析】根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标即可解答.【详解】如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D.【点睛】本题利用平面直角坐标系表示点的位置,关键是由已知条件正确确定坐标轴的位置.9.C解析:C【分析】平行于y轴的直线上所有点的横坐标相等,根据这一性质进行选择.【详解】∵平行于y轴的直线上所有点的横坐标相等,已知点A(-2,-4)横坐标为-2,所以结合各选项所求点为(-2,4),故答案选C.【点睛】本题考查了平行于坐标轴的直线上点的坐标特点,解本题的关键在于熟知平行于x轴的直线上所有点的纵坐标相等,平行于y轴的直线上所有点的横坐标相等.10.D解析:D【分析】分两种情况考虑:①A点移动到C点,则向右移动一位,向上移动两位,另一个点同等平移即可;②B点移动到C点,则向右移动三位,再向上移动一位,另一个点同等平移即可.【详解】分两种情况考虑:1,3;①A点移动到C点,则向右移动一位,向上移动两位,则B点平移后坐标为()5,1.②B点移动到C点,则向右移动三位,再向上移动一位,则A点平移后坐标为()故答案选:D.【点睛】本题考查坐标系中点的平移变换,掌握点的变换情况以及分类讨论是解题关键.11.B解析:B【分析】根据图象可得移动4次图象完成一个循环,从而可得出OA4n=2n知OA2020=2×505,据此利用三角形的面积公式计算可得.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…,由题意知OA4n=2n,∵2020÷4=505,∴OA2020=2×505,则△OA2A2020的面积是12×1×2×505=505m2,故选:B.【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.12.B解析:B【分析】根据题意得出除了点C外,其它三个横纵坐标为整数的点落在所围区域的边界上,即线段AB上,从而求出a的取值范围.【详解】解:∵点A(0,a),点B(0,4﹣a),且A在B的下方,∴a<4﹣a,解得:a<2,若在AB,BC,AC所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,∵点A,B,C的坐标分别是(0,a),(0,4﹣a),(1,2),∴区域内部(不含边界)没有横纵坐标都为整数的点,∴已知的4个横纵坐标都为整数的点都在区域的边界上,∵点C(1,2)的横纵坐标都为整数且在区域的边界上,∴其他的3个都在线段AB上,∴3≤4﹣a<4.解得:0<a≤1,故选:B.【点睛】本题考查了坐标与图形的性质,分析题目找出横纵坐标为整数的三个点存在于线段AB上为解决本题的关键.二、填空题13.55【分析】在直角坐标系下现根据题意确定AB 点的位置和方向最后确定C 点的位置和方向依次连接ABC 三点根据角之间的关系求出∠5的度数即可【详解】根据题意作图:∵从A 点沿北偏东60°的方向走了100米到解析:55【分析】在直角坐标系下现根据题意确定A 、B 点的位置和方向,最后确定C 点的位置和方向.依次连接A 、B 、C 三点,根据角之间的关系求出∠5的度数即可.【详解】根据题意作图:∵从A 点沿北偏东60°的方向走了100米到达点B ,从点B 沿南偏西10°的方向走了100米到达点C ,∴∠1+∠2=60°,AB=BC=100,∴∠2=50°,且△ABC 是等腰三角形,∴∠BAC=180502︒-︒=65°, ∴∠5=180°-65°-60°=55°, ∴点C 在点A 的南偏东55°的方向上.故答案为:55.【点睛】本题考查了直角坐标系的建立和运用,运用直角坐标系来确定点的位置和方向. 14.(-34)【分析】根据点平移的规律:横坐标左减右加纵坐标上加下减求解【详解】点向左平移个单位向上平移3个单位得∴点的坐标是(-34)故答案为:(-34)【点睛】此题考查直角坐标系中点的坐标平移规律:解析:(-3,4)【分析】根据点平移的规律:横坐标左减右加,纵坐标上加下减求解.【详解】点(1,1)P -向左平移2个单位,向上平移3个单位得1P ,∴点1P 的坐标是(-3,4),故答案为:(-3,4).【点睛】此题考查直角坐标系中点的坐标平移规律:横坐标左减右加,纵坐标上加下减,熟记规律是解题的关键.15.8排7号【分析】由已知条件知:横坐标表示第几排纵坐标表示第几号【详解】解:根据排在前号在后得(87)表示8排7号故答案为:8排7号【点睛】本题是数学在生活中应用平面位置对应平面直角坐标系空间位置对应 解析:8排7号【分析】由已知条件知:横坐标表示第几排,纵坐标表示第几号.【详解】解:根据排在前,号在后,得(8,7)表示8排7号.故答案为:8排7号.【点睛】本题是数学在生活中应用,平面位置对应平面直角坐标系,空间位置对应空间直角坐标系.可以做到在生活中理解数学的意义.16.(6-4)【分析】直接利用平移中点的变化规律求解即可平移中点的变化规律是:横坐标右移加左移减;纵坐标上移加下移减【详解】设点P 的坐标为()由题意得:求得所以点P 的坐标为()故答案为:()【点睛】本题解析:(6,-4)【分析】直接利用平移中,点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】设点P 的坐标为(x ,y ),由题意,得:42x -=,13y +=-,求得6x =,4y =-,所以点P 的坐标为(6,4-).故答案为:(6,4-).【点睛】本题考查了坐标与图形变化-平移,用到的知识点为:左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.17.或或【分析】根据点不在第一象限内利用平面直角坐标系内点的坐标的几何意义分别讨论在第二第三第四象限的情况即可解答【详解】解:∵点不在第一象限内则点在第二第三第四象限内∵点到两坐标轴距离相等∴解之得:或 解析:()2,2-或()2,2-或22,33⎛⎫-- ⎪⎝⎭. 【分析】根据点(),22A x x -+不在第一象限内,利用平面直角坐标系内点的坐标的几何意义,分别讨论在第二、第三、第四象限的情况即可解答.【详解】解:∵点(),22A x x -+不在第一象限内,则点(),22A x x -+在第二、第三、第四象限内,∵点(),22A x x -+到两坐标轴距离相等, ∴22x x =-+,解之得:2x =或2x =-,23x =, ∴点A 的坐标是:()2,2-或()2,2-或22,33⎛⎫-- ⎪⎝⎭ 故答案是:()2,2-或()2,2-或22,33⎛⎫-- ⎪⎝⎭. 【点睛】本题主要考查了平面直角坐标系内各象限内点的坐标的符号及点的坐标的几何意义,注意横坐标的绝对值就是到y 轴的距离,纵坐标的绝对值就是到x 轴的距离. 18.