小学五年级奥数题50道及答案
小学五年级奥数题100道及答案(完整版)
小学五年级奥数题100道及答案(完整版)1. 一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是()A. 208B. 203C. 200D. 198答案:A解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208。
2. 有一个自然数,被10 除余7,被7 除余4,被4 除余1。
这个自然数最小是()A. 137B. 107C. 131D. 101答案:C解析:这个数加上 3 就能被10、7、4 整除,10、7、4 的最小公倍数是140,所以这个数是140 - 3 = 137。
3. 一筐苹果,2 个一拿,3 个一拿,4 个一拿,5 个一拿都正好拿完而没有余数,这筐苹果最少应有()A. 120 个B. 90 个C. 60 个D. 30 个答案:C解析:苹果数量是2、3、4、5 的公倍数,最小公倍数是60。
4. 把66 分解质因数是()A. 66 = 1×2×3×11B. 66 = 6×11C. 66 = 2×3×11D. 2×3×11 = 66答案:C解析:分解质因数是把一个合数写成几个质数相乘的形式。
5. 两个质数的积一定是()A. 质数B. 奇数C. 偶数D. 合数答案:D解析:两个质数相乘的积,除了1 和它本身以外还有这两个质数作为因数,所以是合数。
6. 一个合数至少有()个因数。
A. 1B. 2C. 3D. 4答案:C解析:合数是指除了能被1 和本身整除外,还能被其他数(0 除外)整除的自然数。
所以一个合数至少有3 个因数。
7. 10 以内既是奇数又是合数的数是()A. 7B. 8C. 9D. 5答案:C解析:9 不能被2 整除是奇数,同时除了1 和9 本身还有3 这个因数,所以是合数。
8. 下面算式中,结果最大的是()A. 300÷8÷6×5B. 300÷(8÷6)×5C. 300÷(8÷6×5)D. 300÷8÷(6×5)答案:C解析:分别计算出每个选项的结果进行比较。
五年级奥数精选50(附答案)
五年级奥数精选50(附答案)一、拓展提优试题1.如图,在等腰直角三角形ABC 中,斜边AB 上有一点D ,已知CD =5,BD 比AD 长2,那么三角形ABC 的面积是 .2.已知13411a b -=,那么()20132065b a --=______。
3.(8分)小张有200支铅笔,小李有20支钢笔.每次小张给小李6支铅笔,小李还给小张1支钢笔.经过 次这样的交换后,小张手中铅笔的数量是小李手中钢笔数量的11倍.4.如图,正方形的边长是6厘米,AE =8厘米,求OB = 厘米.5.某次入学考试有1000人参加,平均分是55分,录取了200人,录取者的平均分与未录取的平均分相差60分,录取分数线比录取者的平均分少4分.录取分数线是 分.6.小明从家到学校去上课,如果每分钟走60米,可提前10分钟到校;如果每分钟走50米,要迟到4分钟到校.小明家到学校相距 米.7.对于自然数N ,如果在1﹣9这九个自然数中至少有七个数是N 的因数,则称N 是一个“七星数”,则在大于2000的自然数中,最小的“七星数”是 .8.三位偶数A 、B 、C 、D 、E 满足A <B <C <D <E ,若A +B +C +D +E =4306,则A 最小 .9.如图,若每个小正方形的边长是2,则图中阴影部分的面积是 .10.如图,在梯形ABCD中,若AB=8,DC=10,S△AMD=10,S△BCM=15,则梯形ABCD的面积是.11.解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需分钟.12.(8分)如果两个质数的差恰好是2,称这两个质数为一对孪生质数.例如3和5是一对孪生质数,29和31也是一对孪生质数.在数论研究中,孪生质数是最热门的研究课题之一.华裔数学家张益唐在该课题的研究中取得了令人瞩目的成就,他的事迹激励着更多的青年学子投身数学研究.在不超过100的整数中,一共可以找到对孪生质数.13.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换多少只鸡?14.(8分)彤彤和林林分别有若干张卡片:如果彤彤拿6张给林林,林林变为彤彤的3倍;如果林林给彤彤2张,则林林变为彤彤的2倍.那么,林林原有张.15.