2020-2021石家庄全国备战中考数学平行四边形的综合备战中考模拟和真题分类汇总

合集下载

人教备战中考数学培优 易错 难题(含解析)之平行四边形含答案

人教备战中考数学培优 易错 难题(含解析)之平行四边形含答案

一、平行四边形真题与模拟题分类汇编(难题易错题)1.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由(3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长.【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP的长为62或23.【解析】【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再根据直角三角形斜边中线等于斜边一半即可得OF=OE;(2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE;(3)分点P在AO上与CO上两种情况分别画图进行解答即可得.【详解】(1)如图1中,延长EO交CF于K,∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,∵△EFK是直角三角形,∴OF=12EK=OE;(2)如图2中,延长EO交CF于K,∵∠ABC=∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,∵|CF﹣AE|=2,3AE=CK,∴FK=2,在Rt△EFK中,tan∠3∴∠FEK=30°,∠EKF=60°,∴EK=2FK=4,OF=12EK=2,∵△OPF是等腰三角形,观察图形可知,只有OF=FP=2,在Rt△PHF中,PH=12PF=1,3OH=23∴()2212362+-=如图4中,点P 在线段OC 上,当PO=PF 时,∠POF=∠PFO=30°,∴∠BOP=90°,∴OP=33OE=233, 综上所述:OP 的长为62 或233. 【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.2.已知AD 是△ABC 的中线P 是线段AD 上的一点(不与点A 、D 重合),连接PB 、PC ,E 、F 、G 、H 分别是AB 、AC 、PB 、PC 的中点,AD 与EF 交于点M ;(1)如图1,当AB =AC 时,求证:四边形EGHF 是矩形;(2)如图2,当点P 与点M 重合时,在不添加任何辅助线的条件下,写出所有与△BPE 面积相等的三角形(不包括△BPE 本身).【答案】(1)见解析;(2)△APE 、△APF 、△CPF 、△PGH .【解析】【分析】(1)由三角形中位线定理得出EG ∥AP ,EF ∥BC ,EF=12BC ,GH ∥BC ,GH=12BC ,推出EF ∥GH ,EF=GH ,证得四边形EGHF 是平行四边形,证得EF ⊥AP ,推出EF ⊥EG ,即可得出结论;(2)由△APE 与△BPE 的底AE=BE ,又等高,得出S △APE =S △BPE ,由△APE 与△APF 的底EP=FP ,又等高,得出S △APE =S △APF ,由△APF 与△CPF 的底AF=CF ,又等高,得出S △APF =S △CPF ,证得△PGH 底边GH 上的高等于△AEF 底边EF 上高的一半,推出S△PGH=12S△AEF=S△APF,即可得出结果.【详解】(1)证明:∵E、F、G、H分别是AB、AC、PB、PC的中点,∴EG∥AP,EF∥BC,EF=12BC,GH∥BC,GH=12BC,∴EF∥GH,EF=GH,∴四边形EGHF是平行四边形,∵AB=AC,∴AD⊥BC,∴EF⊥AP,∵EG∥AP,∴EF⊥EG,∴平行四边形EGHF是矩形;(2)∵PE是△APB的中线,∴△APE与△BPE的底AE=BE,又等高,∴S△APE=S△BPE,∵AP是△AEF的中线,∴△APE与△APF的底EP=FP,又等高,∴S△APE=S△APF,∴S△APF=S△BPE,∵PF是△APC的中线,∴△APF与△CPF的底AF=CF,又等高,∴S△APF=S△CPF,∴S△CPF=S△BPE,∵EF∥GH∥BC,E、F、G、H分别是AB、AC、PB、PC的中点,∴△AEF底边EF上的高等于△ABC底边BC上高的一半,△PGH底边GH上的高等于△PBC 底边BC上高的一半,∴△PGH底边GH上的高等于△AEF底边EF上高的一半,∵GH=EF,∴S△PGH=12S△AEF=S△APF,综上所述,与△BPE面积相等的三角形为:△APE、△APF、△CPF、△PGH.【点睛】本题考查了矩形的判定与性质、平行四边形的判定、三角形中位线定理、平行线的性质、三角形面积的计算等知识,熟练掌握三角形中位线定理是解决问题的关键.3.如图,现将平行四边形ABCD沿其对角线AC折叠,使点B落在点B′处.AB′与CD交于点E.(1)求证:△AED≌△CEB′;(2)过点E作EF⊥AC交AB于点F,连接CF,判断四边形AECF的形状并给予证明.【答案】(1)见解析(2)见解析【解析】【分析】(1)由题意可得AD=BC=B'C,∠B=∠D=∠B',且∠AED=∠CEB',利用AAS证明全等,则结论可得;(2)由△AED≌△CEB′可得AE=CE,且EF⊥AC,根据等腰三角形的性质可得EF垂直平分AC,∠AEF=∠CEF.即AF=CF,∠CEF=∠AFE=∠AEF,可得AE=AF,则可证四边形AECF是菱形.【详解】证明:(1)∵四边形ABCD是平行四边形∴AD=BC,CD∥AB,∠B=∠D∵平行四边形ABCD沿其对角线AC折叠∴BC=B'C,∠B=∠B'∴∠D=∠B',AD=B'C且∠DEA=∠B'EC∴△ADE≌△B'EC(2)四边形AECF是菱形∵△ADE≌△B'EC∴AE=CE∵AE=CE,EF⊥AC∴EF垂直平分AC,∠AEF=∠CEF∴AF=CF∵CD∥AB∴∠CEF=∠EFA且∠AEF=∠CEF∴∠AEF=∠EFA∴AF=AE∴AF=AE=CE=CF∴四边形AECF是菱形【点睛】本题考查了折叠问题,全等三角形的判定和性质,平行四边形的性质,菱形的判定,熟练掌握这些性质和判定是解决问题的关键.4.如图,已知矩形ABCD中,E是AD上一点,F是AB上的一点,EF⊥EC,且EF=EC.(1)求证:△AEF≌△DCE.(2)若DE=4cm,矩形ABCD的周长为32cm,求AE的长.【答案】(1)证明见解析;(2)6cm.【解析】分析:(1)根据EF⊥CE,求证∠AEF=∠ECD.再利用AAS即可求证△AEF≌△DCE.(2)利用全等三角形的性质,对应边相等,再根据矩形ABCD的周长为32cm,即可求得AE的长.详解:(1)证明:∵EF⊥CE,∴∠FEC=90°,∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,∴∠AEF=∠ECD.在Rt△AEF和Rt△DEC中,∠FAE=∠EDC=90°,∠AEF=∠ECD,EF=EC.∴△AEF≌△DCE.(2)解:∵△AEF≌△DCE.AE=CD.AD=AE+4.∵矩形ABCD的周长为32cm,∴2(AE+AE+4)=32.解得,AE=6(cm).答:AE的长为6cm.点睛:此题主要考查学生对全等三角形的判定与性质和矩形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.5.如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的关系是___;(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.【答案】(1)FG=CE,FG∥CE;(2)成立;(3)成立.【解析】试题分析:(1)只要证明四边形CDGF是平行四边形即可得出FG=CE,FG∥CE;(2)构造辅助线后证明△HGE≌△CED,利用对应边相等求证四边形GHBF是矩形后,利用等量代换即可求出FG=C,FG∥CE;(3)证明△CBF≌△DCE后,即可证明四边形CEGF是平行四边形.试题解析:解:(1)FG=CE,FG∥CE;(2)过点G作GH⊥CB的延长线于点H.∵EG⊥DE,∴∠GEH+∠DEC=90°.∵∠GEH+∠HGE=90°,∴∠DEC=∠HE.在△HGE与△CED中,∵∠GHE=∠DCE,∠HGE=∠DEC,EG=DE,∴△HGE≌△CED(AAS),∴GH=CE,HE=CD.∵CE=BF,∴GH=BF.∵GH∥BF,∴四边形GHBF是矩形,∴GF=BH,FG∥CH,∴FG∥CE.∵四边形ABCD是正方形,∴CD=BC,∴HE=BC,∴HE+EB=BC+EB,∴BH=EC,∴FG=EC;(3)∵四边形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90°.在△CBF与△DCE中,∵BF=CE,∠FBC=∠ECD,BC=DC,∴△CBF≌△DCE(SAS),∴∠BCF=∠CDE,CF=DE.∵EG=DE,∴CF=EG.∵DE⊥EG,∴∠DEC+∠CEG=90°.∵∠CDE+∠DEC=90°,∴∠CDE=∠CEG,∴∠BCF=∠CEG,∴CF∥EG,∴四边形CEGF平行四边形,∴FG∥CE,FG=CE.6.如图1,矩形ABCD中,AB=8,AD=6;点E是对角线BD上一动点,连接CE,作EF⊥CE 交AB边于点F,以CE和EF为邻边作矩形CEFG,作其对角线相交于点H.(1)①如图2,当点F与点B重合时,CE=,CG=;②如图3,当点E是BD中点时,CE=,CG=;(2)在图1,连接BG,当矩形CEFG随着点E的运动而变化时,猜想△EBG的形状?并加以证明;(3)在图1,CGCE的值是否会发生改变?若不变,求出它的值;若改变,说明理由;(4)在图1,设DE的长为x,矩形CEFG的面积为S,试求S关于x的函数关系式,并直接写出x 的取值范围.【答案】(1)245,185 ,5,154 ;(2)△EBG 是直角三角形,理由详见解析;(3)34 ;(4)S=34x 2﹣485x+48(0≤x≤325). 【解析】【分析】(1)①利用面积法求出CE ,再利用勾股定理求出EF 即可;②利用直角三角形斜边中线定理求出CE ,再利用相似三角形的性质求出EF 即可;(2)根据直角三角形的判定方法:如果一个三角形一边上的中线等于这条边的一半,则这个三角形是直角三角形即可判断;(3)只要证明△DCE ∽△BCG ,即可解决问题;(4)利用相似多边形的性质构建函数关系式即可;【详解】(1)①如图2中,在Rt △BAD 中,BD=22AD AB +=10, ∵S △BCD =12•CD•BC=12•BD•CE , ∴CE=245.CG=BE=2224186()=55-. ②如图3中,过点E 作MN ⊥AM 交AB 于N ,交CD 于M .∵DE=BE,∴CE=12BD=5,∵△CME∽△ENF,∴CM ENCE EF=,∴CG=EF=154,(2)结论:△EBG是直角三角形.理由:如图1中,连接BH.在Rt△BCF中,∵FH=CH,∴BH=FH=CH,∵四边形EFGC是矩形,∴EH=HG=HF=HC,∴BH=EH=HG,∴△EBG是直角三角形.(3)F如图1中,∵HE=HC=HG=HB=HF,∴C、E、F、B、G五点共圆,∵EF=CG,∴∠CBG=∠EBF,∵CD∥AB,∴∠EBF=∠CDE,∴∠CBG=∠CDE,∵∠DCB=∠ECG=90°,∴∠DCE=∠BCG,∴△DCE∽△BCG,∴6384CG BCCE DC===.(4)由(3)可知:34CG CDCE CB==,∴矩形CEFG∽矩形ABCD,∴2264CEFGABCDS CE CES CD==矩形矩形(),∵CE2=(325-x)2+245)2,S矩形ABCD=48,∴S矩形CEFG=34[(325-x)2+(245)2].∴矩形CEFG的面积S=34x2-485x+48(0≤x≤325).【点睛】本题考查相似三角形综合题、矩形的性质、相似三角形的判定和性质、勾股定理、直角三角形的判定和性质、相似多边形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造相似三角形或直角三角形解决问题,属于中考压轴题.7.如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作FG∥CD,交AE于点G,连接DG.(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求的值.【答案】(1)证明见试题解析;(2).【解析】试题分析:(1)由折叠的性质,可以得到DG=FG,ED=EF,∠1=∠2,由FG∥CD,可得∠1=∠3,再证明 FG=FE,即可得到四边形DEFG为菱形;(2)在Rt△EFC中,用勾股定理列方程即可CD、CE,从而求出的值.试题解析:(1)由折叠的性质可知:DG=FG,ED=EF,∠1=∠2,∵FG∥CD,∴∠2=∠3,∴FG=FE,∴DG=GF=EF=DE,∴四边形DEFG为菱形;(2)设DE=x,根据折叠的性质,EF=DE=x,EC=8﹣x,在Rt△EFC中,,即,解得:x=5,CE=8﹣x=3,∴=.考点:1.翻折变换(折叠问题);2.勾股定理;3.菱形的判定与性质;4.矩形的性质;5.综合题.8.如图1,若分别以△ABC的AC、BC两边为边向外侧作的四边形ACDE和BCFG为正方形,则称这两个正方形为外展双叶正方形.(1)发现:如图2,当∠C=90°时,求证:△ABC与△DCF的面积相等.(2)引申:如果∠C 90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请说明理由;(3)运用:如图3,分别以△ABC的三边为边向外侧作的四边形ACDE、BCFG和ABMN为正方形,则称这三个正方形为外展三叶正方形.已知△ABC中,AC=3,BC=4.当∠C=_____°时,图中阴影部分的面积和有最大值是________.【答案】(1)证明见解析;(2)成立,证明见解析;(3)18.【解析】试题分析:(1)因为AC=DC,∠ACB=∠DCF=90°,BC=FC,所以△ABC≌△DFC,从而△ABC与△DFC的面积相等;(2)延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q.得到四边形ACDE,BCFG均为正方形,AC=CD,BC=CF,∠ACP=∠DCQ.所以△APC≌△DQC.于是AP=DQ.又因为S△ABC=12BC•AP,S△DFC=12FC•DQ,所以S△ABC=S△DFC;(3)根据(2)得图中阴影部分的面积和是△ABC的面积三倍,若图中阴影部分的面积和有最大值,则三角形ABC的面积最大,当△ABC是直角三角形,即∠C是90度时,阴影部分的面积和最大.所以S阴影部分面积和=3S△ABC=3×12×3×4=18.(1)证明:在△ABC与△DFC中,∵{AC DCACB DCF BC FC∠∠===,∴△ABC ≌△DFC .∴△ABC 与△DFC 的面积相等;(2)解:成立.理由如下:如图,延长BC 到点P ,过点A 作AP ⊥BP 于点P ;过点D 作DQ ⊥FC 于点Q . ∴∠APC=∠DQC=90°.∵四边形ACDE ,BCFG 均为正方形,∴AC=CD ,BC=CF ,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°,∴∠ACP=∠DCQ .∴{APC DQCACP DCQ AC CD∠∠∠∠===,△APC ≌△DQC (AAS ),∴AP=DQ .又∵S △ABC =12BC•AP ,S △DFC =12FC•DQ , ∴S △ABC =S △DFC ;(3)解:根据(2)得图中阴影部分的面积和是△ABC 的面积三倍,若图中阴影部分的面积和有最大值,则三角形ABC 的面积最大,∴当△ABC 是直角三角形,即∠C 是90度时,阴影部分的面积和最大.∴S 阴影部分面积和=3S △ABC =3×12×3×4=18. 考点:四边形综合题9.已知边长为1的正方形ABCD 中, P 是对角线AC 上的一个动点(与点A 、C 不重合),过点P 作PE ⊥PB ,PE 交射线DC 于点E ,过点E 作EF ⊥AC ,垂足为点F .(1)当点E 落在线段CD 上时(如图),①求证:PB=PE ;②在点P 的运动过程中,PF 的长度是否发生变化?若不变,试求出这个不变的值,若变化,试说明理由;(2)当点E 落在线段DC 的延长线上时,在备用图上画出符合要求的大致图形,并判断上述(1)中的结论是否仍然成立(只需写出结论,不需要证明);(3)在点P 的运动过程中,△PEC 能否为等腰三角形?如果能,试求出AP 的长,如果不能,试说明理由.【答案】(1)①证明见解析;②点PP 在运动过程中,PF的长度不变,值为2;(2)画图见解析,成立 ;(3)能,1.【解析】 分析:(1)①过点P 作PG ⊥BC 于G ,过点P 作PH ⊥DC 于H ,如图1.要证PB=PE ,只需证到△PGB ≌△PHE 即可;②连接BD ,如图2.易证△BOP ≌△PFE ,则有BO=PF ,只需求出BO 的长即可.(2)根据条件即可画出符合要求的图形,同理可得(1)中的结论仍然成立.(3)可分点E 在线段DC 上和点E 在线段DC 的延长线上两种情况讨论,通过计算就可求出符合要求的AP 的长.详解:(1)①证明:过点P 作PG ⊥BC 于G ,过点P 作PH ⊥DC 于H ,如图1.∵四边形ABCD 是正方形,PG ⊥BC ,PH ⊥DC ,∴∠GPC=∠ACB=∠ACD=∠HPC=45°.∴PG=PH ,∠GPH=∠PGB=∠PHE=90°.∵PE ⊥PB 即∠BPE=90°,∴∠BPG=90°﹣∠GPE=∠EPH .在△PGB 和△PHE 中,PGB PHE PG PHBPG EPH ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△PGB ≌△PHE (ASA ),∴PB=PE .②连接BD ,如图2.∵四边形ABCD 是正方形,∴∠BOP=90°.∵PE ⊥PB 即∠BPE=90°,∴∠PBO=90°﹣∠BPO=∠EPF .∵EF ⊥PC 即∠PFE=90°,∴∠BOP=∠PFE .在△BOP 和△PFE 中,PBO EPF BOP PFE PB PE ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△BOP ≌△PFE (AAS ),∴BO=PF .∵四边形ABCD 是正方形,∴OB=OC ,∠BOC=90°,∴BC=2OB .∵BC=1,∴OB=22, ∴PF=22. ∴点PP 在运动过程中,PF 的长度不变,值为2. (2)当点E 落在线段DC 的延长线上时,符合要求的图形如图3所示.同理可得:PB=PE ,2 (3)①若点E 在线段DC 上,如图1.∵∠BPE=∠BCE=90°,∴∠PBC+∠PEC=180°.∵∠PBC<90°,∴∠PEC>90°.若△PEC为等腰三角形,则EP=EC.∴∠EPC=∠ECP=45°,∴∠PEC=90°,与∠PEC>90°矛盾,∴当点E在线段DC上时,△PEC不可能是等腰三角形.②若点E在线段DC的延长线上,如图4.若△PEC是等腰三角形,∵∠PCE=135°,∴CP=CE,∴∠CPE=∠CEP=22.5°.∴∠APB=180°﹣90°﹣22.5°=67.5°.∵∠PRC=90°+∠PBR=90°+∠CER,∴∠PBR=∠CER=22.5°,∴∠ABP=67.5°,∴∠ABP=∠APB.∴AP=AB=1.∴AP的长为1.点睛:本题主要考查了正方形的性质、等腰三角形的性质、全等三角形的判定与性质、角平分线的性质、勾股定理、四边形的内角和定理、三角形的内角和定理及外角性质等知识,有一定的综合性,而通过添加辅助线证明三角形全等是解决本题的关键.10.倡导研究性学习方式,着力教材研究,习题研究,是学生跳出题海,提高学习能力和创新能力的有效途径.下面是一案例,请同学们认真阅读、研究,完成“类比猜想”的问题.习题如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,说明理由.解答:∵正方形ABCD中,AB=AD,∠BAD=∠ADC=∠B=90°,∴把△ABE绕点A逆时针旋转90°至△ADE′,点F、D、E′在一条直线上.∴∠E′AF=90°-45°=45°=∠EAF,又∵AE′=AE,AF=AF∴△AE′F≌△AEF(SAS)∴EF=E′F=DE′+DF=BE+DF.类比猜想:(1)请同学们研究:如图(2),在菱形ABCD中,点E、F分别在BC、CD上,当∠BAD=120°,∠EAF=60°时,还有EF=BE+DF吗?请说明理由.(2)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF吗?请说明理由.【答案】证明见解析.【解析】试题分析:(1)把△ABE绕点A逆时针旋转120°至△ADE′,如图(2),连结E′F,根据菱形和旋转的性质得到AE=AE′,∠EAF=∠E′AF,利用“SAS”证明△AEF≌△AE′F,得到EF=E′F;由于∠ADE′+∠ADC=120°,则点F、D、E′不共线,所以DE′+DF>EF,即由BE+DF>EF;(2)把△ABE绕点A逆时针旋转∠BAD的度数至△ADE′,如图(3),根据旋转的性质得到AE′=AE,∠EAF=∠E′AF,然后利用“SAS”证明△AEF≌△AE′F,得到EF=E′F,由于∠ADE′+∠ADC=180°,知F、D、E′共线,因此有EF=DE′+DF=BE+DF;根据前面的条件和结论可归纳出结论.试题解析:(1)当∠BAD=120°,∠EAF=60°时,EF=BE+DF不成立,EF<BE+DF.理由如下:∵在菱形ABCD中,∠BAD=120°,∠EAF=60°,∴AB=AD,∠1+∠2=60°,∠B=∠ADC=60°,∴把△ABE绕点A逆时针旋转120°至△ADE′,如图(2),连结E′F,∴∠EAE′=120°,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B=60°,∴∠2+∠3=60°,∴∠EAF=∠E′AF,在△AEF和△AE′F中,∴△AEF≌△AE′F(SAS),∴EF=E′F,∵∠ADE′+∠ADC=120°,即点F、D、E′不共线,∴DE′+DF>EF∴BE+DF>EF;(2)当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF成立.理由如下:如图(3),∵AB=AD,∴把△ABE绕点A逆时针旋转∠BAD的度数至△ADE′,如图(3),∴∠EAE′=∠BAD,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B,∵∠B+∠D=180°,∴∠ADE′+∠D=180°,∴点F、D、E′共线,∵∠EAF=∠BAD,∴∠1+∠2=∠BAD,∴∠2+∠3=∠BAD,∴∠EAF=∠E′AF,在△AEF和△AE′F中,∴△AEF≌△AE′F(SAS),∴EF=E′F,∴EF=DE′+DF=BE+DF;归纳:在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF.考点:四边形综合题.。

2020-2021备战中考数学压轴题专题复习——平行四边形的综合含答案

2020-2021备战中考数学压轴题专题复习——平行四边形的综合含答案

2020-2021备战中考数学压轴题专题复习——平行四边形的综合含答案一、平行四边形1.如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.(1)求证:AD=EC;(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形即可;(2)由∠BAC=90°,AD是边BC上的中线,得AD=BD=CD,即可证明.【详解】(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD,∵AD是边BC上的中线,∴BD=DC,∴AE=DC,又∵AE∥BC,∴四边形ADCE是平行四边形.(2) 证明:∵∠BAC=90°,AD是边BC上的中线.∴AD=CD∵四边形ADCE是平行四边形,∴四边形ADCE是菱形.【点睛】本题考查了平行四边形的判定、菱形的判定、直角三角形斜边中线定理.根据图形与已知条件灵活应用平行四边形的判定方法是证明的关键.2.如图(1)在正方形ABCD中,点E是CD边上一动点,连接AE,作BF⊥AE,垂足为G 交AD于F(1)求证:AF=DE;(2)连接DG,若DG平分∠EGF,如图(2),求证:点E是CD中点;(3)在(2)的条件下,连接CG,如图(3),求证:CG=CD.【答案】(1)见解析;(2)见解析;(3)CG=CD,见解析.【解析】【分析】(1)证明△BAF≌△ADE(ASA)即可解决问题.(2)过点D作DM⊥GF,DN⊥GE,垂足分别为点M,N.想办法证明AF=DF,即可解决问题.(3)延长AE,BC交于点P,由(2)知DE=CD,利用直角三角形斜边中线的性质,只要证明BC=CP即可.【详解】(1)证明:如图1中,在正方形ABCD中,AB=AD,∠BAD=∠D=90o,∴∠2+∠3=90°又∵BF⊥AE,∴∠AGB=90°∴∠1+∠2=90°,∴∠1=∠3在△BAF与△ADE中,∠1=∠3 BA=AD ∠BAF=∠D,∴△BAF≌△ADE(ASA)∴AF=DE.(2)证明:过点D作DM⊥GF,DN⊥GE,垂足分别为点M,N.由(1)得∠1=∠3,∠BGA=∠AND=90°,AB=AD ∴△BAG≌△ADN(AAS)∴AG=DN,又DG平分∠EGF,DM⊥GF,DN⊥GE,∴DM=DN,∴DM=AG,又∠AFG=∠DFM,∠AGF=∠DMF∴△AFG≌△DFM(AAS),∴AF=DF=DE=12AD=12CD,即点E是CD的中点.(3)延长AE,BC交于点P,由(2)知DE=CD,∠ADE=∠ECP=90°,∠DEA=∠CEP,∴△ADE≌△PCE(ASA)∴AE=PE,又CE∥AB,∴BC=PC,在Rt△BGP中,∵BC=PC,∴CG=12BP=BC,∴CG=CD.【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,角平分线的性质定理,直角三角形斜边中线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.3.(1)如图①,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,交AD 于点E ,交BC 于点F ,连接BE 、DF ,且BE 平分∠ABD .①求证:四边形BFDE 是菱形;②直接写出∠EBF 的度数;(2)把(1)中菱形BFDE 进行分离研究,如图②,点G 、I 分别在BF 、BE 边上,且BG=BI ,连接GD ,H 为GD 的中点,连接FH 并延长,交ED 于点J ,连接IJ 、IH 、IF 、IG.试探究线段IH 与FH 之间满足的关系,并说明理由;(3)把(1)中矩形ABCD 进行特殊化探究,如图③,当矩形ABCD 满足AB=AD 时,点E 是对角线AC 上一点,连接DE 、EF 、DF ,使△DEF 是等腰直角三角形,DF 交AC 于点G.请直接写出线段AG 、GE 、EC 三者之间满足的数量关系.【答案】(1)①详见解析;②60°.(2)IH =3FH ;(3)EG 2=AG 2+CE 2.【解析】【分析】(1)①由△DOE ≌△BOF ,推出EO =OF ,∵OB =OD ,推出四边形EBFD 是平行四边形,再证明EB =ED 即可.②先证明∠ABD =2∠ADB ,推出∠ADB =30°,延长即可解决问题.(2)IH =3FH .只要证明△IJF 是等边三角形即可.(3)结论:EG 2=AG 2+CE 2.如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,先证明△DEG ≌△DEM ,再证明△ECM 是直角三角形即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD 是矩形,∴AD ∥BC ,OB =OD ,∴∠EDO =∠FBO ,在△DOE 和△BOF 中,EDO FBO OD OBEOD BOF ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DOE ≌△BOF ,∴EO =OF ,∵OB =OD ,∴四边形EBFD 是平行四边形,∵EF ⊥BD ,OB =OD ,∴EB =ED ,∴四边形EBFD 是菱形.②∵BE 平分∠ABD ,∴∠ABE =∠EBD ,∵EB =ED ,∴∠EBD =∠EDB ,∴∠ABD =2∠ADB ,∵∠ABD +∠ADB =90°,∴∠ADB =30°,∠ABD =60°,∴∠ABE =∠EBO =∠OBF =30°,∴∠EBF =60°.(2)结论:IH=3FH .理由:如图2中,延长BE 到M ,使得EM =EJ ,连接MJ .∵四边形EBFD 是菱形,∠B =60°,∴EB =BF =ED ,DE ∥BF ,∴∠JDH =∠FGH ,在△DHJ 和△GHF 中,DHG GHF DH GHJDH FGH ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DHJ ≌△GHF ,∴DJ =FG ,JH =HF ,∴EJ =BG =EM =BI ,∴BE =IM =BF ,∵∠MEJ =∠B =60°,∴△MEJ 是等边三角形,∴MJ =EM =NI ,∠M =∠B =60°在△BIF 和△MJI 中,BI MJ B M BF IM ⎧⎪∠∠⎨⎪⎩===,∴△BIF ≌△MJI ,∴IJ =IF ,∠BFI =∠MIJ ,∵HJ =HF ,∴IH ⊥JF ,∵∠BFI +∠BIF =120°,∴∠MIJ +∠BIF =120°,∴∠JIF =60°,∴△JIF 是等边三角形,在Rt △IHF 中,∵∠IHF =90°,∠IFH =60°,∴∠FIH =30°,∴IH=3FH .(3)结论:EG 2=AG 2+CE 2.理由:如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,∵∠FAD +∠DEF =90°,∴AFED 四点共圆,∴∠EDF =∠DAE =45°,∠ADC =90°,∴∠ADF +∠EDC =45°,∵∠ADF =∠CDM ,∴∠CDM +∠CDE =45°=∠EDG ,在△DEM 和△DEG 中,DE DE EDG EDM DG DM ⎧⎪∠∠⎨⎪⎩=== , ∴△DEG ≌△DEM ,∴GE =EM ,∵∠DCM =∠DAG =∠ACD =45°,AG =CM ,∴∠ECM =90°∴EC 2+CM 2=EM 2,∵EG =EM ,AG =CM ,∴GE 2=AG 2+CE 2.【点睛】考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.4.如图,在平行四边形ABCD 中,AD ⊥DB ,垂足为点D ,将平行四边形ABCD 折叠,使点B落在点D的位置,点C落在点G的位置,折痕为EF,EF交对角线BD于点P.(1)连结CG,请判断四边形DBCG的形状,并说明理由;(2)若AE=BD,求∠EDF的度数.【答案】(1)四边形BCGD是矩形,理由详见解析;(2)∠EDF=120°.【解析】【分析】(1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可;(2)根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可.【详解】解:(1)四边形BCGD是矩形,理由如下,∵四边形ABCD是平行四边形,∴BC∥AD,即BC∥DG,由折叠可知,BC=DG,∴四边形BCGD是平行四边形,∵AD⊥BD,∴∠CBD=90°,∴四边形BCGD是矩形;(2)由折叠可知:EF垂直平分BD,∴BD⊥EF,DP=BP,∵AD⊥BD,∴EF∥AD∥BC,∴AE PD1==BE BP∴AE=BE,∴DE是Rt△ADB斜边上的中线,∴DE=AE=BE,∵AE=BD,∴DE=BD=BE,∴△DBE是等边三角形,∴∠EDB=∠DBE=60°,∵AB∥DC,∴∠DBC=∠DBE=60°,∴∠EDF=120°.【点睛】本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度5.已知AD是△ABC的中线P是线段AD上的一点(不与点A、D重合),连接PB、PC,E、F、G、H分别是AB、AC、PB、PC的中点,AD与EF交于点M;(1)如图1,当AB=AC时,求证:四边形EGHF是矩形;(2)如图2,当点P与点M重合时,在不添加任何辅助线的条件下,写出所有与△BPE面积相等的三角形(不包括△BPE本身).【答案】(1)见解析;(2)△APE、△APF、△CPF、△PGH.【解析】【分析】(1)由三角形中位线定理得出EG∥AP,EF∥BC,EF=12BC,GH∥BC,GH=12BC,推出EF∥GH,EF=GH,证得四边形EGHF是平行四边形,证得EF⊥AP,推出EF⊥EG,即可得出结论;(2)由△APE与△BPE的底AE=BE,又等高,得出S△APE=S△BPE,由△APE与△APF的底EP=FP,又等高,得出S△APE=S△APF,由△APF与△CPF的底AF=CF,又等高,得出S△APF=S△CPF,证得△PGH底边GH上的高等于△AEF底边EF上高的一半,推出S△PGH=12S△AEF=S△APF,即可得出结果.【详解】(1)证明:∵E、F、G、H分别是AB、AC、PB、PC的中点,∴EG∥AP,EF∥BC,EF=12BC,GH∥BC,GH=12BC,∴EF∥GH,EF=GH,∴四边形EGHF是平行四边形,∵AB=AC,∴AD⊥BC,∴EF⊥AP,∵EG∥AP,∴EF⊥EG,∴平行四边形EGHF是矩形;(2)∵PE是△APB的中线,∴△APE与△BPE的底AE=BE,又等高,∴S△APE=S△BPE,∵AP是△AEF的中线,∴△APE与△APF的底EP=FP,又等高,∴S△APE=S△APF,∴S△APF=S△BPE,∵PF是△APC的中线,∴△APF与△CPF的底AF=CF,又等高,∴S△APF=S△CPF,∴S△CPF=S△BPE,∵EF∥GH∥BC,E、F、G、H分别是AB、AC、PB、PC的中点,∴△AEF底边EF上的高等于△ABC底边BC上高的一半,△PGH底边GH上的高等于△PBC 底边BC上高的一半,∴△PGH底边GH上的高等于△AEF底边EF上高的一半,∵GH=EF,∴S△PGH=12S△AEF=S△APF,综上所述,与△BPE面积相等的三角形为:△APE、△APF、△CPF、△PGH.【点睛】本题考查了矩形的判定与性质、平行四边形的判定、三角形中位线定理、平行线的性质、三角形面积的计算等知识,熟练掌握三角形中位线定理是解决问题的关键.6.如图,在平面直角坐标系中,直线DE交x轴于点E(30,0),交y轴于点D(0,40),直线AB:y=13x+5交x轴于点A,交y轴于点B,交直线DE于点P,过点E作EF⊥x轴交直线AB于点F,以EF为一边向右作正方形EFGH.(1)求边EF的长;(2)将正方形EFGH沿射线FB10个单位的速度匀速平移,得到正方形E1F1G1H1,在平移过程中边F1G1始终与y轴垂直,设平移的时间为t秒(t>0).①当点F1移动到点B时,求t的值;②当G1,H1两点中有一点移动到直线DE上时,请直接写出此时正方形E1F1G1H1与△APE重叠部分的面积.【答案】(1)EF=15;(2)①10;②120;【解析】【分析】(1)根据已知点E(30,0),点D(0,40),求出直线DE的直线解析式y=-43x+40,可求出P点坐标,进而求出F点坐标即可;(2)①易求B(0,5),当点F1移动到点B时,1010=10;②F点移动到F'10t,F垂直x轴方向移动的距离是t,当点H运动到直线DE上时,在Rt△F'NF中,NFNF'=13,EM=NG'=15-F'N=15-3t,在Rt△DMH'中,43MHEM'=,t=4,S=12×(12+454)×11=10238;当点G运动到直线DE上时,在Rt△F'PK中,PKF K'=13,PK=t-3,F'K=3t-9,在Rt△PKG'中,PKKG'=31539tt--+=43,t=7,S=15×(15-7)=120.【详解】(1)设直线DE的直线解析式y=kx+b,将点E(30,0),点D(0,40),∴30040k bb+=⎧⎨=⎩,∴4340kb⎧=-⎪⎨⎪=⎩,∴y=﹣43x+40,直线AB与直线DE的交点P(21,12),由题意知F(30,15),∴EF=15;(2)①易求B(0,5),∴BF=10,∴当点F 1移动到点B 时,t =101010÷=10; ②当点H 运动到直线DE 上时,F 点移动到F'的距离是10t ,在Rt △F'NF 中,NF NF '=13, ∴FN =t ,F'N =3t ,∵MH'=FN =t ,EM =NG'=15﹣F'N =15﹣3t ,在Rt △DMH'中,43MH EM '=, ∴41533t t =-, ∴t =4, ∴EM =3,MH'=4,∴S =1451023(12)11248⨯+⨯=; 当点G 运动到直线DE 上时,F 点移动到F'10,∵PF =10∴PF'10t ﹣10,在Rt △F'PK 中,13PK F K =', ∴PK =t ﹣3,F'K =3t ﹣9,在Rt △PKG'中,PK KG '=31539t t --+=43, ∴t =7,∴S =15×(15﹣7)=120.【点睛】本题考查一次函数图象及性质,正方形的性质;掌握待定系数法求函数解析式,利用三角形的正切值求边的关系,利用勾股定理在直角三角形中建立边之间的联系,准确确定阴影部分的面积是解题的关键.7.如图所示,矩形ABCD 中,点E 在CB 的延长线上,使CE =AC ,连接AE ,点F 是AE 的中点,连接BF 、DF ,求证:BF ⊥DF .【答案】见解析.【解析】【分析】延长BF ,交DA 的延长线于点M ,连接BD ,进而求证△AFM ≌△EFB ,得AM =BE ,FB =FM ,即可求得BC +BE =AD +AM ,进而求得BD =BM ,根据等腰三角形三线合一的性质即可求证BF ⊥DF .【详解】延长BF ,交DA 的延长线于点M ,连接BD .∵四边形ABCD 是矩形,∴MD ∥BC ,∴∠AMF =∠EBF ,∠E =∠MAF ,又FA =FE ,∴△AFM ≌△EFB ,∴AM =BE ,FB =FM .∵矩形ABCD 中,∴AC =BD ,AD =BC ,∴BC +BE =AD +AM ,即CE =MD .∵CE =AC ,∴AC =CE = BD =DM .∵FB =FM ,∴BF ⊥DF .【点睛】本题考查了矩形的性质,全等三角形的判定和对应边相等的性质,等腰三角形三线合一的性质,本题中求证DB =DM 是解题的关键.8.如图,现将平行四边形ABCD沿其对角线AC折叠,使点B落在点B′处.AB′与CD交于点E.(1)求证:△AED≌△CEB′;(2)过点E作EF⊥AC交AB于点F,连接CF,判断四边形AECF的形状并给予证明.【答案】(1)见解析(2)见解析【解析】【分析】(1)由题意可得AD=BC=B'C,∠B=∠D=∠B',且∠AED=∠CEB',利用AAS证明全等,则结论可得;(2)由△AED≌△CEB′可得AE=CE,且EF⊥AC,根据等腰三角形的性质可得EF垂直平分AC,∠AEF=∠CEF.即AF=CF,∠CEF=∠AFE=∠AEF,可得AE=AF,则可证四边形AECF是菱形.【详解】证明:(1)∵四边形ABCD是平行四边形∴AD=BC,CD∥AB,∠B=∠D∵平行四边形ABCD沿其对角线AC折叠∴BC=B'C,∠B=∠B'∴∠D=∠B',AD=B'C且∠DEA=∠B'EC∴△ADE≌△B'EC(2)四边形AECF是菱形∵△ADE≌△B'EC∴AE=CE∵AE=CE,EF⊥AC∴EF垂直平分AC,∠AEF=∠CEF∴AF=CF∵CD∥AB∴∠CEF=∠EFA且∠AEF=∠CEF∴∠AEF=∠EFA∴AF=AE∴AF=AE=CE=CF∴四边形AECF是菱形【点睛】本题考查了折叠问题,全等三角形的判定和性质,平行四边形的性质,菱形的判定,熟练掌握这些性质和判定是解决问题的关键.9.问题情境在四边形ABCD 中,BA =BC ,DC ⊥AC ,过点D 作DE ∥AB 交BC 的延长线于点E ,M 是边AD 的中点,连接MB ,ME.特例探究(1)如图1,当∠ABC =90°时,写出线段MB 与ME 的数量关系,位置关系;(2)如图2,当∠ABC =120°时,试探究线段MB 与ME 的数量关系,并证明你的结论; 拓展延伸(3)如图3,当∠ABC =α时,请直接用含α的式子表示线段MB 与ME 之间的数量关系.【答案】(1)MB =ME ,MB ⊥ME ;(2)ME =3MB .证明见解析;(3)ME =MB·tan 2α. 【解析】【分析】(1)如图1中,连接CM .只要证明△MBE 是等腰直角三角形即可;(2)结论:EM=3MB .只要证明△EBM 是直角三角形,且∠MEB=30°即可; (3)结论:EM=BM•tan2α.证明方法类似; 【详解】(1) 如图1中,连接CM .∵∠ACD=90°,AM=MD ,∴MC=MA=MD ,∵BA=BC ,∴BM 垂直平分AC ,∵∠ABC=90°,BA=BC ,∴∠MBE=12∠ABC=45°,∠ACB=∠DCE=45°, ∵AB ∥DE ,∴∠ABE+∠DEC=180°,∴∠DEC=90°,∴∠DCE=∠CDE=45°,∴EC=ED ,∵MC=MD ,∴EM 垂直平分线段CD ,EM 平分∠DEC ,∴∠MEC=45°,∴△BME 是等腰直角三角形,∴BM=ME ,BM ⊥EM .故答案为BM=ME ,BM ⊥EM .(2)ME =3MB .证明如下:连接CM ,如解图所示.∵DC ⊥AC ,M 是边AD 的中点,∴MC =MA =MD .∵BA =BC ,∴BM 垂直平分AC .∵∠ABC =120°,BA =BC ,∴∠MBE =12∠ABC =60°,∠BAC =∠BCA =30°,∠DCE =60°. ∵AB ∥DE ,∴∠ABE +∠DEC =180°,∴∠DEC =60°,∴∠DCE =∠DEC =60°,∴△CDE 是等边三角形,∴EC =ED .∵MC =MD ,∴EM 垂直平分CD ,EM 平分∠DEC , ∴∠MEC =12∠DEC =30°, ∴∠MBE +∠MEB =90°,即∠BME =90°.在Rt △BME 中,∵∠MEB =30°,∴ME 3.(3) 如图3中,结论:EM=BM•tan 2.理由:同法可证:BM ⊥EM ,BM 平分∠ABC ,所以EM=BM•tan 2. 【点睛】本题考查四边形综合题、等腰直角三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.10.在矩形纸片ABCD 中,AB=6,BC=8,现将纸片折叠,使点D 与点B 重合,折痕为EF ,连接DF .(1)说明△BEF 是等腰三角形;(2)求折痕EF 的长.【答案】(1)见解析;(2).【解析】【分析】 (1)根据折叠得出∠DEF =∠BEF ,根据矩形的性质得出AD ∥BC ,求出∠DEF =∠BFE ,求出∠BEF =∠BFE 即可;(2)过E 作EM ⊥BC 于M ,则四边形ABME 是矩形,根据矩形的性质得出EM =AB =6,AE =BM ,根据折叠得出DE =BE ,根据勾股定理求出DE 、在Rt △EMF 中,由勾股定理求出即可.【详解】(1)∵现将纸片折叠,使点D 与点B 重合,折痕为EF ,∴∠DEF =∠BEF .∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠DEF =∠BFE ,∴∠BEF =∠BFE ,∴BE =BF ,即△BEF 是等腰三角形;(2)过E 作EM ⊥BC 于M ,则四边形ABME 是矩形,所以EM =AB =6,AE =BM .∵现将纸片折叠,使点D与点B重合,折痕为EF,∴DE=BE,DO=BO,BD⊥EF.∵四边形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90°.在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=.在Rt△EMF中,由勾股定理得:EF==.故答案为:.【点睛】本题考查了折叠的性质和矩形性质、勾股定理等知识点,能熟记折叠的性质是解答此题的关键.11.如图,抛物线y=mx2+2mx+n经过A(﹣3,0),C(0,﹣32)两点,与x轴交于另一点B.(1)求经过A,B,C三点的抛物线的解析式;(2)过点C作CE∥x轴交抛物线于点E,写出点E的坐标,并求AC、BE的交点F的坐标(3)若抛物线的顶点为D,连结DC、DE,四边形CDEF是否为菱形?若是,请证明;若不是,请说明理由.【答案】(1)y=12x2+x﹣32;(2)F点坐标为(﹣1,﹣1);(3)四边形CDEF是菱形.证明见解析【解析】【分析】将A、C点的坐标代入抛物线的解析式中,通过联立方程组求得该抛物线的解析式;根据(1)题所得的抛物线的解析式,可确定抛物线的对称轴方程以及B、C点的坐标,由CE∥x轴,可知C、E关于对称轴对称。