【分析】观察题图可知先根据P3(10)P6(20)即可得到P3n(n0)P3n+1(n-1)再根据P3×673(6730) 可得P2019(6730)进而得到P2020(673-1)【详解】由图可知 解析:(673,1)-【分析】观察题图可知,先根据P 3(1,0), P 6 (2,0),即可得到P 3n (n ,0),P 3n+1(n ,-1),再根据P 3×673(673,0) ,可得P 2019 (673,0),进而得到P 2020(673,-1).【详解】由图可知P 3(1,0), P 6 (2,0),···,P 3n (n ,0),P 3n+1(n ,-1),∵3×673=2019,∴P 3×673(673,0) ,即P 2019 (673,0),∴P 2020(673,-1).故答案为:(673,1)-.【点睛】本题主要考查了点的坐标变化规律,解题的关键是根据图形的变化规律得到P 3n (n ,0). 19.【分析】根据点AC 的坐标建立平面直角坐标系由此即可得【详解】根据点AC 的坐标建立平面直角坐标系如图所示:则点B 的坐标为故答案为:【点睛】本题考查了点的坐标依据题意正确建立平面直角坐标系是解题关键解析:(1,2)--【分析】根据点A 、C 的坐标建立平面直角坐标系,由此即可得.【详解】根据点A 、C 的坐标建立平面直角坐标系,如图所示:则点B 的坐标为(1,2)--,故答案为:(1,2)--.【点睛】本题考查了点的坐标,依据题意,正确建立平面直角坐标系是解题关键.20.四【分析】根据绝对值与算术平方根的和为0可得绝对值与算术平方根同时为0据此求解即可【详解】解:∵∴解得:x=3y=-3∴A(3-3)在第四象限故答案是:四【点睛】本题考查了非负数的性质及象限内点的坐解析:四【分析】根据绝对值与算术平方根的和为0,可得绝对值与算术平方根同时为0,据此求解即可.【详解】解:∵330x y -+=∴30x -= ,30y +=.解得:x=3,y=-3,∴A(3,-3)在第四象限.故答案是:四.【点睛】本题考查了非负数的性质及象限内点的坐标特征,先求出x 、y 的值,再判断点的位置.三、解答题21.116OABC S =四边形【分析】过B 作BD ⊥x 轴,垂足为D ,根据A ,B ,C ,O 四点坐标求解CD ,BD ,OD ,OA 的长,再利用BCD OABC OABD S S S =+四边形四边形可求解.【详解】解:过B作BD⊥x轴,垂足为D,∵B(-10,8),∴D(-10,0),∴OD=10,BD=8,∵A(0,12),C(-14,0),∴OC=14,OA=12,∴CD=4,∴S四边形OABC=S△BCD+S四边形OABD=12BD•CD+12(BD+OA)•OD=12×8×4+12(8+12)×10=16+100=116.【点睛】本题主要考查三角形的面积,点的坐标,作辅助线将四边形转化为直角三角形和梯形是解题的关键.22.(1)作图见解析;(2)作图见解析;位置关系是:平行;数量关系是:相等.【分析】(1)根据点A、B、C三点的坐标在坐标系中描出各点,再顺次连接即可得;(2)将三顶点分别向下平移6个单位长度,再向左平移3个单位长度后得到对应点,顺次连接可得,继而根据平移的性质解答可得.【详解】解:1)如图所示,△ABC即为所求;(2)如图所示,A 1B 1C 1即为所求,AC 与A 1C 1平行且相等.【点睛】本题主要考查作图−平移变换,解题的关键是熟练掌握平移变换的定义和性质. 23.(1)1a =-,6b =;(2)3a =,4b =-;(3)3a ≠,6b =【分析】(1)关于y 轴对称,纵坐标不变,横坐标变为相反数,据此可得a ,b 的值; (2)关于x 轴对称,横坐标不变,纵坐标变为相反数,据此可得a ,b 的值; (3)AB ∥x 轴,即两点的纵坐标相同,横坐标不相同,据此可得a ,b 的值.【详解】解:(1)因为A ,B 两点关于y 轴对称,所以1215a b -=-⎧⎨-=⎩, 则1a =-,6b =.(2)因为A ,B 两点关于x 轴对称,所以1215a b -=⎧⎨-=-⎩则3a =,4b =-.(3因为//AB x 轴则满足15b -=,即6b =,12a -≠,即3a ≠.【点睛】本题考查了关于x 轴的对称点的坐标特点以及关于y 轴的对称点的坐标特点,即点P(x,y)关于x 轴对称点P´的坐标是(x,-y),关于y 轴对称点P´的坐标是(-x,y).24.下一步“象”可能走到的位置的坐标为()0,2-、()4,2--【分析】由于中国象棋中的“象”,在图中的坐标为(−2,−4),而根据中国象棋中的“象”的走法可以确定下一步它可能走到的位置的坐标.【详解】解:建立坐标系,如图:∵中国象棋中的“象”,在图中的坐标为()2,4--,且象走田字,∴下一步它可能走到的位置的坐标为()0,2-、()4,2--.【点睛】此题把数学问题和实际生活结合起来,既考查了生活中的知识,也考查了利用数学知识解决实际问题的能力,要求学生生活经验比较丰富才能很好完成这些题目.25.(1,3)【分析】过点A 作AM x ⊥轴于M ,BN x ⊥轴于N ,证明AMC CNB ∆≅∆得到AM CN =,MC NB =,即可得到结论.【详解】过点A 作AM x ⊥轴于M ,BN x ⊥轴于N则90AMC BNC ∠=∠=︒90ACB ∠=︒190A ∴∠+∠=︒2190∠+∠=︒2A ∴∠=∠AC CB ∴=AMC CNB ∴∆≅∆AM CN ∴=,MC NB =( 1.0)C -,(4,0)M -3BN ,2ON =(1,0)N ∴()1,3B∴【点睛】此题主要考查了坐标与图形,证明AMC CNB∆≅∆是解答此题的关键.26.(1)(0,2),(4,2),8;(2)Q(0,4)或Q(0,﹣4);(3)∠CPO=∠DCP+∠BOP,证明见解析【分析】(1)根据平移直接得到点C,D坐标,用面积公式计算S四边形ABDC即可;(2)设出Q的坐标,OQ=|m|,用S△QAB=S四边形ABDC建立方程,解方程即可;(3)作PE∥AB交y 轴于点E,利用两直线平行,内错角相等即可得出结论.【详解】解:(1)∵线段AB先向上平移2个单位长度,再向右平移1个单位长度,得到线段CD,且A(﹣1,0),B(3,0),∴C(0,2),D(4,2);∵AB=4,OC=2,∴S四边形ABDC=AB×OC=4×2=8;故答案为:(0,2);(4,2);8;(2)∵点Q在y轴上,设Q(0,m),∴OQ=|m|,∴S△QAB=12×AB×OQ=12×4×|m|=2|m|,∵S四边形ABDC=8,∴2|m|=8,∴m=4或m=﹣4,∴Q(0,4)或Q(0,﹣4).(3)如图,∵线段CD是线段AB平移得到,∴CD∥AB,作PE∥AB交y 轴于点E,∴CD∥PE,∴∠CPE=∠DCP,∵PE∥AB,∴∠OPE=∠BOP,∴∠CPO=∠CPE+∠OPE=∠DCP+∠BOP,∴∠CPO=∠DCP+∠BOP.【点睛】本题主要考查了线段的平移及平行线的性质,掌握平行线的性质并作出辅助线是解题的关键.。

最新初中数学函数之平面直角坐标系图文解析

最新初中数学函数之平面直角坐标系图文解析

C. (6,-6)
D. (3, 3) 或 (6,-6)
【答案】D
【解析】
【分析】
根据点 P 到两坐标轴的距离相等可得其点的横坐标与纵坐标的绝对值相等,据此进一步求
解即可.