某场考试共有7道题,每道题问的问题都只与这7道题的答案有关,且答案只能是1、2、3、4中的一个.已知题目如下:①有几道题的答案是4?②有几道题的答案不是2也不是3?③第⑤题和第⑥题的答案的平均数是多少?④第①题和第②题的答案的差是多少?⑤第①题和第⑦题的答案的和是多少?⑥第几题是第一个答案为2的?⑦有几种答案只是一道题的答案?那么,7道题的答案的总和是 .【参考答案】一、拓展提优试题1.解:作CE ⊥AB 于E .∵CA =CB ,CE ⊥AB ,∴CE =AE =BE ,∵BD ﹣AD =2,∴BE +DE ﹣(AE ﹣DE )=2,∴DE =1, 在Rt △CDE 中,CE 2=CD 2﹣DE 2=24,∴S △ABC =•AB •CE =CE 2=24,故答案为242.2068[解答]由于13411a b -=,所以()6520513451155a b a b -=⨯-=⨯=,所以()()20132065201365202068b a a b --=+-=3.解:依题意可知:当第一次过后,小张剩余194只铅笔,小李剩余19只钢笔.当第二次过后,小张剩余188只铅笔,小李剩余18只钢笔.当第三次过后,小张剩余182只铅笔,小李剩余17只钢笔.当第四次过后,小张剩余176只铅笔,小李剩余16只钢笔.正好是11倍. 故答案为:四4.解:6×6÷2=18(平方厘米),18×2÷8=4.5(厘米);答:OB 长4.5厘米.故答案为:4.5.5.解:设录取者的平均成绩为X 分,我们可以得到方程,200X+(1000﹣200)×(X﹣60)=55×1000,200X+800(X﹣60)=55000,1000X﹣48000=55000,1000X=103000,X=103;所以录取分数线是103﹣4=99(分).答:录取分数线是99分.故答案为:99.6.解:(60×10+50×4)÷(60﹣50),=(600+200)÷10,=800÷10,=80(分钟),60×(80﹣10),=60×70,=4200(米).答:小明家到学校相距4200米.故答案为:4200.7.解:根据分析,在2000~2020之间排除掉奇数,剩下的偶数还可以排除掉不能被3整除的偶数,最后只剩下:2004、2010、2016,再将三个数分别分解质因数得:2004=2×2×3×167;2010=2×3×5×67;2016=2×2×2×2×2×3×3×7,显然2014和2010的质因数在1~9中不到7个,不符合题意,排除,符合题意的只有2016,此时2016的因数分别是:2、3、4、6、7、8、9.故答案是:2016.8.解:最大的三位偶数是998,要满足A最小且A<B<C<D<E,则E最大是998,D最大是996,C最大是994,B最大是992,4306﹣(998+996+994+992)=4306﹣3980=326,所以此时A最小是326.故答案为:326.9.解:根据分析,如图,将阴影部分进行剪切和拼接后得:此时,图中阴影部分的小正方形个数为:18个,每个小正方形的面积为:2×2=4,故阴影部分的面积=18×4=72.故答案是:72.10.解:△ADM 、△BCM 、△ABM 都等高,所以S △ABM :(S △ADM +S △BCM )=8:10=4:5,已知S △AMD =10,S △BCM =15,所以S △ABM 的面积是:(10+15)×=20,梯形ABCD 的面积是:10+15+20=45;答:梯形ABCD 的面积是45.故答案为:45.11.解:假设每人每分钟修大坝1份洪水冲毁大坝速度:(10×45﹣20×20)÷(45﹣20)=(450﹣400)÷25=50÷25=2(份)大坝原有的份数45×10﹣2×45=450﹣90=360(份)14人修好大坝需要的时间360÷(14﹣2)=360÷12=30(分钟)答:14人修好大坝需30分钟.故答案为:30.12.解:在不超过100的整数中,以下8组:3,5;5,7;11,13;17,19;29,31;41,43;59,61;71,73是孪生质数.故答案为8.13.解:42÷2=21(只)21÷3×26=7×26=182(只)182÷2×3=91×3=273(只)273×3=819(只)答:3头牛可以换819只鸡.14.解:彤彤给林林6张,林林有总数的;林林给彤彤2张,林林有总数的;所以总数:(6+2)÷(﹣)=96,林林原有:96×﹣6=66,故答案为:66.15.解:因为每道题的答案都是1、2、3、4的一个,所以①的答案不宜太大,不妨取1,此时②的答案其实就是7个答案中1和4的个数,显然只能取2、3、4中的一个,若取2,则意味着剩余的题目只能有一道题答案为1,这是④填1,⑦填2,⑤填3,⑥填2,而③无法填整数,与题意矛盾;所以②的答案取3,则剩余的题目答案为1和4各有1道,此时④填2,显然⑦只能填1,那么⑤填2,则4应该是⑥的答案,从而③填3,此时7道题的答案如表;它们的和是1+3+3+2+2+4+1=16.。