2020-2021备战中考数学压轴题之平行四边形(备战中考题型整理,突破提升)附答案

2020-2021备战中考数学压轴题之平行四边形(备战中考题型整理,突破提升)附答案

2020-2021备战中考数学压轴题之平行四边形(备战中考题型整理,突破提升)附答案一、平行四边形1.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=12,求BE2+DG2的值.【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.【解析】分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.详解:(1)①BG⊥DE,BG=DE;②∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE,∴BG=DE,∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(2)∵AB=a,BC=b,CE=ka,CG=kb,∴BC CG b==,DC CE a又∵∠BCG=∠DCE,∴△BCG∽△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(3)连接BE、DG.根据题意,得AB=3,BC=2,CE=1.5,CG=1,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.2.如图,正方形ABCD的边长为8,E为BC上一定点,BE=6,F为AB上一动点,把△BEF沿EF折叠,点B落在点B′处,当△AFB′恰好为直角三角形时,B′D的长为?465225【解析】【分析】分两种情况分析:如图1,当∠AB′F=90°时,此时A、B′、E三点共线,过点B′作B′M⊥AB,B′N⊥AD,由三角形的面积法则可求得B′M=2.4,再由勾股定理可求得B′N=3.2,在Rt△CB′N中,由勾股定理得,B′D=2222+DN= 3.2 5.6B N'+;如图2,当∠AFB′=90°时,由题意可知此时四边形EBFB′是正方形,AF=2,过点B′作B′N⊥AD,则四边形AFB′N为矩形,在Rt△CB′N中,由勾股定理得,B′D=2222+DN=22B N'+;【详解】如图1,当∠AB′F=90°时,此时A、B′、E三点共线,∵∠B=90°,∴AE=2222AB BE=86++=10,∵B′E=BE=6,∴AB′=4,∵B′F=BF,AF+BF=AB=8,在Rt△AB′F中,∠AB′F=90°,由勾股定理得,AF2=FB′2+AB′2,∴AF=5,BF=3,过点B′作B′M⊥AB,B′N⊥AD,由三角形的面积法则可求得B′M=2.4,再由勾股定理可求得B′N=3.2,∴AN=B′M=2.4,∴DN=AD-AN=8-2.4=5.6,在Rt△CB′N中,由勾股定理得,B′D=2222+DN= 3.2 5.6B N'+ =4655;如图2,当∠AFB′=90°时,由题意可知此时四边形EBFB′是正方形,∴AF=2,过点B′作B′N⊥AD,则四边形AFB′N为矩形,∴AN=B′F=6,B′N=AF=2,∴DN=AD-AN=2,在Rt△CB′N中,由勾股定理得,B′D=2222+DN=22B N'+ =22;综上,可得B′D 4655或2【点睛】本题主要考查正方形的性质与判定,矩形有性质判定、勾股定理、折叠的性质等,能正确地画出图形并能分类讨论是解题的关键.3.已知AD是△ABC的中线P是线段AD上的一点(不与点A、D重合),连接PB、PC,E、F、G、H分别是AB、AC、PB、PC的中点,AD与EF交于点M;(1)如图1,当AB=AC时,求证:四边形EGHF是矩形;(2)如图2,当点P与点M重合时,在不添加任何辅助线的条件下,写出所有与△BPE面积相等的三角形(不包括△BPE本身).【答案】(1)见解析;(2)△APE、△APF、△CPF、△PGH.【解析】【分析】(1)由三角形中位线定理得出EG∥AP,EF∥BC,EF=12BC,GH∥BC,GH=12BC,推出EF∥GH,EF=GH,证得四边形EGHF是平行四边形,证得EF⊥AP,推出EF⊥EG,即可得出结论;(2)由△APE与△BPE的底AE=BE,又等高,得出S△APE=S△BPE,由△APE与△APF的底EP=FP,又等高,得出S△APE=S△APF,由△APF与△CPF的底AF=CF,又等高,得出S△APF=S△CPF,证得△PGH底边GH上的高等于△AEF底边EF上高的一半,推出S△PGH=12S△AEF=S△APF,即可得出结果.【详解】(1)证明:∵E、F、G、H分别是AB、AC、PB、PC的中点,∴EG∥AP,EF∥BC,EF=12BC,GH∥BC,GH=12BC,∴EF∥GH,EF=GH,∴四边形EGHF是平行四边形,∵AB=AC,∴AD⊥BC,∴EF⊥AP,∵EG∥AP,∴EF⊥EG,∴平行四边形EGHF是矩形;(2)∵PE是△APB的中线,∴△APE与△BPE的底AE=BE,又等高,∴S△APE=S△BPE,∵AP是△AEF的中线,∴△APE 与△APF 的底EP =FP ,又等高,∴S △APE =S △APF ,∴S △APF =S △BPE ,∵PF 是△APC 的中线,∴△APF 与△CPF 的底AF =CF ,又等高,∴S △APF =S △CPF ,∴S △CPF =S △BPE ,∵EF ∥GH ∥BC ,E 、F 、G 、H 分别是AB 、AC 、PB 、PC 的中点,∴△AEF 底边EF 上的高等于△ABC 底边BC 上高的一半,△PGH 底边GH 上的高等于△PBC 底边BC 上高的一半,∴△PGH 底边GH 上的高等于△AEF 底边EF 上高的一半,∵GH =EF ,∴S △PGH =12S △AEF =S △APF , 综上所述,与△BPE 面积相等的三角形为:△APE 、△APF 、△CPF 、△PGH .【点睛】本题考查了矩形的判定与性质、平行四边形的判定、三角形中位线定理、平行线的性质、三角形面积的计算等知识,熟练掌握三角形中位线定理是解决问题的关键.4.如图①,四边形ABCD 是知形,1,2AB BC ==,点E 是线段BC 上一动点(不与,B C 重合),点F 是线段BA 延长线上一动点,连接,,,DE EF DF EF 交AD 于点G .设,BE x AF y ==,已知y 与x 之间的函数关系如图②所示.(1)求图②中y 与x 的函数表达式;(2)求证:DE DF ⊥;(3)是否存在x 的值,使得DEG △是等腰三角形?如果存在,求出x 的值;如果不存在,说明理由【答案】(1)y =﹣2x +4(0<x <2);(2)见解析;(3)存在,x =5455-32. 【解析】【分析】(1)利用待定系数法可得y 与x 的函数表达式;(2)证明△CDE ∽△ADF ,得∠ADF =∠CDE ,可得结论;(3)分三种情况:①若DE =DG ,则∠DGE =∠DEG ,②若DE =EG ,如图①,作EH ∥CD ,交AD 于H ,③若DG =EG ,则∠GDE =∠GED ,分别列方程计算可得结论.【详解】(1)设y =kx +b ,由图象得:当x =1时,y =2,当x =0时,y =4,代入得:24k b b +=⎧⎨=⎩,得24k b =-⎧⎨=⎩, ∴y =﹣2x +4(0<x <2);(2)∵BE =x ,BC =2∴CE =2﹣x , ∴211,4222CE x CD AF x AD -===-, ∴CE CD AF AD=, ∵四边形ABCD 是矩形,∴∠C =∠DAF =90°,∴△CDE ∽△ADF ,∴∠ADF =∠CDE ,∴∠ADF +∠EDG =∠CDE +∠EDG =90°,∴DE ⊥DF ;(3)假设存在x 的值,使得△DEG 是等腰三角形,①若DE =DG ,则∠DGE =∠DEG ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠B =90°,∴∠DGE =∠GEB ,∴∠DEG =∠BEG ,在△DEF 和△BEF 中,FDE B DEF BEF EF EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEF ≌△BEF (AAS ),∴DE =BE =x ,CE =2﹣x ,∴在Rt △CDE 中,由勾股定理得:1+(2﹣x )2=x 2,x =54;②若DE =EG ,如图①,作EH ∥CD ,交AD 于H ,∵AD ∥BC ,EH ∥CD ,∴四边形CDHE 是平行四边形,∴∠C =90°,∴四边形CDHE 是矩形,∴EH =CD =1,DH =CE =2﹣x ,EH ⊥DG ,∴HG =DH =2﹣x ,∴AG =2x ﹣2,∵EH ∥CD ,DC ∥AB ,∴EH ∥AF ,∴△EHG ∽△FAG , ∴EH HG AF AG =, ∴124222x x x -=--, ∴125555x x -+==(舍), ③若DG =EG ,则∠GDE =∠GED ,∵AD ∥BC ,∴∠GDE =∠DEC ,∴∠GED =∠DEC ,∵∠C =∠EDF =90°,∴△CDE ∽△DFE , ∴CE DE CD DF=, ∵△CDE ∽△ADF , ∴12DE CD DF AD ==, ∴12CE CD =, ∴2﹣x =12,x =32, 综上,x =54或5-52或32.【点睛】本题是四边形的综合题,主要考查了待定系数法求一次函数的解析式,三角形相似和全等的性质和判定,矩形和平行四边形的性质和判定,勾股定理和逆定理等知识,运用相似三角形的性质是解决本题的关键.5.如图,在正方形ABCD 中,E 是边AB 上的一动点,点F 在边BC 的延长线上,且CF AE =,连接DE ,DF ,EF . FH 平分EFB ∠交BD 于点H .(1)求证:DE DF ⊥;(2)求证:DH DF =:(3)过点H 作HM EF ⊥于点M ,用等式表示线段AB ,HM 与EF 之间的数量关系,并证明.【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析.【解析】【分析】(1)根据正方形性质, CF AE =得到DE DF ⊥.(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=︒,BD 平分ABC ∠, 得45DBF ∠=︒.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于45DHF DBF BFH BFH ∠=∠+∠=︒+∠,45DFH DFE EFH EFH ∠=∠+∠=︒+∠, 所以DH DF =.(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得222BD AB AD AB =+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得HM HN =.因为4590HBN HNB ∠=︒∠=︒,,所以22sin 45HN BH HN HM ===︒.由22cos 45DF EF DF DH ===︒,得22EF AB HM =-. 【详解】 (1)证明:∵四边形ABCD 是正方形,∴AD CD =,90EAD BCD ADC ∠=∠=∠=︒.∴90EAD FCD ∠=∠=︒.∵CF AE =。

备战中考数学二模试题分类汇编——平行四边形综合含答案

备战中考数学二模试题分类汇编——平行四边形综合含答案

一、平行四边形真题与模拟题分类汇编(难题易错题)1.问题发现:(1)如图①,点P 为平行四边形ABCD 内一点,请过点P 画一条直线l ,使其同时平分平行四边形ABCD 的面积和周长.问题探究:(2)如图②,在平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别在x 轴、y 轴正半轴上,点B 坐标为(8,6).已知点(6,7)P 为矩形外一点,请过点P 画一条同时平分矩形OABC 面积和周长的直线l ,说明理由并求出直线l ,说明理由并求出直线l 被矩形ABCD 截得线段的长度.问题解决:(3)如图③,在平面直角坐标系xOy 中,矩形OABCD 的边OA 、OD 分别在x 轴、y 轴正半轴上,DC x ∥轴,AB y ∥轴,且8OA OD ==,2AB CD ==,点(1052,1052)P --为五边形内一点.请问:是否存在过点P 的直线l ,分别与边OA 与BC 交于点E 、F ,且同时平分五边形OABCD 的面积和周长?若存在,请求出点E 和点F 的坐标:若不存在,请说明理由.【答案】(1)作图见解析;(2)25y x =-,353)(0,0)E ,(5,5)F .【解析】试题分析:(1)连接AC 、BD 交于点O ,作直线PO ,直线PO 将平行四边形ABCD 的面积和周长分别相等的两部分.(2)连接AC ,BD 交于点O ',过O '、P 点的直线将矩形ABCD 的面积和周长分为分别相等的两部分.(3)存在,直线y x =平分五边形OABCD 面积、周长.试题解析:(1)作图如下:(2)∵(6,7)P ,(4,3)O ',∴设:6PO y kx =+',67{43k b k b +=+=,2{5k b ==-, ∴25y x =-,交x 轴于5,02N ⎛⎫ ⎪⎝⎭, 交BC 于11,62M ⎛⎫ ⎪⎝⎭, 2211563522MN ⎛⎫=+-= ⎪⎝⎭.(3)存在,直线y x =平分五边形OABCD 面积、周长.∵(1052,102)P --在直线y x =上,∴连OP 交OA 、BC 于点E 、F ,设:BC y kx b =+,(8,2)(2,8)B C ,82{28k b k +=+=,1{10k b =-=, ∴直线:10BC y x =-+,联立10{y x y x =-+=,得55x y =⎧⎨=⎩, ∴(0,0)E ,(5,5)F .2.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到到B′的位置,AB′与CD交于点E.(1)求证:△AED≌△CEB′(2)若AB = 8,DE = 3,点P为线段AC上任意一点,PG⊥AE于G,PH⊥BC于H.求PG + PH的值.【答案】(1)证明见解析;(2).【解析】【分析】(1)由折叠的性质知,,,,则由得到;(2)由,可得,又由,即可求得的长,然后在中,利用勾股定理即可求得的长,再过点作于,由角平分线的性质,可得,易证得四边形是矩形,继而可求得答案.【详解】(1)四边形为矩形,,,又,;(2),,,,在中,,过点作于,,,,,,,、、共线,,四边形是矩形,,.【点睛】此题考查了折叠的性质、矩形的性质、角平分线的性质、等腰三角形的判定与性质以及勾股定理等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意掌握辅助线的作法,注意数形结合思想的应用.3.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.【答案】(1)见解析;(2)18°.【解析】【分析】(1)根据平行四边形的判定得出四边形ABCD是平行四边形,求出∠ABC=90°,根据矩形的判定得出即可;(2)求出∠FDC的度数,根据三角形内角和定理求出∠DCO,根据矩形的性质得出OD=OC,求出∠CDO,即可求出答案.【详解】(1)证明:∵AO=CO,BO=DO∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴OC=OD,∴∠ODC=54°∴∠BDF=∠ODC﹣∠FDC=18°.【点睛】本题考查了平行四边形的性质和判定,矩形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.4.已知:如图,在平行四边形ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF.(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.【答案】(1)证明见解析;(2)当∠DOE=90°时,四边形BFED为菱形,理由见解析.【解析】试题分析:(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF (ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE=ED,即可得出答案.试题解析:(1)∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,∴△DOE≌△BOF(ASA);(2)当∠DOE=90°时,四边形BFDE为菱形,理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形,∵∠EOD=90°,∴EF⊥BD,∴四边形BFDE为菱形.考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定.5.(问题情境)在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)(变式探究)(1)当点P在CB延长线上时,其余条件不变(如图3),试探索PD、PE、CF之间的数量关系并说明理由;请运用上述解答中所积累的经验和方法完成下列两题:(结论运用)(2)如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD =16,CF=6,求PG+PH的值.(迁移拓展)(3)在直角坐标系中,直线l1:y=-43x+8与直线l2:y=﹣2x+8相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为2.求点P的坐标.【答案】【变式探究】证明见解析【结论运用】8【迁移拓展】(﹣1,6),(1,10)【解析】【变式探究】连接AP,同理利用△ABP与△ACP面积之差等于△ABC的面积可以证得;【结论运用】过点E作EQ⊥BC,垂足为Q,根据勾股定理和矩形的性质解答即可;【迁移拓展】分两种情况,利用结论,求得点P到x轴的距离,再利用待定系数法可求出P的坐标.【详解】变式探究:连接AP,如图3:∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ACP﹣S△ABP,∴12AB•CF=12AC•PE﹣12AB•PD.∵AB=AC,∴CF=PD﹣PE;结论运用:过点E作EQ⊥BC,垂足为Q,如图④,∵四边形ABCD是长方形,∴AD=BC,∠C=∠ADC=90°.∵AD=16,CF=6,∴BF=BC﹣CF=AD﹣CF=5,由折叠可得:DF=BF,∠BEF=∠DEF.∴DF=5.∵∠C=90°,∴DC2222106DF CF-=-8.∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC.∴四边形EQCD是长方形.∴EQ=DC=4.∵AD∥BC,∴∠DEF=∠EFB.∵∠BEF=∠DEF,∴∠BEF=∠EFB.∴BE=BF,由问题情境中的结论可得:PG+PH=EQ.∴PG+PH=8.∴PG+PH 的值为8;迁移拓展:如图,由题意得:A (0,8),B (6,0),C (﹣4,0)∴AB 2268+10,BC =10.∴AB =BC ,(1)由结论得:P 1D 1+P 1E 1=OA =8∵P 1D 1=1=2,∴P 1E 1=6 即点P 1的纵坐标为6又点P 1在直线l 2上,∴y =2x+8=6,∴x =﹣1,即点P 1的坐标为(﹣1,6);(2)由结论得:P 2E 2﹣P 2D 2=OA =8∵P 2D 2=2,∴P 2E 2=10 即点P 1的纵坐标为10又点P 1在直线l 2上,∴y =2x+8=10,∴x =1,即点P 1的坐标为(1,10)【点睛】本题考查了矩形的性质与判定、等腰三角形的性质与判定及勾股定理等知识点,利用面积法列出等式是解决问题的关键.6.在ABC 中,AD BC ⊥于点D ,点E 为AC 边的中点,过点A 作//AF BC ,交DE 的延长线于点F ,连接CF .()1如图1,求证:四边形ADCF 是矩形;()2如图2,当AB AC =时,取AB 的中点G ,连接DG 、EG ,在不添加任何辅助线和字母的条件下,请直接写出图中所有的平行四边形(不包括矩形ADCF ).【答案】(1) 证明见解析;(2)四边形ABDF 、四边形AGEF 、四边形GBDE 、四边形AGDE 、四边形GDCE 都是平行四边形.【解析】【分析】(1)由△AEF ≌△CED ,推出EF=DE ,又AE=EC ,推出四边形ADCF 是平行四边形,只要证明∠ADC=90°,即可推出四边形ADCF 是矩形.(2)四边形ABDF 、四边形AGEF 、四边形GBDE 、四边形AGDE 、四边形GDCE 都是平行四边形.【详解】()1证明:∵//AF BC ,∴AFE EDC ∠=∠,∵E 是AC 中点,∴AE EC =,在AEF 和CED 中,AFE CDE AEF CED AE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴AEF CED ≅,∴EF DE =,∵AE EC =,∴四边形ADCF 是平行四边形,∵AD BC ⊥, ∴90ADC ∠=,∴四边形ADCF 是矩形.()2∵线段DG 、线段GE 、线段DE 都是ABC 的中位线,又//AF BC ,∴//AB DE ,//DG AC ,//EG BC , ∴四边形ABDF 、四边形AGEF 、四边形GBDE 、四边形AGDE 、四边形GDCE 都是平行四边形.【点睛】考查平行四边形的判定、矩形的判定、三角形的中位线定理、全等三角形的判定和性质等知识,正确寻找全等三角形解决问题是解题的关键.7.△ABC 为等边三角形,AF AB =.BCD BDC AEC ∠=∠=∠.(1)求证:四边形ABDF 是菱形.(2)若BD 是ABC ∠的角平分线,连接AD ,找出图中所有的等腰三角形.【答案】(1)证明见解析;(2)图中等腰三角形有△ABC ,△BDC ,△ABD ,△ADF ,△ADC ,△ADE .【解析】【分析】(1)先求证BD ∥AF ,证明四边形ABDF 是平行四边形,再利用有一组邻边相等的平行四边形是菱形即可证明;(2)先利用BD 平分∠ABC ,得到BD 垂直平分线段AC ,进而证明△DAC 是等腰三角形,根据BD ⊥AC,AF ⊥AC ,找到角度之间的关系,证明△DAE 是等腰三角形,进而得到BC =BD =BA =AF =DF ,即可解题,见详解.【详解】(1)如图1中,∵∠BCD =∠BDC ,∴BC =BD ,∵△ABC 是等边三角形,∴AB =BC ,∵AB =AF ,∴BD =AF ,∵∠BDC =∠AEC ,∴BD ∥AF ,∴四边形ABDF 是平行四边形,∵AB =AF ,∴四边形ABDF 是菱形.(2)解:如图2中,∵BA =BC ,BD 平分∠ABC ,∴BD 垂直平分线段AC ,∴DA =DC ,∴△DAC 是等腰三角形,∵AF ∥BD ,BD ⊥AC∴AF ⊥AC ,∴∠EAC =90°,∵∠DAC =∠DCA ,∠DAC +∠DAE =90°,∠DCA +∠AEC =90°,∴∠DAE=∠DEA,∴DA=DE,∴△DAE是等腰三角形,∵BC=BD=BA=AF=DF,∴△BCD,△ABD,△ADF都是等腰三角形,综上所述,图中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.【点睛】本题考查菱形的判定,等边三角形的性质,等腰三角形的判定等知识,属于中考常考题型,熟练掌握等腰三角形的性质是解题的关键.8.正方形ABCD的边长为1,对角线AC与BD相交于点O,点E是AB边上的一个动点(点E不与点A、B重合),CE与BD相交于点F,设线段BE的长度为x.(1)如图1,当AD=2OF时,求出x的值;(2)如图2,把线段CE绕点E顺时针旋转90°,使点C落在点P处,连接AP,设△APE 的面积为S,试求S与x的函数关系式并求出S的最大值.【答案】(1)x=﹣1;(2)S=﹣(x﹣)2+(0<x<1),当x=时,S的值最大,最大值为,.【解析】试题分析:(1)过O作OM∥AB交CE于点M,如图1,由平行线等分线段定理得到CM=ME,根据三角形的中位线定理得到AE=2OM=2OF,得到OM=OF,于是得到BF=BE=x,求得OF=OM=解方程,即可得到结果;(2)过P作PG⊥AB交AB的延长线于G,如图2,根据已知条件得到∠ECB=∠PEG,根据全等三角形的性质得到EB=PG=x,由三角形的面积公式得到S=(1﹣x)•x,根据二次函数的性质即可得到结论.试题解析:(1)过O作OM∥AB交CE于点M,如图1,∵OA=OC,∴CM=ME,∴AE=2OM=2OF,∴OM=OF,∴,∴BF=BE=x,∴OF=OM=,∵AB=1,∴OB=,∴,∴x=﹣1;(2)过P作PG⊥AB交AB的延长线于G,如图2,∵∠CEP=∠EBC=90°,∴∠ECB=∠PEG,∵PE=EC,∠EGP=∠CBE=90°,在△EPG与△CEB中,,∴△EPG≌△CEB,∴EB=PG=x,∴AE=1﹣x,∴S=(1﹣x)•x=﹣x2+x=﹣(x﹣)2+,(0<x<1),∵﹣<0,∴当x=时,S的值最大,最大值为,.考点:四边形综合题9.如图①,在△ABC中,AB=7,tanA=,∠B=45°.点P从点A出发,沿AB方向以每秒1个单位长度的速度向终点B运动(不与点A、B重合),过点P作PQ⊥AB.交折线AC-CB于点Q,以PQ为边向右作正方形PQMN,设点P的运动时间为t(秒),正方形PQMN 与△ABC重叠部分图形的面积为S(平方单位).(1)直接写出正方形PQMN的边PQ的长(用含t的代数式表示).(2)当点M落在边BC上时,求t的值.(3)求S与t之间的函数关系式.(4)如图②,点P运动的同时,点H从点B出发,沿B-A-B的方向做一次往返运动,在B-A上的速度为每秒2个单位长度,在A-B上的速度为每秒4个单位长度,当点H停止运动时,点P也随之停止,连结MH.设MH将正方形PQMN分成的两部分图形面积分别为S1、S2(平方单位)(0<S1<S2),直接写出当S2≥3S1时t的取值范围.【答案】(1) PQ=7-t.(2) t=.(3) 当0<t≤时,S=.当<t≤4,.当4<t<7时,.(4)或或.【解析】试题分析:(1)分两种情况讨论:当点Q在线段AC上时,当点Q在线段BC上时.(2)根据AP+PN+NB=AB,列出关于t的方程即可解答;(3)当0<t≤时,当<t≤4,当4<t<7时;(4)或或.试题解析:(1)当点Q在线段AC上时,PQ=tanAAP=t.当点Q在线段BC上时,PQ=7-t.(2)当点M落在边BC上时,如图③,由题意得:t+t+t=7,解得:t=.∴当点M落在边BC上时,求t的值为.(3)当0<t≤时,如图④,S=.当<t≤4,如图⑤,.当4<t<7时,如图⑥,.(4)或或..考点:四边形综合题.10.倡导研究性学习方式,着力教材研究,习题研究,是学生跳出题海,提高学习能力和创新能力的有效途径.下面是一案例,请同学们认真阅读、研究,完成“类比猜想”的问题.习题如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,说明理由.解答:∵正方形ABCD中,AB=AD,∠BAD=∠ADC=∠B=90°,∴把△ABE绕点A逆时针旋转90°至△ADE′,点F、D、E′在一条直线上.∴∠E′AF=90°-45°=45°=∠EAF,又∵AE′=AE,AF=AF∴△AE′F≌△AEF(SAS)∴EF=E′F=DE′+DF=BE+DF.类比猜想:(1)请同学们研究:如图(2),在菱形ABCD中,点E、F分别在BC、CD上,当∠BAD=120°,∠EAF=60°时,还有EF=BE+DF吗?请说明理由.(2)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF吗?请说明理由.【答案】证明见解析.【解析】试题分析:(1)把△ABE绕点A逆时针旋转120°至△ADE′,如图(2),连结E′F,根据菱形和旋转的性质得到AE=AE′,∠EAF=∠E′AF,利用“SAS”证明△AEF≌△AE′F,得到EF=E′F;由于∠ADE′+∠ADC=120°,则点F、D、E′不共线,所以DE′+DF>EF,即由BE+DF>EF;(2)把△ABE绕点A逆时针旋转∠BAD的度数至△ADE′,如图(3),根据旋转的性质得到AE′=AE,∠EAF=∠E′AF,然后利用“SAS”证明△AEF≌△AE′F,得到EF=E′F,由于∠ADE′+∠ADC=180°,知F、D、E′共线,因此有EF=DE′+DF=BE+DF;根据前面的条件和结论可归纳出结论.试题解析:(1)当∠BAD=120°,∠EAF=60°时,EF=BE+DF不成立,EF<BE+DF.理由如下:∵在菱形ABCD中,∠BAD=120°,∠EAF=60°,∴AB=AD,∠1+∠2=60°,∠B=∠ADC=60°,∴把△ABE绕点A逆时针旋转120°至△ADE′,如图(2),连结E′F,∴∠EAE′=120°,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B=60°,∴∠2+∠3=60°,∴∠EAF=∠E′AF,在△AEF和△AE′F中,∴△AEF≌△AE′F(SAS),∴EF=E′F,∵∠ADE′+∠ADC=120°,即点F、D、E′不共线,∴DE′+DF>EF∴BE+DF>EF;(2)当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF成立.理由如下:如图(3),∵AB=AD,∴把△ABE绕点A逆时针旋转∠BAD的度数至△ADE′,如图(3),∴∠EAE′=∠BAD,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B,∵∠B+∠D=180°,∴∠ADE′+∠D=180°,∴点F、D、E′共线,∵∠EAF=∠BAD,∴∠1+∠2=∠BAD,∴∠2+∠3=∠BAD,∴∠EAF=∠E′AF,在△AEF和△AE′F中,∴△AEF≌△AE′F(SAS),∴E F=E′F,∴EF=DE′+DF=BE+DF;归纳:在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF.考点:四边形综合题.。