【详解】
∵点 P 到两坐标轴的距离相等,
∴ 2 a 3a 6 ,
即: 2 a 3a 6 或 2 a 3a 6,
∴ a 1或 a 4 ,
ABCD 在 x 轴上顺时针翻滚,四次一个循环,推出第五次翻滚后,点 A 的坐标,再利用
平移的性质求出 C 的对应点坐标即可. 【详解】 连接 AC,过点 C 作 CH⊥OA 于点 H, ∵四边形 OABC 是平行四边形,A(2,0)、B(3,1), ∴C(1,1),
∴∠COA=45°,OC=AB= 2 , ∴OH= OC÷ 2 =1,
∴4=|2a+2|,a+2≠3,
解得:a=−3, 故选 A. 点睛:考查点的坐标的相关知识;用到的知识点为:到 x 轴和 y 轴的距离相等的点的横纵 坐标相等或互为相反数.
9.点 P 的坐标为 (2 a,3a 6) ,且到两坐标轴的距离相等,则点 P 的坐标为( )
A. (3,3)
B. (3,-3)
点睛:本题考查坐标与图形性质,解题的关键是明确正方形的各条边相等,能根据图形找
出它们之间的关系.
5.已知点 A a,3 、点 B3, b 关于 y 轴对称,点 Pa, b 在第( )象限
A.一
B.二
C.三
D.四
【答案】C
【解析】
【分析】
根据点 A、点 B 关于 y 轴对称,求出 a,b 的值,然后根据象限点的符号特点即可解答.
先根据二次根式与分式的性质求出 m,n 的取值,即可判断 P 点所在的象限.

(常考题)人教版初中数学七年级数学下册第三单元《平面直角坐标系》测试(含答案解析)(1)

(常考题)人教版初中数学七年级数学下册第三单元《平面直角坐标系》测试(含答案解析)(1)

一、选择题1.一只跳蚤在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2021次跳到点( )A .(3,44)B .(4,45)C .(44,3)D .(45,4) 2.已知点32,)6(M a a -+.若点M 到两坐标轴的距离相等,则a 的值为( ) A .4 B .6- C .1-或4 D .6-或23 3.在平面直角坐标系中,点(2,1)A -关于y 轴对称的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列关于有序数对的说法正确的是( )A .(3,4)与(4,3)表示的位置相同B .(a ,b )与(b ,a )表示的位置肯定不同C .(3,5)与(5,3)是表示不同位置的两个有序数对D .有序数对(4,4)与(4,4)表示两个不同的位置5.在平面直角坐标系中,点()3,4-在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为( )A .900B .946C .990D .886 7.若点(1,)A n -在x 轴上,则点(1,1)B n n +-在( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限 8.在平面直角坐标系中,将点A (﹣2,﹣2)先向右平移6个单位长度再向上平移5个单位长度得到点A',则点A'的坐标是()A.(4,5)B.(4,3)C.(6,3)D.(﹣8,﹣7)9.如图,动点Р在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2019次运动后,动点Р的坐标是()2019,1D.(2020,1) A.(2019,2)B.(2019,0)C.()10.在平面直角坐标系中,点A(0,a),点B(0,4﹣a),且A在B的下方,点C (1,2),连接AC,BC,若在AB,BC,AC所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a的取值范围为()A.﹣1<a≤0 B.0<a≤1 C.1≤a<2 D.﹣1≤a≤1 11.如图所示,某战役缴获敌人防御工事坐标地图碎片,依稀可见,一号暗堡的坐标为-,原有情报得知:敌军指挥部的坐标为(0,0),你认为(4,2),四号暗堡的坐标为(2,4)敌军指挥部的位置大约是()A.A处B.B处C.C处D.D处12.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内不包含边界上的点,观察如图所示的中心在原点,一边平行于x轴的正方形,边长为1的正方形内部有一个整点,边长为3的正方形内部有9个整点,…,则边长为10的正方形内部的整点个数为()A.100 B.81 C.64 D.49二、填空题13.若电影票上座位是12排5号可记为(12,5),则(5,6)表示_______________. 14.写一个第三象限的点坐标,这个点坐标是_______________.15.直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点第2021次运动到的点的坐标为____________.16.如图,正方形ABCD 的各边分别平行于x 轴或y 轴,蚂蚁甲和蚂蚁乙都由点E (3,0)出发,同时沿正方形ABCD 的边逆时针匀速运动,蚂蚁甲的速度为3个单位长度/秒,蚂蚁乙的速度为1个单位长度/秒,则两只蚂蚁出发后,蚂蚁甲第3次追上蚂蚁乙的坐标是_____.17.如图,在平面直角坐标系中,()()()()1,1,1,1,1,2,1,2A B C D ----,把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处, 并按 A B C D A ----⋯的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是 ____.18.如图,已知点A 的坐标为(−2,2),点C 的坐标为(2,1),则点B 的坐标是____.19.已知P (a,b ),且ab <0,则点P 在第_________象限.20.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,按这样的运动规律,经过第1000次运动后,动点P 的坐标是_______;经过第2019次运动后,动点P 的坐标是_______.三、解答题21.