小学五年级奥数题100题(附答案)
小学五年级奥数题100题(附答案)五年级奥数题100题(附答案)1.765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002.(9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)=9000+9000+…….+9000(500个9000)=45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000.6.297+293+289+ (209)解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49.有7个数,它们的平均数是18.去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20.求去掉的两个数的乘积.解: 7*18-6*19=126-114=126*19-5*20=114-100=14去掉的两个数是12和14它们的乘积是12*14=16810.有七个排成一列的数,它们的平均数是30,前三个数的平均数是28,后五个数的平均数是33.求第三个数.解:28×3+33×5-30×7=39.11.有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8.问:第二组有多少个数?解:设第二组有x个数,则63+11x=8×(9+x),解得x=3.12.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分.如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分.因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分).13.妈妈每4天要去一次副食商店,每 5天要去一次百货商店.妈妈平均每星期去这两个商店几次?(用小数表示)解:每20天去9次,9÷20×7=3.15(次).14.乙、丙两数的平均数与甲数之比是13∶7,求甲、乙、丙三数的平均数与甲数之比. 解:以甲数为7份,则乙、丙两数共13×2=26(份)所以甲乙丙的平均数是(26+7)/3=11(份)因此甲乙丙三数的平均数与甲数之比是11:7.15.五年级同学参加校办工厂糊纸盒劳动,平均每人糊了76个.已知每人至少糊了70个,并且其中有一个同学糊了88个,如果不把这个同学计算在内,那么平均每人糊74个.糊得最快的同学最多糊了多少个?解:当把糊了88个纸盒的同学计算在内时,因为他比其余同学的平均数多88-74=14(个),而使大家的平均数增加了76-74=2(个),说明总人数是14÷2=7(人).因此糊得最快的同学最多糊了74×6-70×5=94(个).16.甲、乙两班进行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以5.5千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以4.5千米/时的速度行进,另一半时间以5.5千米/时的速度行进.问:甲、乙两班谁将获胜?解:快速行走的路程越长,所用时间越短.甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程长,所以乙班获胜.17.轮船从A城到B城需行3天,而从B城到A城需行4天.从A 城放一个无动力的木筏,它漂到B城需多少天?解:轮船顺流用3天,逆流用4天,说明轮船在静水中行4-3=1(天),等于水流3+4=7(天),即船速是流速的7倍.所以轮船顺流行3天的路程等于水流3+3×7=24(天)的路程,即木筏从A城漂到B城需24天.18.小红和小强同时从家里出发相向而行.小红每分走52米,小强每分走70米,二人在途中的A处相遇.若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇.小红和小强两人的家相距多少米?解:因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同.也就是说,小强第二次比第一次少走4分.由(70×4)÷(90-70)=14(分)可知,小强第二次走了14分,推知第一次走了18分,两人的家相距(52+70)×18=2196(米).19.小明和小军分别从甲、乙两地同时出发,相向而行.若两人按原定速度前进,则4时相遇;若两人各自都比原定速度多1千米/时,则3时相遇.甲、乙两地相距多少千米?解:每时多走1千米,两人3时共多走6千米,这6千米相当于两人按原定速度1时走的距离.所以甲、乙两地相距6×4=24(千米)20.甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去.相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地.求甲原来的速度.解:因为相遇前后甲、乙两人的速度和不变,相遇后两人合跑一圈用24秒,所以相遇前两人合跑一圈也用24秒,即24秒时两人相遇.设甲原来每秒跑x米,则相遇后每秒跑(x+2)米.因为甲在相遇前后各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米.21.甲、乙两车分别沿公路从A,B两站同时相向而行,已知甲车的速度是乙车的1.5倍,甲、乙两车到达途中C站的时刻分别为5:00和16:00,两车相遇是什么时刻?解:9∶24.解:甲车到达C站时,乙车还需16-5=11(时)才能到达C站.乙车行11时的路程,两车相遇需11÷(1+1.5)=4.4(时)=4时24分,所以相遇时刻是9∶24.22.一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?解:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为1123.甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙.问:两人每秒各跑多少米?解:甲乙速度差为10/5=2速度比为(4+2):4=6:4所以甲每秒跑6米,乙每秒跑4米.24.甲、乙、丙三人同时从A向B跑,当甲跑到B时,乙离B还有20米,丙离B还有40米;当乙跑到B时,丙离B还有24米.问:(1) A, B相距多少米?(2)如果丙从A跑到B用24秒,那么甲的速度是多少?解:解:(1)乙跑最后20米时,丙跑了40-24=16(米),丙的速度25.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明.已知公共汽车从始发站每次间隔同样的时间发一辆车,问:相邻两车间隔几分?解:设车速为a,小光的速度为b,则小明骑车的速度为3b.根据追及问题“追及时间×速度差=追及距离”,可列方程10(a-b)=20(a-3b),解得a=5b,即车速是小光速度的5倍.小光走10分相当于车行2分,由每隔10分有一辆车超过小光知,每隔8分发一辆车.26.一只野兔逃出80步后猎狗才追它,野兔跑8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步.猎狗至少要跑多少步才能追上野兔?解:狗跑12步的路程等于兔跑32步的路程,狗跑12步的时间等于兔跑27步的时间.所以兔每跑27步,狗追上5步(兔步),狗要追上80步(兔步)需跑[27×(80÷5)+80]÷8×3=192(步).27.甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过.问:(1)火车速度是甲的速度的几倍?(2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?解:(1)设火车速度为a米/秒,行人速度为b米/秒,则由火车的是行人速度的11倍;(2)从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485-135)÷2=675(秒).28.辆车从甲地开往乙地,如果把车速提高20%,那么可以比原定时间提前1时到达;如果以原速行驶100千米后再将车速提高30%,那么也比原定时间提前1时到达.求甲、乙两地的距离.29.完成一件工作,需要甲干5天、乙干 6天,或者甲干 7天、乙干2天.