备战中考数学综合题专练∶平行四边形含答案

备战中考数学综合题专练∶平行四边形含答案

一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图,在平行四边形ABCD中,AD⊥DB,垂足为点D,将平行四边形ABCD折叠,使点B落在点D的位置,点C落在点G的位置,折痕为EF,EF交对角线BD于点P.(1)连结CG,请判断四边形DBCG的形状,并说明理由;(2)若AE=BD,求∠EDF的度数.【答案】(1)四边形BCGD是矩形,理由详见解析;(2)∠EDF=120°.【解析】【分析】(1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可;(2)根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可.【详解】解:(1)四边形BCGD是矩形,理由如下,∵四边形ABCD是平行四边形,∴BC∥AD,即BC∥DG,由折叠可知,BC=DG,∴四边形BCGD是平行四边形,∵AD⊥BD,∴∠CBD=90°,∴四边形BCGD是矩形;(2)由折叠可知:EF垂直平分BD,∴BD⊥EF,DP=BP,∵AD⊥BD,∴EF∥AD∥BC,∴AE PD1==BE BP∴AE =BE ,∴DE 是Rt △ADB 斜边上的中线,∴DE =AE =BE ,∵AE =BD ,∴DE =BD =BE ,∴△DBE 是等边三角形,∴∠EDB =∠DBE =60°,∵AB ∥DC ,∴∠DBC =∠DBE =60°,∴∠EDF =120°.【点睛】本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度2.已知90AOB ∠=︒,点C 是AOB ∠的角平分线OP 上的任意一点,现有一个直角MCN ∠绕点C 旋转,两直角边CM ,CN 分别与直线OA ,OB 相交于点D ,点E .(1)如图1,若CD OA ⊥,猜想线段OD ,OE ,OC 之间的数量关系,并说明理由. (2)如图2,若点D 在射线OA 上,且CD 与OA 不垂直,则(1)中的数量关系是否仍成立?如成立,请说明理由;如不成立,请写出线段OD ,OE ,OC 之间的数量关系,并加以证明.(3)如图3,若点D 在射线OA 的反向延长线上,且2OD =,8OE =,请直接写出线段CE 的长度.【答案】(1)详见解析;(2)详见解析;(3【解析】【分析】(1)先证四边形ODCE 为矩形,再证矩形ODCE 为正方形,由正方形性质可得;(2)过点C 作CG OA ⊥于点G ,CH OB ⊥于点H ,证四边形OGCH 为正方形,再证()CGD CHE ASA ∆≅∆,可得;(3)根据()CGD CHE ASA ∆≅∆,可得OE OD OH OG -=+=.【详解】解:(1)∵90AOB ∠=︒,90MCN ∠=︒,CD OA ⊥,∴四边形ODCE 为矩形.∵OP 是AOB ∠的角平分线,∴45DOC EOC ∠=∠=︒,∴OD CD =,∴矩形ODCE 为正方形,∴OC =,OC =.∴OD OE +=. (2)如图,过点C 作CG OA ⊥于点G ,CH OB ⊥于点H ,∵OP 平分AOB ∠,90AOB ∠=︒,∴四边形OGCH 为正方形,由(1)得:OG OH +=,在CGD ∆和CHE ∆中, 90CGD CHE CG CHDCG ECH ︒⎧∠=∠=⎪=⎨⎪∠=∠⎩, ∴()CGD CHE ASA ∆≅∆,∴GD HE =,∴OD OE +=.(3)OG OH +=, ()CGD CHE ASA ∆≅∆,∴GD HE =. ∵OD GD OG =-,OE OH EH =+,∴OE OD OH OG -=+=,∴OC =∴CE =CE的长度为34.【点睛】考核知识点:矩形,正方形的判定和性质.熟练运用特殊四边形的性质和判定是关键.3.正方形ABCD,点E在边BC上,点F在对角线AC上,连AE.(1)如图1,连EF,若EF⊥AC,4AF=3AC,AB=4,求△AEF的周长;(2)如图2,若AF=AB,过点F作FG⊥AC交CD于G,点H在线段FG上(不与端点重合),连AH.若∠EAH=45°,求证:EC=HG+2FC.【答案】(1)25422)证明见解析【解析】【分析】(1)由正方形性质得出AB=BC=CD=AD=4,∠B=∠D=90°,∠ACB=∠ACD=∠BAC=∠ACD=45°,得出AC2AB=2,求出AF=2,CF=AC﹣AF2,求出△CEF 是等腰直角三角形,得出EF=CF2,CE2CF=2,在Rt△AEF中,由勾股定理求出AE,即可得出△AEF的周长;(2)延长GF交BC于M,连接AG,则△CGM和△CFG是等腰直角三角形,得出CM=CG,CG2CF,证出BM=DG,证明Rt△AFG≌Rt△ADG得出FG=DG,BM=FG,再证明△ABE≌△AFH,得出BE=FH,即可得出结论.【详解】(1)∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠B=∠D=90°,∠ACB=∠ACD=∠BAC=∠ACD=45°,∴AC2AB=2,∵4AF=3AC=2,∴AF=2∴CF=AC﹣AF=2,∵EF⊥AC,∴△CEF是等腰直角三角形,∴EF=CF=2,CE=2CF=2,在Rt△AEF中,由勾股定理得:AE=2225AF EF+=,∴△AEF的周长=AE+EF+AF=252322542++=+;(2)证明:延长GF交BC于M,连接AG,如图2所示:则△CGM和△CFG是等腰直角三角形,∴CM=CG,CG2,∴BM=DG,∵AF=AB,∴AF=AD,在Rt△AFG和Rt△ADG中,AG AGAF AD=⎧⎨=⎩,∴Rt△AFG≌Rt△ADG(HL),∴FG=DG,∴BM=FG,∵∠BAC=∠EAH=45°,∴∠BAE=∠FAH,∵FG⊥AC,∴∠AFH=90°,在△ABE和△AFH中,90B AFHAB AFBAE FAH︒⎧∠=∠=⎪=⎨⎪∠=∠⎩,∴△ABE≌△AFH(ASA),∴BE=FH,∵BM=BE+EM,FG=FH+HG,∴EM=HG,∵EC=EM+CM,CM=CG2CF,∴EC=HG2.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键.4.在ABC 中,ABC 90∠=,BD 为AC 边上的中线,过点C 作CE BD ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接BG ,DF .()1求证:BD DF =;()2求证:四边形BDFG 为菱形;()3若AG 5=,CF 7=,求四边形BDFG 的周长.【答案】(1)证明见解析(2)证明见解析(3)8【解析】【分析】()1利用平行线的性质得到90CFA ∠=,再利用直角三角形斜边上的中线等于斜边的一半即可得证,()2利用平行四边形的判定定理判定四边形BDFG 为平行四边形,再利用()1得结论即可得证,()3设GF x =,则5AF x =-,利用菱形的性质和勾股定理得到CF 、AF 和AC 之间的关系,解出x 即可.【详解】()1证明:AG //BD ,CF BD ⊥,CF AG ∴⊥,又D 为AC 的中点,1DF AC 2∴=, 又1BD AC 2=, BD DF ∴=, ()2证明:BD//GF ,BD FG =,∴四边形BDFG 为平行四边形,又BD DF =,∴四边形BDFG 为菱形,()3解:设GF x =,则AF 5x =-,AC 2x =,在Rt AFC 中,222(2x)(7)(5x)=+-,解得:1x 2=,216x (3=-舍去), GF 2∴=,∴菱形BDFG 的周长为8.【点睛】本题考查了菱形的判定与性质直角三角形斜边上的中线,勾股定理等知识,正确掌握这些定义性质及判定并结合图形作答是解决本题的关键.5.如图,在正方形ABCD 中,点G 在对角线BD 上(不与点B ,D 重合),GE ⊥DC 于点E ,GF ⊥BC 于点F ,连结AG .(1)写出线段AG ,GE ,GF 长度之间的数量关系,并说明理由;(2)若正方形ABCD 的边长为1,∠AGF=105°,求线段BG 的长.【答案】(1)AG 2=GE 2+GF 2(2)【解析】 试题分析:(1)结论:AG 2=GE 2+GF 2.只要证明GA=GC ,四边形EGFC 是矩形,推出GE=CF ,在Rt △GFC 中,利用勾股定理即可证明;(2)作BN ⊥AG 于N ,在BN 上截取一点M ,使得AM=BM .设AN=x .易证AM=BM=2x ,MN=x ,在Rt △ABN 中,根据AB 2=AN 2+BN 2,可得1=x 2+(2x+x )2,解得x=,推出BN=,再根据BG=BN÷cos30°即可解决问题.试题解析:(1)结论:AG 2=GE 2+GF 2.理由:连接CG .∵四边形ABCD 是正方形,∴A 、C 关于对角线BD 对称,∵点G 在BD 上,∴GA=GC ,∵GE ⊥DC 于点E ,GF ⊥BC 于点F ,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,∴∠AMN=30°,∴AM=BM=2x,MN=x,在Rt△ABN中,∵AB2=AN2+BN2,∴1=x2+(2x+x)2,解得x=,∴BN=,∴BG=BN÷cos30°=.考点:1、正方形的性质,2、矩形的判定和性质,3、勾股定理,4、直角三角形30度的性质6.(1)问题发现如图1,点E. F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF、则EF=BE+DF,试说明理由;(2)类比引申如图2,在四边形ABCD中,AB=AD,∠BAD=90°,点E. F分别在边BC、CD上,∠EAF=45°,若∠B,∠D都不是直角,则当∠B与∠D满足等量关系时,仍有EF=BE+DF;(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,猜想BD、DE、EC 满足的等量关系,并写出推理过程。

2020-2021备战中考数学复习《平行四边形》专项综合练习含答案解析

2020-2021备战中考数学复习《平行四边形》专项综合练习含答案解析

2020-2021备战中考数学复习《平行四边形》专项综合练习含答案解析一、平行四边形1.四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE于点H.(1)如图1,当点E、F在线段AD上时,①求证:∠DAG=∠DCG;②猜想AG与BE的位置关系,并加以证明;(2)如图2,在(1)条件下,连接HO,试说明HO平分∠BHG;(3)当点E、F运动到如图3所示的位置时,其它条件不变,请将图形补充完整,并直接写出∠BHO的度数.【答案】(1)①证明见解析;②AG⊥BE.理由见解析;(2)证明见解析;(3)∠BHO=45°.【解析】试题分析:(1)①根据正方形的性质得DA=DC,∠ADB=∠CDB=45°,则可根据“SAS”证明△ADG≌△CDG,所以∠DAG=∠DCG;②根据正方形的性质得AB=DC,∠BAD=∠CDA=90°,根据“SAS”证明△ABE≌△DCF,则∠ABE=∠DCF,由于∠DAG=∠DCG,所以∠DAG=∠ABE,然后利用∠DAG+∠BAG=90°得到∠ABE+∠BAG=90°,于是可判断AG⊥BE;(2)如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,证明△AON≌△BOM,可得四边形OMHN为正方形,因此HO平分∠BHG结论成立;(3)如答图2所示,与(1)同理,可以证明AG⊥BE;过点O作OM⊥BE于点M,ON⊥AG于点N,构造全等三角形△AON≌△BOM,从而证明OMHN为正方形,所以HO 平分∠BHG,即∠BHO=45°.试题解析:(1)①∵四边形ABCD为正方形,∴DA=DC,∠ADB=∠CDB=45°,在△ADG和△CDG中,∴△ADG≌△CDG(SAS),∴∠DAG=∠DCG;②AG⊥BE.理由如下:∵四边形ABCD为正方形,∴AB=DC,∠BAD=∠CDA=90°,在△ABE和△DCF中,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,∵∠DAG=∠DCG,∴∠DAG=∠ABE,∵∠DAG+∠BAG=90°,∴∠ABE+∠BAG=90°,∴∠AHB=90°,∴AG⊥BE;(2)由(1)可知AG⊥BE.如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,则四边形OMHN为矩形.∴∠MON=90°,又∵OA⊥OB,∴∠AON=∠BOM.∵∠AON+∠OAN=90°,∠BOM+∠OBM=90°,∴∠OAN=∠OBM.在△AON与△BOM中,∴△AON≌△BOM(AAS).∴OM=ON,∴矩形OMHN为正方形,∴HO平分∠BHG.(3)将图形补充完整,如答图2示,∠BHO=45°.与(1)同理,可以证明AG ⊥BE .过点O 作OM ⊥BE 于点M ,ON ⊥AG 于点N ,与(2)同理,可以证明△AON ≌△BOM ,可得OMHN 为正方形,所以HO 平分∠BHG ,∴∠BHO=45°.考点:1、四边形综合题;2、全等三角形的判定与性质;3、正方形的性质2.问题发现:(1)如图①,点P 为平行四边形ABCD 内一点,请过点P 画一条直线l ,使其同时平分平行四边形ABCD 的面积和周长.问题探究:(2)如图②,在平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别在x 轴、y 轴正半轴上,点B 坐标为(8,6).已知点(6,7)P 为矩形外一点,请过点P 画一条同时平分矩形OABC 面积和周长的直线l ,说明理由并求出直线l ,说明理由并求出直线l 被矩形ABCD 截得线段的长度.问题解决:(3)如图③,在平面直角坐标系xOy 中,矩形OABCD 的边OA 、OD 分别在x 轴、y 轴正半轴上,DC x ∥轴,AB y ∥轴,且8OA OD ==,2AB CD ==,点(1052,1052)P --为五边形内一点.请问:是否存在过点P 的直线l ,分别与边OA 与BC 交于点E 、F ,且同时平分五边形OABCD 的面积和周长?若存在,请求出点E 和点F 的坐标:若不存在,请说明理由.【答案】(1)作图见解析;(2)25y x =-,35;(3)(0,0)E ,(5,5)F .【解析】试题分析:(1)连接AC 、BD 交于点O ,作直线PO ,直线PO 将平行四边形ABCD 的面积和周长分别相等的两部分.(2)连接AC ,BD 交于点O ',过O '、P 点的直线将矩形ABCD 的面积和周长分为分别相等的两部分.(3)存在,直线y x =平分五边形OABCD 面积、周长.试题解析:(1)作图如下:(2)∵(6,7)P ,(4,3)O ',∴设:6PO y kx =+',67{43k b k b +=+=,2{5k b ==-, ∴25y x =-,交x 轴于5,02N ⎛⎫ ⎪⎝⎭, 交BC 于11,62M ⎛⎫ ⎪⎝⎭, 2211563522MN ⎛⎫=+-= ⎪⎝⎭.(3)存在,直线y x =平分五边形OABCD 面积、周长.∵(1052,102)P --在直线y x =上,∴连OP 交OA 、BC 于点E 、F ,设:BC y kx b =+,(8,2)(2,8)B C ,82{28k b k +=+=,1{10k b =-=,∴直线:10BC y x =-+,联立10{y x y x =-+=,得55x y =⎧⎨=⎩, ∴(0,0)E ,(5,5)F .3.已知:在菱形ABCD 中,E ,F 是BD 上的两点,且AE ∥CF .求证:四边形AECF 是菱形.【答案】见解析【解析】【分析】由菱形的性质可得AB ∥CD ,AB =CD ,∠ADF =∠CDF ,由“SAS ”可证△ADF ≌△CDF ,可得AF =CF ,由△ABE ≌△CDF ,可得AE =CF ,由平行四边形的判定和菱形的判定可得四边形AECF 是菱形.【详解】证明:∵四边形ABCD 是菱形∴AB ∥CD ,AB =CD ,∠ADF =∠CDF ,∵AB =CD ,∠ADF =∠CDF ,DF =DF∴△ADF ≌△CDF (SAS )∴AF =CF ,∵AB ∥CD ,AE ∥CF∴∠ABE =∠CDF ,∠AEF =∠CFE∴∠AEB =∠CFD ,∠ABE =∠CDF ,AB =CD∴△ABE ≌△CDF (AAS )∴AE=CF,且AE∥CF∴四边形AECF是平行四边形又∵AF=CF,∴四边形AECF是菱形【点睛】本题主要考查菱形的判定定理,首先要判定其为平行四边形,这是菱形判定的基本判定.4.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD 的延长线于点F,连接CF.(1)求证:四边形BCFD是菱形;(2)若AD=1,BC=2,求BF的长.【答案】(1)证明见解析(2)3【解析】(1)∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD,∵点E为CD的中点,∴DE=EC,在△BCE与△FDE中,FBC BFDDCB CDFDE EC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△FDE,∴DF=BC,又∵DF∥BC,∴四边形BCDF为平行四边形,∵BD=BC,∴四边形BCFD是菱形;(2)∵四边形BCFD是菱形,∴BD=DF=BC=2,在Rt△BAD中,AB223BD AD-,∵AF=AD+DF=1+2=3,在Rt△BAF中,BF22AB AF+3.5.如图1,在△ABC中,AB=AC,AD⊥BC于D,分别延长AC至E,BC至F,且CE=EF,延长FE交AD的延长线于G.(1)求证:AE=EG;(2)如图2,分别连接BG,BE,若BG=BF,求证:BE=EG;(3)如图3,取GF的中点M,若AB=5,求EM的长.【答案】(1)证明见解析(2)证明见解析(3)5 2【解析】【分析】(1)根据平行线的性质和等腰三角形的三线合一的性质得:∠CAD=∠G,可得AE=EG;(2)作辅助线,证明△BEF≌△GEC(SAS),可得结论;(3)如图3,作辅助线,构建平行线,证明四边形DMEN是平行四边形,得EM=DN=12AC,计算可得结论.【详解】证明:(1)如图1,过E作EH⊥CF于H,∵AD⊥BC,∴EH∥AD,∴∠CEH=∠CAD,∠HEF=∠G,∵CE=EF,∴∠CEH=∠HEF,∴∠CAD=∠G,∴AE=EG;(2)如图2,连接GC,∵AC =BC ,AD ⊥BC ,∴BD =CD ,∴AG 是BC 的垂直平分线,∴GC =GB ,∴∠GBF =∠BCG ,∵BG =BF ,∴GC =BE ,∵CE =EF ,∴∠CEF =180°﹣2∠F ,∵BG =BF ,∴∠GBF =180°﹣2∠F ,∴∠GBF =∠CEF ,∴∠CEF =∠BCG ,∵∠BCE =∠CEF+∠F ,∠BCE =∠BCG+∠GCE ,∴∠GCE =∠F ,在△BEF 和△GCE 中,CE GCE F CG BF EF =⎧⎪∠=∠⎨⎪=⎩Q , ∴△BEF ≌△GEC (SAS ),∴BE =EG ;(3)如图3,连接DM ,取AC 的中点N ,连接DN ,由(1)得AE=EG,∴∠GAE=∠AGE,在Rt△ACD中,N为AC的中点,∴DN=1AC=AN,∠DAN=∠ADN,2∴∠ADN=∠AGE,∴DN∥GF,在Rt△GDF中,M是FG的中点,∴DM=1FG=GM,∠GDM=∠AGE,2∴∠GDM=∠DAN,∴DM∥AE,∴四边形DMEN是平行四边形,∴EM=DN=1AC,2∵AC=AB=5,∴EM=5.2【点睛】本题是三角形的综合题,主要考查了全等三角形的判定与性质,直角三角形斜边中线的性质,等腰三角形的性质和判定,平行四边形的性质和判定等知识,解题的关键是作辅助线,并熟练掌握全等三角形的判定方法,特别是第三问,辅助线的作法是关键.6.如图所示,矩形ABCD中,点E在CB的延长线上,使CE=AC,连接AE,点F是AE的中点,连接BF、DF,求证:BF⊥DF.【答案】见解析.【解析】【分析】延长BF,交DA的延长线于点M,连接BD,进而求证△AFM≌△EFB,得AM=BE,FB=FM,即可求得BC+BE=AD+AM,进而求得BD=BM,根据等腰三角形三线合一的性质即可求证BF⊥DF.【详解】延长BF,交DA的延长线于点M,连接BD.∵四边形ABCD是矩形,∴MD∥BC,∴∠AMF=∠EBF,∠E=∠MAF,又FA=FE,∴△AFM≌△EFB,∴AM=BE,FB=FM.∵矩形ABCD中,∴AC=BD,AD=BC,∴BC+BE=AD+AM,即CE=MD.∵CE=AC,∴AC=CE= BD =DM.∵FB=FM,∴BF⊥DF.【点睛】本题考查了矩形的性质,全等三角形的判定和对应边相等的性质,等腰三角形三线合一的性质,本题中求证DB=DM是解题的关键.7.如图,现将平行四边形ABCD沿其对角线AC折叠,使点B落在点B′处.AB′与CD交于点E.(1)求证:△AED≌△CEB′;(2)过点E作EF⊥AC交AB于点F,连接CF,判断四边形AECF的形状并给予证明.【答案】(1)见解析(2)见解析【解析】【分析】(1)由题意可得AD=BC=B'C,∠B=∠D=∠B',且∠AED=∠CEB',利用AAS证明全等,则结论可得;(2)由△AED≌△CEB′可得AE=CE,且EF⊥AC,根据等腰三角形的性质可得EF垂直平分AC,∠AEF=∠CEF.即AF=CF,∠CEF=∠AFE=∠AEF,可得AE=AF,则可证四边形AECF是菱形.【详解】证明:(1)∵四边形ABCD是平行四边形∴AD=BC,CD∥AB,∠B=∠D∵平行四边形ABCD沿其对角线AC折叠∴BC=B'C,∠B=∠B'∴∠D=∠B',AD=B'C且∠DEA=∠B'EC∴△ADE≌△B'EC(2)四边形AECF是菱形∵△ADE≌△B'EC∴AE=CE∵AE=CE,EF⊥AC∴EF垂直平分AC,∠AEF=∠CEF∴AF=CF∵CD∥AB∴∠CEF=∠EFA且∠AEF=∠CEF∴∠AEF=∠EFA∴AF=AE∴AF=AE=CE=CF∴四边形AECF是菱形【点睛】本题考查了折叠问题,全等三角形的判定和性质,平行四边形的性质,菱形的判定,熟练掌握这些性质和判定是解决问题的关键.8.如图,已知矩形ABCD中,E是AD上一点,F是AB上的一点,EF⊥EC,且EF=EC.(1)求证:△AEF≌△DCE.(2)若DE=4cm,矩形ABCD的周长为32cm,求AE的长.【答案】(1)证明见解析;(2)6cm.【解析】分析:(1)根据EF⊥CE,求证∠AEF=∠ECD.再利用AAS即可求证△AEF≌△DCE.(2)利用全等三角形的性质,对应边相等,再根据矩形ABCD的周长为32cm,即可求得AE的长.详解:(1)证明:∵EF⊥CE,∴∠FEC=90°,∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,∴∠AEF=∠ECD.在Rt△AEF和Rt△DEC中,∠FAE=∠EDC=90°,∠AEF=∠ECD,EF=EC.∴△AEF≌△DCE.(2)解:∵△AEF≌△DCE.AE=CD.AD=AE+4.∵矩形ABCD的周长为32cm,∴2(AE+AE+4)=32.解得,AE=6(cm).答:AE的长为6cm.点睛:此题主要考查学生对全等三角形的判定与性质和矩形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.9.猜想与证明:如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF 的中点,试证明(1)中的结论仍然成立.【答案】猜想:DM=ME,证明见解析;(2)成立,证明见解析.【解析】试题分析:延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(1)、延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(2)、连接AE,根据正方形的性质得出∠FCE=45°,∠FCA=45°,根据RT△ADF中AM=MF得出DM=AM=MF,根据RT△AEF中AM=MF得出AM=MF=ME,从而说明DM=ME.试题解析:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=DE,∴DM=HM=ME,∴DM=ME.(1)、如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM∴DM=HM=ME,∴DM=ME,(2)、如图2,连接AE,∵四边形ABCD和ECGF是正方形,∴∠FCE=45°,∠FCA=45°,∴AE和EC在同一条直线上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.考点:(1)、三角形全等的性质;(2)、矩形的性质.10.在矩形纸片ABCD中,AB=6,BC=8,现将纸片折叠,使点D与点B重合,折痕为EF,连接DF.(1)说明△BEF是等腰三角形;(2)求折痕EF的长.【答案】(1)见解析;(2).【解析】【分析】(1)根据折叠得出∠DEF=∠BEF,根据矩形的性质得出AD∥BC,求出∠DEF=∠BFE,求出∠BEF=∠BFE即可;(2)过E作EM⊥BC于M,则四边形ABME是矩形,根据矩形的性质得出EM=AB=6,AE=BM,根据折叠得出DE=BE,根据勾股定理求出DE、在Rt△EMF中,由勾股定理求出即可.【详解】(1)∵现将纸片折叠,使点D与点B重合,折痕为EF,∴∠DEF=∠BEF.∵四边形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,即△BEF 是等腰三角形;(2)过E作EM⊥BC于M,则四边形ABME是矩形,所以EM=AB=6,AE=BM.∵现将纸片折叠,使点D与点B重合,折痕为EF,∴DE=BE,DO=BO,BD⊥EF.∵四边形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90°.在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=.在Rt△EMF中,由勾股定理得:EF==.故答案为:.【点睛】本题考查了折叠的性质和矩形性质、勾股定理等知识点,能熟记折叠的性质是解答此题的关键.11.如图1,在长方形纸片ABCD中,AB=mAD,其中m⩾1,将它沿EF折叠(点E. F分别在边AB、CD上),使点B落在AD边上的点M处,点C落在点N处,MN与CD相交于点P,连接EP.设AMnAD=,其中0<n⩽1.(1)如图2,当n=1(即M点与D点重合),求证:四边形BEDF为菱形;(2)如图3,当12n=(M为AD的中点),m的值发生变化时,求证:EP=AE+DP;(3)如图1,当m=2(即AB=2AD),n的值发生变化时,BE CFAM-的值是否发生变化?说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)值不变,理由见解析.【解析】试题分析:(1)由条件可知,当n=1(即M点与D点重合),m=2时,AB=2AD,设AD=a,则AB=2a,由矩形的性质可以得出△ADE≌△NDF,就可以得出AE=NF,DE=DF,在Rt△AED中,由勾股定理就可以表示出AE的值,再求出BE的值就可以得出结论.(2)延长PM交EA延长线于G,由条件可以得出△PDM≌△GAM,△EMP≌△EMG由全等三角形的性质就可以得出结论.(3)如图1,连接BM交EF于点Q,过点F作FK⊥AB于点K,交BM于点O,通过证明△ABM∽△KFE,就可以得出EK KFAM AB=,即BE BK BCAM AB-=,由AB=2AD=2BC,BK=CF就可以得出BE CFAM-的值是12为定值.(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90°.∵AB=mAD,且n=2,∴AB=2AD.∵∠ADE+∠EDF=90°,∠EDF+∠NDF=90°,∴∠ADE=∠NDF.在△ADE和△NDF中,∠A=∠N,AD=ND,∠ADE=∠NDF,∴△ADE≌△NDF(ASA).∴AE=NF,DE=DF.∵FN=FC,∴AE=FC.∵AB=CD,∴AB-AE="CD-CF." ∴BE="DF." ∴BE=DE.Rt△AED中,由勾股定理,得222AE DE AD=-,即2222AE AD AE AD()=--,∴AE=34AD.∴BE=2AD-34AD=54.∴554334ADBEAE AD==.(2)如图3,延长PM交EA延长线于G,∴∠GAM=90°.∵M为AD的中点,∴AM=DM.∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90°,AB∥CD.∴∠GAM=∠PDM.在△GAM和△PDM中,∠GAM=∠PDM,AM=DM,∠AMG=∠DMP,∴△GAM≌△PDM(ASA).∴MG=MP.在△EMP和△EMG中,PM=GM,∠PME=∠GME,ME=ME,∴△EMP≌△EMG(SAS).∴EG=EP.∴AG+AE=EP.∴PD+AE=EP,即EP=AE+DP.(3)12BE CFAM-=,值不变,理由如下:如图1,连接BM 交EF 于点Q ,过点F 作FK ⊥AB 于点K ,交BM 于点O ,∵EM=EB ,∠MEF=∠BEF ,∴EF ⊥MB ,即∠FQO=90°.∵四边形FKBC 是矩形,∴KF=BC ,FC=KB.∵∠FKB=90°,∴∠KBO+∠KOB=90°.∵∠QOF+∠QFO=90°,∠QOF=∠KOB ,∴∠KBO=∠OFQ.∵∠A=∠EKF=90°,∴△ABM ∽△KFE. ∴EK KF AM AB =即BE BK BC AM AB-=. ∵AB=2AD=2BC ,BK=CF ,∴12BE CF AM -=. ∴BE CF AM-的值不变.考点:1.折叠问题;2.矩形的性质;3.全等三角形的判定和性质;4.勾股定理;5.相似三角形的判定和性质.12.如图1所示,(1)在正三角形ABC 中,M 是BC 边(不含端点B 、C )上任意一点,P 是BC 延长线上一点,N 是∠ACP 的平分线上一点,若∠AMN=60°,求证:AM=MN . (2)若将(1)中“正三角形ABC”改为“正方形ABCD”,N 是∠DCP 的平分线上一点,若∠AMN=90°,则AM=MN 是否成立?若成立,请证明;若不成立,说明理由. (3)若将(2)中的“正方形ABCD”改为“正n 边形A 1A 2…A n “,其它条件不变,请你猜想:当∠A n ﹣2MN=_____°时,结论A n ﹣2M=MN 仍然成立.(不要求证明)【答案】0(2)180n n- 【解析】分析:(1)要证明AM=MN ,可证AM 与MN 所在的三角形全等,为此,可在AB 上取一点E,使AE=CM,连接ME,利用ASA即可证明△AEM≌△MCN,然后根据全等三角形的对应边成比例得出AM=MN.(2)同(1),要证明AM=MN,可证AM与MN所在的三角形全等,为此,可在AB上取一点E,使AE=CM,连接ME,利用ASA即可证明△AEM≌△MCN,然后根据全等三角形的对应边成比例得出AM=MN.详(1)证明:在边AB上截取AE=MC,连接ME.在正△ABC中,∠B=∠BCA=60°,AB=BC.∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAE,BE=AB-AE=BC-MC=BM,∴∠BEM=60°,∴∠AEM=120°.∵N是∠ACP的平分线上一点,∴∠ACN=60°,∴∠MCN=120°.在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN.(2)解:结论成立;理由:在边AB上截取AE=MC,连接ME.∵正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE,BE=AB-AE=BC-MC=BM,∴∠BEM=45°,∴∠AEM=135°.∵N是∠DCP的平分线上一点,∴∠NCP=45°,∴∠MCN=135°.在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN.(3)由(1)(2)可知当∠A n-2MN等于n边形的内角时,结论A n-2M=MN仍然成立;即∠A n-2MN=()02180nn-时,结论A n-2M=MN仍然成立;故答案为[()02180nn-].点睛:本题综合考查了正方形、等边三角形的性质及全等三角形的判定,同时考查了学生的归纳能力及分析、解决问题的能力.难度较大.13.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不须证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F 的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP 的最小值.【答案】(1)AE=DF,AE⊥DF;(2)是;(3)成立,理由见解析;(4)CP=QC﹣QP=.【解析】试题分析:(1)AE=DF,AE⊥DF.先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)是.四边形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90°,DE=CF,所以△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,因为∠CDF+∠ADF=90°,∠DAE+∠ADF=90°,所以AE⊥DF;(3)成立.由(1)同理可证AE=DF,∠DAE=∠CDF,延长FD交AE于点G,再由等角的余角相等可得AE⊥DF;(4)由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD 的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.试题解析:(1)AE=DF,AE⊥DF.理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.在△ADE和△DCF中,,∴△ADE≌△DCF(SAS).∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°.∴AE⊥DF;(2)是;(3)成立.理由:由(1)同理可证AE=DF,∠DAE=∠CDF延长FD交AE于点G,则∠CDF+∠ADG=90°,∴∠ADG+∠DAE=90°.∴AE⊥DF;(4)如图:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,在Rt△QDC中,QC=,∴CP=QC﹣QP=.考点:四边形的综合知识.14.(本题14分)小明在学习平行线相关知识时总结了如下结论:端点分别在两条平行线上的所有线段中,垂直于平行线的线段最短.小明应用这个结论进行了下列探索活动和问题解决.问题1:如图1,在Rt△ABC中,∠C=90°,AC=4,BC=3,P为AC边上的一动点,以PB,PA为边构造□APBQ,求对角线PQ的最小值及PQ最小时的值.(1)在解决这个问题时,小明构造出了如图2的辅助线,则PQ的最小值为,当PQ最小时= _____ __;(2)小明对问题1做了简单的变式思考.如图3,P为AB边上的一动点,延长PA到点E,使AE=nPA(n为大于0的常数).以PE,PC为边作□PCQE,试求对角线PQ长的最小值,并求PQ最小时的值;问题2:在四边形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如图4,若为上任意一点,以,为边作□.试求对角线长的最小值和PQ最小时的值.(2)若为上任意一点,延长到,使,再以,为边作□.请直接写出对角线长的最小值和PQ最小时的值.【答案】问题1:(1)3,;(2)PQ=,=.问题2:(1)=4,.(2)PQ的最小值为..【解析】试题分析:问题1:(1)首先根据条件可证四边形PCBQ是矩形,然后根据条件“四边形APBQ是平行四边形可得AP=QB=PC,从而可求的值.(2)由题可知:当QP⊥AC 时,PQ最小.过点C作CD⊥AB于点D.此时四边形CDPQ为矩形,PQ=CD,在Rt△ABC中,∠C=90°,AC=4,BC=3,利用面积可求出CD=,然后可求出AD=,由AE=nPA可得PE=,而PE=CQ=PD=AD-AP=,所以AP=.所以=.问题2:(1)设对角线与相交于点.Rt≌Rt.所以AD=HC,QH=AP.由题可知:当QP⊥AB时,PQ最小,此时=CH=4,根据条件可证四边形BPQH为矩形,从而QH=BP=AP.所以.(2)根据题意画出图形,当AB时,的长最小,PQ的最小值为..试题解析:问题1:(1)3,;(2)过点C作CD⊥AB于点D.由题意可知当PQ⊥AB时,PQ最短.所以此时四边形CDPQ为矩形.PQ=CD,DP=CQ=PE.因为∠BCA=90°,AC=4,BC=3,所以AB=5.所以CD=.所以PQ=.在Rt△ACD中AC=4,CD=,所以AD=.因为AE=nPA,所以PE==CQ=PD=AD-AP=.所以AP=.所以=.问题2:(1)如图2,设对角线与相交于点.所以G是DC的中点,作QH BC,交BC的延长线于H,因为AD//BC,所以.所以.又,所以Rt≌Rt.所以AD=HC,QH=AP.由图知,当AB时,的长最小,即=CH=4.易得四边形BPQH为矩形,所以QH=BP=AP.所以.(若学生有能力从梯形中位线角度考虑,若正确即可评分.但讲评时不作要求)(2)PQ的最小值为..考点:1.直角三角形的性质;2.全等三角形的判定与性质;3.平行四边形的性质;4矩形的判定与性质.15.(本题满分10分)如图1,已知矩形纸片ABCD中,AB=6cm,若将该纸片沿着过点B的直线折叠(折痕为BM),点A恰好落在CD边的中点P处.(1)求矩形ABCD的边AD的长.(2)若P为CD边上的一个动点,折叠纸片,使得A与P重合,折痕为MN,其中M在边AD上,N在边BC上,如图2所示.设DP=x cm,DM=y cm,试求y与x的函数关系式,并指出自变量x的取值范围.(3)①当折痕MN的端点N在AB上时,求当△PCN为等腰三角形时x的值;②当折痕MN的端点M在CD上时,设折叠后重叠部分的面积为S,试求S与x之间的函数关系式【答案】(1)AD=3;(2)y=-其中,0<x<3;(3)x=;(4)S=.【解析】试题分析:(1)根据折叠图形的性质和勾股定理求出AD的长度;(2)根据折叠图形的性质以及Rt△MPD的勾股定理求出函数关系式;(3)过点N作NQ⊥CD,根据Rt△NPQ 的勾股定理进行求解;(4)根据Rt△ADM的勾股定理求出MP与x的函数关系式,然后得出函数关系式.试题解析:(1)根据折叠可得BP=AB=6cm CP=3cm 根据Rt△PBC的勾股定理可得:AD=3.(2)由折叠可知AM=MP,在Rt△MPD中,∴∴y=-其中,0<x<3.(3)当点N在AB上,x≥3,∴PC≤3,而PN≥3,NC≥3.∴△PCN为等腰三角形,只可能NC=NP.过N点作NQ⊥CD,垂足为Q,在Rt△NPQ中,∴解得x=.(4)当点M在CD上时,N在AB上,可得四边形ANPM为菱形.设MP=y,在Rt△ADM中,,即∴ y=.∴ S=考点:函数的性质、勾股定理.。