如图①,A 、B 、C 三地依次在一条直线上,两辆汽车甲、乙分别从A 、B 两地同时出发驶向C 地.如图②,是两辆汽车行驶过程中到B 地的距离(km)s 与行驶时间(h)t 的关系图象,其中折线EF-FG 是甲车的图象,线段OM 是乙车的图象.(1)请求出图②中a 的值和点M 的坐标;(2)在行驶过程中,甲车有可能在乙车与B 地中点的位置吗?如有,请求出行驶时间t 的值;若没有,请说明理由.22.在平面直角坐标系中,(,0)A a ,(0,)B b ,且a ,b 2|6|0a b ++-=.(1)求A 、B 两点的坐标;(2)若P 从点B 出发沿着射线BO 方向运动(点P 不与原点重合),速度为每秒2个单位长度,连接AP ,设点P 的运动时间为t ,AOP 的面积为S .请你用含t 的式子表示S . (3)在(2)的条件下,点Q 与点P 同时运动,点Q 从A 点沿x 轴正方向运动,Q 点速度为每秒1个单位长度.A 、B 、P 、Q 四个点围成四边形的面积为S '.当4S =时,求:S S '的值.23.在平面直角坐标系中,已知点M 的坐标为()23,1m m +-.(1)若点M 在x 轴上,求m 的值;(2)已知点N 的坐标为(3,2)-,且直线MN x ⊥轴,求线段MN 的长.24.国庆假期到了,八年级(1)班的同学到某梦幻王国游玩,在景区示意图前面,李强和王磊进行了如下对话:李强说:“魔幻城堡的坐标是()4,2-.”王磊说:“丛林飞龙的坐标是()2,1--.”若他们二人所说的位置都正确.(1)在图中建立适当的平面直角坐标系xOy ;(2)用坐标描述西游传说和华夏五千年的位置.25.如图,在平面直角坐标系中有一个△ABC .(1)将△ABC 向右平移3个单位得到△A 1B 1C 1,画出△A 1B 1C 1.(2)写出△A 1B 1C 1,三个顶点的坐标.26.已知点P(m+2,3),Q(−5,n−1),根据以下条件确定m、n的值(1)P、Q两点在第一、三象限的角平分线上;(2)PQ∥x轴,且P点与Q点的距离为3.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】由题目中所给的跳蚤运动的特点找出规律,即可解答.【详解】由图可得,(0,1)表示1=12次后跳蚤所在位置;(0,2)表示8=(2+1)2−1次后跳蚤所在位置;(0,3)表示9=32次后跳蚤所在位置;(0,4)表示24=(4+1)2−1次后跳蚤所在位置;…∴(0,44)表示(44+1)2−1=2024次后跳蚤所在位置,则(3,44)表示第2021次后跳蚤所在位置.故选:A.【点睛】本题主要考查点的坐标问题,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.2.C解析:C【分析】由点M 到两坐标轴的距离相等可得出32=6a a -+,求出a 的值即可.【详解】解:∵点M 到两坐标轴的距离相等, ∴32=6a a -+∴32=6a a -+,()32=-6a a -+∴a=4或a=-1.故选C .【点睛】 本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出32=6a a -+,注意不要漏解.3.C解析:C【分析】直接利用关于y 轴对称点的性质得出对应点坐标,进而得出答案.【详解】解:点A (2,-1)关于y 轴对称的点为(-2,-1),则点(-2,-1)在第三象限.故选:C .【点睛】此题主要考查了关于y 轴对称点的性质,正确掌握各象限内点的坐标特点是解题关键. 4.C解析:C【分析】根据有序数对的意义对各选项分析判断后利用排除法求解.【详解】解:A 、(3,4)与(4,3)表示的位置不相同,故本选项错误;B 、a=b 时,(a ,b )与(b ,a )表示的位置相同,故本选项错误;C 、(3,5)与(5,3)是表示不同位置的两个有序数对正确,故本选项正确;D 、有序数对(4,4)与(4,4)表示两个相同的位置,故本选项错误.故选:C .【点睛】本题考查了坐标确定位置,主要利用了有序数对的意义,比较简单.5.B解析:B【分析】根据直角坐标系中点的坐标的特点解答即可.【详解】∵点()3,4-,∴点()3,4-在第二象限,故选:B.【点睛】此题考查直角坐标系中点的坐标的符号特点,第一象限为(+,+),第二象限为(-,+),第三象限为(-,-),第四象限为(+,-).6.C解析:C【分析】根据点的坐标变化寻找规律即可.【详解】解:一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)→(1,0)→(1,1)→(1,2)→(2,1)→(3,0)→L ,发现:当x=0时,有两个点,共2个点,当x=1时,有3个点,x=2时,1个点,共4个点;当x=3时,有4个点,x=4,1个点,x=5,1个点,共6个点;当x=6时,有5个点,x=7,1个点,x=8,1个点,x=9,1个点,共8个点;当x=10时,有6个点,x=11,1个点,x=12,1个点,x=13,1个点,x=14,1个点,共10个点;…当x=()12n n -,有(n+1)个点,共2n 个点; 2+4+6+8+10+…+2n≤2018, ()222n n +≤2018且n 为正整数, 得n=44,∵n=44时,2+4+6+8+10+…+88=1980,且当n=45时,2+4+6+8+10+…+90=2070,1980<2018<2070,∴当n=45时,x=45462⨯=990,46个点, ∴1980<2018<1980+46,∴2018个粒子所在点的横坐标为990.故选:C .【点睛】 本题考查了规律型:点的坐标,解决本题的关键是观察点的坐标的变化寻找规律. 7.D解析:D【分析】根据点(1,)A n -在x 轴上,计算得n 的值,从而计算出点B 的坐标,即可完成求解.【详解】∵点(1,)A n -在x 轴上∴0n =∴11n +=,11n -=-∴(1,1)B n n +-为(1,1)B -∴(1,1)B n n +-在第四象限故选:D .【点睛】本题考查了直角坐标系中坐标和象限的知识;解题的关键是熟练掌握直角坐标系中坐标和象限的性质,从而完成求解.8.B解析:B【分析】利用“横坐标,右移加,左移减;纵坐标,上移加,下移减”的规律求解可得.