问:甲、乙单独干这件工作各需多少天?解:甲需要(7*3-5)/2=8(天)乙需要(6*7-2*5)/2=16(天)30.一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完.如果放水管开了2时后再打开排水管,那么再过多长时间池内将积有半池水?31.小松读一本书,已读与未读的页数之比是3∶4,后来又读了33页,已读与未读的页数之比变为5∶3.这本书共有多少页?解:开始读了3/7 后来总共读了5/833/(5/8-3/7)=33/(11/56)=56*3=168页32.一件工作甲做6时、乙做12时可完成,甲做8时、乙做6时也可以完成.如果甲做3时后由乙接着做,那么还需多少时间才能完成?解:甲做2小时的等于乙做6小时的,所以乙单独做需要6*3+12=30(小时)甲单独做需要10小时因此乙还需要(1-3/10)/(1/30)=21天才可以完成.33.有一批待加工的零件,甲单独做需4天,乙单独做需5天,如果两人合作,那么完成任务时甲比乙多做了20个零件.这批零件共有多少个?解:甲和乙的工作时间比为4:5,所以工作效率比是5:4工作量的比也5:4,把甲做的看作5份,乙做的看作4份那么甲比乙多1份,就是20个.因此9份就是180个所以这批零件共180个34.挖一条水渠,甲、乙两队合挖要6天完成.甲队先挖3天,乙队接着解:根据条件,甲挖6天乙挖2天可挖这条水渠的3/5所以乙挖4天能挖2/5因此乙1天能挖1/10,即乙单独挖需要10天.甲单独挖需要1/(1/6-1/10)=15天.35.修一段公路,甲队独做要用40天,乙队独做要用24天.现在两队同时从两端开工,结果在距中点750米处相遇.这段公路长多少米?36.有一批工人完成某项工程,如果能增加8个人,则10天就能完成;如果能增加3个人,就要20天才能完成.现在只能增加2个人,那么完成这项工程需要多少天?解:将1人1天完成的工作量称为1份.调来3人与调来8人相比,10天少完成(8-3)×10=50(份).这50份还需调来3人干10天,所以原来有工人50÷10-3=2(人),全部工程有(2+8)×10=100(份).调来2人需100÷(2+2)=25(天).37.解:三角形AOB和三角形DOC的面积和为长方形的50%所以三角形AOB占32%16÷32%=5038.解:1/2*1/3=1/6所以三角形ABC的面积是三角形AED面积的6倍.39.下面9个图中,大正方形的面积分别相等,小正方形的面积分别相等.问:哪几个图中的阴影部分与图(1)阴影部分面积相等?解:(2)(4)(7)(8)(9)40.观察下列各串数的规律,在括号中填入适当的数2,5,11,23,47,(),……解:括号内填95规律:数列里地每一项都等于它前面一项的2倍减141.在下面的数表中,上、下两行都是等差数列.上、下对应的两个数字中,大数减小数的差最小是几?解:1000-1=999997-995=992每次减少7,999/7=142 (5)所以下面减上面最小是51333-1=1332 1332/7=190 (2)所以上面减下面最小是2因此这个差最小是2.42.如果四位数6□□8能被73整除,那么商是多少?解:估计这个商的十位应该是8,看个位可以知道是6因此这个商是86.43.求各位数字都是 7,并能被63整除的最小自然数.解:63=7*9所以至少要9个7才行(因为各位数字之和必须是9的倍数)44. 1×2×3×…×15能否被 9009整除?解:能.将9009分解质因数9009=3*3*7*11*1345.能否用1,2,3,4,5,6六个数码组成一个没有重复数字,且能被11整除的六位数?为什么?解:不能.因为1+2+3+4+5+6=21,如果能组成被11整除的六位数,那么奇数位的数字和与偶数位的数字和一个为16,一个为5,而最小的三个数字之和1+2+3=6>5,所以不可能组成.46.有一个自然数,它的最小的两个约数之和是4,最大的两个约数之和是100,求这个自然数.解:最小的两个约数是1和3,最大的两个约数一个是这个自然数本身,另一个是这个自然数除以3的商.最大的约数与第二大47.100以内约数个数最多的自然数有五个,它们分别是几?解:如果恰有一个质因数,那么约数最多的是26=64,有7个约数;如果恰有两个不同质因数,那么约数最多的是23×32=72和25×3=96,各有12个约数;如果恰有三个不同质因数,那么约数最多的是22×3×5=60,22×3×7=84和2×32×5=90,各有12个约数.