2020-2021学年河北省石家庄市中考数学模拟试卷及答案解析

2020-2021学年河北省石家庄市中考数学模拟试卷及答案解析

河北省中考数学模拟试卷一、选择題(本大题共16个小题,1〜10每小题3分,11〜16每小题3分,共42分.在毎个小题给出的四个选项中只有一项是正确的,请把正确选项的代码填在题后的括号内)1.﹣3+(﹣5)×(﹣1)的结果是()A.﹣2 B.﹣1 C.2 D.12.下列说法正确的是()A.|﹣3|=﹣3 B.0的倒数是0C.9的平方根是3 D.﹣4的相反数是43.如图所示的几何体是由一些小立方块搭成的,则这个几何体的主视图是()A. B. C. D.4.下列运算正确的是()A.a3•a2=a6B.3﹣1=﹣3 C.(﹣2a)3=﹣8a3D.20160=05.如图,AB∥CD,CB平分∠ABD.若∠C=40°,则∠D的度数为()A.90°B.100°C.110°D.120°6.如图,表示的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C7.如图,四边形ABCD内接于⊙O,已知∠ADC=140°,则∠AOC的大小是()A.80°B.100°C.60°D.40°8.烟花厂某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣2t2+20t+1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()A.3s B.4s C.5s D.10s9.如图,一艘轮船在B处观测灯塔A位于南偏东50°方向上,相距40海里,轮船从B处沿南偏东20°方向匀速航行至C处,在C处观测灯塔A位于北偏东10°方向上,则C处与灯塔A的距离是()A.20海里B.40海里C.20海里D.40海里10.己知一个矩形的面积为20,若设长为a,宽为b,则能大致反映a与b之间函数关系的图象为()A.B.C.D.11.如图,在△ABC中,点D、E分别在AB、AC上,∠AED=∠B,如果AE=2,△ADE的面积为4,四边形BCED的面积为21,那么AB的长为()A.5 B.12.5 C.25 D.12.关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k>1 C.k≠0 D.k>﹣1且k≠013.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3的差不大于2的概率是()A.B.C.D.14.如图,等腰三角形ABC位于第一象限,∠CAB=90°,腰长为4,顶点A在直线y=x上,点A 的横坐标为1,等腰三角形ABC的两腰分别平行于x轴、y轴.若双曲线y=于等腰三角形ABC 有公共点,则k的最大值为()A.5 B.C.9 D.1615.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB,BC,CA,OA,OB,OC 组成.为记录寻宝者的行进路线,在BC的中点M处放置了一台定位仪器.设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为()A.A→O→B B.B→A→C C.B→O→C D.C→B→O16.如图,在△ABC中,∠ACB=90°,AC=BC=1,E,F是线段AB上的两个动点,且∠ECF= 45°,过点E,F分别作BC,AC的垂线相交于点M,垂足分别为H,G.下列判断:①AB=;②当点E与点B重合时,MH=;③=;④AF+BE=EF.其中正确的结论有()A.①②③B.①③④C.①②④D.①②③④二、填空题(本大题共4个小题,每小题3分,共12分,把答案写在题中横线上.)17.比较大小:﹣4 ﹣1 (在横线上填“<”、“>”或“=”).18.若=2,则的值为.19.如图,矩形ABCD中,AB=2,BC=4,将矩形沿对角线AC翻折,使AB边上的点E与CD边上的点F重合,则AE的长是.20.如图,在数轴上点A表示1,现将点A沿x轴做如下移动:第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种移动规律移动下去,則线段A13A14的长度是.三、解答题(本大题共6个小题,共66分,解题应写出必要的文字说明、证明过程和演算步骤)21.已知多项式A=(x+2)2+x(1﹣x)﹣9(1)化简多项式A时,小明的结果与其他同学的不同,请你检査小明同学的解题过程.在标出①②③④的几项中出现错误的是;正确的解答过程为.(2)小亮说:“只要给出x2﹣2x+l的合理的值,即可求出多项式A的值.”小明给出x2﹣2x+l值为4,请你求出此时A的值.22.某学校举行一次数学知识竞赛,任选10名参赛学生的成绩并划分等级,制作成如下统计表和扇形统计图编号成绩等级编号成绩等级①90 A ⑥76 B②78 B ⑦85 A③72 C ⑧82 B④79 B ⑨77 B⑤92 A ⑩69 C请回答下列问题:(1)小华同学这次测试的成绩是87分,则他的成绩等级是;(2)求扇形统计图中C的圆心角的度数;(3)该校将从这次竞赛的学生中,选拔成绩优异的学生参加复赛,并会对这批学生进行连续两个月的培训,每个月成绩提高的百分率均为10%,如果要求复赛的成绩不低于95分,那么学校应选取不低于多少分(取整数)的学生入围复赛?23.如图l,△ACB和△DCE均为等边三角形,点D在AC边上,现将△DCE绕点C逆时针旋转.问题发现:当点A、D、E在同一直线上时,连接BE,如图2,〔1)求证:△ACD≌△BCE;〔2)求证:CD∥BE.拓展探究如图1,若CA=2,CD=2,将△DCE绕点C按逆对针方向旋转,旋转角度为α(0°<α<360°),如图3,α为时,△CAD的面积最大,最大面积是.24.如图,AB是⊙O的直径,点C在AB的延长线上,且AB=4,BC=2,将半径OB绕点O按逆时针方向旋转α度(0°<α<180°),点B的对应点是点P.(l)在旋转过程中,∠PCO的最大度数为;(2)如图2,当PC是⊙O的切线时,廷长PO交⊙O于D,连接BD,求阴影部分的面积;(3)当CP=CO时,求sin∠PCO及AP的长.25.A、B两城相距600千米,一辆客车从A城开往B城,车速为每小时80千米,同时一辆出租车从B城开往A城,车速为毎小时100千米,设客车出时间为t.探究若客车、出租车距B城的距离分别为y1、y2,写出y1、y2关于t的函数关系式,并计算当y1=200千米时y2的値.发现设点C是A城与B城的中点,(1)哪个车会先到达C?该车到达C后再经过多少小时,另一个车会到达C?(2)若两车扣相距100千米时,求时间t.决策己知客车和出租车正好在A,B之间的服务站D处相遇,此时出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种选择返回B城的方案:方案一:继续乘坐出租车,到达A城后立刻返回B城(设出租车调头时间忽略不计);方案二:乘坐客车返回城.试通过计算,分析小王选择哪种方式能更快到达B城?26.如图,二次函数y=﹣x2+4x与一次函数y=x的图象相交于点A.(1)如图1,请用配方法求二次函数图象的最高点P的坐标;(2)如图2,求点A的坐标;(3)如图3,连结抛物线的最高点P与点O、A得到△POA,求△POA的面积;(4)如图4,在抛物线上存在一点M(M与P不重合)使△MOA的面积等于△POA的面积,请求出点M的坐标.参考答案与试题解析一、选择題(本大题共16个小题,1〜10每小题3分,11〜16每小题3分,共42分.在毎个小题给出的四个选项中只有一项是正确的,请把正确选项的代码填在题后的括号内)1.﹣3+(﹣5)×(﹣1)的结果是()A.﹣2 B.﹣1 C.2 D.1【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘法运算,再计算加减运算即可得到结果.【解答】解:原式=﹣3+5=2.故选C.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.下列说法正确的是()A.|﹣3|=﹣3 B.0的倒数是0C.9的平方根是3 D.﹣4的相反数是4【考点】实数的性质.【分析】根据负数的绝对值是它的相反数,乘积为1的两个数互为倒数,正数的平方根互为相反数,只有符号不同的两个数互为相反数,可得答案.【解答】解:A、|﹣3|=3,故A错误;B、0没有倒数,故B错误;C、9的平方根是±3,故C错误;D、﹣4的相反数是4,故D正确;故选:D.【点评】本题考查了实数的性质,若两个数的乘积是1,我们就称这两个数互为倒数,注意0没有倒数.3.如图所示的几何体是由一些小立方块搭成的,则这个几何体的主视图是()A. B. C. D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.下列运算正确的是()A.a3•a2=a6B.3﹣1=﹣3 C.(﹣2a)3=﹣8a3D.20160=0【考点】幂的乘方与积的乘方;同底数幂的乘法;零指数幂;负整数指数幂.【分析】直接利用同底数幂的乘法运算法则以及负整数指数幂的性质和零指数幂的性质、积的乘方运算法则分别化简求出答案.【解答】解:A、a3•a2=a5,故此选项错误;B、3﹣1=,故此选项错误;C、(﹣2a)3=﹣8a3,正确;D、20160=1,故此选项错误;故选:C.【点评】此题主要考查了同底数幂的乘法运算以及负整数指数幂的性质和零指数幂的性质、积的乘方运算,正确掌握运算法则是解题关键.5.如图,AB∥CD,CB平分∠ABD.若∠C=40°,则∠D的度数为()A.90°B.100°C.110°D.120°【考点】平行线的性质.【分析】先利用平行线的性质易得∠ABC=40°,因为CB平分∠ABD,所以∠ABD=80°,再利用平行线的性质两直线平行,同旁内角互补,得出结论.【解答】解:∵AB∥CD,∠C=40°,∴∠ABC=40°,∵CB平分∠ABD,∴∠ABD=80°,∴∠D=100°.故选B.【点评】本题主要考查了平行线的性质和角平分线的定义,利用两直线平行,内错角相等;两直线平行,同旁内角互补是解答此题的关键.6.如图,表示的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C【考点】估算无理数的大小;实数与数轴.【分析】确定出8的范围,利用算术平方根求出的范围,即可得到结果.【解答】解:∵6.25<8<9,∴2.5<<3,则表示的点在数轴上表示时,所在C和D两个字母之间.故选A.【点评】此题考查了估算无理数的大小,以及实数与数轴,解题关键是确定无理数的整数部分即可解决问题.7.如图,四边形ABCD内接于⊙O,已知∠ADC=140°,则∠AOC的大小是()A.80°B.100°C.60°D.40°【考点】圆内接四边形的性质;圆周角定理.【分析】根据圆内接四边形的性质求得∠ABC=40°,利用圆周角定理,得∠AOC=2∠B=80°.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠ADC=180°,∴∠ABC=180°﹣140°=40°.∴∠AOC=2∠ABC=80°.故选A.【点评】此题主要考查了圆周角定理以及圆内接四边形的性质,得出∠B的度数是解题关键.8.烟花厂某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣2t2+20t+1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()A.3s B.4s C.5s D.10s【考点】二次函数的应用.【分析】将h关于t的函数关系式变形为顶点式,即可得出升到最高点的时间,从而得出结论.【解答】解:∵h=﹣2t2+20t+1=﹣2(t﹣5)2+51,∴当t=5时,礼炮升到最高点.故选C.【点评】本题考查了二次函数的应用,解题的关键是将二次函数的关系式变形为顶点式.本题属于基础题,难度不大,解决该题型题目时,将函数的关系式进行变换找出顶点坐标即可.9.如图,一艘轮船在B处观测灯塔A位于南偏东50°方向上,相距40海里,轮船从B处沿南偏东20°方向匀速航行至C处,在C处观测灯塔A位于北偏东10°方向上,则C处与灯塔A的距离是()A.20海里B.40海里C.20海里D.40海里【考点】解直角三角形的应用-方向角问题.【分析】首先由题意求得∠ABC与∠ACB的度数,易证得△ABC是等腰三角形,继而求得答案.【解答】解:根据题意得:∠ABC=50°﹣20°=30°,∠ACB=10°+20°=30°,∴∠ABC=∠ACB,∴AC=AB=40海里.故选B.【点评】此题考查了方向角问题.注意证得∠ABC=∠ACB是解此题的关键.10.己知一个矩形的面积为20,若设长为a,宽为b,则能大致反映a与b之间函数关系的图象为()A.B.C.D.【考点】反比例函数的应用;反比例函数的图象.【分析】根据a与b之间的函数图象为反比例函数,即可求解.【解答】解:由矩形的面积公式可得ab=20,∴b=,∴a>0,b>0,图象在第一象限,∴没有端点.故选:B.【点评】考查了反比例函数的应用及反比例函数的图象,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.11.如图,在△ABC中,点D、E分别在AB、AC上,∠AED=∠B,如果AE=2,△ADE的面积为4,四边形BCED的面积为21,那么AB的长为()A.5 B.12.5 C.25 D.【考点】相似三角形的判定与性质.【分析】由∠AED=∠B,∠A是公共角,根据有两角对应相等的三角形相似,即可证得△ADE∽△ACB,又由相似三角形面积的比等于相似比的平方,即可得=()2,然后由已知条件即可求得AB的长.【解答】解:∵∠AED=∠B,∠A是公共角,∴△ADE∽△ACB,∴=()2,∵△ADE的面积为4,四边形BCED的面积为21,∴△ABC的面积为25,∵AE=2,∴=()2,解得:AB=5.故答案为:A.【点评】此题考查了相似三角形的判定与性质.此题比较简单,注意掌握有两角对应相等的三角形相似与相似三角形面积的比等于相似比的平方定理的应用.12.关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k>1 C.k≠0 D.k>﹣1且k≠0【考点】根的判别式.【分析】方程有两个不相等的实数根,则△>0,由此建立关于k的不等式,然后可以求出k的取值范围.【解答】解:由题意知k≠0,△=4+4k>0解得k>﹣1且k≠0.故选D.【点评】总结:1、一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.2、一元二次方程的二次项系数不为0.13.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3的差不大于2的概率是()A.B.C.D.【考点】概率公式.【分析】由一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为与点数3的差不大于2的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:∵一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为与点数3的差不大于2的有5种情况,即1,2,3,4,5,∴掷一次这枚骰子,向上的一面的点数为与点数3的差不大于2的概率是:.故选D.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.14.如图,等腰三角形ABC位于第一象限,∠CAB=90°,腰长为4,顶点A在直线y=x上,点A 的横坐标为1,等腰三角形ABC的两腰分别平行于x轴、y轴.若双曲线y=于等腰三角形ABC有公共点,则k的最大值为()A.5 B.C.9 D.16【考点】反比例函数图象上点的坐标特征;等腰三角形的性质.【分析】根据等腰直角三角形和y=x的特点,求出BC的中点坐标,即可求解.【解答】解:根据题意可知点A的坐标为(1,1).∵∠BAC=90°,AB=AC=4,∴点B,C关于直线y=x对称,∴点B的坐标为(5,1),点C的坐标为(1,5),∴线段BC中点的横坐标为=3,纵坐标为=3,∴线段BC的中点坐标为(3,3),∵双曲线y=与等腰三角形ABC有公共点,∴k的最大值为过B,C中点的双曲线,此时k=9.故选C.【点评】本题考查了反比例函数图象上点的坐标特征,等腰直角三角形的性质.注意直线,三角形的特殊性,根据双曲线上点的坐标特点求解.15.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB,BC,CA,OA,OB,OC 组成.为记录寻宝者的行进路线,在BC的中点M处放置了一台定位仪器.设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为()A.A→O→B B.B→A→C C.B→O→C D.C→B→O【考点】动点问题的函数图象.【专题】压轴题.【分析】根据函数的增减性:不同的观察点获得的函数图象的增减性不同,可得答案.【解答】解:A、从A点到O点y随x增大一直减小,从O到B先减小后增发,故A不符合题意;B、从B到A点y随x的增大先减小再增大,从A到C点y随x的增大先减小再增大,但在A点距离最大,故B不符合题意;C、从B到O点y随x的增大先减小再增大,从O到C点y随x的增大先减小再增大,在B、C 点距离最大,故C符合题意;D、从C到M点y随x的增大而减小,一直到y为0,从M点到B点y随x的增大而增大,明显与图象不符,故D不符合题意;故选:C.【点评】本题考查了动点问题的函数图象,利用观察点与动点P之间距离的变化关系得出函数的增减性是解题关键.16.如图,在△ABC中,∠ACB=90°,AC=BC=1,E,F是线段AB上的两个动点,且∠ECF= 45°,过点E,F分别作BC,AC的垂线相交于点M,垂足分别为H,G.下列判断:①AB=;②当点E与点B重合时,MH=;③=;④AF+BE=EF.其中正确的结论有()A.①②③B.①③④C.①②④D.①②③④【考点】相似三角形的判定与性质;全等三角形的判定与性质.【分析】①由题意知,△ABC是等腰直角三角形,根据等腰直角三角形即可作出判断;②如图1,当点E与点B重合时,点H与点B重合,可得MG∥BC,四边形MGCB是矩形,进一步得到FG是△ACB的中位线,从而作出判断;③根据两角相等可证△ACE∽△BFC;④如图2所示,SAS可证△ECF≌△ECD,根据全等三角形的性质和勾股定理即可作出判断.【解答】解:①由题意知,△ABC是等腰直角三角形,则AB==,故①正确;②如图1,当点E与点B重合时,点H与点B重合,∴MB⊥BC,∠MBC=90°,∵MG⊥AC,∴∠MGC=90°=∠C=∠MBC,∴MG∥BC,四边形MGCB是矩形,∴MH=MB=CG,∵∠FCE=45°=∠ABC,∠A=∠ACF=45°,∴CF=AF=BF,∴FG是△ACB的中位线,∴GC=AC=MH,故②正确;④如图2所示,∵AC=BC,∠ACB=90°,∴∠A=∠5=45°.将△ACF顺时针旋转90°至△BCD,则CF=CD,∠1=∠4,∠A=∠6=45°;BD=AF;∵∠2=45°,∴∠1+∠3=∠3+∠4=45°,∴∠DCE=∠2.在△ECF和△ECD中,,∴△ECF≌△ECD(SAS),∴EF=DE.∵∠5=45°,∴∠DBE=90°,∴DE2=BD2+BE2,即EF2=AF2+BE2,故④错误;③∵∠7=∠1+∠A=∠1+45°=∠1+∠2=∠ACE,∵∠A=∠5=45°,∴△ACE∽△BFC,∴=;故③正确.故选A.【点评】本题考查了相似形综合题,涉及的知识点有:等腰直角三角形的判定和性质,平行线的判定和性质,矩形的判定和性质,三角形中位线的性质,全等三角形的判定和性质,勾股定理,相似三角形的判定和性质,综合性较强,有一定的难度.二、填空题(本大题共4个小题,每小题3分,共12分,把答案写在题中横线上.)17.比较大小:﹣4 <﹣1 (在横线上填“<”、“>”或“=”).【考点】有理数大小比较.【分析】根据有理数大小比较的法则进行比较即可.【解答】解:∵|﹣4|>|﹣1|,∴﹣4<﹣1.故答案为:<.【点评】本题考查的是有理数的大小比较,有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.18.若=2,则的值为 2 .【考点】比例的性质.【分析】根据等式的性质,可用b表示a,根据分式的性质,可得答案.【解答】解:由=2,得a=2b.==2,故答案为:2.【点评】本题考查了比例的性质,利用等式的性质得出a=2b是解题关键.19.如图,矩形ABCD中,AB=2,BC=4,将矩形沿对角线AC翻折,使AB边上的点E与CD边上的点F重合,则AE的长是 2.5 .【考点】翻折变换(折叠问题).【分析】连接EF、AF、CE,EF交AC于O,根据菱形的判定定理得到四边形AECF是菱形,得到AE=EC,设AE=x,根据勾股定理列出方程,解方程即可.【解答】解:连接EF、AF、CE,EF交AC于O,由翻折变换的性质可知OF=OE,∵四边形ABCD是矩形,∴AB∥CD,∴∠DCA=∠BAC,在△FCO和△EAO中,,∴△FCO≌△EAO,∴OA=OC,又OE=OF,∴四边形AECF是平行四边形,∵EF⊥AC,∴四边形AECF是菱形,∴AE=EC,设AE=x,则EC=x,BE=4﹣x,在Rt△CEB中,CE2=BE2+BC2,即x2=22+(4﹣x)2,解得x=2.5.故答案为:2.5.【点评】本题考查的是翻折变换的性质和勾股定理的应用,翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.20.如图,在数轴上点A表示1,现将点A沿x轴做如下移动:第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种移动规律移动下去,則线段A13A14的长度是42 .【考点】数轴.【专题】规律型.【分析】先根据已知求出各个点表示的数,求出两点之间的距离,得出规律,即可得出答案.【解答】解:∵第一次点A向左移动3个单位长度至点A1,则A1表示的数,1﹣3=﹣2,第2次从点A1向右移动6个单位长度至点A2,则A2表示的数为﹣2+6=4,∴A1A2=4﹣(﹣2)=6=2×3,∵第3次从点A2向左移动9个单位长度至点A3,则A3表示的数为4﹣9=﹣5,∴A2A3=4﹣(﹣5)=9=3×3,∵第4次从点A3向右移动12个单位长度至点A4,则A4表示的数为﹣5+12=7,∴A3A4=7﹣(﹣5)=12=4×3,…,∴A13A14=(13+1)×3=42,故答案为:42.【点评】此题考查了数轴,解答此题的关键是先求出前五次这个点移动后在数轴上表示的数,再根据此数值找出规律即可解答.三、解答题(本大题共6个小题,共66分,解题应写出必要的文字说明、证明过程和演算步骤)21.已知多项式A=(x+2)2+x(1﹣x)﹣9(1)化简多项式A时,小明的结果与其他同学的不同,请你检査小明同学的解题过程.在标出①②③④的几项中出现错误的是①;正确的解答过程为A=x2+4x+4+x﹣x2﹣9=5x﹣5 .(2)小亮说:“只要给出x2﹣2x+l的合理的值,即可求出多项式A的值.”小明给出x2﹣2x+l值为4,请你求出此时A的值.【考点】整式的混合运算—化简求值.【专题】计算题;图表型;整式.【分析】(1)观察小明的作业,找出出错步骤,写出正确的解答过程即可;(2)根据给出的值求出x的值,代入计算即可求出A的值.【解答】解:(1)出错的是①;正确解答过程为:A=x2+4x+4+x﹣x2﹣9=5x﹣5;(2)∵x2﹣2x+1=4,即(x﹣1)2=4,∴x﹣1=±2,则A=5x﹣5=5(x﹣1)=±10.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.22.某学校举行一次数学知识竞赛,任选10名参赛学生的成绩并划分等级,制作成如下统计表和扇形统计图编号成绩等级编号成绩等级①90 A ⑥76 B②78 B ⑦85 A③72 C ⑧82 B④79 B ⑨77 B⑤92 A ⑩69 C请回答下列问题:(1)小华同学这次测试的成绩是87分,则他的成绩等级是 A ;(2)求扇形统计图中C的圆心角的度数;(3)该校将从这次竞赛的学生中,选拔成绩优异的学生参加复赛,并会对这批学生进行连续两个月的培训,每个月成绩提高的百分率均为10%,如果要求复赛的成绩不低于95分,那么学校应选取不低于多少分(取整数)的学生入围复赛?【考点】一元一次不等式的应用;统计表;扇形统计图.【分析】(1)直接利用表格中数据得出A等级的最低分为85分即可得出答案;(2)利用表格中数据得出C等级有2人,再利用在样本中所占比例求出所占圆心角;(3)利用每个月成绩提高的百分率均为10%,进而表示出提高后的成绩进而得出不等关系求出答案.【解答】解:(1)从表格中找到A等级的最低分为85分,故小华的成绩等级为A;故答案为:A;(2)由表格可得:C等级有2人,故C的圆心角的度数为:×360°=72°,答:扇形统计图中C的圆心角的度数为72°;(3)设学生的成绩为x分,根据题意可得:x(1+10%)2≥95,解得:x≥,∵x为整数,∴学校应选取不低于79分(取整数)的学生入围复赛.【点评】此题主要考查了一元一次不等式的应用以及统计表的应用,根据题意得出正确信息是解题关键.23.如图l,△ACB和△DCE均为等边三角形,点D在AC边上,现将△DCE绕点C逆时针旋转.问题发现:当点A、D、E在同一直线上时,连接BE,如图2,〔1)求证:△ACD≌△BCE;〔2)求证:CD∥BE.拓展探究如图1,若CA=2,CD=2,将△DCE绕点C按逆对针方向旋转,旋转角度为α(0°<α<360°),如图3,α为90°或270°时,△CAD的面积最大,最大面积是.【考点】几何变换综合题.【分析】问题发现:(1)由△ACB和△DCE为等边三角形知AC=BC、CD=CE、∠ACB=∠DCE=60°,从而可得∠ACB﹣∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE.即可证得△ACD≌△BCE.(2)由△ACD≌△BCE知∠ADC=∠BEC,根据∠EDC=60°知∠ADC=∠BEC=120°,由∠DCE+∠CEB=60°+120°=180°可证得CD∥BE.拓展探究:作DF⊥AC于点F,由S△ACD=AC•DF=DF知DF取得最大值时△CAD面积最大,由△CFD中,DF<CD知只有当CD旋转到与AC垂直时,FD才能取得最大值,即FD=CD,由于旋转角0°<α<360°,所以除了旋转90°以外,旋转270°也满足条件,继而可得最大面积.【解答】解:问题发现:(1)∵△ACB和△DCE为等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,∵,∴△ACD≌△BCE(SAS);(2)∵△ACD≌△BCE,∴∠ADC=∠BEC,又∵∠EDC=60°,∴∠ADC=∠BEC=120°,∴∠DCE+∠CEB=60°+120°=180°,∴CD∥BE(内错角互补两直线平行);拓展探究:如图,过点D作DF⊥AC于点F,∵S△ACD=AC•DF=DF,∴当DF取得最大值时△CAD面积最大,又∵在△CFD中,DF<CD,∴只有当CD旋转到与AC垂直时,FD才能取得最大值,即FD=CD=2,∵旋转角度为0°<α<360°,∴当α=90°或270°时,△CAD的面积最大,最大面积是2,故答案为:90°或270°,2.【点评】本题主要考查全等三角形的判定与性质、旋转的性质、平行线的判定等知识点,熟练掌握旋转的性质是解题的关键24.如图,AB是⊙O的直径,点C在AB的延长线上,且AB=4,BC=2,将半径OB绕点O按逆时针方向旋转α度(0°<α<180°),点B的对应点是点P.(l)在旋转过程中,∠PCO的最大度数为30°;(2)如图2,当PC是⊙O的切线时,廷长PO交⊙O于D,连接BD,求阴影部分的面积;(3)当CP=CO时,求sin∠PCO及AP的长.【考点】圆的综合题.【分析】(1)由题意可得:当OP⊥PC时,即PC是切线时,∠PCO的最大,然后利用三角函数,即可求得答案;(2)由PC是⊙O的切线,可得∠PCO=30°,继而求得∠BOD=120°,然后由S阴影=S扇形OBD﹣S△OBD,求得答案;(3)首先过点P作PE⊥AB于点E,然后在Rt△POE和Rt△PCE中,由勾股定理得:22﹣OE2=42﹣(4﹣OE)2,则可求得OE的长,继而求得答案.【解答】解:(1)当OP⊥PC时,即PC是切线时,∠PCO的最大,∵OB=OP=AB=×4=2,BC=2,∴OC=OB+BC=4,∴OP=OC,∴∠PCO=30°.故答案为:30°;(2)∵PC是⊙O的切线,∴∠OPC=90°,在Rt△OPC中,sin∠OCP===,∴∠OCP=30°,∴∠POC=60°,∴∠BOD=180°﹣∠POC=120°,∵OD=OE,∴∠ODE=30°,如图2,过点O作OE⊥BD于点E,则OE=OD=1,∴DE==,∴BD=2DE=2,∴S△OBD==,S扇形OBD==,∴S阴影=S扇形OBD﹣S△OBD=π﹣;(3)过点P作PE⊥AB于点E,在Rt△POE和Rt△PCE中,由勾股定理得:22﹣OE2=42﹣(4﹣OE)2,解得:OE=,∴PE==,∴在Rt△PCE中,sin∠PCO==,∴在Rt△PAE中,AP==.【点评】此题属于圆的综合题.考查了切线的性质、扇形的面积、三角函数以及勾股定理等知识.注意准确作出辅助线是解此题的关键.25.A、B两城相距600千米,一辆客车从A城开往B城,车速为每小时80千米,同时一辆出租车从B城开往A城,车速为毎小时100千米,设客车出时间为t.探究若客车、出租车距B城的距离分别为y1、y2,写出y1、y2关于t的函数关系式,并计算当y1=200千米时y2的値.发现设点C是A城与B城的中点,(1)哪个车会先到达C?该车到达C后再经过多少小时,另一个车会到达C?(2)若两车扣相距100千米时,求时间t.决策己知客车和出租车正好在A,B之间的服务站D处相遇,此时出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种选择返回B城的方案:方案一:继续乘坐出租车,到达A城后立刻返回B城(设出租车调头时间忽略不计);方案二:乘坐客车返回城.试通过计算,分析小王选择哪种方式能更快到达B城?【考点】一元一次方程的应用.【分析】探究:根据路程=速度×时间,即可得出y1、y2关于t的函数关系式,根据关系式算出y1=200千米时的时间t,将t代入y2的解析式中即可得出结论;发现:(1)根据出租车的速度大于客车的速度可得出出租车先到达C点,套用(1)中的函数关系式,令y=300即可分别算出时间t1和t2,二者做差即可得出结论;(2)两车相距100千米,分两种情况考虑,解关于t的一元一次方程即可得出结论;决策:根据时间=路程÷速度和,算出到达点D的时间,再根据路程=速度×时间算出AD、BD的长度,结合时间=路程÷速度,即可求出两种方案各需的时间,两者进行比较即可得出结论.【解答】解:探究:由已知,得y1=﹣80t+600,令y1=0,即﹣80t+600=0,解得t=,故y1=﹣80t+600(0≤t≤).y2=100t,令y2=600,即100t=600,解得t=6,故y2=100t(0≤t≤6).当y1=200时,即200=﹣80t+600,解得t=5,。

2020-2021学年河北省石家庄市中考数学第二次模拟试题及答案解析

2020-2021学年河北省石家庄市中考数学第二次模拟试题及答案解析

最新河北省石家庄市第二次模拟考试数学试卷一、选择题(1—10题每题3分,11—16题每题2分,共42分) 1.下列各数中,比-1小1的数为( ) A. 0B.1 C. -2 D. 2 2.下列等式成立的是( )A .(a+4)(a ﹣4)=a 2﹣4B .2a 2﹣3a=﹣aC .a 6÷a 3=a 2D .(a 2)3=a 63.如图在△ABC 中,∠C=90°,若BD ∥AE ,∠DBC=20°,则∠CAE 的度数是( ) A .40° B .60° C .70° D .80°4.如图在数轴上表示数55×( -5)的点可能是( )A .点E B. 点F C. 点P D. 点Q5.如图在一张正六边形纸片中剪下两个全等的直角三角形(阴影部分),拼成一个四边形,若拼成的四边形的面积为2,则纸片的剩余部分拼成的五边形的面积为( ) A. 5B. 6 C. 8 D. 106.如图四边形OABC 是矩形,四边形CDEF 是正方形,点C ,D 在x 轴的正半轴上,点A 在y 轴的正半轴上,点F 在BC 上,点B ,E 在反比例函数y =)(0 k xk的图象上,OA =2,OC =1,则正方形CDEF 的面积为( ) A. 4B.1C. 3D. 27.已知四边形ABEC 内接于⊙O ,点D 在AC 的延长线上,CE 平分∠BCD 交⊙O 于点E ,则下列结论中一定正确的是( )A. AB=AEB. AB=BEC. AE=BED. AB=AC8.如图已知△ABC ,按如下步骤作图:(1)以A 为圆心,AB 长为半径画弧;(2)以C 为圆心,CB 长为半径画弧,两弧相交于点D ;(3)连接BD ,与AC 交于点E ,连接AD ,CD .①四边形ABCD 是中心对称图形;②△ABC ≌△ADC ;③AC ⊥BD 且BE =DE ;④BD 平分∠ABC .其中正确的是( ) A. ①②B. ②③ C. ①③ D. ③④9.在一个不透明的盒子中装有m 个除颜色外完全相同的球,这m 个球中只有3个红球,从中随机摸出一个小球,恰好是红球的概率为15,那么m 的值是( ) A .12B .15C .18D .2110.关于x 的方程mx ﹣1=2x 的解为正实数,则m 的取值范围是( )A .m ≥2B .m ≤2C .m >2D .m <211.某商品原价为180元,连续两次提价x%后售价为300元,下列所列方程正确的是( )EBCA .180(1+x%)=300B .180(1+x%)2=300C .180(1﹣x%)=300D .180(1﹣x%)2=30012.如图8-1,在△ABC 中,∠ACB =90°,∠CAB = 30°,△ABD 是等边三角形. 如图8-2,将四边形ACBD 折叠,使D 与C 重合,EF 为折痕,则∠ACE 的正弦值为()A. 317-B. 12C. 437 D.1713.如图,在等边△ABC 中,AB =10,BD =4,BE =2,点P 从点E 出发沿EA 方向运动,连接PD ,以PD 为边,在PD 右侧按如图方式作等边△DPF ,当点P 从点E 运动到点A 时,点F 运动的路径长是( ) A.8 B.10 C.3π D.5π14.如图,已知点A (1,1)关于直线y =kx 的对称点恰好落在x 轴的正半轴上,则k 的值是( )A .12B .21-C .22-D .22FBE D P8-18-215.如图,圆O的半径为3cm,B为圆O外一点,OB交圆O于A,AB=OA,动点P从点A出发,以πcm/s的速度在圆O上按逆时针方向运动一周回到点A立即停止。