【详解】解:将点A (﹣2,﹣2)先向右平移6个单位长度,再向上平移5个单位长度,得到点A ',其坐标为(﹣2+6,﹣2+5),即(4,3),故选:B .【点睛】本题考查了坐标与图形变化-平移,在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)9.A解析:A【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为1,0,2,0,每4次一轮这一规律,进而求出即可.【详解】解:解:根据动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),∴第4次运动到点(4,0),第5次接着运动到点(5,1),…,∴横坐标为运动次数,经过第2019次运动后,动点P 的横坐标为2019,纵坐标为1,0,2,0,每4次一轮,∴经过第2019次运动后,动点P的纵坐标为:2019÷4=504余3,故纵坐标为四个数中第三个,即为2,∴经过第2019次运动后,动点P的坐标是:(2019,2),故选:A.【点睛】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.10.B解析:B【分析】根据题意得出除了点C外,其它三个横纵坐标为整数的点落在所围区域的边界上,即线段AB上,从而求出a的取值范围.【详解】解:∵点A(0,a),点B(0,4﹣a),且A在B的下方,∴a<4﹣a,解得:a<2,若在AB,BC,AC所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,∵点A,B,C的坐标分别是(0,a),(0,4﹣a),(1,2),∴区域内部(不含边界)没有横纵坐标都为整数的点,∴已知的4个横纵坐标都为整数的点都在区域的边界上,∵点C(1,2)的横纵坐标都为整数且在区域的边界上,∴其他的3个都在线段AB上,∴3≤4﹣a<4.解得:0<a≤1,故选:B.【点睛】本题考查了坐标与图形的性质,分析题目找出横纵坐标为整数的三个点存在于线段AB上为解决本题的关键.11.B解析:B【分析】直接利用已知点坐标得出原点位置进而得出答案.【详解】解:如图所示:敌军指挥部的位置大约是B处.故选:B.【点睛】此题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.12.B解析:B【分析】设边长为10的正方形内部的整点的坐标为(x,y),x,y都为整数,根据题意可得规律求解.【详解】解:设边长为10的正方形内部的整点的坐标为(x,y),x,y都为整数.则﹣5<x<5,﹣5<y<5,故x只可取﹣4,﹣3,﹣2,﹣1,0,1,2,3,4共9个,y只可取﹣4,﹣3,﹣2,﹣1,0,1,2,3,4共9个,它们共可组成点(x,y)的数目为9×9=81(个).故选:B.【点睛】本题主要考查平面直角坐标系点的坐标规律,关键是根据题意得到点的坐标特点规律,然后进行求解即可.二、填空题13.5排6号【分析】根据第一个数表示排数第二个数表示号数写出即可【详解】解:∵12排5号可记为(125)∴(56)表示5排6号故答案为:5排6号【点睛】本题考查了坐标确定位置理解有序数对的两个数的实际意解析:5排6号.【分析】根据第一个数表示排数,第二个数表示号数写出即可.【详解】解:∵12排5号可记为(12,5),∴(5,6)表示5排6号.故答案为:5排6号.【点睛】本题考查了坐标确定位置,理解有序数对的两个数的实际意义是解题的关键.14.(−1−1)(答案不唯一)【分析】根据在第三象限角平分线上点的坐标的特点解答即可【详解】∵第三象限的角平分线上的点的横纵坐标相等并且都为负数∴只要根据特点写出横纵坐标相等并且都为负数的一组数即可如(解析:(−1,−1)(答案不唯一)【分析】根据在第三象限角平分线上点的坐标的特点,解答即可.【详解】∵第三象限的角平分线上的点的横、纵坐标相等,并且都为负数,∴只要根据特点写出横纵坐标相等,并且都为负数的一组数即可,如(−1,−1).故答案为:(−1,−1)(答案不唯一).【点睛】本题主要考查了点的坐标,解答此题的关键是掌握第三象限的角平分线上的点的横纵坐标相等且都为负数.15.(20201)【分析】由图中点的坐标可得:每4次运动为一个循环组循环并且每一个循环组向右运动4个单位用2021除以4再由商和余数的情况确定运动后点的坐标【详解】∵2021÷4=505余1∴第2021解析:(2020,1)【分析】由图中点的坐标可得:每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,再由商和余数的情况确定运动后点的坐标.【详解】∵2021÷4=505余1,∴第2021次运动为第505循环组的第1次运动,横坐标为505×4=2020,纵坐标为1,∴点的坐标为(2020,1).故答案为:(2020,1).【点睛】考查了点的坐标规律,解题关键是观察点的坐标变化,并寻找规律.16.(﹣10)【分析】由图可知正方形的边长为4故正方形的周长为16因为蚂蚁甲和蚂蚁乙的速度分别为3个和1个单位所以用正方形的周长除以(3−1)可得蚂蚁甲第1次追上蚂蚁乙时间从而算出蚂蚁乙所走过的路程则第解析:(﹣1,0).【分析】由图可知,正方形的边长为4,故正方形的周长为16,因为蚂蚁甲和蚂蚁乙的速度分别为3个和1个单位,所以用正方形的周长除以(3−1),可得蚂蚁甲第1次追上蚂蚁乙时间,从而算出蚂蚁乙所走过的路程,则第二次和第三次相遇过程中蚂蚁乙所走过的路程和第一次是相同的,从而结合图形可求得蚂蚁甲第3次追上蚂蚁乙的坐标.【详解】解:由图可知,正方形的边长为4,故正方形的周长为16∴蚂蚁甲第1次追上蚂蚁乙时间:16÷(3﹣1)=8(秒)蚂蚁乙走的路程为:1×8=8,∴此时相遇点的坐标为:(﹣1,0),因为蚂蚁甲和蚂蚁乙的速度比为3:1,∴再经过16秒蚂蚁甲和蚂蚁乙第三次相遇,相遇点坐标为:(﹣1,0),故答案为:(﹣1,0).【点睛】本题考查了物体在平面直角坐标系中运动的规律问题,明确相遇问题的计算公式及多次相遇中物体所走路程的规律是解题的关键.17.