所以100以内约数最多的自然数是60,72,84,90和96.48.写出三个小于20的自然数,使它们的最大公约数是1,但两两均不互质.解:6,10,1549.有336个苹果、252个桔子、210个梨,用这些果品最多可分成多少份同样的礼物?在每份礼物中,三样水果各多少?解:42份;每份有苹果8个,桔子6个,梨5个.50.三个连续自然数的最小公倍数是168,求这三个数.解:6,7,8.提示:相邻两个自然数必互质,其最小公倍数就等于这两个数的乘积.而相邻三个自然数,若其中只有一个偶数,则其最小公倍数等于这三个数的乘积;若其中有两个偶数,则其最小公倍数等于这三个数乘积的一半.51.一副扑克牌共54张,最上面的一张是红桃K.如果每次把最上面的12张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃K才会又出现在最上面?解:因为[54,12]=108,所以每移动108张牌,又回到原来的状况.又因为每次移动12张牌,所以至少移动108÷12=9(次).52.爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍.”你知道爷爷和小明现在的年龄吗?解:爷爷70岁,小明10岁.提示:爷爷和小明的年龄差是6,5,4,3,2的公倍数,又考虑到年龄的实际情况,取公倍数中最小的.(60岁)53.某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?并将它们写出来.解:11,13,17,23,37,47.54.在放暑假的8月份,小明有五天是在姥姥家过的.这五天的日期除一天是合数外,其它四天的日期都是质数.这四个质数分别是这个合数减去1,这个合数加上1,这个合数乘上2减去1,这个合数乘上2加上1.问:小明是哪几天在姥姥家住的?解:设这个合数为a,则四个质数分别为(a-1),(a+1),(2a-1),(2a+1).因为(a-1)与(a+1)是相差2的质数,在1~31中有五组:3,5;5,7;11,13;17,19;21,31.经试算,只有当a =6时,满足题意,所以这五天是8月5,6,7,11,13日.55.有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数.求这两个整数.解:3,74;18,37.提示:三个数字相同的三位数必有因数111.因为111=3×37,所以这两个整数中有一个是37的倍数(只能是37或74),另一个是3的倍数.56.在一根100厘米长的木棍上,从左至右每隔6厘米染一个红点,同时从右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开.问:长度是1厘米的短木棍有多少根?解:因为100能被5整除,所以可以看做都是自左向右染色.因为6与5的最小公倍数是30,即在30厘米处同时染上红点,所以染色以30厘米为周期循环出现.一个周期的情况如下图所示:由上图知道,一个周期内有2根1厘米的木棍.所以三个周期即90厘米有6根,最后10厘米有1根,共7根.57.某种商品按定价卖出可得利润960元,若按定价的80%出售,则亏损832元.问:商品的购入价是多少元?解:8000元.按两种价格出售的差额为960+832=1792(元),这个差额是按定价出售收入的20%,故按定价出售的收入为1792÷20%=8960(元),其中含利润960元,所以购入价为8000元.58.甲桶的水比乙桶多20%,丙桶的水比甲桶少20%.乙、丙两桶哪桶水多?解:乙桶多.59.学校数学竞赛出了A,B,C三道题,至少做对一道的有25人,其中做对A题的有10人,做对B题的有13人,做对C题的有15人.如果二道题都做对的只有1人,那么只做对两道题和只做对一道题的各有多少人?解:只做对两道题的人数为(10+13+15)-25 -2×1=11(人),只做对一道题的人数为25-11-1=13(人).60.学校举行棋类比赛,设象棋、围棋和军棋三项,每人最多参加两项.根据报名的人数,学校决定对象棋的前六名、围棋的前四名和军棋的前三名发放奖品.问:最多有几人获奖?最少有几人获奖?解:共有13人次获奖,故最多有13人获奖.又每人最多参加两项,即最多获两项奖,因此最少有7人获奖.61.在前1000个自然数中,既不是平方数也不是立方数的自然数有多少个?