2020-2021备战中考数学压轴题专题复习—平行四边形的综合附答案解析

2020-2021备战中考数学压轴题专题复习—平行四边形的综合附答案解析

2020-2021备战中考数学压轴题专题复习—平行四边形的综合附答案解析一、平行四边形1.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,∴MN∥AE,MN=AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的中点,∴DM=AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.2.如图,在正方形ABCD中,E是边BC上的一动点(不与点B、C重合),连接DE、点C 关于直线DE的对称点为C′,连接AC′并延长交直线DE于点P,F是AC′的中点,连接DF.(1)求∠FDP的度数;(2)连接BP,请用等式表示AP、BP、DP三条线段之间的数量关系,并证明;(3)连接AC,若正方形的边长为2,请直接写出△ACC′的面积最大值.【答案】(1)45°;(2)BP+DP2AP,证明详见解析;(32﹣1.【解析】【分析】(1)证明∠CDE=∠C'DE和∠ADF=∠C'DF,可得∠FDP'=12∠ADC=45°;(2)作辅助线,构建全等三角形,证明△BAP≌△DAP'(SAS),得BP=DP',从而得△PAP'是等腰直角三角形,可得结论;(3)先作高线C'G,确定△ACC′的面积中底边AC为定值2,根据高的大小确定面积的大小,当C'在BD上时,C'G最大,其△ACC′的面积最大,并求此时的面积.【详解】(1)由对称得:CD=C'D,∠CDE=∠C'DE,在正方形ABCD中,AD=CD,∠ADC=90°,∴AD=C'D,∵F是AC'的中点,∴DF⊥AC',∠ADF=∠C'DF,∴∠FDP=∠FDC'+∠EDC'=12∠ADC=45°;(2)结论:BP+DP=2AP,理由是:如图,作AP'⊥AP交PD的延长线于P',∴∠PAP'=90°,在正方形ABCD中,DA=BA,∠BAD=90°,∴∠DAP'=∠BAP,由(1)可知:∠FDP=45°∵∠DFP=90°∴∠APD=45°,∴∠P'=45°,∴AP=AP',在△BAP和△DAP'中,∵BA DABAP DAP AP AP'=⎧⎪∠=∠⎨='⎪⎩,∴△BAP≌△DAP'(SAS),∴BP=DP',∴DP+BP=PP'2AP;(3)如图,过C '作C 'G ⊥AC 于G ,则S △AC 'C =12AC •C 'G ,Rt △ABC 中,AB =BC =2,∴AC =22(2)(2)2+=,即AC 为定值,当C 'G 最大值,△AC 'C 的面积最大,连接BD ,交AC 于O ,当C '在BD 上时,C 'G 最大,此时G 与O 重合,∵CD =C 'D =2,OD =12AC =1, ∴C 'G =2﹣1,∴S △AC 'C =112(21)2122AC C G '•=⨯-=-. 【点睛】本题考查四边形综合题、正方形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.3.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.【答案】(1)证明见解析;(2413 【解析】 分析:(1)根据平行四边形ABCD 的性质,判定△BOE ≌△DOF (ASA ),得出四边形BEDF 的对角线互相平分,进而得出结论;(2)在Rt △ADE 中,由勾股定理得出方程,解方程求出BE ,由勾股定理求出BD ,得出OB ,再由勾股定理求出EO ,即可得出EF 的长.详解:(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,∴∠A=90°,AD=BC=4,AB ∥DC ,OB=OD ,∴∠OBE=∠ODF ,在△BOE 和△DOF 中,OBE ODF OB ODBOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BOE ≌△DOF (ASA ),∴EO=FO ,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF ,设BE=x ,则 DE=x ,AE=6-x ,在Rt △ADE 中,DE 2=AD 2+AE 2,∴x 2=42+(6-x )2,解得:x= 133, ∵BD=22AD AB + =213, ∴OB=12BD=13, ∵BD ⊥EF ,∴EO=22BE OB -=213, ∴EF=2EO=4133. 点睛:本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键4.如图,四边形ABCD 中,∠BCD =∠D =90°,E 是边AB 的中点.已知AD =1,AB =2. (1)设BC =x ,CD =y ,求y 关于x 的函数关系式,并写出定义域;(2)当∠B =70°时,求∠AEC 的度数;(3)当△ACE 为直角三角形时,求边BC 的长.【答案】(1)()03y x =<<;(2)∠AEC =105°;(3)边BC 的长为2或12. 【解析】试题分析:(1)过A 作AH ⊥BC 于H ,得到四边形ADCH 为矩形.在△BAH 中,由勾股定理即可得出结论.(2)取CD 中点T ,连接TE ,则TE 是梯形中位线,得ET ∥AD ,ET ⊥CD ,∠AET =∠B =70°.又AD =AE =1,得到∠AED =∠ADE =∠DET =35°.由ET 垂直平分CD ,得∠CET =∠DET =35°,即可得到结论.(3)分两种情况讨论:①当∠AEC =90°时,易知△CBE ≌△CAE ≌△CAD ,得∠BCE =30°, 解△ABH 即可得到结论.②当∠CAE =90°时,易知△CDA ∽△BCA ,由相似三角形对应边成比例即可得到结论. 试题解析:解:(1)过A 作AH ⊥BC 于H .由∠D =∠BCD =90°,得四边形ADCH 为矩形. 在△BAH 中,AB =2,∠BHA =90°,AH =y ,HB =1x -,∴22221y x =+-,则()03y x =<<(2)取CD 中点T ,联结TE ,则TE 是梯形中位线,得ET ∥AD ,ET ⊥CD ,∴∠AET =∠B =70°.又AD =AE =1,∴∠AED =∠ADE =∠DET =35°.由ET 垂直平分CD ,得∠CET =∠DET =35°,∴∠AEC =70°+35°=105°.(3)分两种情况讨论:①当∠AEC =90°时,易知△CBE ≌△CAE ≌△CAD ,得∠BCE =30°, 则在△ABH 中,∠B =60°,∠AHB =90°,AB =2,得BH =1,于是BC =2.②当∠CAE =90°时,易知△CDA ∽△BCA ,又AC =则AD CA x AC CB =⇒=⇒=(舍负)易知∠ACE <90°,所以边BC 的长为12+.综上所述:边BC 的长为2.点睛:本题是四边形综合题.考查了梯形中位线,相似三角形的判定与性质.解题的关键是掌握梯形中常见的辅助线作法.5.如图,在平行四边形ABCD中,AD⊥DB,垂足为点D,将平行四边形ABCD折叠,使点B落在点D的位置,点C落在点G的位置,折痕为EF,EF交对角线BD于点P.(1)连结CG,请判断四边形DBCG的形状,并说明理由;(2)若AE=BD,求∠EDF的度数.【答案】(1)四边形BCGD是矩形,理由详见解析;(2)∠EDF=120°.【解析】【分析】(1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可;(2)根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可.【详解】解:(1)四边形BCGD是矩形,理由如下,∵四边形ABCD是平行四边形,∴BC∥AD,即BC∥DG,由折叠可知,BC=DG,∴四边形BCGD是平行四边形,∵AD ⊥BD ,∴∠CBD =90°,∴四边形BCGD 是矩形;(2)由折叠可知:EF 垂直平分BD ,∴BD ⊥EF ,DP =BP ,∵AD ⊥BD ,∴EF ∥AD ∥BC , ∴AE PD 1BE BP== ∴AE =BE , ∴DE 是Rt △ADB 斜边上的中线,∴DE =AE =BE ,∵AE =BD ,∴DE =BD =BE ,∴△DBE 是等边三角形,∴∠EDB =∠DBE =60°,∵AB ∥DC ,∴∠DBC =∠DBE =60°,∴∠EDF =120°.【点睛】本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度6.如图①,四边形ABCD 是知形,1,2AB BC ==,点E 是线段BC 上一动点(不与,B C 重合),点F 是线段BA 延长线上一动点,连接,,,DE EF DF EF 交AD 于点G .设,BE x AF y ==,已知y 与x 之间的函数关系如图②所示.(1)求图②中y 与x 的函数表达式;(2)求证:DE DF ⊥;(3)是否存在x 的值,使得DEG △是等腰三角形?如果存在,求出x 的值;如果不存在,说明理由【答案】(1)y =﹣2x +4(0<x <2);(2)见解析;(3)存在,x =54或52-或32. 【解析】【分析】(1)利用待定系数法可得y 与x 的函数表达式;(2)证明△CDE ∽△ADF ,得∠ADF =∠CDE ,可得结论;(3)分三种情况:①若DE =DG ,则∠DGE =∠DEG ,②若DE =EG ,如图①,作EH ∥CD ,交AD 于H ,③若DG =EG ,则∠GDE =∠GED ,分别列方程计算可得结论.【详解】(1)设y =kx +b ,由图象得:当x =1时,y =2,当x =0时,y =4, 代入得:24k b b +=⎧⎨=⎩,得24k b =-⎧⎨=⎩, ∴y =﹣2x +4(0<x <2);(2)∵BE =x ,BC =2∴CE =2﹣x , ∴211,4222CE x CD AF x AD -===-, ∴CE CD AF AD=, ∵四边形ABCD 是矩形,∴∠C =∠DAF =90°,∴△CDE ∽△ADF ,∴∠ADF =∠CDE ,∴∠ADF +∠EDG =∠CDE +∠EDG =90°,∴DE ⊥DF ;(3)假设存在x 的值,使得△DEG 是等腰三角形,①若DE =DG ,则∠DGE =∠DEG ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠B =90°,∴∠DGE =∠GEB ,∴∠DEG =∠BEG ,在△DEF 和△BEF 中,FDE B DEF BEF EF EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEF ≌△BEF (AAS ),∴DE =BE =x ,CE =2﹣x ,∴在Rt △CDE 中,由勾股定理得:1+(2﹣x )2=x 2, x=54; ②若DE =EG ,如图①,作EH ∥CD ,交AD 于H ,∵AD ∥BC ,EH ∥CD ,∴四边形CDHE 是平行四边形,∴∠C =90°,∴四边形CDHE 是矩形,∴EH =CD =1,DH =CE =2﹣x ,EH ⊥DG , ∴HG =DH =2﹣x ,∴AG =2x ﹣2,∵EH ∥CD ,DC ∥AB ,∴EH ∥AF ,∴△EHG ∽△FAG ,∴EH HG AF AG =, ∴124222x x x -=--, ∴125555x x -+==(舍), ③若DG =EG ,则∠GDE =∠GED , ∵AD ∥BC ,∴∠GDE =∠DEC ,∴∠GED =∠DEC ,∵∠C =∠EDF =90°,∴△CDE ∽△DFE ,∴CE DE CD DF =,∵△CDE ∽△ADF , ∴12DE CD DF AD ==, ∴12CE CD =, ∴2﹣x =12,x =32, 综上,x =54或5-5或32. 【点睛】本题是四边形的综合题,主要考查了待定系数法求一次函数的解析式,三角形相似和全等的性质和判定,矩形和平行四边形的性质和判定,勾股定理和逆定理等知识,运用相似三角形的性质是解决本题的关键.7.如图1,已知正方形ABCD 的边CD 在正方形DEFG 的边DE 上,连接AE ,GC .(1)试猜想AE 与GC 有怎样的关系(直接写出结论即可);(2)将正方形DEFG 绕点D 按顺时针方向旋转,使点E 落在BC 边上,如图2,连接AE 和CG .你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.(3)在(2)中,若E 是BC 的中点,且BC =2,则C ,F 两点间的距离为 .【答案】(1) AE =CG ,AE ⊥GC ;(2)成立,证明见解析;2 .【解析】【分析】(1)观察图形,AE 、CG 的位置关系可能是垂直,下面着手证明.由于四边形ABCD 、DEFG 都是正方形,易证得△ADE ≌△CDG ,则∠1=∠2,由于∠2、∠3互余,所以∠1、∠3互余,由此可得AE ⊥GC .(2)题(1)的结论仍然成立,参照(1)题的解题方法,可证△ADE ≌△CDG ,得∠5=∠4,由于∠4、∠7互余,而∠5、∠6互余,那么∠6=∠7;由图知∠AEB =∠CEH =90°﹣∠6,即∠7+∠CEH =90°,由此得证.(3)如图3中,作CM ⊥DG 于G ,GN ⊥CD 于N ,CH ⊥FG 于H ,则四边形CMGH 是矩形,可得CM =GH ,CH =GM .想办法求出CH ,HF ,再利用勾股定理即可解决问题.【详解】(1)AE =CG ,AE ⊥GC ;证明:延长GC 交AE 于点H ,在正方形ABCD与正方形DEFG中,AD=DC,∠ADE=∠CDG=90°,DE=DG,∴△ADE≌△CDG(SAS),∴AE,CG,∠1=∠2∵∠2+∠3=90°,∴∠1+∠3=90°,∴∠AHG=180°﹣(∠1+∠3)=180°﹣90°=90°,∴AE⊥GC.(2)答:成立;证明:延长AE和GC相交于点H,在正方形ABCD和正方形DEFG中,AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,∴∠1=∠2=90°﹣∠3;∴△ADE≌△CDG(SAS),∴AE=CG,∠5=∠4;又∵∠5+∠6=90°,∠4+∠7=180°﹣∠DCE=180°﹣90°=90°,∴∠6=∠7,又∵∠6+∠AEB=90°,∠AEB=∠CEH,∴∠CEH+∠7=90°,∴∠EHC=90°,∴AE⊥GC.(3)如图3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,则四边形CMGH是矩形,可得CM=GH,CH=GM.∵BE =CE =1,AB =CD =2,∴AE =DE =CG ═DG =FG 5∵DE =DG ,∠DCE =∠GND ,∠EDC =∠DGN ,∴△DCE ≌△GND(AAS),∴GCD =2,∵S △DCG =12•CD•NG =12•DG•C M , ∴2×25, ∴CM =GH 45, ∴MG =CH 22CG CM -355, ∴FH =FG ﹣FG 5, ∴CF 22FH CH +22535()()55+2. 2.【点睛】 本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.8.现有一张矩形纸片ABCD (如图),其中AB =4cm ,BC =6cm ,点E 是BC 的中点.将纸片沿直线AE 折叠,点B 落在四边形AECD 内,记为点B ′,过E 作EF 垂直B ′C ,交B ′C 于F .(1)求AE 、EF 的位置关系;(2)求线段B ′C 的长,并求△B ′EC 的面积.【答案】(1)见解析;(2)S△B′EC=108 25.【解析】【分析】(1)由折线法及点E是BC的中点,可证得△B'EC是等腰三角形,再有条件证明∠AEF=90°即可得到AE⊥EF;(2)连接BB′,通过折叠,可知∠EBB′=∠EB′B,由E是BC的中点,可得EB′=EC,∠ECB′=∠EB′C,从而可证△BB′C为直角三角形,在Rt△AOB和Rt△BOE中,可将OB,BB′的长求出,在Rt△BB′C中,根据勾股定理可将B′C的值求出.【详解】(1)由折线法及点E是BC的中点,∴EB=EB′=EC,∠AEB=∠AEB′,∴△B'EC是等腰三角形,又∵EF⊥B′C∴EF为∠B'EC的角平分线,即∠B′EF=∠FEC,∴∠AEF=180°﹣(∠AEB+∠CEF)=90°,即∠AEF=90°,即AE⊥EF;(2)连接BB'交AE于点O,由折线法及点E是BC的中点,∴EB=EB′=EC,∴∠EBB′=∠EB′B,∠ECB′=∠EB′C;又∵△BB'C三内角之和为180°,∴∠BB'C=90°;∵点B′是点B关于直线AE的对称点,∴AE垂直平分BB′;在Rt△AOB和Rt△BOE中,BO2=AB2﹣AO2=BE2﹣(AE﹣AO)2将AB=4cm,BE=3cm,AE=5cm,∴AO=165cm,∴BO22AB AO125cm,∴BB′=2BO=245cm,∴在Rt △BB 'C 中,B ′C =22BC BB '-=518cm , 由题意可知四边形OEFB ′是矩形, ∴EF =OB ′=125, ∴S △B ′EC =*111812108225525B C EF '⨯=⨯⨯=.【点睛】考查图形的折叠变化及三角形的内角和定理勾股定理的和矩形的性质综合运用.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.9.如图①,在矩形ABCD 中,点P 从AB 边的中点E 出发,沿着E B C --速运动,速度为每秒2个单位长度,到达点C 后停止运动,点Q 是AD 上的点,10AQ =,设PAQ ∆的面积为y ,点p 运动的时间为t 秒,y 与t 的函数关系如图②所示.(1)图①中AB = ,BC = ,图②中m = .(2)当t =1秒时,试判断以PQ 为直径的圆是否与BC 边相切?请说明理由:(3)点p 在运动过程中,将矩形沿PQ 所在直线折叠,则t 为何值时,折叠后顶点A 的对应点A '落在矩形的一边上.【答案】(1)8,18,20;(2)不相切,证明见解析;(3)t=12、5、173. 【解析】【分析】 (1)由题意得出AB=2BE ,t=2时,BE=2×2=4,求出AB=2BE=8,AE=BE=4,t=11时,2t=22,得出BC=18,当t=0时,点P 在E 处,m=△AEQ 的面积=12AQ×AE=20即可; (2)当t=1时,PE=2,得出AP=AE+PE=6,由勾股定理求出34PQ 为直径的圆的圆心为O',作O'N ⊥BC 于N ,延长NO'交AD 于M ,则MN=AB=8,O'M ∥AB ,MN=AB=8,由三角形中位线定理得出O'M=12AP=3,求出O'N=MN-O'M=5<圆O'的半径,即可得出结论;(3)分三种情况:①当点P 在AB 边上,A'落在BC 边上时,作QF ⊥BC 于F ,则QF=AB=8,BF=AQ=10,由折叠的性质得:PA'=PA ,A'Q=AQ=10,∠PA'Q=∠A=90°,由勾股定理求出A'F=22AQ QF '-=6,得出A'B=BF-A'F=4,在Rt △A'BP 中,BP=4-2t ,PA'=AP=8-(4-2t )=4+2t ,由勾股定理得出方程,解方程即可;②当点P 在BC 边上,A'落在BC 边上时,由折叠的性质得:A'P=AP ,证出∠APQ=∠AQP ,得出AP=AQ=A'P=10,在Rt △ABP 中,由勾股定理求出BP=6,由BP=2t-4,得出2t-4=6,解方程即可;③当点P 在BC 边上,A'落在CD 边上时,由折叠的性质得:A'P=AP ,A'Q=AQ=10,在Rt △DQA'中,DQ=AD-AQ=8,由勾股定理求出DA'=6,得出A'C=CD-DA'=2,在Rt △ABP 和Rt △A'PC 中,BP=2t-4,CP=BC-BP=22-2t ,由勾股定理得出方程,解方程即可.【详解】(1)∵点P 从AB 边的中点E 出发,速度为每秒2个单位长度,∴AB=2BE ,由图象得:t=2时,BE=2×2=4,∴AB=2BE=8,AE=BE=4,t=11时,2t=22,∴BC=22-4=18,当t=0时,点P 在E 处,m=△AEQ 的面积=12AQ×AE=12×10×4=20; 故答案为8,18,20;(2)当t=1秒时,以PQ 为直径的圆不与BC 边相切,理由如下:当t=1时,PE=2,∴AP=AE+PE=4+2=6,∵四边形ABCD 是矩形,∴∠A=90°,∴PQ=2222106234AQ AP +=+=,设以PQ 为直径的圆的圆心为O',作O'N ⊥BC 于N ,延长NO'交AD 于M ,如图1所示:则MN=AB=8,O'M ∥AB ,MN=AB=8,∵O'为PQ 的中点,∴O''M是△APQ的中位线,∴O'M=12AP=3,∴O'N=MN-O'M=5<34,∴以PQ为直径的圆不与BC边相切;(3)分三种情况:①当点P在AB边上,A'落在BC边上时,作QF⊥BC于F,如图2所示:则QF=AB=8,BF=AQ=10,∵四边形ABCD是矩形,∴∠A=∠B=∠BCD=∠D=90°,CD=AB=8,AD=BC=18,由折叠的性质得:PA'=PA,A'Q=AQ=10,∠PA'Q=∠A=90°,∴A'F=22AQ QF'-=6,∴A'B=BF-A'F=4,在Rt△A'BP中,BP=4-2t,PA'=AP=8-(4-2t)=4+2t,由勾股定理得:42+(4-2t)2=(4+2t)2,解得:t=12;②当点P在BC边上,A'落在BC边上时,连接AA',如图3所示:由折叠的性质得:A'P=AP,∴∠APQ'=∠A'PQ,∵AD∥BC,∴∠AQP=∠A'PQ,∴∠APQ=∠AQP,∴AP=AQ=A'P=10,在Rt△ABP中,由勾股定理得:22108-,又∵BP=2t-4,∴2t-4=6,解得:t=5;③当点P 在BC 边上,A'落在CD 边上时,连接AP 、A'P ,如图4所示:由折叠的性质得:A'P=AP ,A'Q=AQ=10,在Rt △DQA'中,DQ=AD-AQ=8,由勾股定理得:DA'=22108-=6,∴A'C=CD-DA'=2,在Rt △ABP 和Rt △A'PC 中,BP=2t-4,CP=BC-BP=18-(2t-4)=22-2t ,由勾股定理得:AP 2=82+(2t-4)2,A'P 2=22+(22-2t )2,∴82+(2t-4)2=22+(22-2t )2,解得:t=173; 综上所述,t 为12或5或173时,折叠后顶点A 的对应点A′落在矩形的一边上. 【点睛】 四边形综合题目,考查了矩形的性质、折叠变换的性质、勾股定理、函数图象、直线与圆的位置关系、三角形中位线定理、等腰三角形的判定、以及分类讨论等知识.10.△ABC 为等边三角形,AF AB =.BCD BDC AEC ∠=∠=∠.(1)求证:四边形ABDF 是菱形.(2)若BD 是ABC ∠的角平分线,连接AD ,找出图中所有的等腰三角形.【答案】(1)证明见解析;(2)图中等腰三角形有△ABC ,△BDC ,△ABD ,△ADF ,△ADC ,△ADE .【解析】【分析】(1)先求证BD ∥AF ,证明四边形ABDF 是平行四边形,再利用有一组邻边相等的平行四边形是菱形即可证明;(2)先利用BD 平分∠ABC ,得到BD 垂直平分线段AC ,进而证明△DAC是等腰三角形,根据BD⊥AC,AF⊥AC,找到角度之间的关系,证明△DAE是等腰三角形,进而得到BC=BD=BA=AF=DF,即可解题,见详解.【详解】(1)如图1中,∵∠BCD=∠BDC,∴BC=BD,∵△ABC是等边三角形,∴AB=BC,∵AB=AF,∴BD=AF,∵∠BDC=∠AEC,∴BD∥AF,∴四边形ABDF是平行四边形,∵AB=AF,∴四边形ABDF是菱形.(2)解:如图2中,∵BA=BC,BD平分∠ABC,∴BD垂直平分线段AC,∴DA=DC,∴△DAC是等腰三角形,∵AF∥BD,BD⊥AC∴AF⊥AC,∴∠EAC=90°,∵∠DAC=∠DCA,∠DAC+∠DAE=90°,∠DCA+∠AEC=90°,∴∠DAE=∠DEA,∴DA=DE,∴△DAE是等腰三角形,∵BC=BD=BA=AF=DF,∴△BCD,△ABD,△ADF都是等腰三角形,综上所述,图中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.【点睛】本题考查菱形的判定,等边三角形的性质,等腰三角形的判定等知识,属于中考常考题型,熟练掌握等腰三角形的性质是解题的关键.11.如图,现将平行四边形ABCD沿其对角线AC折叠,使点B落在点B′处.AB′与CD交于点E.(1)求证:△AED≌△CEB′;(2)过点E作EF⊥AC交AB于点F,连接CF,判断四边形AECF的形状并给予证明.【答案】(1)见解析(2)见解析【解析】【分析】(1)由题意可得AD=BC=B'C,∠B=∠D=∠B',且∠AED=∠CEB',利用AAS证明全等,则结论可得;(2)由△AED≌△CEB′可得AE=CE,且EF⊥AC,根据等腰三角形的性质可得EF垂直平分AC,∠AEF=∠CEF.即AF=CF,∠CEF=∠AFE=∠AEF,可得AE=AF,则可证四边形AECF是菱形.【详解】证明:(1)∵四边形ABCD是平行四边形∴AD=BC,CD∥AB,∠B=∠D∵平行四边形ABCD沿其对角线AC折叠∴BC=B'C,∠B=∠B'∴∠D=∠B',AD=B'C且∠DEA=∠B'EC∴△ADE≌△B'EC(2)四边形AECF是菱形∵△ADE≌△B'EC∴AE=CE∵AE=CE,EF⊥AC∴EF垂直平分AC,∠AEF=∠CEF∴AF=CF∵CD∥AB∴∠CEF=∠EFA且∠AEF=∠CEF∴∠AEF=∠EFA∴AF=AE∴AF=AE=CE=CF∴四边形AECF是菱形【点睛】本题考查了折叠问题,全等三角形的判定和性质,平行四边形的性质,菱形的判定,熟练掌握这些性质和判定是解决问题的关键.12.如图,抛物线y=mx2+2mx+n经过A(﹣3,0),C(0,﹣32)两点,与x轴交于另一点B.(1)求经过A,B,C三点的抛物线的解析式;(2)过点C作CE∥x轴交抛物线于点E,写出点E的坐标,并求AC、BE的交点F的坐标(3)若抛物线的顶点为D,连结DC、DE,四边形CDEF是否为菱形?若是,请证明;若不是,请说明理由.【答案】(1)y=12x2+x﹣32;(2)F点坐标为(﹣1,﹣1);(3)四边形CDEF是菱形.证明见解析【解析】【分析】将A、C点的坐标代入抛物线的解析式中,通过联立方程组求得该抛物线的解析式;根据(1)题所得的抛物线的解析式,可确定抛物线的对称轴方程以及B、C点的坐标,由CE∥x轴,可知C、E关于对称轴对称。

河北省石家庄市2021年中考预测数学试卷(二)(含解析)

河北省石家庄市2021年中考预测数学试卷(二)(含解析)