【分析】先根据点的坐标求出四边形ABCD的周长然后求出另一端是绕第几圈后的第几个单位长度从而确定答案【详解】解:∵A(11)B(﹣11)C (﹣1﹣2)D(1﹣2)∴AB=1﹣(﹣1)=2BC=1﹣(0,1解析:()【分析】先根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【详解】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2021÷10=202…1,∴细线另一端在绕四边形第203圈的第1个单位长度的位置,即细线另一端所在位置的点的坐标是(0,1).故答案为:(0,1).【点睛】本题考查了点的坐标规律探求,根据点的坐标求出四边形ABCD一周的长度,从而确定2021个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.18.【分析】根据点AC的坐标建立平面直角坐标系由此即可得【详解】根据点AC的坐标建立平面直角坐标系如图所示:则点B的坐标为故答案为:【点睛】本题考查了点的坐标依据题意正确建立平面直角坐标系是解题关键--解析:(1,2)【分析】根据点A 、C 的坐标建立平面直角坐标系,由此即可得.【详解】根据点A 、C 的坐标建立平面直角坐标系,如图所示:则点B 的坐标为(1,2)--,故答案为:(1,2)--.【点睛】本题考查了点的坐标,依据题意,正确建立平面直角坐标系是解题关键.19.二四【分析】先根据ab <0确定ab 的正负情况然后根据各象限点的坐标特点即可解答【详解】解:∵ab <0∴a >0b <0或b >0a <0∴点P 在第二四象限故答案为二四【点睛】本题主要考查了各象限点的坐标特点解析:二,四【分析】先根据ab <0确定a 、b 的正负情况,然后根据各象限点的坐标特点即可解答.【详解】解:∵ab <0∴a >0,b <0或b >0,a <0∴点P 在第二、四象限.故答案为二,四.【点睛】本题主要考查了各象限点的坐标特点,掌握第一象限(+,+)、第二象限(-,+)、第三象限(-,-)、第四象限(+,-)是解答本题的关键.20.【分析】分析点P 的运动规律找到循环次数即可【详解】分析图象可以发现点P 的运动每4次位置循环一次每循环一次向右移动四个单位∵1000=4×250∴当第250循环结束时点P 位置在(10000)∵2019解析:()1000,0 ()2019,2【分析】分析点P 的运动规律,找到循环次数即可.【详解】分析图象可以发现,点P的运动每4次位置循环一次.每循环一次向右移动四个单位.∵1000=4×250,∴当第250循环结束时,点P位置在(1000,0),∵2019=4×504+3,∴当第504循环结束时,点P位置在(2016,0),在此基础之上运动三次到(2019,2),故答案为(1000,0);(2019,2).【点睛】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.三、解答题21.(1)a=240km,M(4,240);(2)4.5h.【分析】(1)结合题意得:E(0,150),即AB两地相距150km;根据F(2.5,0),得甲车2.5h 后到达B地,从而计算得甲车的速度;根据G(6.5,a),可计算得a的值;根据点N的横坐标为1.25,计算得乙车的速度,从而计算得乙车从B地到C地行驶的时间,即可得到答案;(2)根据题意列方程60601502tt-=,得t=5,此时乙车已到达C地,故不合实际情况;因此得当甲车在B地与C地中点位置时,即甲车在乙车与B地中点位置,经计算即可完成求解.【详解】(1)结合题意得:E(0,150)∴AB两地相距150km∵F(2.5,0)∴甲车2.5h后到达B地∴甲车的速度为150÷2.5=60km/h∵G(6.5,a)∴a=60×(6.5-2.5)=240km,即BC两地相距240km∵点N的横坐标为1.25∴乙车的速度为(150-1.25×60)÷1.25=60km/h∴乙车从B地到C地行驶的时间为240÷60=4h∴M(4,240)∴a=240km,M(4,240);(2)当甲车在乙车与B地中点位置时,结合题意得:60 601502t t-=解得:t=5,此时乙车已到达C地,故不合实际情况,舍去;∴当甲车在B地与C地中点位置时,即甲车在乙车与B地中点位置结合(1)的结论,即BC两地相距240km∴24015060 4.52t h ⎛⎫=+÷= ⎪⎝⎭. 【点睛】 本题考查了直角坐标系、一元一次方程的知识;解题的关键是熟练掌握直角坐标系、坐标、一元一次方程的性质,从而完成求解.22.(1)(2,0)A - ,(0,6)B ;(2)62(3)S t t =-<或26(3)S t t =->;(3):S S '的值为1或425. 【分析】(1)根据算术平方根及绝对值的非负性求出a 、b 的值,进而可得A 、B 的坐标;(2)由题意可得2BP t =,则根据(1)可得OB=6,OA=2,进而可分当点P 在OB 上,则有62OP t =-,当点P 在OB 外,则有26OP t =-,然后根据三角形面积计算公式可求解;(3)由(2)可得当点P 在OB 上时和点P 在OB 外时,然后根据S 求出时间t ,进而根据割补法求出S ',最后问题可求解.【详解】解:(1)∵260a b ++-=,∴20,60a b +=-=,解得:2,6a b =-=,∴()2,0A - ,()0,6B ;(2)由(1)及题意可得:OB=6,OA=2,2BP t =,∴当点P 在OB 上,即3t <,则62OP t =-,∴AOP 的面积为:()112626222S OA OP t t =⋅=⨯⨯-=-; 当点P 在OB 外,即3t >,则有26OP t =-, ∴AOP 的面积为:()112262622S OA OP t t =⋅=⨯⨯-=-, ∴综上所述:S 关于t 的函数关系式为:()623S t t =-<或()263S t t =->; (3)由(2)及题意可得:()623S t t =-<或()263S t t =->,AQ=t ,则有: 当()623S t t =-<时,如图所示:∵4S =,∴462t =-,解得:t=1,∴AQ=1,∴OQ=2-1=1,OP=4, ∴1111261442222AOB OPQ S S S OA OB OQ OP '=-=⋅-⋅=⨯⨯-⨯⨯=, ∴:4:41S S '==;当()263S t t =->时,如图所示:∵4S =,∴426t =-,解得:t=5,∴AQ=5,∴OP=4, ∴11115654252222AQB APQ S S S AQ OB AQ OP '=-=⋅+⋅=⨯⨯+⨯⨯=, ∴4:4:2525S S '==, ∴综上所述::S S '的值为1或425. 