解:因为312<1000<322,103=1000,所以在前1000个自然数中有31个平方数,10个立方数,同时还有3个六次方数(16,26,36).所求自然数共有 1000-(31+10)+3=962(个).62.用数字0,1,2,3,4可以组成多少个不同的三位数(数字允许重复)?解:4*5*5=100个63.要从五年级六个班中评选出学习、体育、卫生先进集体各一个,有多少种不同的评选结果?解:6*6*6=216种64.已知15120=24×33×5×7,问:15120共有多少个不同的约数?解:15120的约数都可以表示成2a×3b×5c×7d的形式,其中a=0,1,2,3,4,b=0,1,2,3,c=0,1,d=0,1,即a,b,c,d的可能取值分别有5,4,2,2种,所以共有约数5×4×2×2=80(个).65.大林和小林共有小人书不超过50本,他们各自有小人书的数目有多少种可能的情况?解:他们一共可能有0~50本书,如果他们共有n本书,则大林可能有书0~n本,也就是说这n本书在两人之间的分配情况共有(n +1)种.所以不超过 50本书的所有可能的分配情况共有1+2+3…+51=1326(种).66.在右图中,从A点沿线段走最短路线到B点,每次走一步或两步,共有多少种不同走法?(注:路线相同步骤不同,认为是不同走法.)解:80种.提示:从A到B共有10条不同的路线,每条路线长5个线段.每次走一个或两个线段,每条路线有8种走法,所以不同走法共有8×10=80(种).67.有五本不同的书,分别借给3名同学,每人借一本,有多少种不同的借法?解:5*4*3=60种68.有三本不同的书被5名同学借走,每人最多借一本,有多少种不同的借法?解:5*4*3=60种69.恰有两位数字相同的三位数共有多少个?解:在900个三位数中,三位数各不相同的有9×9×8=648(个),三位数全相同的有9个,恰有两位数相同的有900—648—9=243(个).70.从1,3,5中任取两个数字,从2,4,6中任取两个数字,共可组成多少个没有重复数字的四位数?解:三个奇数取两个有3种方法,三个偶数取两个也有3种方法.共有3×3×4!=216(个).71.左下图中有多少个锐角?解:C(11,2)=55个72. 10个人围成一圈,从中选出两个不相邻的人,共有多少种不同选法?解:c(10,2)-10=35种73.一牧场上的青草每天都匀速生长.这片青草可供27头牛吃6周,或供23头牛吃9周.那么可供21头牛吃几周?解:将1头牛1周吃的草看做1份,则27头牛6周吃162份,23头牛9周吃207份,这说明3周时间牧场长草207-162=45(份),即每周长草15份,牧场原有草162-15×6=72(份).21头牛中的15头牛吃新长出的草,剩下的6头牛吃原有的草,吃完需72÷6=12(周).74.有一水池,池底有泉水不断涌出.要想把水池的水抽干,10台抽水机需抽 8时,8台抽水机需抽12时.如果用6台抽水机,那么需抽多少小时?解:将1台抽水机1时抽的水当做1份.泉水每时涌出量为(8×12-10×8)÷(12-8)=4(份).水池原有水(10-4)×8=48(份),6台抽水机需抽48÷(6-4)=24(时).75.规定a*b=(b+a)×b,求(2*3)*5.解:2*3=(3+2)*3=1515*5=(15+5)*5=10076.1!+2!+3!+…+99!的个位数字是多少?解:1!+2!+3!+4!=1+2+6+24=33从5!开始,以后每一项的个位数字都是0所以1!+2!+3!+…+99!的个位数字是3.77(1).有一批四种颜色的小旗,任意取出三面排成一行,表示各种信号.在200个信号中至少有多少个信号完全相同?解:4*4*4=64200÷64=3 (8)所以至少有4个信号完全相同.77.(2)在今年入学的一年级新生中有370多人是在同一年出生的.试说明:他们中至少有2个人是在同一天出生的.解:因为一年最多有366天,看做366个抽屉因为370>366,所以根据抽屉原理至少有2个人是在同一天出生的.78.从前11个自然数中任意取出6个,求证:其中必有2个数互质.证明:把前11个自然数分成如下5组(1,2,3)(4,5)(6,7)(8,9)(10,11)6个数放入5组必然有2个数在同一组,那么这两个数必然互质.79.小明去爬山,上山时每时行2.5千米,下山时每时行4千米,往返共用3.9时.小明往返一趟共行了多少千米?80.长江沿岸有A,B两码头,已知客船从A到B每天航行500千米,从B到A每天航行400千米.如果客船在A,B两码头间往返航行5次共用18天,那么两码头间的距离是多少千米?