2021年河北省石家庄市中考数学预测试卷〔二〕一、选择题〔本大题共10个小题,每题2分,共20分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的〕1.﹣3的倒数是〔〕A.﹣ B.C.﹣3 D.32.如图是由几个一样的小正方体搭成的一个几何体,它的俯视图是〔〕A.B.C.D.3.将一副直角三角尺如图放置,AE∥BC,那么∠AFD的度数是〔〕A.45° B.50° C.60° D.75°4.把不等式组的解集表示在数轴上,正确的选项是〔〕A. B.C.D.5.函数y=中自变量的取值范围是〔〕A.x≠0 B.x≠2 C.x≠﹣2 D.x=26.有两块面积一样的试验田,分别收获蔬菜900kg和1500kg,第一块试验田每亩收获蔬菜比第二块少300kg,求第一块试验田每亩收获蔬菜多少千克.设第一块试验田每亩收获蔬菜xkg,根据题意,可得方程〔〕A.B.C. D.7.圆锥的底面半径为6,高为8,那么它的侧面积是〔〕A.30π B.48π C.60π D.96π8.某商店老板销售一种商品,他要以不低于进价20%的利润才能出售,但为了获得更多的利润,他以高出进价80%的价格标价,假设你想买下标价为360元的这种商品,商店老板让价的最大限度为〔〕A.82元B.100元C.120元D.160元9.一张正方形的纸片,剪去两个一样的小矩形得到一个E〞图案,如下图,设小矩形的长和宽分别为x,y,剪去局部的面积为20,假设2≤x≤10,那么y与x的函数图象是〔〕A.B.C.D.10.如图,一个点在第一象限及x轴、y轴上运动,且每秒移动一个单位,在第1秒钟,它从原点运动到〔0,1〕,然后接着按图中箭头所示方向运动[即〔0,0〕→〔0,1〕→〔1,1〕→〔1,0〕→…],那么第35秒时质点所在位置的坐标是〔〕A.〔4,0〕B.〔0,5〕C.〔5,0〕D.〔5,5〕二、填空题〔本大题共8个小题;每题3分,共24分.把答案写在题中横线上〕11.计算:[〔﹣x〕3]2= .12.我省为135万名农村中小学生免费提供教科书,减轻了农民的负担.135万用科学记数法可表示为.13.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=125°,那么∠BCE= 度.14.如图,将边长为2个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,那么四边形ABFD的周长为个单位.15.如图1,有六张写有汉字的卡片,它们的反面都一样,现将它们反面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“成〞的概率是.16.如图,为测量学校旗杆的高度,小东用长为的竹竿做测量工具.移动竹竿使竹竿,旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m,与旗杆相距22m,那么旗杆的高为m.17.x=2是方程﹣2a=0的一个根,那么2a+1= .18.观察以下图形它们是按一定规律排列的,依照此规律,第20个图形共有个★.三、解答题〔本大题共8个小题;共76分.解容许写出文字说明、证明过程或演算步骤.〕19.化简并求值:,其中x=+1.20.某校初三〔1〕班50名学生参加1分钟跳绳体育考试.1分钟跳绳次数与频数经统计后绘制出下面的频数分布表〔60~70表示为大于等于60并且小于70〕和扇形统计图.等级分数段 1分钟跳绳次数段频数〔人数〕A 120 254~300 0110~120 224~254 3B 100~110 194~224 990~100 164~194 mC 80~90 148~164 1270~80 132~148 nD 60~70 116~132 20~60 0~116 0〔1〕求m、n的值;〔2〕求该班1分钟跳绳成绩在80分以上〔含80分〕的人数占全班人数的百分比;〔3〕根据频数分布表估计该班学生1分钟跳绳的平均分大约是多少?并说明理由.21.小明在银行存入一笔零花钱.这种储蓄的年利率为n%,假设设到期后的本息和〔本金+利息〕为y〔元〕,存入的时间为x〔年〕,那么,〔1〕以下哪个图象更能反映y与x之间的函数关系?从图中你能看出存入的本金是多少元?一年后的本息和是多少元?〔2〕根据〔1〕的图象,求出y与x的函数关系式〔不要求写出自变量x的取值范围〕,并求出两年后的本息和.22.在一次数学活动课上,教师带着学生去测一条南北流向的河宽,如下图,某学生在河东岸点A处观测到河对岸水边有一点C,测得C在A北偏西31°的方向上,沿河岸向北前行20米到达B处,测得C在B北偏西45°的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.〔参考数值:tan31°≈,sin31°≈〕23.正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A旋转.〔1〕发现:如图1,当E点旋转到DA的延长线上时,△ABE与△ADG的面积关系是:;〔2〕引申:当正方形AEFG旋转任意一个角度时,△ABE与△ADG的面积关系是:;并证明你的结论;〔3〕如图3,四边形ABMN、四边形DEAC、四边形BFGC均为正方形,那么S△ABC、S△AEN、S△BMF、S△DCG的关系是;〔4〕运用:某小区中有一块空地,要在其中建三个正方形健身场所〔如图3〕,其余空地修成草坪.假设其中一个正方形的边长为5m,另一个正方形的边长为4m,那么草坪的最大面积是.24.如图1,P为正方形ABCD的对角线AC上一点〔不与A、C重合〕,PE⊥BC于点E,PF⊥CD于点F.〔1〕求证:BP=DP;〔2〕如图2,假设四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?假设是,请给予证明;假设不是,请用反例加以说明;〔3〕试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连接,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论.25.某商业集团新建一小车停车场,经测算,此停车场每天需固定支出的费用〔设施维修费、车辆管理人员工资等〕为800元.为制定合理的收费标准,该集团对一段时间每天小车停放辆次与每辆次小车的收费情况进展了调查,发现每辆次小车的停车费不超过5元时,每天来此处停放的小车为1440辆;当每辆次小车的停车费超过5元时,每增加1元,到此处停放的小车就减少120辆次.为便于结算,规定每辆次小车的停车费x〔元〕只取整数,用y〔元〕表示此停车场的日净收入,且要求日净收入不低于2512元.〔日净收入=每天共收取的停车费一每天的固定支出〕A型利润B型利润甲店200 170乙店160 150〔1〕当x≤5时,写出y与x之间的关系式,并说明每辆小车的停车费最少不低于多少元;〔2〕当x>5时,写出y与x之间的函数关系式〔不必写出x的取值范围〕;〔3〕该集团要求此停车场既要吸引客户,使每天小车停放的辆次较多,又要有较大的日净收入.按此要求,每辆次小车的停车费应定为多少元?此时日净收入是多少?26.如图,直角梯形ABCD中,AB∥CD,∠A=90°,AB=6,AD=4,DC=3,动点P从点A出发,沿A→D→C→B方向移动,动点Q从点A出发,在AB边上移动.设点P移动的路程为x,点Q移动的路程为y,线段PQ平分梯形ABCD的周长.〔1〕求y与x的函数关系式,并求出x,y的取值范围;〔2〕当PQ∥AC时,求x,y的值;〔3〕当P不在BC边上时,线段PQ能否平分梯形ABCD的面积?假设能,求出此时x的值;假设不能,说明理由.2021年河北省石家庄市中考数学预测试卷〔二〕参考答案与试题解析一、选择题〔本大题共10个小题,每题2分,共20分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的〕1.﹣3的倒数是〔〕A.﹣ B.C.﹣3 D.3【考点】17:倒数.【分析】根据倒数的定义,假设两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣3×〔﹣〕=1,∴﹣3的倒数是﹣.应选:A.2.如图是由几个一样的小正方体搭成的一个几何体,它的俯视图是〔〕A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据俯视图是从上边看得到的图形,可得答案.【解答】解:从上边看第一列是两个小正方形,第二列是两个小正方形,第三列是一个小正方形,应选:D.3.将一副直角三角尺如图放置,AE∥BC,那么∠AFD的度数是〔〕A.45° B.50° C.60° D.75°【考点】K7:三角形内角和定理;JA:平行线的性质.【分析】此题主要根据直角尺各角的度数及三角形内角和定理解答.【解答】解:∵∠C=30°,∠DAE=45°,AE∥BC,∴∠EAC=∠C=30°,∠FAD=45﹣30=15°,在△ADF中根据三角形内角和定理得到:∠AFD=180﹣90﹣15=75°.应选D.4.把不等式组的解集表示在数轴上,正确的选项是〔〕A. B.C.D.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共局部,然后把不等式的解集表示在数轴上即可.【解答】解:x﹣1≤0解得x≤1,x+1>0解得x>﹣1,∴不等式组的解集是﹣1<x≤1,应选B.5.函数y=中自变量的取值范围是〔〕A.x≠0 B.x≠2 C.x≠﹣2 D.x=2【考点】E4:函数自变量的取值范围;62:分式有意义的条件.【分析】函数表达式是分式,分式的分母不能为0,依此列式求解.【解答】解:根据题意得:x﹣2≠0,解得x≠2.应选B.6.有两块面积一样的试验田,分别收获蔬菜900kg和1500kg,第一块试验田每亩收获蔬菜比第二块少300kg,求第一块试验田每亩收获蔬菜多少千克.设第一块试验田每亩收获蔬菜xkg,根据题意,可得方程〔〕A.B.C. D.【考点】B6:由实际问题抽象出分式方程.【分析】关键描述语是:有两块面积一样的试验田.等量关系为:第一块的亩数=第二块的亩数.【解答】解:第一块试验田的亩数为:;第二块试验田的亩数为:.那么所列方程为: =.应选:C.7.圆锥的底面半径为6,高为8,那么它的侧面积是〔〕A.30π B.48π C.60π D.96π【考点】MP:圆锥的计算.【分析】利用勾股定理可求得圆锥母线长,那么圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径为6,高为8,由勾股定理得,母线长=10,底面周长=12π,侧面积=×12π×10=60π,应选C.8.某商店老板销售一种商品,他要以不低于进价20%的利润才能出售,但为了获得更多的利润,他以高出进价80%的价格标价,假设你想买下标价为360元的这种商品,商店老板让价的最大限度为〔〕A.82元B.100元C.120元D.160元【考点】C9:一元一次不等式的应用.【分析】先求出进价,然后设让价x元,根据商店老板的利润不低于进价20%,列不等式求解.【解答】解:由题意得,进价为: =200〔元〕,设让价x元,那么有,360﹣x﹣200≥200×20%,解得:x≤120.应选C.9.一张正方形的纸片,剪去两个一样的小矩形得到一个E〞图案,如下图,设小矩形的长和宽分别为x,y,剪去局部的面积为20,假设2≤x≤10,那么y与x的函数图象是〔〕A.B.C.D.【考点】GA:反比例函数的应用;G2:反比例函数的图象.【分析】先根据图形的剪切确定变化过程中的函数关系式,确定函数类型,再根据自变量及函数的取值范围确定函数的具体图象.【解答】解:∵是剪去的两个矩形,两个矩形的面积和为20,∴xy=10,∴y是x的反比例函数,∵2≤x≤10,∴答案为A.应选A.10.如图,一个点在第一象限及x轴、y轴上运动,且每秒移动一个单位,在第1秒钟,它从原点运动到〔0,1〕,然后接着按图中箭头所示方向运动[即〔0,0〕→〔0,1〕→〔1,1〕→〔1,0〕→…],那么第35秒时质点所在位置的坐标是〔〕A.〔4,0〕B.〔0,5〕C.〔5,0〕D.〔5,5〕【考点】D1:点的坐标.【分析】根据质点移动的各点的坐标与时间的关系,找出规律即可解答.【解答】解:由题意可知质点移动的速度是1个单位长度/每秒,到达〔1,0〕时用了3秒,到达〔2,0〕时用了4秒,从〔2,0〕到〔0,2〕有四个单位长度,那么到达〔0,2〕时用了4+4=8秒,到〔0,3〕时用了9秒;从〔0,3〕到〔3,0〕有六个单位长度,那么到〔3,0〕时用9+6=15秒;依此类推到〔4,0〕用16秒,到〔0,4〕用16+8=24秒,到〔0,5〕用25秒,到〔5,0〕用25+10=35秒.故第35秒时质点到达的位置为〔5,0〕,应选:C.二、填空题〔本大题共8个小题;每题3分,共24分.把答案写在题中横线上〕11.计算:[〔﹣x〕3]2= x6.【考点】47:幂的乘方与积的乘方.【分析】根据幂的乘方,底数不变指数相乘,计算即可.【解答】解:[〔﹣x〕3]2=〔﹣x〕6=x6.12.我省为135万名农村中小学生免费提供教科书,减轻了农民的负担.135万用科学记数法可表示为×106.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数一样.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.×106.×106.13.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=125°,那么∠BCE= 35 度.【考点】L5:平行四边形的性质.【分析】根据平行四边形的性质和,可求出∠B,再进一步利用直角三角形的性质求解即可.【解答】解:∵AD∥BC,∴∠A+∠B=180°,∴∠B=180°﹣125°=55°,∵CE⊥AB,∴在Rt△BCE中,∠BCE=90°﹣∠B=90°﹣55°=35°.故答案为:35.14.如图,将边长为2个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,那么四边形ABFD的周长为8 个单位.【考点】Q2:平移的性质.【分析】根据平移的根本性质作答.【解答】解:根据题意,将边长为2个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,故四边形ABFD的边长分别为AD=1个单位,BF=3个单位,AB=DF=2个单位;故其周长为8个单位.故答案为:8.15.如图1,有六张写有汉字的卡片,它们的反面都一样,现将它们反面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“成〞的概率是.【考点】X4:概率公式.【分析】共有6个字,其中“成〞字有3个,故概率为=.【解答】解:从中任意翻开一张是汉字“成〞的概率是=,故答案为:.16.如图,为测量学校旗杆的高度,小东用长为的竹竿做测量工具.移动竹竿使竹竿,旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m,与旗杆相距22m,那么旗杆的高为12 m.【考点】SA:相似三角形的应用.【分析】易证△AEB∽△ADC,利用相似三角形的对应边成比例,列出方程求解即可.【解答】解:因为BE∥CD,所以△AEB∽△ADC,于是=,即=,解得:CD=12m.旗杆的高为12m.17.x=2是方程﹣2a=0的一个根,那么2a+1= 7 .【考点】A3:一元二次方程的解.【分析】根据一元二次方程解的定义把x=2代入﹣2a=0得到关于a的方程,然后解关于a的方程即可.【解答】解:把x=2代入﹣2a=0得6﹣2a=0,解得2a=6,2a+1=6+1=7.故答案为7.18.观察以下图形它们是按一定规律排列的,依照此规律,第20个图形共有60 个★.【考点】37:规律型:数字的变化类.【分析】排列组成的图形都是三角形.第一个图形中有1×3=3个★,第二个图形中有2×3=6个★,第三个图形中有3×3=9个★,…第20个图形共有20×3=60个★.【解答】解:根据规律可知第n个图形有3n个★,所以第20个图形共有20×3=60个★.三、解答题〔本大题共8个小题;共76分.解容许写出文字说明、证明过程或演算步骤.〕19.化简并求值:,其中x=+1.【考点】6D:分式的化简求值;76:分母有理化.【分析】先把分式化简,再把数代入求值.【解答】解:原式===,当x=+1时,原式=.20.某校初三〔1〕班50名学生参加1分钟跳绳体育考试.1分钟跳绳次数与频数经统计后绘制出下面的频数分布表〔60~70表示为大于等于60并且小于70〕和扇形统计图.等级分数段 1分钟跳绳次数段频数〔人数〕A 120 254~300 0110~120 224~254 3B 100~110 194~224 990~100 164~194 mC 80~90 148~164 1270~80 132~148 nD 60~70 116~132 20~60 0~116 0〔1〕求m、n的值;〔2〕求该班1分钟跳绳成绩在80分以上〔含80分〕的人数占全班人数的百分比;〔3〕根据频数分布表估计该班学生1分钟跳绳的平均分大约是多少?并说明理由.【考点】W2:加权平均数;8A:一元一次方程的应用;V5:用样本估计总体;V7:频数〔率〕分布表;VB:扇形统计图.【分析】由扇形统计图知:初三〔1〕班1分钟跳绳考试成绩为B等的学生占全部总人数的54%,所以由=54%得m=18,总人数可得n=50﹣3﹣9﹣18﹣12﹣2=6;由频数分布表可知:初三〔1〕班1分钟跳绳成绩在80分以上〔含80分〕的人数为42人,由此可知:1分钟跳绳成绩在80分以上〔含80分〕的人数占全班人数的百分比=84%;按照在每个分数段中按等距离取值,然后计算加权平均分就可以估计该班学生1分钟跳绳的平均分大约是多少.【解答】解:〔1〕由扇形统计图知:初三〔1〕班1分钟跳绳考试成绩为B等的学生占全部总人数的54%∴=54%∴m=18∵3+9+18+12+n+2=50∴n=6〔2〕由频数分布表可知:初三〔1〕班1分钟跳绳成绩在80分以上〔含80分〕的人数为3+9+18+12=42∴1分钟跳绳成绩在80分以上〔含80分〕的人数占全班人数的百分比=84%〔3〕此题答案和理由不唯一,只要该班学生1分钟跳绳平均分的估计值是85﹣100分之间的某一个值或某个范围,理由合理,均正确例如:估计平均分为92分,估计方法为:取每个分数段的中间值分别是115、105、95、85、75、65、30,那么该班学生1分钟跳绳的平均分为x==92分.〔说明:只要按照在每个分数段中按等距离取值,然后计算加权平均分,均正确〕又如:估计平均分在90﹣100分之间,理由是:该班有18个人的成绩在90﹣100分之间,而且30个人的成绩超过90分.21.小明在银行存入一笔零花钱.这种储蓄的年利率为n%,假设设到期后的本息和〔本金+利息〕为y〔元〕,存入的时间为x〔年〕,那么,〔1〕以下哪个图象更能反映y与x之间的函数关系?从图中你能看出存入的本金是多少元?一年后的本息和是多少元?〔2〕根据〔1〕的图象,求出y与x的函数关系式〔不要求写出自变量x的取值范围〕,并求出两年后的本息和.【考点】FH:一次函数的应用.【分析】〔1〕图1不能反映存入的本金,由图得出,存入的本金为0;图2既可反映存入的本金为100,也可得出存入1年后的本息和为102.25;图3不能反映存入的本金,可得出存入1年后的本息和为100;图4不能反映存入的本金,可得出存入1年后的本息和为102.25;〔2〕由图2,根据待定系数法可将y与x之间的函数关系式表示出来,将x=2代入,可将两年后的本息和求出.【解答】解:〔1〕图2能反映y与x之间的函数关系,从图中可以看出存入的本金是100元一年后的本息和是102.25元;〔2〕设y与x的关系式为:y=nx+100,把〔1,102.25〕代入上式得n=2.25,∴+100,×2+100=104.5元,所以两年后的本息和为104.5元.22.在一次数学活动课上,教师带着学生去测一条南北流向的河宽,如下图,某学生在河东岸点A处观测到河对岸水边有一点C,测得C在A北偏西31°的方向上,沿河岸向北前行20米到达B处,测得C在B北偏西45°的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.〔参考数值:tan31°≈,sin31°≈〕【考点】TB:解直角三角形的应用﹣方向角问题.【分析】河宽就是点C到AB的距离,因此过点C作CD⊥AB,垂足为D,根据AB=AD﹣BD=20,通过解两个直角三角形分别表示AD、BD的方程求解.【解答】解:过点C作CD⊥AB,垂足为D,设CD=x米,在Rt△BCD中,∠CBD=45°,∴BD=CD=x米.在Rt△ACD中,∠DAC=31°,AD=AB+BD=〔20+x〕米,CD=x米,∵tan∠DAC=,∴=,解得x=30.经检验x=30是原方程的解,且符合题意.答:这条河的宽度为30米.23.正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A旋转.〔1〕发现:如图1,当E点旋转到DA的延长线上时,△ABE与△ADG的面积关系是:△ABE的面积=△ADG的面积;〔2〕引申:当正方形AEFG旋转任意一个角度时,△ABE与△ADG的面积关系是:△ABE 的面积=△ADG的面积;并证明你的结论;〔3〕如图3,四边形ABMN、四边形DEAC、四边形BFGC均为正方形,那么S△ABC、S△AEN、S△BMF、S△DCG的关系是S△ABC=S△AEN=S△BMF=S△DCG;〔4〕运用:某小区中有一块空地,要在其中建三个正方形健身场所〔如图3〕,其余空地修成草坪.假设其中一个正方形的边长为5m,另一个正方形的边长为4m,那么草坪的最大面积是30m2.【考点】LO:四边形综合题.【分析】〔1〕根据正方形的性质得到AE=AG,AB=AD,∠EAB=∠GAD,根据“SAS〞可判断△ABE≌△ADG,那么△ABE的面积=△ADG的面积;〔2〕作GH⊥DA交DA的延长线于H,EP⊥BA交BA的延长线于P,根据等角的余角相等得到∠PAE=∠GAH,根据“AAS〞可判断△AHG≌△AEP,所以GH=BP,然后根据三角形面积公式得到△ABE的面积=△ADG的面积;〔3〕由〔2〕容易得出结论;’〔4〕先根据三角形面积公式得到△ABC的面积=×4×5×sin∠BAC,利用正弦的定义得到△ABC面积的最大值;然后根据〔2〕中的结结论计算阴影局部的面积和的最大值.【解答】解:〔1〕∵正方形ABCD和正方形AEFG有公顶点A,将正方形AEFG绕点A旋转,E 点旋转到DA的延长线上∴AE=AG,AB=AD,∠EAB=∠GAD=90°,在△ABE和△ADG中∴△ABE≌△ADG〔SAS〕,∴△ABE的面积=△ADG的面积;故答案为:△ABE的面积=△ADG的面积;〔2〕结论仍然成立.理由如下:作GH⊥DA交DA的延长线于H,EP⊥BA交BA的延长线于P,如下图,∵∠PAD=90°,∠EAG=90°,∴∠PAE=∠GAH,在△AHG和△AEP中,,∴△AHG≌△AEP〔AAS〕,∴GH=BP,∵△ABE的面积=EP•AB,△ADG的面积=GH•AD,∴△ABE的面积=△ADG的面积;故答案为:△ABE的面积=△ADG的面积;〔3〕由〔2〕得:S△ABC=S△AEN=S△BMF=S△DCG,故答案为:S△ABC=S△AEN=S△BMF=S△DCG,〔4〕∵AB=5m,AC=4m,∴△ABC的面积=×5×4×sin∠BAC=10sin∠BAC,当sin∠BAC=1时,△ABC的面积的最大值为10,根据〔2〕中的结论得到阴影局部的面积和的最大值=△ABC的面积的3倍=3×10=30m2.故答案为:30m2.24.如图1,P为正方形ABCD的对角线AC上一点〔不与A、C重合〕,PE⊥BC于点E,PF⊥CD于点F.〔1〕求证:BP=DP;〔2〕如图2,假设四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?假设是,请给予证明;假设不是,请用反例加以说明;〔3〕试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连接,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论.【考点】R2:旋转的性质;KA:全等三角形的性质;KB:全等三角形的判定.【分析】〔1〕由正方形的性质可证△ABP≌△ADP,即BP=DP;〔2〕当四边形PECF的点P旋转到BC边上时,DP>DC>BP,此时BP=DP不成立;〔3〕由旋转的性质和正方形的性质可证△BEC≌△DFC,即BE=DF.【解答】〔1〕证明:证法一:在△ABP与△ADP中,∵AB=AD∠BAC=∠DAC,AP=AP,∴△ABP≌△ADP,∴BP=DP.证法二:利用正方形的轴对称性,可得BP=DP.〔2〕解:不是总成立.当四边形PECF的点P旋转到BC边上时,DP>DC>BP,此时BP=DP不成立,是当P点在AC的延长线上时,BP=DP,说明:未用举反例的方法说理的不得分.〔3〕解:连接BE、DF,那么BE与DF始终相等,,在图1中,由正方形ABCD可证:AC平分∠BCD,∵PE⊥BC,PF⊥CD,∴PE=PF,∠BCD=90°,∴四边形PECF为正方形.∴CE=CF,∵∠DCF=∠BCE,BC=CD,∴△BEC≌△DFC,∴BE=DF.25.某商业集团新建一小车停车场,经测算,此停车场每天需固定支出的费用〔设施维修费、车辆管理人员工资等〕为800元.为制定合理的收费标准,该集团对一段时间每天小车停放辆次与每辆次小车的收费情况进展了调查,发现每辆次小车的停车费不超过5元时,每天来此处停放的小车为1440辆;当每辆次小车的停车费超过5元时,每增加1元,到此处停放的小车就减少120辆次.为便于结算,规定每辆次小车的停车费x〔元〕只取整数,用y〔元〕表示此停车场的日净收入,且要求日净收入不低于2512元.〔日净收入=每天共收取的停车费一每天的固定支出〕A型利润B型利润甲店200 170乙店160 150〔1〕当x≤5时,写出y与x之间的关系式,并说明每辆小车的停车费最少不低于多少元;〔2〕当x>5时,写出y与x之间的函数关系式〔不必写出x的取值范围〕;〔3〕该集团要求此停车场既要吸引客户,使每天小车停放的辆次较多,又要有较大的日净收入.按此要求,每辆次小车的停车费应定为多少元?此时日净收入是多少?【考点】HE:二次函数的应用;AD:一元二次方程的应用.【分析】〔1〕根据“总利润=每两次停车费用×辆次﹣总本钱〞列出函数解析式,再由日净收入不低于2512元列不等式求解可得;〔2〕根据“总利润=每两次停车费用×辆次﹣总本钱〞可得函数解析式;〔3〕根据〔1〕、〔2〕中函数解析式利用一次函数和二次函数性质求解可得.【解答】解:〔1〕由题意得:y=1440x﹣800∵1440x﹣800≥2512,∴x≥∵x取整数,∴x最小取3,即每辆次小车的停车费最少不低于3元.〔2〕由题意得:y=[1440﹣120〔x﹣5〕]x﹣800即y=﹣120x2+2040x﹣800;〔3〕当x≤5时,停车1440辆次,最大日净收入y=1440×5﹣800=6400〔元〕当x>5时,y=﹣120x2+2040x﹣800=﹣120〔x2﹣17x〕﹣800=﹣120〔x﹣〕2+7870∴当x=时,y有最大值.但x只能取整数,∴x取8或9.显然,x取8时,小车停放辆次较多,此时最大日净收入为y=﹣120×+7870=7840〔元〕由上得,每辆次小车的停车费应定为8元,此时的日净收入为7840元.26.如图,直角梯形ABCD中,AB∥CD,∠A=90°,AB=6,AD=4,DC=3,动点P从点A出发,沿A→D→C→B方向移动,动点Q从点A出发,在AB边上移动.设点P移动的路程为x,点Q移动的路程为y,线段PQ平分梯形ABCD的周长.〔1〕求y与x的函数关系式,并求出x,y的取值范围;〔2〕当PQ∥AC时,求x,y的值;〔3〕当P不在BC边上时,线段PQ能否平分梯形ABCD的面积?假设能,求出此时x的值;假设不能,说明理由.【考点】FI:一次函数综合题;S9:相似三角形的判定与性质.【分析】〔1〕过C作CE⊥AB于E,由勾股定理求得BC的值,进而得到梯形的周长为18,由题意知,y=﹣x+9,由于点Q只在AB上,于是能确定出x的取值范围;〔2〕∵PQ∥AC,∴△BPQ∽△BCA,有,得6x﹣5y=42,与y=﹣x+9组成方程组求解即可;〔3〕通过讨论点P的位置,建立关于x,y的方程组求得x的值.【解答】解:〔1〕过C作CE⊥AB于E,那么CD=AE=3,CE=4,可得BC=5,所以梯形ABCD的周长为6+3+4+5=18,∵PQ平分ABCD的周长,∴x+y=9,∵0≤y≤6,∴3≤x≤9,故所求关系式为:y=﹣x+9,3≤x≤9;〔2〕依题意,P只能在BC边上,7≤x≤9.PB=12﹣x,BQ=6﹣y,因为PQ∥AC,所以△BPQ∽△BCA,所以,得:,即6x﹣5y=42,解方程组得;〔3〕梯形ABCD的面积为18,当P不在BC边上,那么3≤x≤7,a〕当3≤x<4时,P在AD边上,S△APQ=xy,如果线段PQ能平分梯形ABCD的面积,那么有,可得:,解得,〔舍去〕,b〕当4≤x≤7时,点P在DC边上,此时S ADPQ=×4〔x﹣4+y〕,如果线段PQ能平分梯形ABCD的面积,那么有×4〔x﹣4+y〕=9,可得此方程组无解.所以当x=3时,线段PQ能平分梯形ABCD的面积.。

2020-2021学年河北石家庄九年级下数学中考模拟

2020-2021学年河北石家庄九年级下数学中考模拟
A.实际每天改造道路的长度B.原计划每天改造道路的长度
C.原计划施工的天数D.实际施工的天数
11.如图所示,下列说法错误的是()
A.嘉琪家在图书馆南偏西 方向上
B.学校在图书馆南偏东 方向上
C.学校在嘉琪家南偏东 方向上
D.图书馆到学校的距离为
12.若化简 ()的最终结果是整式,则()里的式子可以是
A.甲、乙、丙都对B.只有乙对
C.只有甲不对D.甲、乙、丙都不对
二、填空题
17.计算: ________.
18.王老师设计了一个如图所示的数值转换程序.
当输入 时,输出 的值为________;
当输出 时,输入 的值为________.
19.如图 ,将一个正三角形绕其中心最少旋转 ,所得图形与原图的重叠部分是正六边形;如图 ,将一个正方形绕其中心最少旋转 ,所得图形与原图形的重叠部分是正八边形;依此规律,将一个正七边形绕其中心最少旋转(________) ,所得图形与原图的重叠部分是正多边形.在图 中,若正方形的边长为 ,则所得正八边形的面积为________.
思维探索:
在 和 中, , ,且 , .将 绕点 顺时针旋转,把点 在 边上时 的位置作为起始位置(此时点 和点 位于 的两侧),设旋转角为 ,连接 ,点 是线段 的中点,连接 , .
①如图 ,当 在起始位置时,猜想: 与 的数量关系和位置关系分别是________,________;
②如图 ,当 ,点 落在 边上,请判断 与 的数量关系和位置关系,并证明你的结论;
三、解答题
20.定义新运算:对于任意实数 , 都有 ☆ ,
例如 ☆ ,请根据上述知识解决下列问题:
☆ ,求 取值范围;
若 ☆ ,求 的值;

2020-2021学年河北石家庄九年级下数学中考模拟

2020-2021学年河北石家庄九年级下数学中考模拟

2020-2021学年河北石家庄九年级下数学中考模拟一、选择题1. (−√5)0的值是()A.√5B.1C.−√5D.−12. 下列计算正确的是()A.a3−a2=aB.a2⋅a3=a6C.(3a3)2=9a6D.(2a+1)(2a−1)=2a2−13. 如图,一束平行太阳光线FA,GB照射到正五边形ABCDE上,∠ABG=50∘,则∠FAE的度数是()A.22∘B.32∘C.50∘D.130∘4. 一种细菌的半径用科学记数法表示为3.68×10−5米,则这个数据可以写成()A.368000米B.0.00368米C.0.000368米D.0.0000368米5. 如图,小亮用6个相同的小正方体搭成一个立体图形,研究几何体的三视图的变化情况,若由图①变到图②,其三视图中不改变的是()A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图6. 关于反比例函数y=2x,下列说法不正确的是()A.函数图象分别位于第一、第三象限B.当x>0时,y随x的增大而减小C.函数图象经过点(1,2)D.点A(x1,y1),B(x2,y2)都在函数图象上,若x1<x2,则y1>y27. 下列图形是物理学中实验器件的平面示意图,从左至右分别代表小车、音叉、凹透镜和砝码,其中既是中心对称图形又是轴对称图形的是()A. B. C. D.8. 有下列说法:①为预防新型冠状病毒肺炎,学校检查师生佩戴口罩的情况,应采用全面调查;②从2000名学生中选出200名学生进行抽样调查,样本容量为2000;③“任意买—张电影票座位号是奇数”这个事件是必然事件;④数据1,2,3,4,5的方差是1.其中说法正确的有( )A.1个B.2个C.3个D.4个9. 求证:两直线平行,内错角相等.如图1,若AB//CD,且AB,CD被EF所截,求证:∠AOF=∠EO′D.理论依据1:内错角相等,两直线平行;理论依据2:过直线外一点,有且只有一条直线与已知直线平行.以下是打乱的用反证法证明的过程:①如图2,过点O作直线A′B′,使∠A′OF=∠EO′D,②依据理论依据1,可得A′B′//CD,③假设∠AOF≠∠EO′D,④∴∠AOF=∠EO′D.⑤与理论依据2矛盾,∴假设不成立.证明步骤的正确顺序是()A.①②③④⑤B.①③②⑤④C.③①④②⑤D.③①②⑤④10. 为有效解决交通拥堵问题,营造路网微循环,某市决定对一条长860m的道路进行改造拓宽.为了尽量减轻施工对城市交通造成的影响,实际施工时,每天改造道路的长度比原计划增加10%,结果提前6天完成任务,求实际每天改造道路的长度与实际施工天数.嘉琪同学根据题意列出方程:860x −860x(1+10%)=6,则方程中未知数x所表示的量是( )A.实际每天改造道路的长度B.原计划每天改造道路的长度C.原计划施工的天数D.实际施工的天数11. 如图所示,下列说法错误的是()A.嘉琪家在图书馆南偏西60∘方向上B.学校在图书馆南偏东30∘方向上C.学校在嘉琪家南偏东60∘方向上D.图书馆到学校的距离为5km12. 若化简mm−2−2m−2()的最终结果是整式,则()里的式子可以是()A.m−1B.m+1C.mD.213. 如下图,已知线a,b,其中b=2a,用尺规作图的方法作出一个直角三角形,要求斜边的长为b,一条直角边的长为a,则下列作图中,不正确的是()A. B. C. D.14. 若a,b,c为常数,且(a−c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.无实数根B.有两个相等的实数根C.有两个不相等的实数根D.有一个根15. 如图,已知点E是△ABC的外心,点P,Q分别是AB,AC的中点,连接EP,EQ分别交BC于点F,D,若BF=5,DF=3,CD=4,则△ABC的面积为()A.18B.24C.30D.3616. 在平面上,边长为2的正方形和短边长为1的矩形几何中心重合,如图①,当正方形和矩形都水平放置时,容易求出重叠面积S=2×1=2.甲、乙、丙三位同学分别给出了两个图形不同的重叠方式:甲:矩形绕着几何中心旋转,从图②到图③的过程中,重叠面积S大小不变.乙:如图④,矩形绕着几何中心继续旋转,矩形的两条长边与正方形的对角线平行时,此时的重叠面积大于图③的重叠面积.丙:如图⑤,将图④中的矩形向左上方平移,使矩形的一条长边恰好经过正方形的对角线,此时的重叠面积是5个图形中最小的.下列说法正确的是()A.甲、乙、丙都对B.只有乙对C.只有甲不对D.甲、乙、丙都不对二、填空题计算:√2×(−√82)=________.王老师设计了一个如图所示的数值转换程序.(1)当输入x=−4时,输出M的值为________;(2)当输出M=5时,输入x的值为________.如图1,将一个正三角形绕其中心最少旋转60∘,所得图形与原图的重叠部分是正六边形;如图2,将一个正方形绕其中心最少旋转45∘,所得图形与原图形的重叠部分是正八边形;依此规律,将一个正七边形绕其中心最少旋转(________)∘,所得图形与原图的重叠部分是正多边形.在图2中,若正方形的边长为4,则所得正八边形的面积为________.三、解答题定义新运算:对于任意实数m,n都有m☆n=mn−3n,例如4☆2=4×2−3×2=8−6=2,请根据上述知识解决下列问题:(1)x☆12>4,求x取值范围;(2)若|x☆(−14)|=3,求x的值;(3)若方程x☆□x=6,□中是一个常数,且此方程的一个解为x=1,求□中的常数.小亮在课余时间写了三个算式:32−12=8×1,52−32=8×2,72−52=8×3,通过认真观察,发现任意两个连续奇数的平方差是8的倍数.验证(1)92−72的结果是8的几倍?(2)设两个连续奇数为2n+1,2n−1(其中n为正整数),写出它们的平方差,并说明结果是8的倍数;延伸直接写出两个连续偶数的平方差是几的倍数.为了能够帮助武汉疫情,某公司通过武汉市慈善总会二维码给武汉捐款,根据捐款情况制成不完整的扇形统计图(图1)、条形统计图(图2).(1)根据以上信息可知参加捐款总人数为________,m=________,捐款金额中位数为________,请补全条形统计图;(2)若从捐款的人中,随机选一人代表公司去其它公司做捐款宣传,求选中捐款不低于150元的人的概率;(3)若其它公司有几人参与了捐款活动,把新捐款数与原捐款数合并成一组新数据,发现众数发生改变,请求出至少有几人参与捐款.如图,直线l1的解析式为y=12x+1,且l1与x轴交于点D,直线l2经过定点A,B,直线l1与l2交于点C.(1)求直线l2的解析式;(2)求△ADC的面积;(3)在x轴上是否存在一点E,使△BCE的周长最短?若存在,请求出点E的坐标;若不存在,请说明理由.如图,AB是半圆的直径,O为半圆O的圆心,AC是弦,取BĈ的中点D,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是半圆O的切线;(2)当AB=10,AC=5√3时,求BĈ的长;(3)当AB=20时,直接写出△ABC面积最大时,点D到直径AB的距离.某公司计划投资A,B两种产品,若只投资A产品,所获得利润W A(万元)与投资金额x(万元)之间的关系如图所示,若只投资B产品,所获得利润W B(万元)与投资金额x(万元)的函数关系式为W B=−15x2+ nx+300.(1)求W A与x之间的函数关系式;(2)若投资A产品所获得利润的最大值比投资B产品所获得利润的最大值少140万元,求n的值;(3)该公司筹集50万元资金,同时投资A,B两种产品,设投资B产品的资金为a万元,所获得的总利润记作Q 万元,若a≥30时,Q随a的增大而减少,求n的取值范围.思维启迪:(1)如图1,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达点B的点C,连接BC,取BC的中点P(点P可以直接到达点A),利用工具过点C作CD//AB交AP的延长线于点D,此时测得CD=200m,那么A,B间的距离是________m;思维探索:(2)在△ABC和△ADE中,AC=BC,AE=DE,且AE<AC,∠ACB=∠AED=90∘.将△ADE绕点A顺时针旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE.①如图2,当△ADE在起始位置时,猜想:PC与PE的数量关系和位置关系分别是________,________;②如图3,当α=90∘,点D落在AB边上,请判断PC与PE的数量关系和位置关系,并证明你的结论;③当α=150∘时,若BC=3,DE=1,请直接写出PC2的值.参考答案与试题解析2020-2021学年河北石家庄九年级下数学中考模拟一、选择题1.【答案】B【考点】零指数幂、负整数指数幂【解析】此题暂无解析【解答】解:根据零指数幂的性质可得:(−√5)0=1.故选B.2.【答案】C【考点】幂的乘方及其应用平方差公式同底数幂的乘法合并同类项【解析】此题暂无解析【解答】解:A,a2与a3不是同类项,不能合并,故本选项错误;B,a2⋅a3=a5,故本选项错误;C,(3a3)2=9a6,故本选项正确;D,(2a+1)(2a−1)=4a2−1,故本选项错误.故选C.3.【答案】A【考点】多边形内角与外角平行线的性质【解析】先根据正五边形的性质求出∠EAB的度数,再由平行线的性质即可得出结论.【解答】解:∵五边形ABCDE是正五边形,∴∠EAB=108∘.∵太阳光线互相平行,∠ABG=50∘,∴∠FAE=180∘−∠ABG−∠EAB=180∘−50∘−108∘=22∘.故选A.4.【答案】D【考点】科学记数法--原数【解析】此题暂无解析【解答】解:将用科学记数法表示的数还原为原数时,若科学记数法表示较小的数a×10−n,需要把a的小数点向左移动n位得到原数.故3.68×10−5=0.0000368.故选D.5.【答案】D【考点】简单组合体的三视图【解析】此题暂无解析【解答】解:根据立体图形可知:图①和图②的俯视图都为,从左向右第一列有一个小正方形,第二列有一个小正方形,第三列有三个小正方形;图①和图②的左视图都为,从下往上第一层有三个小正方形,第二层左边有一个小正方形;图①和图②的主视图明显不同.综上所述,三视图不改变的是左视图和俯视图.故选D.6.【答案】D【考点】反比例函数图象上点的坐标特征反比例函数的性质【解析】本题考查了反比例函数的性质.【解答】解:A,∵k=2>0,∴函数图象在第一、三象限,故本选项正确,不符合题意;B,k=2>0,当x>0时,y随x的增大而减小,故本选项正确,不符合题意;C,∵21=2,∴(1,2)在函数图象上,故本选项正确,不符合题意;D,点A(x1,y1),B(x2,y2)都在反比例函数y=2x的图象上,若x1<x2<0,则y1>y2,故本选项错误,符合题意.故选D.7.【答案】C【考点】中心对称图形轴对称图形【解析】此题暂无解析【解答】解:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.把一个图形绕着某一个点旋转180∘,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.选项A中的图形是轴对称图形但不是中心对称图形,故此选项错误;选项B中的图形是轴对称图形但不是中心对称图形,故此选项错误;选项C中的图形既是轴对称图形又是中心对称图形,故此选项正确;选项D中的图形既不是轴对称图形又不是中心对称图形,故此选项错误.故选C.8.【答案】A【考点】随机事件方差总体、个体、样本、样本容量全面调查与抽样调查【解析】此题暂无解析【解答】解:①为预防新型冠状病毒肺炎,学校检查师生佩戴口罩的情况,应采用全面调查,①正确;②从2000名学生中选出200名学生进行抽样调查,样本容量为200,②不正确;③“任意买—张电影票座位号是奇数”这个事件是随机事件,③不正确;④数据1,2,3,4,5的方差是2,④不正确.综上所述,只有①正确.故选A.9.【答案】D 【考点】反证法平行线的判定与性质【解析】此题暂无解析【解答】解:反证法证明如下:假设∠AOF≠∠EO′D,如图2,过点O作直线A′B′,使∠A′OF=∠EO′D,依据理论依据1,可得A′B′//CD,与理论依据2矛盾,∴假设不成立,∴∠AOF=∠EO′D.综上所述:正确的顺序是③①②⑤④.故选D.10.【答案】B【考点】由实际问题抽象为分式方程分式方程的应用【解析】嘉琪所列方程是依据相等关系:原计划所用时间-实际所用时间=6,可知方程中未知数x所表示的量.【解答】解:设原计划每天改造道路x米,则实际每天改造道路(1+10%)x米,根据题意列出方程860x−860x(1+10%)=6,故方程中未知数x所表示的量是原计划每天改造道路的长度.故选B.11.【答案】D【考点】方向角【解析】此题暂无解析【解答】解:根据下图可得:嘉琪家在图书馆南偏西60∘方向上,故选项A 正确; 学校在图书馆南偏东30∘方向上,故选项B 正确; 学校在嘉琪家南偏东60∘方向上,故选项C 正确;图书馆到学校的距离为3√3km ,故选项D 不正确. 故选D . 12.【答案】 A【考点】分式的混合运算 整式的概念 【解析】 此题暂无解析 【解答】解:mm−2−2m−2⋅(m −1) =m m −2−2(m −1)m −2=2−mm−2=−1, 故选项A 符合题意. 故选A . 13.【答案】 C【考点】 圆周角定理作图—尺规作图的定义【解析】根据基本的尺规作图,结合题目的要求,逐一分析题目所给的选项即可选出符合题意的一项. 【解答】解:A ,根据作图可知,图中有垂直,还有符合条件的两条边,所以A 选项正确; B ,根据直径所对的圆周角是直角,还有符合条件的两条边,所以B 选项正确;C ,因为图中只有两条边的长度符合要求,但不能确定三角形是直角三角形,所以C 选项不正确;D ,根据作图可知,图中有垂直,还有符合条件的两条边,所以D 选项正确. 故选C . 14. 【答案】C【考点】 根的判别式 【解析】由(a −c)2>a 2+c 2得a 2−2ac +c 2>a 2+c 2,即2ac <0,从而判断出△=b 2−4ac >0即可得答案. 【解答】解:∵ (a −c)2>a 2+c 2,∴ a 2−2ac +c 2>a 2+c 2,即2ac <0, ∴ Δ=b 2−4ac >0,则方程有两个不相等的实数根. 故选C . 15.【答案】 B【考点】三角形的外接圆与外心 勾股定理线段垂直平分线的性质 【解析】 此题暂无解析 【解答】解:连接AF ,AD ,如图所示,∵ E 是△ABC 的外心,P ,Q 分别是AB ,AC 的中点, ∴ PE 和QE 分别为AB ,AC 的中垂线, ∴ AF =BF =5,AD =CD =4. ∵ DF =3,∴ AF 2=AD 2+DF 2,∴ △ADF 为直角三角形,∠ADF =90∘, ∴ △ABC 的面积为12×(5+3+4)×4=24.故选B . 16.【答案】 C【考点】 旋转的性质 正方形的性质 矩形的性质【解析】 此题暂无解析 【解答】解:根据图形可以判断,从图②到图③的过程中,重叠面积S 在变大,故甲的说法不正确; 如图④,矩形绕着几何中心继续旋转,矩形的两条长边与正方形的对角线平行时, 此时的重叠面积大于图③的重叠面积,故乙的说法正确;如图⑤,将图④中的矩形向左上方平移,使矩形的一条长边恰好经过正方形的对角线, 此时的重叠面积小于2,所以是5个图形中最小的,故丙的说法正确. 综上所述:只有甲不对. 故选C .二、填空题 【答案】 −2【考点】二次根式的乘法 【解析】 此题暂无解析 【解答】 解:√2×(−√82)=−√162=−2.故答案为:−2. 【答案】 3 −8【考点】 列代数式求值解一元二次方程-因式分解法 【解析】 此题暂无解析 【解答】解:(1)∵ x =−4<3, ∴ M =|x|2+1,将x =−4代入解得:M =3. 故答案为:3.(2)已知输出M =5.①当x >3时,M =x 2−x +3=5,解得:x =2或x =−1(均不符合题意,舍去); ②当x <3时,M =|x|2+1=5,解得:x =−8或x =8(不符合题意,舍去), 综上所述:x =−8. 故答案为:−8. 【答案】1807,32√2−32【考点】规律型:图形的变化类 旋转的性质 勾股定理【解析】 此题暂无解析 【解答】解:由三角形旋转60∘得到正六边形, 可得:60∘=180∘3.由四边形旋转45∘得到正八边形, 可得:45∘=180∘4,由此可归纳出七边形应旋转的角度为:180∘7.设小直角三角形的直角边长为x . ∵ 正方形的边长为4,∴ 小直角三角形的斜边长为4−2x , 根据勾股定理得x 2+x 2=(4−2x)2, ∴ x 1=4+2√2(舍去),x 2=4−2√2, ∴ S 正八边形=42−4×12×(4−2√2)×(4−2√2)=32√2−32. 故答案为:1807;32√2−32.三、解答题 【答案】解:(1)x ☆12>4, 即x2−32>4,整理可得:x −3>8, 解得x >11. (2)|x ☆(−14)|=3, 即|−x 4+34|=3,①−x4+34=3, −x +3=12, −x =12−3, −x =9, x =−9.②−x4+34=−3,−x+3=−12,−x=−12−3,−x=−15,x=15.综上所述:x=−9或x=15. (3)设□中数为a,则x☆ax=6,∴ax2−3ax=6.∵ 方程的一个解为x=1,∴ a−3a=6,−2a=6,解得a=−3,∴ □中数为−3.【考点】定义新符号一元二次方程的解解一元一次不等式绝对值【解析】此题暂无解析【解答】解:(1)x☆12>4,即x2−32>4,整理可得:x−3>8,解得x>11.(2)|x☆(−14)|=3,即|−x4+34|=3,①−x4+34=3,−x+3=12,−x=12−3,−x=9,x=−9.②−x4+34=−3,−x+3=−12,−x=−12−3,−x=−15,x=15.综上所述:x=−9或x=15.(3)设□中数为a,则x☆ax=6,∴ax2−3ax=6.∵ 方程的一个解为x=1,∴ a−3a=6,−2a=6,解得a=−3,∴ □中数为−3.【答案】解:(1)∵92−72=(9+7)×(9−7)=16×2=8×4,∴92−72的结果是8的4倍 .(2)设两个连续奇数为2n+1,2n−1(其中n为正整数),则它们的平方差为:(2n+1)2−(2n−1)2=(2n+1−2n+1)(2n+1+2n−1) =2×4n=8n,∴8n÷8=n.∵n为正整数,∴两个连续奇数的平方差是8的倍数;延伸设两个连续偶数为2n,2n+2(其中n为正整数),则它们的平方差为:(2n)2−(2n+2)2=(2n−2n−2)(2n+2n+2)=−2×(4n+2)=−4(2n+1),∴两个连续偶数的平方差是4的倍数.【考点】平方差公式【解析】此题暂无解析【解答】解:(1)∵92−72=(9+7)×(9−7)=16×2=8×4,∴92−72的结果是8的4倍 .(2)设两个连续奇数为2n+1,2n−1(其中n为正整数),则它们的平方差为:(2n+1)2−(2n−1)2=(2n+1−2n+1)(2n+1+2n−1) =2×4n=8n,∴8n÷8=n.∵n为正整数,∴两个连续奇数的平方差是8的倍数;延伸设两个连续偶数为2n,2n+2(其中n为正整数),则它们的平方差为:(2n)2−(2n+2)2=(2n−2n−2)(2n+2n+2)=−2×(4n+2)=−4(2n+1),∴两个连续偶数的平方差是4的倍数.【答案】解∶(1)由图中数据可得:捐款200元的有10人,占比20%,∴参加捐款的总人数为10÷20%=50(人),∴m=50−4−12−10−850=32%.∵共有50人参加捐款,∴中位数为第25,26位的平均数,∴由表中数据可得,中位数为150. 故答案为:50;32;150.补充条形图如下:(2)P=12+10+850=3050=35.(3)至少4人参与捐款 .∵原数据众数为100元,若增加4人,且每人捐款150元,则新众数为100元和150元,∴至少增加4人 .【考点】利用频率估计概率众数中位数条形统计图扇形统计图【解析】此题暂无解析【解答】解∶(1)由图中数据可得:捐款200元的有10人,占比20%,∴参加捐款的总人数为10÷20%=50(人),∴m=50−4−12−10−850=32%.∵共有50人参加捐款,∴中位数为第25,26位的平均数,∴由表中数据可得,中位数为150.故答案为:50;32;150.补充条形图如下:(2)P=12+10+850=3050=35.(3)至少4人参与捐款 .∵原数据众数为100元,若增加4人,且每人捐款150元,则新众数为100元和150元,∴至少增加4人 .【答案】解:(1)设直线l2的解析式是y=kx+b,因为图象过A(4,0),B(−1,5),根据题意得:{4k+b=0,−k+b=5,解得{k=−1,b=4,则直线l2的解析式是:y=−x+4.(2)在y=12x+1中,令y=0,解得:x=−2,所以D的坐标是(−2,0),解方程组{y=−x+4,y=12x+1,得{x=2,y=2,则C的坐标是(2,2),所以S△ADC=12×6×2=6.(3)存在.因为C(2,2)关于x轴的对称点是(2,−2),则设经过点(2,−2)和点B(−1,5)的直线所对应的函数解析式是:y=mx+n,则{2m+n=−2,−m+n=5,解得{m=−73,n=83,则直线为y=−73x+83,令y=0,解得:x=87,则E的坐标是(87,0),所以当E点坐标为(87,0)时,△BCE的周长最短.【考点】一次函数的综合题待定系数法求一次函数解析式 三角形的面积【解析】 此题暂无解析 【解答】解:(1)设直线l 2的解析式是y =kx +b , 因为图象过A(4,0),B(−1,5), 根据题意得:{4k +b =0,−k +b =5,解得{k =−1,b =4,则直线l 2的解析式是:y =−x +4.(2)在y =12x +1中,令y =0,解得:x =−2, 所以D 的坐标是(−2,0), 解方程组{y =−x +4,y =12x +1,得{x =2,y =2,则C 的坐标是(2,2), 所以S △ADC =12×6×2=6.(3)存在.因为C(2,2)关于x 轴的对称点是(2,−2),则设经过点(2,−2)和点B(−1,5)的直线所对应的函数解析式是: y =mx +n ,则{2m +n =−2,−m +n =5, 解得{m =−73,n =83, 则直线为y =−73x +83, 令y =0,解得:x =87,则E 的坐标是(87,0),所以当E 点坐标为(87,0)时,△BCE 的周长最短. 【答案】(1)证明:如图,连接OD .∵ D 是弧BC 的中点,∴ BD̂=DC ̂, ∴ ∠1=∠2.∵ OA =OD ,∴ ∠1=∠3, ∴ ∠2=∠3, ∴ OD//AE . ∵ DE ⊥AC , ∴ OD ⊥DE ,∴ DE 是⊙O 的切线. (2)解:如图,连接BC ,OC ,则∠ACB 是直角.当AB =10,AC =5√3时,则cos ∠BAC =ACAB=√32, ∴ ∠BAC =30∘,∠BOC =60∘, ∴ BĈ=60π⋅5180=5π3.(3)解:如图所示,连接OD ,BC ,OC ,过点O 作OF ⊥AC ,垂足为F ,作DH ⊥AB 于点H ,由(1)可知OD ⊥DE .∴ ∠FOD =∠ODE =∠DEA =90∘, ∴ 四边形ODEF 为矩形, ∴ OF =ED .当∠BAC =45∘时,△ABC 为等腰直角三角形, 此时,△ABC 面积最大, ∴ AC =cos 45∘⋅AB =√22×20=10√2,∴ OF =12BC =12AC =5√2.又∵ ∠BAD =∠DAE , ∴ DH =DE ,即点D 到直径AB 的距离为5√2. 【考点】 圆周角定理 弧长的计算 切线的判定 三角形中位线定理 角平分线的性质 【解析】 此题暂无解析 【解答】(1)证明:如图,连接OD .∵ D 是弧BC 的中点,∴ BD̂=DC ̂, ∴ ∠1=∠2.∵ OA =OD ,∴ ∠1=∠3, ∴ ∠2=∠3, ∴ OD//AE . ∵ DE ⊥AC , ∴ OD ⊥DE ,∴ DE 是⊙O 的切线. (2)解:如图,连接BC ,OC ,则∠ACB 是直角.当AB =10,AC =5√3时,则cos ∠BAC =ACAB =√32, ∴ ∠BAC =30∘,∠BOC =60∘, ∴ BĈ=60π⋅5180=5π3. (3)解:如图所示,连接OD ,BC ,OC ,过点O 作OF ⊥AC ,垂足为F ,作DH ⊥AB 于点H ,由(1)可知OD ⊥DE .∴ ∠FOD =∠ODE =∠DEA =90∘, ∴ 四边形ODEF 为矩形, ∴ OF =ED .当∠BAC =45∘时,△ABC 为等腰直角三角形, 此时,△ABC 面积最大, ∴ AC =cos 45∘⋅AB =√22×20=10√2,∴ OF =12BC =12AC =5√2. 又∵ ∠BAD =∠DAE , ∴ DH =DE ,即点D 到直径AB 的距离为5√2.【答案】解:(1)由图象可知点(20,240)是抛物线的顶点坐标, 设W A 与x 之间的函数关系式为W A =m(x −20)2+240, ∵ 点(10,230)在抛物线W A =m(x −20)2+240上, ∴ 230=m(10−20)2+240, 解得m =−110,∴ W A 与x 之间的函数关系式为W A =−110(x −20)2+240 =−110x 2+4x +200.(2)由(1)得,投资A 产品所获得利润的最大值为240, ∵ W B =−15x 2+nx +300=−15(x −5n 2)2+300+54n 2, ∴ 投资B 产品所获得利润的最大值为300+54n 2,由题意可得,240+140=300+54n 2,解得n =±8,∵ 当n =−8时不符合题意, ∴ n =8.(3)由题意可得:Q =W B +W A=−15a 2+na +300−110(50−a)2+4(50−a)+200=−310a 2+(n +6)a +450,∵ 当a≥30时,Q随a的增大而减小,∴−n+62×(−310)≤30,解得n≤12,∴ n的取值范围为n≤12.【考点】二次函数的应用根据实际问题列二次函数关系式待定系数法求二次函数解析式二次函数的最值【解析】此题暂无解析【解答】解:(1)由图象可知点(20,240)是抛物线的顶点坐标,设W A与x之间的函数关系式为W A=m(x−20)2+240,∵ 点(10,230)在抛物线W A=m(x−20)2+240上,∴ 230=m(10−20)2+240,解得m=−110,∴W A与x之间的函数关系式为W A=−110(x−20)2+240=−110x2+4x+200.(2)由(1)得,投资A产品所获得利润的最大值为240,∵W B=−15x2+nx+300=−15(x−5n2)2+300+54n2,∴ 投资B产品所获得利润的最大值为300+54n2,由题意可得,240+140=300+54n2,解得n=±8,∵ 当n=−8时不符合题意,∴ n=8.(3)由题意可得:Q=W B+W A=−15a2+na+300−110(50−a)2+4(50−a)+200=−310a2+(n+6)a+450,∵ 当a≥30时,Q随a的增大而减小,∴−n+62×(−310)≤30,解得n≤12,∴ n的取值范围为n≤12.【答案】200(2)①延长EP交BC于F,如图所示:由(1)知△FBP≅△EDP(ASA),∴ PF=PE,BF=DE.又∵ AC=BC,AE=DE,∴ FC=EC.又∵ ∠ACB=90∘,∴ △EFC是等腰直角三角形.∵ EP=FP,∴ PC=PE,PC⊥PE.故答案为:PC=PE;PC⊥PE.②PC与PE的数量关系和位置关系分别是:PC=PE,PC⊥PE.理由如下:作BF//DE,交EP延长线于点F,连结CE,CF.由①同理,可知△FBP≅△EDP(ASA),∴ BF=DE,PE=PF=12EF.∵ DE=AE,∴ BF=AE.∵ 当α=90∘时,∠EAC=90∘,∴ ED//AC,EA//BC.∵ FB//AC,∠FBC=90∘,∴ ∠CBF=∠CAE.在△FBC和△EAC中,{BF=AE,∠CBF=∠CAE,BC=AC,∴ △FBC≅△EAC(SAS),∴ CF=CE,∠FCB=∠ECA.∵ ∠ACB=90∘,∴ ∠FCE =90∘,∴ △FCE 是等腰直角三角形. ∵ EP =FP ,∴ CP ⊥EP ,CP =EP =12EF .③作BF//DE ,交EP 延长线于点F,连结CE ,CF , 过E 点作EH ⊥AC 交CA 延长线于H 点,当α=150∘,由旋转可知,∠CAE =150∘, DE 与BC 所成夹角的锐角为30∘, ∴ ∠FBC =∠EAC =α=150∘, 同②可得△FBP ≅△EDP (ASA ),同②△FCE 是等腰直角三角形,CP ⊥EP ,CP =EP =√22CE . 在Rt △AHE 中,∠EAH =30∘,AE =DE =1, ∴ HE =12,AH =√32. 又∵ AC =BC =3, ∴ CH =3+√32, EC 2=CH 2+HE 2=10+3√3, ∴ PC 2=12EC 2=10+3√32. 【考点】全等三角形的性质与判定 旋转的性质 勾股定理【解析】 此题暂无解析 【解答】解:(1)∵ CD//AB , ∴ ∠C =∠B .∵ P 点是BC 的中点, ∴ BP =CP .在△ABP 和△DCP 中, {∠APB =∠CPD,PB =PC,∠B =∠C,∴ △ABP ≅△DCP (ASA ), ∴ DC =AB . ∵ AB =200m , ∴ CD =200m . 故答案为:200.(2)①延长EP 交BC 于F ,如图所示:由(1)知△FBP ≅△EDP (ASA ), ∴ PF =PE ,BF =DE . 又∵ AC =BC ,AE =DE , ∴ FC =EC .又∵ ∠ACB =90∘,∴ △EFC 是等腰直角三角形. ∵ EP =FP ,∴ PC =PE ,PC ⊥PE .故答案为:PC =PE ;PC ⊥PE .②PC 与PE 的数量关系和位置关系分别是: PC =PE ,PC ⊥PE .理由如下:作BF//DE ,交EP 延长线于点F ,连结CE ,CF .由①同理,可知△FBP ≅△EDP (ASA ), ∴ BF =DE ,PE =PF =12EF . ∵ DE =AE , ∴ BF =AE .∵ 当α=90∘时,∠EAC =90∘, ∴ ED//AC ,EA//BC .∵ FB//AC ,∠FBC =90∘, ∴ ∠CBF =∠CAE . 在△FBC 和△EAC 中, {BF =AE,∠CBF =∠CAE,BC =AC,∴ △FBC ≅△EAC (SAS ), ∴ CF =CE ,∠FCB =∠ECA . ∵ ∠ACB =90∘, ∴ ∠FCE =90∘,∴ △FCE 是等腰直角三角形. ∵ EP =FP ,∴ CP ⊥EP ,CP =EP =12EF .③作BF//DE ,交EP 延长线于点F ,连结CE ,CF , 过E 点作EH ⊥AC 交CA 延长线于H 点,当α=150∘,由旋转可知,∠CAE =150∘, DE 与BC 所成夹角的锐角为30∘, ∴ ∠FBC =∠EAC =α=150∘, 同②可得△FBP ≅△EDP (ASA ),同②△FCE 是等腰直角三角形,CP ⊥EP ,CP =EP =√22CE . 在Rt △AHE 中,∠EAH =30∘,AE =DE =1, ∴ HE =12,AH =√32. 又∵ AC =BC =3, ∴ CH =3+√32, EC 2=CH 2+HE 2=10+3√3, ∴ PC 2=12EC 2=10+3√32.。