【点睛】本题主要考查图形与坐标,关键是根据题意得到点的坐标,然后根据几何知识进行求解问题.23.(1)1m =;(2)6【分析】(1)根据点在x 轴上纵坐标为0求解.(2)根据直线MN ⊥x 轴的横坐标相等求解.【详解】解:(1)由题意,得10m -=,解得:1m =.(2)∵点(3,2)N -,且直线MN x ⊥轴,∴233m +=-,解得:3m =-,∴(3,4)M --,∴()246MN =--=.【点睛】此题考查了点与坐标的对应关系,坐标轴上的点的特征,第一、三象限的角平分线上的点的特征.24.(1)见解析;(2)西游传说(3,3),华夏五千年(1,4)--.【分析】(1)以太空飞梭为坐标原点建立平面直角坐标系即可;(2)根据平面直角坐标系中点的坐标的写法写出即可.【详解】解:(1)如图所示:(2)西游传说(3,3),华夏五千年(1,4)--.【点睛】本题考查了坐标确定位置,根据已知条件确定出坐标原点的位置是解题的关键. 25.(1)见解析;(2)A 1(1,3),B 1(-1,0),C 1(2,1).【分析】(1)直接根据平移的性质确定A 1、B 1、C 1点即可画图;(2)原三角形中点A 、B 、C 的坐标已知,将△ABC 向右平移3个单位后,横坐标变为x+3,而纵坐标不变,所以点A 1、B 1、C 1的坐标可知.【详解】解:(1)(2)∵A (-2,3),B (-4,0),C (-1,1)∴A 1(1,3),B 1(-1,0),C 1(2,1).【点睛】此题主要考查根据图形平移的性质画图,熟练利用平移的性质确定点的坐标是解题关键. 26.(1)14m n ==-,;(2)4m =-或104n -=,【分析】(1)根据平面直角坐标系中角平分线上点的特征,x 和y 的值相等,可列等式即可求出答案;(2)由PQ ∥x 轴,即点P 和Q 纵坐标有相等,列出等式即可求解即可计算出n 的值,又P 与Q 的距离为3.直线上到一点距离等于定长的点又2个,根据绝对值的意义可列等式,化简即可计算出m 的值.【详解】解:(1)∵P 、Q 两点在第一、三象限角平分线上,∴m+2=3,n -1=-5,解得m=1,n=-4;(2)∵PQ ∥x 轴,∴n -1=3,∴n=4,又∵PQ=3,∴|m+2-(-5)|=3,解得m=-4或m=-10.∴m=-4或-10,n=4.【点睛】本题主要考查平面直角坐标系中点的特征,利用点的特征列出相应的等量关系是解决本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∵四边形 OABC 是菱形,∠AOC=30°, ∴OA=OC=AB=BC=4,BC∥OA,∠ABC=30°, ∴∠OCD=∠AOC=30°,
∴OD= 1 OC=2,即点 P 的纵坐标是 2. 2
∴DC=2 3 ,
∴BD=BC+CD=4+2 3 ,
∵MN 是 AB 的垂直平分线,
∴BE= 1 AB=2, 2
B.-3
C.4Biblioteka 【答案】C【解析】
【分析】
纵坐标的绝对值就是点到 x 轴的距离.
【详解】
∵|4|=4,
∴点 P(-3,4)到 x 轴距离为 4.
故选 C.
D.-4
15.已知点 P 位于 y 轴右侧,距 y 轴 3 个单位长度,位于 x 轴上方,距离 x 轴 4 个单位长
度,则点 P 坐标是( )
A.(3,4)
是( )
A.(﹣4,﹣5) B.(﹣4,5)
C.(﹣5,4)
D.(﹣5,﹣4)
【答案】D
【解析】
【分析】
根据第三象限内点的横坐标是负数,纵坐标是负数以及点到 x 轴的距离等于纵坐标的绝对
值,到 y 轴的距离等于横坐标的绝对值解答.
【详解】
解:∵第三象限的点 P 到 x 轴的距离是 4,到 y 轴的距离是 5,
A.
B.
C.
D.
【答案】B
【解析】
【分析】
正确建立平面直角坐标系,根据平面直角坐标系,找出相应的位置,然后写出坐标即可.
【详解】
建立平面直角坐标系,如图:

.
表示正确的点的坐标是点 D.
故选 B.
【点睛】
本题主要考查坐标确定位置,确定坐标原点和 x,y 轴的位置及方向,正确建立平面直角坐
标系是解题关键.
∴BP=
BE cos 30
2 3
43 3

2
∴DP=BD-BP=4+2 3 - 4 3 =4+ 2 3 .
3
3
∴点
P
的坐标为
4
2
3 3
,
2
故选 C.
【点睛】
此题主要考查了坐标与图形的性质,也考查了菱形的性质和解直角三角形.
14.在平面直角坐标系中,点 P(-3,4)到 x 轴的距离为( )
A.3
而确定 2019 个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.
3.下列说法正确的是( ) A.相等的角是对顶角 B.在同一平面内,不平行的两条直线一定互相垂直 C.点 P(2,﹣3)在第四象限 D.一个数的算术平方根一定是正数 【答案】C 【解析】 【分析】 直接利用对顶角的性质以及算术平方根和平行线的性质以及坐标与图形的性质分别分析得 出答案. 【详解】
11.点 P(a,b)在第四象限,则点 P 到 x 轴的距离是( ) A.a B.b C.|a| D.|b| 【答案】D 【解析】∵点 P(a,b)在第四象限, ∴b<0, ∴点 P 到 x 轴的距离是|b|. 故选 D.
12.如果点 P 在第三象限内,点 P 到 x 轴的距离是 4,到 y 轴的距离是 5,那么点 P 的坐标
故选 A.
【点睛】
本题考查了点的位置判断方法及点的坐标几何意义.
16.如图,在平面直角坐标系中,四边形 OABC 是菱形,点 C 的坐标为 2,3,则菱形
OABC 的面积是( )
A. 6
B. 13
C. 3 13 2
D. 3 13
【答案】D
【解析】
【分析】
作 CH⊥x 轴于点 H,利用勾股定理求出 OC 的长,根据菱形的性质可得 OA=OC,即可求
解.