2020-2021石家庄市初三数学下期中一模试卷带答案

2020-2021石家庄市初三数学下期中一模试卷带答案
17.如图,四边形ABCD、CDEF、EFGH都是正方形,则∠1+∠2=.
18.如图,点A在双曲线y= (x>0)上,过点A作AB⊥x轴于点B,点C在线段AB上且BC:CA=1:2,双曲线y= (x>0)经过点C,则k=_____.
19.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多有________.
A.(2,﹣1)或(﹣2,1)B.(8,﹣4)或(﹣8,4)C.(2,﹣1)D.(8,﹣4)
12.若 .则下列式子正确的是()
A. B. C. D.
二、填空题
13.如图,已知 为 的角平分线, ,如果 ,那么 ______.
14.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为 米,旗杆的影长为 米,若小青的身高为 米,则旗杆的高度为__________米.
10.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是( )
A. B. C. D.
11.在平面直角坐标系中,点E(﹣4,2),点F(﹣1,﹣1),以点O为位似中心,按比例1:2把△EFO缩小,则点E的对应点E的坐标为( )
17.45°【解析】【分析】首先求出线段ACAFAG的长度(用a表示)求出两个三角形对应边的比进而证明△ACF∽△GCA问题即可解决【详解】设正方形的边长为a则AC=∵∴∵∠ACF=∠ACF∴△ACF∽△
解析:45°.
【解析】
解析:
【解析】
【分析】
利用反比例函数k的几何意义得出a-b=4•OE,a-b=5•OF,求出 =6,即可求出答案.

2020-2021学年河北省石家庄市某校初三(下)4月模拟考试数学试卷(附答案)

2020-2021学年河北省石家庄市某校初三(下)4月模拟考试数学试卷(附答案)

2020-2021学年河北省石家庄市某校初三(下)4月模拟考试数学试卷一、选择题1. 下列直角三角板中,线段MN的长度表示点M到直线l的距离的是()A. B.C. D.2. 下列是摘录某学生的一次作业:①2021−1=12021;②(−x)5÷(−x3)=x2;③3a+2b=5ab;④20210=0,其中结果错误的是()A.①②B.②③C.③④D.①④3. 下列从左到右的变形,是因式分解的是()A.a2−1=a(a−1a) B.(y+1)(y−3)=y2−2y−3C.4yz−2y2z+z=2y(2z−zy)+zD.25−x2=(5−x)(5+x)4. 如图,由8个大小相同的小正方体组成的几何体中,在标号的小正方体上方添加一个小正方体,使其主视图发生变化的有( )A.②③④B.①②④C.①②③D.①③④5. 如图是甲、乙两人射击成绩的统计图,两人都射击了10次,下列说法错误的是( ) A.甲的平均成绩比乙的平均成绩低B.甲和乙成绩的众数都是8环C.甲和乙成绩的中位数都是8环D.甲的成绩比乙的成绩稳定6. 如图,点C在∠AOB的边OA上,用尺规作出了CP // OB,作图痕迹中,FĜ是()A.以点C为圆心、OD的长为半径的弧B.以点C为圆心、DM的长为半径的弧C.以点E为圆心、DM的长为半径的弧D.以点E为圆心、OD的长为半径的弧7. 如果a+b=2√3,那么代数式(a2+b22a+b)⋅aa+b的值为()A.√3B.2√3C.3√3D.4√38. 如图,在等腰△ABC中,AB=AC,把△ABC沿EF折叠,点C的对应点为O,连接AO,使AO平分∠BAC,若∠BAC=∠CFE=50∘,则点O是()A.△ABC的内心B.△ABC的外心C.△ABF的内心D.△ABF的外心9. 如图,五边形ABCDE是正五边形,若l1//l2,则∠1−∠2的度数为( )A.72∘B.144∘C.72∘或144∘D.无法计算10. 下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容.如图,已知AB与⊙O相切于点A,点C,D在⊙O上.求证:∠CAB=∠D.证明:连接AO并延长,交⊙O于点E,连接EC.∵AB与⊙O相切于点A,∴∠EAB=90∘,∴∠EAC+∠CAB=90∘.∵@_是⊙O的直径,∴∠ECA=90∘(直径所对的圆周角是90∘),∴∠E+∠EAC=90∘,∴∠E=◎_.∵AĈ=AĈ,∴◎_=∠D(同弧所对的◎相等),∴∠CAB=∠D.下列选项中,回答正确的是()A.@代表ADB.◎代表∠CABC.◎代表∠DACD.◎代表圆心角11. 若75+75+75+75+75+75+75=49n,则n的值为()A.10B.6C.5D.312. 如图,嘉淇一家驾车从A地出发,沿着北偏东60∘的方向行驶,到达B地后沿着南偏东50∘的方向行驶来到C地,且C地恰好位于A地正东方向上,则下列说法正确的是()A.B地在C地的北偏西40∘方向上 B.A地在B地的南偏西30∘方向上C.AB>BCD.∠ACB=50∘13. 计算3.8×108−3.7×108,结果用科学记数法表示为( )A.0.1×107B.0.1×106C.1×107D.1×10614. 如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A. B.C. D.15. 如图,△ABC中,三个顶点的坐标分别是A(−2,2),B(−4,1),C(−1,−1).以点C为位似中心,在x轴下方作△ABC的位似图形△A′B′C′,并把△ABC的边长放大为原来的2倍,那么点A′的坐标为()A.(3,−7)B.(1, −7)C.(4,−4)D.(1,−4)16. 定义:若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为“美丽抛物线”.如图,直线l:y=13x +b经过点M(0,14),一组抛物线的顶点B 1(1,y 1),B 2(2,y 2),B 3(3,y 3),…B n (n,y n )(n 为正整数)依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是: A 1(x 1,0),A 2(x 2,0),A 3(x 3,0) ,…A n+1(x n+1,0)(n 为正整数).若x 1=d (0<d <1) ,当d 为何值时,这组抛物线中存在“美丽抛物线”对于这道题目,甲的结果是712,乙的结果是1112,则( )A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确 二、填空题计算: −(−4)+|−5|−________=2.如图,两个正方形的边长分别为a ,b ,如果a +b =14,ab =40,则阴影部分的面积为________.如图,已知等边△OA 1B 1的顶点A 1在双曲线y =√3x(x >0)上,点B 1的坐标为(2,0),过B 1作B 1A 2//OA 1,交双曲线于点A 2,过A 2作A 2B 2//A 1B 1交x 轴于B 2,得到第二个等边△B 1A 2B 2;过B 2作B 2A 3//B 1A 2交双曲线于点A 3,过A 3作A 3B 3//A 2B 2交x 轴于点B 3,得到第三个等边△B 2A 3B 3;以此类推,⋯,则△OA 1B 1的面积为________,B n 的坐标为________.三、解答题小丽同学准备化简: (3x 2−6x −8)−(x 2−2x◎6) ,算式中“□”是“+,−,×,÷”中的某一种运算符号. (1)如果“◎”是“+”,请你化简: (3x 2−6x −8)−(x 2−2x +6);(2)如果“◎”是“−”,且x 2−2x −3=0,求 (3x 2−6x −8)−(x 2−2x −6) 的值;(3)当x =1时, (3x 2−6x −8)−(x 2−2x◎16) 的结果是−4,请你通过计算说明“◎”所代表的运算符号.如图,在一条不完整的数轴上从左到右有点A ,B ,C ,其中AB =2BC ,设点A ,B ,C 对应数的和是m .(1)若点C 为原点, BC =2,写出点A ,B 所对应的数以及m 的值;(2)若点B 为原点, AC =9,求m 的值;(3)若原点O 到点C 的距离为8,且OC =AB ,求m 的值.图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的A 点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.(1)随机掷一次骰子,求棋子跳动到点D 处的概率;(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C 处的概率.如图,已知函数y =x +1的图象与y 轴交于点A ,一次函数y =kx +b 的图象经过点B (0,−1),并且与x 轴以及y =x +1的图象分别交于点C ,D .(1)若点D 的横坐标为1,求k ,b ;(2)在第(1)问的条件下,求四边形AOCD 的面积;(3)若点D 始终在第一象限,直接写出系数k 的取值范围.如图,AB 是⊙O 的直径,C 为⊙O 上一点,作CE ⊥AB 于点E ,AB =6OE ,延长AB 至点D ,使得BD =AB ,P 是弧AB (异于A ,B )上一个动点,连接AC ,BC ,CD ,PD ,PE .(1)若AO =3,求AC 的长度;(2)求证:CD 是⊙O 的切线;(3)点P 在运动的过程中是否存在常数k ,使得PE =k ⋅PD ,如果存在,直接写出k 的值,如果不存在,请说明理由.某商店销售一种商品,经市场调查发现:该商品的周销售量y (件)是售价x (元/件)的一次函数,其售价、周销售量、周销售利润w (元)的三组对应值如表:(1)求y 关于x 的函数解析式(不要求写出自变量的取值范围);(2)①求该商品的进价;②求周销售利润的最大值以及此时对应的售价;(3)由于某种原因,该商品进价提高了m 元/件(m >0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m 的值.如图,在△ABC 中,∠ACB =90∘,AC =4,BC =3,点D 为边AB 的中点.点P 从点A 出发,沿AC 方向以每秒1个单位长度的速度向终点C 运动,同时点Q从点C 出发,以每秒2个单位长度的速度先沿CB 方向运动到点B ,再沿BA 方向向终点A 运动,以DP ,DQ 为邻边构造◎PEQD ,设点P 运动的时间为t 秒.(1)设点Q 到边AC 的距离为ℎ,当点Q 在AB 边上时,直接用含t 的代数式表示ℎ;(2)当点E 落在AC 边上时,求t 的值;(3)当点Q 在边AB 上时,设◎PEQD 的面积为S(S >0),求S 与t 之间的函数关系式;(4)连接CD ,直接写出CD 将◎PEQD 分成的两部分图形面积相等时t 的值.参考答案与试题解析2020-2021学年河北省石家庄市某校初三(下)4月模拟考试数学试卷一、选择题1.【答案】A【考点】点到直线的距离【解析】此题暂无解析2.【答案】C【考点】同底数幂的除法合并同类项零指数幂、负整数指数幂【解析】根据负整数指数幂,零次幂,同底数幂的除法,合并同类项法则,分别求出每个式子的值,再判断即可.3.【答案】D【考点】因式分解的概念【解析】根据因式分解是把一个多项式转化成几个整式积,可得答案.4.【答案】D【考点】简单组合体的三视图【解析】根据主视图的观察角度得出,主视图不变时小正方体的位置,从而得出答案.5.【答案】D【考点】中位数方差众数折线统计图【解析】根据方差,众数,中位数,平均数的定义——判断即可.6.【答案】C【考点】平行线的判定作一个角等于已知角【解析】根据平行线的判定,作一个角等于已知角的方法即可判断.7.【答案】A【考点】分式的化简求值【解析】先将括号内通分,再计算括号内的减法、同时将分子因式分解,最后计算乘法,继而代入计算可得.8.【答案】B【考点】翻折变换(折叠问题)角平分线的定义等腰三角形的判定与性质三角形的外接圆与外心三角形内角和定理线段垂直平分线的性质【解析】根据等腰三角形“三线合一”的性质可得AO是BC的垂直平分线,根据垂直平分线的性质可得OB=OC,根据折叠的性质可得CF=OF,∠OFE=∠CFE=50∘,进而可求出∠OAC=∠OCA=25∘,可得OA=OC,即可得出O是△ABC的外心.9.【答案】A【考点】平行线的判定与性质多边形内角与外角【解析】过B点作BF // l1,根据正五边形的性质可得∠ABC的度数,再根据平行线的性质以及等量关系可得∠1−∠2的度数.10.【答案】B【考点】切线的性质余角和补角圆周角定理【解析】根据圆周角定理和切线的性质以及余角的性质判定即可.11.【答案】D【考点】同底数幂的乘法幂的乘方与积的乘方【解析】直接利用幂的乘方运算法则将原式变形进而得出答案.12.【答案】C【考点】方向角【解析】先根据题意画出图形,再根据平行线的性质及方向角的描述方法解答即可.13.【答案】C【考点】科学记数法--表示较大的数有理数的混合运算【解析】直接根据乘法分配律即可求解.14.【答案】B【考点】动点问题函数的图象【解析】根据题目提供的条件可以求出函数的解析式,根据解析式判断函数的图象的形状.15. 【答案】B【考点】坐标与图形性质位似变换作图-位似变换【解析】建立以C为坐标原点的平面直角坐标系,根据位似变换的性质解答即可.16.【答案】B【考点】二次函数综合题抛物线与x轴的交点二次函数的性质规律型:点的坐标【解析】由抛物线的对称性可知,所砂构成的直角三角形必是以抛物线顶点为直角顶点的等腰三角形,所以此等腰三角形斜边上的高等于斜边的一半,又0<d<1,所以等腰直角三角形斜边的长小于2,所以等腰直角三角形斜边的高一定小于1,即抛物线的定点纵坐标必定小于1,据此对上一步结论分析可得满足美丽抛物线对应的顶点,再确定抛物线与x轴的交点值与对称轴的距离,从而可求得d的值.二、填空题【答案】7【考点】有理数的加减混合运算绝对值【解析】此题暂无解析【答案】38【考点】三角形的面积整式的混合运算——化简求值求阴影部分的面积【解析】用正方形一半的面积减去一个三角形的面积,然后将a+b与ab的值代入计算即可得出阴影部分的面积.【答案】√3, (2√n,0)【考点】规律型:点的坐标等边三角形的性质反比例函数图象上点的坐标特征【解析】由等边三角形的性质求面积,根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2,B3,B4的坐标,得出规律,进而求出点B n的坐标.三、解答题【答案】解:(1)(3x2−6x−8)−(x2−2x+6)=3x2−6x−8−x2+2x−6=2x2−4x−14.(2)(3x2−6x−8)−(x2−2x−6)=3x2−6x−8−x2+2x+6=2x2−4x−2,∵x2−2x−3=0,∴x2−2x=3,2x2−4x−2=2(x2−2x)−2=6−2=4.(3)“◎”所代表的运算符号是“−”.当x=1时,原式=(3−6−8)−(1−2◎6),由题意得,−11−(1−2◎6)=−4,整理得:1−2◎6=−7,∴−2◎6=−8,∴◎处应为“−”.【考点】整式的加减整式的加减——化简求值【解析】此题暂无解析【答案】解:(1)∵点C为原点,BC=2,∴B所对应的数为−2,∵AB=2BC,∴AB=4,∴点A所对应的数为−6,∴m=−6−2+0=−8.(2)∵点B为原点,AC=9,AB=2BC,∴点A所对应的数为−6,点C所对应的数为3,∴m=−6+3+0=−3.(3)∵原点O到点C的距离为8,∴点C所对应的数为±8,∵OC=AB,∴AB=8,当点C对应的数为8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为4,点A所对应的数为−4,∴m=4−4+8=8;当点C所对应的数为−8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为−12,点A所对应的数为−20,∴m=−20−12−8=−40.综上所述m=8或−40.【考点】数轴两点间的距离【解析】此题暂无解析【答案】解:(1)随机掷一次骰子,向上三个面数字之和有6,7,8,9四种情况,且是等概率的,只有9符合题意,则棋子跳动到点D处的概率是14.(2)见下图.共有16种可能,和为14可以到达点C,有3种情形,所以棋子最终跳动到点C处的概率为316.【考点】概率公式列表法与树状图法【解析】此题暂无解析【答案】解:(1)∵点D在y=x+1的图象上,∴当x=1时,y=2,即D(1,2).∵函数y=kx+b的图象经过点B(0,−1),D(1,2),∴{b=−1,k+b=2,解得:{k=3,b=−1.(2)由(1)知直线BD解析式为y=3x−1,易知A(0,1),令y=0,得x=13,∴C(13,0),连接OD,则S 四边形AOCD =S △AOD +S △COD =12×1×1+12×13×2=56.(3)将B (0,−1)代入y =kx +b 得: b =−1, 即直线解析式为y =kx −1, 联立得:{y =x +1,y =kx −1.消去y 得:x +1=kx −1,解得:x =−21−k ,y =1−21−k =−k+11−k , 由D 坐标在第一象限,得到−21−k >0且−k+11−k >0,解得: k >1. 【考点】一次函数的图象待定系数法求一次函数解析式 一次函数图象上点的坐标特点【解析】 此题暂无解析 【答案】解:(1)∵ AO =BO =3,AB =6OE , ∴ OE =1,BE =2,AB =6, ∴ AE =4, ∵ AB 是直径, ∴ ∠ACB =90∘, ∵ CE ⊥AB ,∴ ∠CEA =∠ACB =90∘, 又∵ ∠A =∠A , ∴ △ACB ∽△AEC , ∴ ACAE =AB AC , ∴ AC4=6AC ,∴ AC =2√6.(2)如图,连接OC ,设OB =OC =3k , ∵ BE =2OE ,∴ OE =k ,BE =2k ,∴ CE =√OC 2−OE 2=2√2k ,∵ DE =BD +BE =AB +BE =8k , ∴ CD =√CE 2+DE 2=6√2k ,∵ OC 2+DC 2=9k 2+72k 2,OD 2=81k 2, ∴ OC 2+DC 2=OD 2,∴ ∠OCD =90∘ , ∴ CD 是⊙O 的切线. (3)连接OP ,设OB =OC =OP =3n , ∵ BE =2OE ,∴ OE =n ,BE =2n , ∵OE OP=OP OD=13, ∠EOP =∠POD ,∴ △EOP ∽△POD , ∴PE PD=OP OD =13,∴ PE =13PD , ∴ k =13.【考点】 圆的综合题相似三角形的性质与判定 勾股定理 切线的判定 动点问题【解析】 此题暂无解析 【答案】解:(1)①依题意设y =kx +b , 则有{50k +b =100,60k +b =80,解得:{k =−2,b =200.检验:代入x =80,可得y =40,符合题意, ∴ y 关于x 的函数解析式为y =−2x +200; (2)该商品进价是50−1000÷100=40, 设每周获得利润w =ax 2+bx +c ,则有{2500a +50b +c =1000,3600a +60b +c =1600,6400a +80b +c =1600,解得:{a =−2,b =280,c =−8000.∴ w =−2x 2+280x −8000=−2(x −70)2+1800,∴ 当售价是70元/件时,周销售利润最大,最大利润是1800元. (3)根据题意得,w =(x −40−m)(−2x +200) =−2x 2+(280+2m)x −8000−200m , ∵ 对称轴x =140+m 2,又x ≤65,∴ 当x ≤65时,w 随x 的增大而增大, ∴ 当x =65时,w 取得最大值,w max =(65−40−m)(−2×65+200)=1400, 解得m =5.【考点】待定系数法求一次函数解析式 待定系数法求二次函数解析式 二次函数的应用 二次函数的最值【解析】(1)①依题意设y =kx +b ,解方程组即可得到结论;②该商品进价是50−1000÷100=40,设每周获得利润w =ax 2+bx +c :解方程组即可得到结论;(2)根据题意得,w =(x −40−m)(−2x +200)=−2x 2+(280+2m)x −800−200m ,由于对称轴是x =140+m 2,根据二次函数的性质即可得到结论.【答案】解:(1)当32< t ≤4时,ℎ=3 − 35(2t −3) = − 65t + 245.(2)当点E 落在AC 边上时,DQ // AC , ∵ AD =DB , ∴ CQ =QB , ∴ 2t = 32,∴ t = 34.(3)①如图1中,当32 ≤ t < 114时,作PH⊥AB 于H ,则PH =PA ⋅sin A = 35t ,DQ = 112 − 2t ,∴ S = 35t ⋅(112 − 2t) = − 65t 2 + 3310t . ②如图2中,当114< t ≤4时,同法可得S = 35t ⋅(2t − 112) = 65t 2 − 3310t .(4)当点E 落在直线CD 上时,CD 将◎PEQD 分成的两部分图形面积相等.有两种情形: ①当点E 在CD 上,且点Q 在CB 上时 (如图3所示),过点E 作EG ⊥CA 于点G ,过点D 作DH ⊥CB 于点H ,易证Rt△PGE≅Rt△DHQ,∴PG=DH=2,∴CG=2−t,GE=HQ=CQ−CH=2t − 32. ∵CD=AD,∴∠DCA=∠DAC,∴在Rt△CEG中,tan∠ECG = GECG = 2t − 322 − t = 34,∴t = 1211.②当点E在CD上,且点Q在AB上时(如图4所示),过点E作EF⊥CA于点F,∵CD=AD,∴∠CAD=∠ACD.∵PE // AD,∴∠CPE=∠CAD=∠ACD,∴PE=CE,∴PF = 12PC = 4 − t2,PE=DQ = 112 − 2t,∴在Rt△PEF中,cos∠EPF = PFPE = 4 − t2112 − 2t = 45,∴t = 2411.综上所述,满足要求的t的值为1211或2411.【考点】列代数式动点问题平行线分线段成比例平行四边形的面积根据实际问题列二次函数关系式锐角三角函数的定义--利用三角形相似比例【解析】(1)分点Q在线段BC,线段AB上两种情形分别求解即可.(2)利用平行线等分线段定理解决问题即可.(3)分点Q在线段BD,在线段AD上两种情形分别求解即可.(4)当点E落在直线CD上时,CD将◎PEQD分成的两部分图形面积相等.有两种情形:①当点E在CD上,且点Q在CB上时(如图3所示),②当点E在CD上,且点Q在AB上时(如图4所示),分别求解即可解决问题.第21页共22页◎第22页共22页。

2020-2021石家庄市初三数学上期中一模试卷附答案

2020-2021石家庄市初三数学上期中一模试卷附答案
(2)若图案中三条彩条所占面积是图案面积的 2 ,求横、竖彩条的宽度. 5
23.如图, ABO 与 CDO 关于 O 点中心对称,点 E、F 在线段 AC 上,且 AF=CE.
15.请你写出一个二次函数,其图象满足条件:①开口向下;②与 y 轴的交点坐标为 (0,3) .此二次函数的解析式可以是______________
16.已知点 C 在以 AB 为直径的半圆上,连结 AC、BC,AB=10,BC:AC=3:4,阴影 部分的面积为_____.
17.已知一个直角三角形的两条直角边长分别为 3cm 和 4cm,则这个直角三角形的内切圆 的半径为 cm 18.女生小琳所在班级共有 40 名学生,其中女生占 60%.现学校组织部分女生去市三女中 参观,需要从小琳所在班级的女生当中随机抽取一名女生参加,那么小琳被抽到的概率
_____.
三、解答题
21.一商店销售某种商品,平均每天可售出 20 件,每件盈利 40 元.为了扩大销售、增加盈 利,该店采取了降价措施,在每件盈利不少于 25 元的前提下,经过一段时间销售,发现销 售单价每降低 1 元,平均每天可多售出 2 件. (1)若降价 3 元,则平均每天销售数量为________件; (2)当每件商品降价多少元时,该商店每天销售利润为 1200 元? 22.(2016 内蒙古包头市)一幅长 20cm、宽 12cm 的图案,如图,其中有一横两竖的彩 条,横、竖彩条的宽度比为 3:2.设竖彩条的宽度为 xcm,图案中三条彩条所占面积为 ycm2. (1)求 y 与 x 之间的函数关系式;
210 .让转盘自由转动,指针停止后落在黄色区域的概率是 ( )
A. 1 6
B. 1 4
C. 1 3
D. 7 12
11.求二次函数 y ax2 bx c(a 0) 的图象如图所示,点为 x1,0 、 x2,0 ,其中 0 x1 1,有下列结论:① abc 0 ;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021石家庄全国备战中考数学平行四边形的综合备战中考模拟和真题分类汇总一、平行四边形1.(问题情景)利用三角形的面积相等来求解的方法是一种常见的等积法,此方法是我们解决几何问题的途径之一.例如:张老师给小聪提出这样一个问题:如图1,在△ABC中,AB=3,AD=6,问△ABC的高AD与CE的比是多少?小聪的计算思路是:根据题意得:S△ABC=12BC•AD=12AB•CE.从而得2AD=CE,∴12 AD CE请运用上述材料中所积累的经验和方法解决下列问题:(1)(类比探究)如图2,在▱ABCD中,点E、F分别在AD,CD上,且AF=CE,并相交于点O,连接BE、BF,求证:BO平分角AOC.(2)(探究延伸)如图3,已知直线m∥n,点A、C是直线m上两点,点B、D是直线n上两点,点P是线段CD中点,且∠APB=90°,两平行线m、n间的距离为4.求证:PA•PB=2AB.(3)(迁移应用)如图4,E为AB边上一点,ED⊥AD,CE⊥CB,垂足分别为D,C,∠DAB=∠B,AB=34,BC=2,AC=26,又已知M、N分别为AE、BE的中点,连接DM、CN.求△DEM与△CEN的周长之和.【答案】(1)见解析;(2)见解析;(3)34【解析】分析:(1)、根据平行四边形的性质得出△ABF和△BCE的面积相等,过点B作OG⊥AF于G,OH⊥CE于H,从而得出AF=CE,然后证明△BOG和△BOH全等,从而得出∠BOG=∠BOH,即角平分线;(2)、过点P作PG⊥n于G,交m于F,根据平行线的性质得出△CPF和△DPG全等,延长BP交AC于E,证明△CPE和△DPB全等,根据等积法得出AB=AP×PB,从而得出答案;(3)、,延长AD,BC交于点G,过点A作AF⊥BC于F,设CF=x,根据Rt△ABF和Rt△ACF的勾股定理得出x的值,根据等积法得出AE=2DM=2EM,BE=2CN=2EN, DM+CN=AB,从而得出两个三角形的周长之和.同理:EM+EN=AB详解:证明:(1)如图2,∵四边形ABCD是平行四边形,∴S△ABF=S▱ABCD,S△BCE=S▱ABCD,∴S△ABF=S△BCE,过点B作OG⊥AF于G,OH⊥CE于H,∴S△ABF=AF×BG,S△BCE=CE×BH,∴AF×BG=CE×BH,即:AF×BG=CE×BH,∵AF=CE,∴BG=BH,在Rt△BOG和Rt△BOH中,,∴Rt△BOG≌Rt△BOH,∴∠BOG=∠BOH,∴OB平分∠AOC,(2)如图3,过点P作PG⊥n于G,交m于F,∵m∥n,∴PF⊥AC,∴∠CFP=∠BGP=90°,∵点P是CD中点,在△CPF和△DPG中,,∴△CPF≌△DPG,∴PF=PG=FG=2,延长BP交AC于E,∵m∥n,∴∠ECP=∠BDP,∴CP=DP,在△CPE和△DPB中,,∴△CPE≌△DPB,∴PE=PB,∵∠APB=90°,∴AE=AB,∴S△APE=S△APB,∵S△APE=AE×PF=AE=AB,S△APB=AP×PB,∴AB=AP×PB,即:PA•PB=2AB;(3)如图4,延长AD,BC交于点G,∵∠BAD=∠B,∴AG=BG,过点A作AF⊥BC于F,设CF=x(x>0),∴BF=BC+CF=x+2,在Rt△ABF中,AB=,根据勾股定理得,AF2=AB2﹣BF2=34﹣(x+2)2,在Rt△ACF中,AC=,根据勾股定理得,AF2=AC2﹣CF2=26﹣x2,∴34﹣(x+2)2=26﹣x2,∴x=﹣1(舍)或x=1,∴AF==5,连接EG,∵S△ABG =BG×AF=S△AEG+S△BEG =AG×DE+BG×CE=BG(DE+CE),∴DE+CE=AF=5,在Rt△ADE中,点M是AE的中点,∴AE=2DM=2EM,同理:BE=2CN=2EN,∵AB=AE+BE,∴2DM+2CN=AB,∴DM+CN=AB,同理:EM+EN=AB ∴△DEM与△CEN的周长之和=DE+DM+EM+CE+CN+EN=(DE+CE)+[(DM+CN)+(EM+EN)]=(DE+CN)+AB=5+.点睛:本题主要考查的就是三角形全等的判定与性质以及三角形的等积法,综合性非常强,难度较大.在解决这个问题的关键就是作出辅助线,然后根据勾股定理和三角形全等得出各个线段之间的关系.2.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD 的延长线于点F,连接CF.(1)求证:四边形BCFD是菱形;(2)若AD=1,BC=2,求BF的长.【答案】(1)证明见解析(2)3【解析】(1)∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD,∵点E为CD的中点,∴DE=EC,在△BCE与△FDE中,FBC BFDDCB CDFDE EC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△FDE,∴DF=BC,又∵DF∥BC,∴四边形BCDF为平行四边形,∵BD=BC,∴四边形BCFD是菱形;(2)∵四边形BCFD是菱形,∴BD=DF=BC=2,在Rt△BAD中,AB=223BD AD-=,∵AF=AD+DF=1+2=3,在Rt△BAF中,BF=22AB AF+=23.3.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.【答案】(1)、5;(2)、622+;(3)、321++.【解析】【分析】试题分析:(1)、如图1中,连接OD,在Rt△ODC中,根据OD=22OC CD+计算即可.(2)、如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.在Rt△OCE中,根据OC=22OE CE+计算即可.(3)、如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.分别求出MH、OM、FH即可解决问题.【详解】试题解析:(1)、如图1中,连接OD,∵四边形ABCD是正方形,∴AB=BC=CD=AD=1,∠C=90°在Rt△ODC中,∵∠C=90°,OC=2,CD=1,∴2222215OC CD++(2)、如图2中,作CE ⊥OB 于E ,CF ⊥AB 于F ,连接OC .∵∠FBE=∠E=∠CFB=90°, ∴四边形BECF 是矩形, ∴BF=CF=12,CF=BE=32, 在Rt △OCE 中,OC=222231122OE CE ⎛⎫⎛⎫+=++ ⎪ ⎪ ⎪⎝⎭⎝⎭=622+. (3)、如图3中,当OF ⊥DE 时,OF 的值最大,设OF 交DE 于H ,在OH 上取一点M ,使得OM=DM ,连接DM .∵FD=FE=DE=1,OF ⊥DE , ∴DH=HE ,OD=OE ,∠DOH=12∠DOE=22.5°, ∵OM=DM , ∴∠MOD=∠MDO=22.5°, ∴∠DMH=∠MDH=45°, ∴DH=HM=12, ∴DM=OM=2, ∵FH=223DF DH -=, ∴OF=OM+MH+FH=2132++=321++. ∴OF 的最大值为321++. 考点:四边形综合题.4.如图,ABCD 是正方形,点G 是BC 上的任意一点,DE ⊥AG 于E ,BF ∥DE ,交AG 于F .求证:AF=BF+EF .【答案】详见解析.【解析】 【分析】由四边形ABCD 为正方形,可得出∠BAD 为90°,AB=AD ,进而得到∠BAG 与∠EAD 互余,又DE 垂直于AG ,得到∠EAD 与∠ADE 互余,根据同角的余角相等可得出∠ADE=∠BAF ,利用AAS 可得出△ABF ≌△DAE ;利用全等三角的对应边相等可得出BF=AE ,由AF-AE=EF ,等量代换可得证. 【详解】 ∵ABCD 是正方形, ∴AD=AB ,∠BAD=90° ∵DE ⊥AG , ∴∠DEG=∠AED=90° ∴∠ADE+∠DAE=90°又∵∠BAF+∠DAE=∠BAD=90°, ∴∠ADE=∠BAF . ∵BF ∥DE ,∴∠AFB=∠DEG=∠AED . 在△ABF 与△DAE 中,AFB AED ADE BAF AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABF ≌△DAE (AAS ). ∴BF=AE . ∵AF=AE+EF , ∴AF=BF+EF .点睛:此题考查了正方形的性质,全等三角形的判定与性质,矩形的判定与性质,熟练掌握判定与性质是解本题的关键.5.如图,正方形ABCD 的边长为8,E 为BC 上一定点,BE =6,F 为AB 上一动点,把△BEF 沿EF 折叠,点B 落在点B ′处,当△AFB ′恰好为直角三角形时,B ′D 的长为?465522【解析】 【分析】分两种情况分析:如图1,当∠AB′F=90°时,此时A 、B′、E 三点共线,过点B′作B′M ⊥AB ,B′N ⊥AD ,由三角形的面积法则可求得B′M=2.4,再由勾股定理可求得B′N=3.2,在Rt △CB′N 中,由勾股定理得,B′D=2222+DN = 3.2 5.6B N '+;如图2,当∠AFB′=90°时,由题意可知此时四边形EBFB′是正方形,AF=2,过点B′作B′N ⊥AD ,则四边形AFB′N 为矩形,在Rt △CB′N 中,由勾股定理得,B′D=2222+DN =22B N '+; 【详解】如图1,当∠AB′F=90°时,此时A 、B′、E 三点共线, ∵∠B=90°,∴AE=2222AB BE =86++=10, ∵B′E=BE=6,∴AB′=4, ∵B′F=BF ,AF+BF=AB=8,在Rt △AB′F 中,∠AB′F=90°,由勾股定理得,AF 2=FB′2+AB′2, ∴AF=5,BF=3,过点B′作B′M ⊥AB ,B′N ⊥AD ,由三角形的面积法则可求得B′M=2.4,再由勾股定理可求得B′N=3.2,∴AN=B′M=2.4,∴DN=AD-AN=8-2.4=5.6,在Rt △CB′N 中,由勾股定理得,B′D=2222+DN = 3.2 5.6B N '+ =4655;如图2,当∠AFB′=90°时,由题意可知此时四边形EBFB′是正方形,∴AF=2,过点B′作B′N ⊥AD ,则四边形AFB′N 为矩形,∴AN=B′F=6,B′N=AF=2,∴DN=AD-AN=2, 在Rt △CB′N 中,由勾股定理得,B′D=2222+DN =22B N '+ =22 ;综上,可得B′D 4655或2 【点睛】本题主要考查正方形的性质与判定,矩形有性质判定、勾股定理、折叠的性质等,能正确地画出图形并能分类讨论是解题的关键.6.已知90AOB ∠=︒,点C 是AOB ∠的角平分线OP 上的任意一点,现有一个直角MCN ∠绕点C 旋转,两直角边CM ,CN 分别与直线OA ,OB 相交于点D ,点E .(1)如图1,若CD OA ⊥,猜想线段OD ,OE ,OC 之间的数量关系,并说明理由. (2)如图2,若点D 在射线OA 上,且CD 与OA 不垂直,则(1)中的数量关系是否仍成立?如成立,请说明理由;如不成立,请写出线段OD ,OE ,OC 之间的数量关系,并加以证明.(3)如图3,若点D 在射线OA 的反向延长线上,且2OD =,8OE =,请直接写出线段CE 的长度.【答案】(1)详见解析;(2)详见解析;(334【解析】 【分析】(1)先证四边形ODCE 为矩形,再证矩形ODCE 为正方形,由正方形性质可得;(2)过点C 作CG OA ⊥于点G ,CH OB ⊥于点H ,证四边形OGCH 为正方形,再证()CGD CHE ASA ∆≅∆,可得;(3)根据()CGD CHE ASA ∆≅∆,可得2OE OD OH OG OC -=+=. 【详解】解:(1)∵90AOB ∠=︒,90MCN ∠=︒,CD OA ⊥,∴四边形ODCE 为矩形. ∵OP 是AOB ∠的角平分线, ∴45DOC EOC ∠=∠=︒,∴OD CD =,∴矩形ODCE 为正方形, ∴2OC OD =,2OC OE =.∴2OD OE OC +=.(2)如图,过点C 作CG OA ⊥于点G ,CH OB ⊥于点H , ∵OP 平分AOB ∠,90AOB ∠=︒, ∴四边形OGCH 为正方形, 由(1)得:2OG OH OC +=,在CGD ∆和CHE ∆中,90CGD CHE CG CHDCG ECH ︒⎧∠=∠=⎪=⎨⎪∠=∠⎩, ∴()CGD CHE ASA ∆≅∆, ∴GD HE =, ∴2OD OE OC +=.(3)2OG OH OC +=,()CGD CHE ASA ∆≅∆,∴GD HE =.∵OD GD OG =-,OE OH EH =+, ∴2OE OD OH OG OC -=+=,∴32OC =, ∴34CE =,CE 的长度为34.【点睛】考核知识点:矩形,正方形的判定和性质.熟练运用特殊四边形的性质和判定是关键.7.问题情境在四边形ABCD 中,BA =BC ,DC ⊥AC ,过点D 作DE ∥AB 交BC 的延长线于点E ,M 是边AD 的中点,连接MB ,ME. 特例探究(1)如图1,当∠ABC =90°时,写出线段MB 与ME 的数量关系,位置关系; (2)如图2,当∠ABC =120°时,试探究线段MB 与ME 的数量关系,并证明你的结论; 拓展延伸(3)如图3,当∠ABC =α时,请直接用含α的式子表示线段MB 与ME 之间的数量关系.【答案】(1)MB =ME ,MB ⊥ME ;(2)ME =3MB .证明见解析;(3)ME =MB·tan 2α.【解析】 【分析】(1)如图1中,连接CM .只要证明△MBE 是等腰直角三角形即可; (2)结论:EM=3MB .只要证明△EBM 是直角三角形,且∠MEB=30°即可; (3)结论:EM=BM•tan 2α.证明方法类似; 【详解】(1) 如图1中,连接CM .∵∠ACD=90°,AM=MD , ∴MC=MA=MD , ∵BA=BC , ∴BM 垂直平分AC , ∵∠ABC=90°,BA=BC ,∴∠MBE=12∠ABC=45°,∠ACB=∠DCE=45°, ∵AB ∥DE ,∴∠ABE+∠DEC=180°, ∴∠DEC=90°,∴∠DCE=∠CDE=45°, ∴EC=ED ,∵MC=MD ,∴EM 垂直平分线段CD ,EM 平分∠DEC , ∴∠MEC=45°,∴△BME 是等腰直角三角形,∴BM=ME ,BM ⊥EM .故答案为BM=ME ,BM ⊥EM .(2)ME =3MB . 证明如下:连接CM ,如解图所示.∵DC ⊥AC ,M 是边AD 的中点,∴MC =MA =MD .∵BA =BC ,∴BM 垂直平分AC .∵∠ABC =120°,BA =BC ,∴∠MBE =12∠ABC =60°,∠BAC =∠BCA =30°,∠DCE =60°. ∵AB ∥DE ,∴∠ABE +∠DEC =180°,∴∠DEC =60°,∴∠DCE =∠DEC =60°,∴△CDE 是等边三角形,∴EC =ED .∵MC =MD ,∴EM 垂直平分CD ,EM 平分∠DEC , ∴∠MEC =12∠DEC =30°, ∴∠MBE +∠MEB =90°,即∠BME =90°.在Rt △BME 中,∵∠MEB =30°,∴ME =3MB .(3) 如图3中,结论:EM=BM•tan 2α.理由:同法可证:BM ⊥EM ,BM 平分∠ABC ,所以EM=BM•tan 2α.【点睛】本题考查四边形综合题、等腰直角三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.8.如图1,矩形ABCD中,AB=8,AD=6;点E是对角线BD上一动点,连接CE,作EF⊥CE 交AB边于点F,以CE和EF为邻边作矩形CEFG,作其对角线相交于点H.(1)①如图2,当点F与点B重合时,CE=,CG=;②如图3,当点E是BD中点时,CE=,CG=;(2)在图1,连接BG,当矩形CEFG随着点E的运动而变化时,猜想△EBG的形状?并加以证明;(3)在图1,CGCE的值是否会发生改变?若不变,求出它的值;若改变,说明理由;(4)在图1,设DE的长为x,矩形CEFG的面积为S,试求S关于x的函数关系式,并直接写出x的取值范围.【答案】(1)245,185,5,154;(2)△EBG是直角三角形,理由详见解析;(3)3 4;(4)S=34x2﹣485x+48(0≤x≤325).【解析】【分析】(1)①利用面积法求出CE,再利用勾股定理求出EF即可;②利用直角三角形斜边中线定理求出CE,再利用相似三角形的性质求出EF即可;(2)根据直角三角形的判定方法:如果一个三角形一边上的中线等于这条边的一半,则这个三角形是直角三角形即可判断;(3)只要证明△DCE∽△BCG,即可解决问题;(4)利用相似多边形的性质构建函数关系式即可;【详解】(1)①如图2中,在Rt △BAD 中,BD=22AD AB +=10, ∵S △BCD =12•CD•BC=12•BD•CE , ∴CE=245.CG=BE=2224186()=55-. ②如图3中,过点E 作MN ⊥AM 交AB 于N ,交CD 于M .∵DE=BE ,∴CE=12BD=5, ∵△CME ∽△ENF ,∴CM EN CE EF=, ∴CG=EF=154, (2)结论:△EBG 是直角三角形.理由:如图1中,连接BH .在Rt △BCF 中,∵FH=CH ,∴BH=FH=CH ,∵四边形EFGC 是矩形,∴EH=HG=HF=HC ,∴BH=EH=HG ,∴△EBG 是直角三角形.(3)F 如图1中,∵HE=HC=HG=HB=HF ,∴C 、E 、F 、B 、G 五点共圆,∵EF=CG ,∴∠CBG=∠EBF ,∵CD ∥AB ,∴∠EBF=∠CDE ,∴∠CBG=∠CDE ,∵∠DCB=∠ECG=90°,∴∠DCE=∠BCG ,∴△DCE ∽△BCG , ∴6384CG BC CE DC ===. (4)由(3)可知: 34CG CD CE CB ==, ∴矩形CEFG ∽矩形ABCD ,∴2264CEFG ABCD S CE CE S CD ==矩形矩形(), ∵CE 2=(325-x )2+245)2,S 矩形ABCD =48, ∴S 矩形CEFG =34[(325-x )2+(245)2]. ∴矩形CEFG 的面积S=34x 2-485x+48(0≤x≤325). 【点睛】 本题考查相似三角形综合题、矩形的性质、相似三角形的判定和性质、勾股定理、直角三角形的判定和性质、相似多边形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造相似三角形或直角三角形解决问题,属于中考压轴题.9.如图,在矩形ABCD 中,点E 在边CD 上,将该矩形沿AE 折叠,使点D 落在边BC 上的点F 处,过点F 作FG ∥CD ,交AE 于点G ,连接DG .(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求的值.【答案】(1)证明见试题解析;(2).【解析】试题分析:(1)由折叠的性质,可以得到DG=FG,ED=EF,∠1=∠2,由FG∥CD,可得∠1=∠3,再证明 FG=FE,即可得到四边形DEFG为菱形;(2)在Rt△EFC中,用勾股定理列方程即可CD、CE,从而求出的值.试题解析:(1)由折叠的性质可知:DG=FG,ED=EF,∠1=∠2,∵FG∥CD,∴∠2=∠3,∴FG=FE,∴DG=GF=EF=DE,∴四边形DEFG为菱形;(2)设DE=x,根据折叠的性质,EF=DE=x,EC=8﹣x,在Rt△EFC中,,即,解得:x=5,CE=8﹣x=3,∴=.考点:1.翻折变换(折叠问题);2.勾股定理;3.菱形的判定与性质;4.矩形的性质;5.综合题.10.如图,在平面直角坐标系xOy中,四边形OABC的顶点A在x轴的正半轴上,OA=4,OC=2,点D、E、F、G分别为边OA、AB、BC、CO的中点,连结DE、EF、FG、GD.(1)若点C在y轴的正半轴上,当点B的坐标为(2,4)时,判断四边形DEFG的形状,并说明理由.(2)若点C在第二象限运动,且四边形DEFG为菱形时,求点四边形OABC对角线OB长度的取值范围.(3)若在点C的运动过程中,四边形DEFG始终为正方形,当点C从X轴负半轴经过Y轴正半轴,运动至X轴正半轴时,直接写出点B的运动路径长.【答案】(1)正方形(2)256OB <<(3)2π【解析】分析:(1)连接OB ,AC ,说明OB ⊥AC ,OB=AC ,可得四边形DEFG 是正方形.(2)由四边形DEFG 是菱形,可得OB=AC ,当点C 在y 轴上时,AC=25,当点C 在x 轴上时,AC=6, 故可得结论;(3)根据题意计算弧长即可.详解:(1)正方形,如图1,证明连接OB ,AC ,说明OB ⊥AC ,OB=AC ,可得四边形DEFG 是正方形.(2)256OB <<如图2,由四边形DEFG 是菱形,可得OB=AC ,当点C 在y 轴上时,AC=25,当点C 在x 轴上时,AC=6, ∴256OB << ;(3)2π.如图3,当四边形DEFG 是正方形时,OB ⊥AC ,且OB=AC ,构造△OBE ≌△ACO ,可得B 点在以E (0,4)为圆心,2为半径的圆上运动.所以当C 点从x 轴负半轴到正半轴运动时,B 点的运动路径为2π .图1 图2 图3点睛:本题主要考查了正方形的判定,菱形的性质以及弧长的计算.灵活运用正方形的判定定理和菱形的性质运用是解题的关键.11.如图,在菱形ABCD 中,AB=6,∠ABC=60°,AH ⊥BC 于点H .动点E 从点B 出发,沿线段BC 向点C 以每秒2个单位长度的速度运动.过点E 作EF ⊥AB ,垂足为点F .点E 出发后,以EF 为边向上作等边三角形EFG ,设点E 的运动时间为t 秒,△EFG 和△AHC 的重合部分面积为S .(1)CE= (含t 的代数式表示).(2)求点G 落在线段AC 上时t 的值.(3)当S >0时,求S 与t 之间的函数关系式.(4)点P 在点E 出发的同时从点A 出发沿A-H-A 以每秒2个单位长度的速度作往复运动,当点E 停止运动时,点P 随之停止运动,直接写出点P 在△EFG 内部时t 的取值范围.【答案】(1)6-2t;(2)t=2;(3)当<t≤2时,S=t2+t-3;当2<t≤3时,S=-t2+t-;(4)<t<.【解析】试题分析:(1)由菱形的性质得出BC=AB=6得出CE=BC-BE=6-2t即可;(2)由菱形的性质和已知条件得出△ABC是等边三角形,得出∠ACB=60°,由等边三角形的性质和三角函数得出∠GEF=60°,GE=EF=BE•sin60°=t,证出∠GEC=90°,由三角函数求出CE==t,由BE+CE=BC得出方程,解方程即可;(3)分两种情况:①当<t≤2时,S=△EFG的面积-△NFN的面积,即可得出结果;②当2<t≤3时,由①的结果容易得出结论;(4)由题意得出t=时,点P与H重合,E与H重合,得出点P在△EFG内部时,t的不等式,解不等式即可.试题解析:(1)根据题意得:BE=2t,∵四边形ABCD是菱形,∴BC=AB=6,∴CE=BC-BE=6-2t;(2)点G落在线段AC上时,如图1所示:∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵△EFG是等边三角形,∴∠GEF=60°,GE=E F=BE•sin60°=t,∵EF⊥AB,∴∠BEF=90°-60°=30°,∴∠GEB=90°,∴∠GEC=90°,∴CE==t,∵BE+CE=BC,∴2t+t=6,解得:t=2;(3)分两种情况:①当<t≤2时,如图2所示:S=△EFG的面积-△NFN的面积=××(t)2-××(-+2)2=t2+t-3,即S=t2+t-3;当2<t≤3时,如图3所示:S=t2+t-3-(3t-6)2,即S=-t2+t-;(4)∵AH=AB•sin60°=6×=3,3÷2=,3÷2=,∴t=时,点P与H重合,E与H重合,∴点P在△EFG内部时,-<(t-)×2<t-(2t-3)+(2t-3),解得:<t<;即点P在△EFG内部时t的取值范围为:<t<.考点:四边形综合题.12.倡导研究性学习方式,着力教材研究,习题研究,是学生跳出题海,提高学习能力和创新能力的有效途径.下面是一案例,请同学们认真阅读、研究,完成“类比猜想”的问题.习题如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,说明理由.解答:∵正方形ABCD中,AB=AD,∠BAD=∠ADC=∠B=90°,∴把△ABE绕点A逆时针旋转90°至△ADE′,点F、D、E′在一条直线上.∴∠E′AF=90°-45°=45°=∠EAF,又∵AE′=AE,AF=AF∴△AE′F≌△AEF(SAS)∴EF=E′F=DE′+DF=BE+DF.类比猜想:(1)请同学们研究:如图(2),在菱形ABCD中,点E、F分别在BC、CD上,当∠BAD=120°,∠EAF=60°时,还有EF=BE+DF吗?请说明理由.(2)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF吗?请说明理由.【答案】证明见解析.【解析】试题分析:(1)把△ABE绕点A逆时针旋转120°至△ADE′,如图(2),连结E′F,根据菱形和旋转的性质得到AE=AE′,∠EAF=∠E′AF,利用“SAS”证明△AEF≌△AE′F,得到EF=E′F;由于∠ADE′+∠ADC=120°,则点F、D、E′不共线,所以DE′+DF>EF,即由BE+DF>EF;(2)把△ABE绕点A逆时针旋转∠BAD的度数至△ADE′,如图(3),根据旋转的性质得到AE′=AE,∠EAF=∠E′AF,然后利用“SAS”证明△AEF≌△AE′F,得到EF=E′F,由于∠ADE′+∠ADC=180°,知F、D、E′共线,因此有EF=DE′+DF=BE+DF;根据前面的条件和结论可归纳出结论.试题解析:(1)当∠BAD=120°,∠EAF=60°时,EF=BE+DF不成立,EF<BE+DF.理由如下:∵在菱形ABCD中,∠BAD=120°,∠EAF=60°,∴AB=AD,∠1+∠2=60°,∠B=∠ADC=60°,∴把△ABE绕点A逆时针旋转120°至△ADE′,如图(2),连结E′F,∴∠EAE′=120°,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B=60°,∴∠2+∠3=60°,∴∠EAF=∠E′AF,在△AEF和△AE′F中,∴△AEF≌△AE′F(SAS),∴EF=E′F,∵∠ADE′+∠ADC=120°,即点F、D、E′不共线,∴DE′+DF>EF∴BE+DF>EF;(2)当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF成立.理由如下:如图(3),∵AB=AD,∴把△ABE绕点A逆时针旋转∠BAD的度数至△ADE′,如图(3),∴∠EAE′=∠BAD,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B,∵∠B+∠D=180°,∴∠ADE′+∠D=180°,∴点F、D、E′共线,∵∠EAF=∠BAD,∴∠1+∠2=∠BAD,∴∠2+∠3=∠BAD,∴∠EAF=∠E′AF,在△AEF和△AE′F中,∴△AEF≌△AE′F(SAS),∴EF=E′F,∴EF=DE′+DF=BE+DF;归纳:在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF.考点:四边形综合题.13.(本题14分)小明在学习平行线相关知识时总结了如下结论:端点分别在两条平行线上的所有线段中,垂直于平行线的线段最短.小明应用这个结论进行了下列探索活动和问题解决.问题1:如图1,在Rt△ABC中,∠C=90°,AC=4,BC=3,P为AC边上的一动点,以PB,PA为边构造□APBQ,求对角线PQ的最小值及PQ最小时的值.(1)在解决这个问题时,小明构造出了如图2的辅助线,则PQ的最小值为,当PQ最小时= _____ __;(2)小明对问题1做了简单的变式思考.如图3,P为AB边上的一动点,延长PA到点E,使AE=nPA(n为大于0的常数).以PE,PC为边作□PCQE,试求对角线PQ长的最小值,并求PQ最小时的值;问题2:在四边形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如图4,若为上任意一点,以,为边作□.试求对角线长的最小值和PQ最小时的值.(2)若为上任意一点,延长到,使,再以,为边作□.请直接写出对角线长的最小值和PQ最小时的值.【答案】问题1:(1)3,;(2)PQ=,=.问题2:(1)=4,.(2)PQ的最小值为..【解析】试题分析:问题1:(1)首先根据条件可证四边形PCBQ是矩形,然后根据条件“四边形APBQ是平行四边形可得AP=QB=PC,从而可求的值.(2)由题可知:当QP⊥AC 时,PQ最小.过点C作CD⊥AB于点D.此时四边形CDPQ为矩形,PQ=CD,在Rt△ABC中,∠C=90°,AC=4,BC=3,利用面积可求出CD=,然后可求出AD=,由AE=nPA可得PE=,而PE=CQ=PD=AD-AP=,所以AP=.所以=.问题2:(1)设对角线与相交于点.Rt≌Rt.所以AD=HC,QH=AP.由题可知:当QP⊥AB时,PQ最小,此时=CH=4,根据条件可证四边形BPQH为矩形,从而QH=BP=AP.所以.(2)根据题意画出图形,当AB 时,的长最小,PQ的最小值为..试题解析:问题1:(1)3,;(2)过点C作CD⊥AB于点D.由题意可知当PQ⊥AB时,PQ最短.所以此时四边形CDPQ为矩形.PQ=CD,DP=CQ=PE.因为∠BCA=90°,AC=4,BC=3,所以AB=5.所以CD=.所以PQ=.在Rt△ACD中AC=4,CD=,所以AD=.因为AE=nPA,所以PE==CQ=PD=AD-AP=.所以AP=.所以=.问题2:(1)如图2,设对角线与相交于点.所以G是DC的中点,作QH BC,交BC的延长线于H,因为AD//BC,所以.所以.又,所以Rt≌Rt.所以AD=HC,QH=AP.由图知,当AB时,的长最小,即=CH=4.易得四边形BPQH为矩形,所以QH=BP=AP.所以.(若学生有能力从梯形中位线角度考虑,若正确即可评分.但讲评时不作要求)(2)PQ的最小值为..考点:1.直角三角形的性质;2.全等三角形的判定与性质;3.平行四边形的性质;4矩形的判定与性质.14.如图1,在菱形ABCD中,ABC=60°,若点E在AB的延长线上,EF∥AD,EF=BE,点P是DE的中点,连接FP并延长交AD于点G.(1)过D作DH AB,垂足为H,若DH=,BE=AB,求DG的长;(2)连接CP,求证:CP FP;(3)如图2,在菱形ABCD中,ABC=60°,若点E在CB的延长线上运动,点F在AB的延长线上运动,且BE=BF,连接DE,点P为DE的中点,连接FP、CP,那么第(2)问的结论成立吗?若成立,求出的值;若不成立,请说明理由.【答案】(1)1;(2)见解析;(3).【解析】试题分析:(1)根据菱形得出DA∥BC,CD=CB,∠CDG=∠CBA=60°,则∠DAH=∠ABC=60°,根据DH⊥AB得出∠DHA=90°,根据Rt△ADH的正弦值得出AD的长度,然后得出BE的长度,然后证明△PDG≌△PEF,得出DG=EF,根据EF∥AD,AD∥BC 得出EF∥BC,则说明△BEF为正三角形,从而得出DG的长度;(2)连接CG、CF,根据△PDG≌△PEF得出PG=PF,然后证明△CDG≌△CBF,从而得到CG=CF,根据PG=PF得出垂直;(3)过D作EF的平行线,交FP延长于点G,连接CG、CF证△PEF≌△PDG,然后证明△CDG≌△CBF,从而得出∠GCE=120°,根据Rt△CPF求出比值.试题解析:(1)解:∵四边形ABCD为菱形∴DA∥BC CD="CB" ∠CDG=∠CBA=60°∴∠DAH=∠ABC=60°∵DH⊥AB ∴∠DHA=90°在Rt△ADH中 sin∠DAH=∴AD=∴BE=AB=×4=1 ∵EF∥AD ∴∠PDG=∠PEB ∵P为DE的中点∴PD=PE∵∠DPG=∠EPF ∴△PDG≌△PEF ∴DG=EF ∵EF∥AD AD∥BC ∴EF∥BC∴∠FEB=∠CBA=60°∵BE=EF ∴△BEF为正三角形∴EF=BE=1 ∴DG=EF=1、证明:连接CG、CF由(1)知△PDG≌△PEF ∴PG=PF在△CDG与△CBF中易证:∠CDG=∠CBF=60° CD=CB BF=EF=DG ∴△CDG≌△CBF∴CG=CF ∵PG=PF ∴CP⊥GF(3)如图:CP⊥GF仍成立理由如下:过D作EF的平行线,交FP延长于点G连接CG、CF证△PEF≌△PDG ∴DG=EF=BF ∵DG∥EF ∴∠GDP=∠EFP ∵DA∥BC∴∠ADP=∠PEC∴∠GDP-∠ADP=∠EFP-∠PEC ∴∠GDA=∠BEF=60°∴∠CDG=∠ADC+∠GDA=120°∵∠CBF=180°-∠EBF=120°∴∠CBF=∠CDG ∵CD=BC DG=BF ∴△CDG≌△CBF∴CG=CF ∠DCG=∠FCE ∵PG=PF ∴CP⊥PF ∠GCP=∠FCP∵∠DCP=180-∠ABC=120°∴∠DCG+∠GCE=120°∴∠FCE+∠GCE=120°即∠GCE=120°∴∠FCP=∠GCE=60°在Rt△CPF中 tan∠FCP=tan60°==考点:三角形全等的证明与性质.15.(本题满分10分)如图1,已知矩形纸片ABCD中,AB=6cm,若将该纸片沿着过点B的直线折叠(折痕为BM),点A恰好落在CD边的中点P处.(1)求矩形ABCD的边AD的长.(2)若P为CD边上的一个动点,折叠纸片,使得A与P重合,折痕为MN,其中M在边AD上,N在边BC上,如图2所示.设DP=x cm,DM=y cm,试求y与x的函数关系式,并指出自变量x的取值范围.(3)①当折痕MN的端点N在AB上时,求当△PCN为等腰三角形时x的值;②当折痕MN的端点M在CD上时,设折叠后重叠部分的面积为S,试求S与x之间的函数关系式【答案】(1)AD=3;(2)y=-其中,0<x<3;(3)x=;(4)S=.【解析】试题分析:(1)根据折叠图形的性质和勾股定理求出AD的长度;(2)根据折叠图形的性质以及Rt△MPD的勾股定理求出函数关系式;(3)过点N作NQ⊥CD,根据Rt△NPQ 的勾股定理进行求解;(4)根据Rt△ADM的勾股定理求出MP与x的函数关系式,然后得出函数关系式.试题解析:(1)根据折叠可得BP=AB=6cm CP=3cm 根据Rt△PBC的勾股定理可得:AD=3.(2)由折叠可知AM=MP,在Rt△MPD中,∴∴y=-其中,0<x<3.(3)当点N在AB上,x≥3,∴PC≤3,而PN≥3,NC≥3.∴△PCN为等腰三角形,只可能NC=NP.过N点作NQ⊥CD,垂足为Q,在Rt△NPQ中,∴解得x=.(4)当点M在CD上时,N在AB上,可得四边形ANPM为菱形.设MP=y,在Rt△ADM中,,即∴ y=.∴ S=考点:函数的性质、勾股定理.。

相关文档
最新文档