【详解】
如图所示,作 CH⊥x 轴于点 H, ∵四边形 OABC 是菱形, ∴OA=OC,
∵点 C 的坐标为 2,3,
∴OH=2,CH=3,
∴OC= OH 2 CH 2 = 22 32 = 13
∴菱形 OABC 的面积=OA·CH= 3 13
故选:D
【点睛】 本题考查菱形的性质、勾股定理、坐标与图形的性质、菱形的面积公式,解题的关键是学 会添加辅助线,构造直角三角形.
5.如果点 P m,3 在第二象限,那么点 Q 3, m 在( )
A.第一象限 【答案】C 【解析】 【分析】
B.第二象限
C.第三象限
D.第四象限
根据第二象限的横坐标小于零可得 m 的取值范围,进而判定 Q 点象限. 【详解】
解:由点 P m,3 在第二象限可得 m<0,再由-3<0 和 m<0 可知 Q 点在第三象限,
点睛:考查点的坐标的相关知识;用到的知识点为:到 x 轴和 y 轴的距离相等的点的横纵
坐标相等或互为相反数.
8.已知在平面直角坐标系中,点 A 的坐标为(﹣3,4),下列说法正确的有( )个
①点 A 与点 B(-3,﹣4)关于 x 轴对称
②点 A 与点 C(3,﹣4)关于原点对称
③点 A 与点 F(-4,3)关于第二象限的平分线对称
组,解不等式组即可得 m 的取值范围.
【详解】
解:∵点 P(m-3,m+1)在第二象限,
∴可得到:
m m
3 1
0 0

解得: 1 m 3,
∴m 的取值范围为 1 m 3, 故选:C.
【点睛】
本题考查了坐标在象限内的符号,以及不等式组的解法,属于基础题.
7.已知平面内不同的两点 A(a+2,4)和 B(3,2a+2)到 x 轴的距离相等,则 a 的值为
∴绕四边形 ABCD 一周的细线长度为 2+3+2+3=10,
2019÷10=201…9,
∴细线另一端在绕四边形第 202 圈的第 9 个单位长度的位置,
即细线另一端所在位置的点的坐标是(1,0).
故选:A.
【点睛】
本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形 ABCD 一周的长度,从
()
A.﹣3
B.﹣5
C.1 或﹣3
D.1 或﹣5
【答案】A
【解析】
分析:根据点 A(a+2,4)和 B(3,2a+2)到 x 轴的距离相等,得到 4=|2a+2|,即可
解答.
详解:∵点 A(a+2,4)和 B(3,2a+2)到 x 轴的距离相等,
∴4=|2a+2|,a+2≠3,
解得:a=−3,
故选 A.
18.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①f(a,
b)=(-a,b),如 f(1,2)=(-1,2);②g(a,b)=(b,a),如 g(1,2)=(2,
2
的坐标为( )
A. (4, 2)
B.
8
4
3
3
,
2
C.
4
2
3
3
,
2
D. 3 3, 2
【答案】C
【解析】
【分析】
延长 BC 交 y 轴于点 D 可求 OD,CD 的长,进一步求出 BD 的长,再解直角三角形 BPE,求
得 BP 的长,从而可确定点 P 的坐标.
【详解】
延长 BC 交 y 轴于点 D,MN 与 AB 将于点 E,如图,
故选择 C. 【点睛】 本题考查了各象限内坐标的符号特征.
6.在平面直角坐标系中,若点 P(m-3,m+1)在第二象限,则 m 的取值范围( )
A.m<3
B.m>−1
C.−1<m<3
D.m≥0
【答案】C 【解析】
【分析】
根据点 P(m-3,m+1)在第二象限及第二象限内点的符号特点,可得一个关于 m 的不等式
10.在平面直角坐标系中,以原点为中心,把点 A2,3 逆时针旋转180 ,得到点 B ,则
点 B 的坐标为(
A. 2,3

B. 2,3
C. (2, 3)
D. (3, 2)
【答案】B 【解析】 【分析】 根据中心对称的性质解决问题即可.
【详解】 由题意 A,B 关于 O 中心对称, ∵A(2,3), ∴B(-2,-3), 故选:B. 【点睛】 此题考查中心对称,坐标与图形的变化,解题的关键是熟练掌握基本知识,属于中考常考 题型.
2.如图,在平面直角坐标系中, A1,1 , B1,1 , C 1, 2 , D1, 2 ,把一条长
为 2019 个单位长度且没有弹性的细线(线的粗细不略不计)的一端固定在点 A 处,并按
A B C D A …的规律绕在四边形 ABCD 的边上,则细线另一端所在位置的点的坐
标是( )
A.(1,0)
解:A、相等的角是对顶角,错误; B、在同一平面内,不平行的两条直线一定相交,故此选项错误; C、点 P(2,﹣3)在第四象限,正确; D、一个数的算术平方根一定是正数或零,故此选项错误. 故选:C. 此题主要考查了坐标与图形的性质、对顶角的性质等知识,正确把握相关性质是解题关 键.
4.点 P(1﹣2x,5x﹣1)在第四象限,则 x 的范围是( )
④点 A 与点 C(4,-3)关于第一象限的平分线对称
A.1
B.2
C.3
D.4
【答案】D
【解析】
【分析】
根据关于 x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于 y 轴对称点的坐 标特点:横坐标互为相反数,纵坐标不变;关于第 2 象限角平分线对称的点的坐标特点: 横纵坐标变换位置且变为相反数;关于第 1 象限角平分线对称的点的坐标特点:横纵坐标 变换位置.综合以上即可得答案. 【详解】 ∵点 A 的坐标为(﹣3,4), ∴点 A 关于 x 轴对称的点的坐标为(﹣3,﹣4), 点 A 关于原点对称的点的坐标为(3,-4), 点 A 关于第二象限的角平分线对称的点的坐标为(-4,3) 点 A 关于第一象限的角平分线对称的点的坐标为(4,-3) ∴①、②、③、④正确. 故选:D. 【点睛】 此题主要考查了关于 x 轴、y 轴、第二象限的角平分线、第一象限的角平分线对称的点的 坐标规律,关键是熟练掌握点的变化规律,不要混淆.
相关文档
最新文档