解:800千米. 提示:从A到B与从B到A的速度比是5∶4,从A到B用81.请在下式中插入一个数码,使之成为等式:1×11×111= 111111解答:91*11*111=11111182.甲、乙、丙三数的和是100,甲数除以乙数与丙数除以甲数的结果都是商5余1.问:乙数是多少?解:设乙数是x,那么甲数就是5x+1丙数是5(5x+1)+1=25x+6因此x+5x+1+25x+6=10031x=93 x=3所以乙数是383.12345654321×(1+2+3+4+5+6+5+4+3+2+1)是哪个数的平方解:12345654321=111111的平方1+2+3+4+5+6+5+4+3+2+1=36=6的平方所以原式=666666的平方.84.某剧院有25排座位,后一排比前一排多2个座位,最后一排有70个座位.问:这个剧院一共有多少个座位?解:第一排有70-24*2=22个座位所以总座位数是(22+70)*25/2 =115085.某城市举行小学生数学竞赛,试卷共有20道题.评分标准是:答对一道给3分,没答的题每题给1分,答错一道扣1分.问:所有参赛学生的得分总和是奇数还是偶数?为什么?解:一定是偶数,因为每个人20道题得分都分别是奇数,20个奇数的和一定是偶数.每个人的得分都是偶数,所以无论有多少参赛学生,参赛学生的得分总和一定是偶数.86.可以分解为三个质数之积的最小的三位数是几?解:102=2*3*1787.两个质数的和是39,求这两个质数的积.解:注意到奇偶性可以知道这2个质数分别是2和37它们的乘积是2*37=7488.有1,2,3,4,5,6,7,8,9九张牌,甲、乙、丙各拿了三张.甲说:“我的三张牌的积是48.”乙说:“我的三张牌的和是15.”丙说:“我的三张牌的积是63.”问:他们各拿了哪三张牌?解:63=7*1*9 所以丙拿的1,7,948=2*3*8所以甲拿的2,3,84+5+6=15因此乙拿的是4,5,689.四个连续自然数的积是3024,求这四个数.解:考虑末尾数字,1*2*3*4末尾是46*7*8*9末尾也是4其他情况下末尾都是011*12*13*14=24024太大6*7*8*9=3024刚好所以这4个数是6,7,8,990.证明:任何一个三位数,连着写两遍得到一个六位数,这个六位数一定能被7,11,13整除.解:该数形如ABCABC=ABC*10011001=7*11*13所以这个六位数一定能被7,11,13整除.91.在1~100中,所有的只有3个约数的自然数的和是多少?解:4+9+25+49=8792.有一种电子钟,每到正点响一次铃,每过九分钟亮一次灯.如果中午12点整它既响铃又亮灯,那么下一次既响铃又亮灯是什么时间?解:[60,9]=180180/60=3下次是下午3点钟.93.有一个数除以3余2,除以4余1.问:此数除以12余几?解:除以3余2的数是2,5,8,11,14......除以4余1的数是1,5,9,......所以此数除以12余594.把16拆成若干个自然数的和,要求这些自然数的乘积尽量大,应如何拆?解:16=3+3+3+3+2+2乘积是3*3*3*3*2*2=32495.小明按1~ 3报数,小红按1~ 4报数.两人以同样的速度同时开始报数,当两人都报了100个数时,有多少次两人报的数相同?解:每12次作为一个周期1 2 3 1 2 3 1 2 3 1 2 31 2 3 4 1 2 3 4 1 2 3 4每个周期两人有3次报的数一样100=12*8+4所以两个人有8*3+3=27次报的数相同.96.某自然数加10或减10皆为平方数,求这个自然数.解:设这个数是xx+10=m^2x-10=n^2m^2-n^2=20 (m+n)(m-n)=20m=6,n=4所以x=6^2-10=2697.已知某铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒.求火车的速度和长度.解:120秒行驶的距离是桥长+车长80秒行驶的距离是桥长-车长所以80(1000+车长)=120(1000-车长)车长=200米火车的速度是10米/秒98.甲、乙二人按顺时针方向沿圆形跑道练习跑步,已知甲跑一圈要12分,乙跑一圈要15分,如果他们分别从圆形跑道直径的两端同时出发,那么出发后多少分甲追上乙?解:(1/2)/(1/12-1/15)=(1/2)/(1/60)=30分钟99.甲、乙比赛乒乓球,五局三胜.已知甲胜了第一局,并最终获胜.问:各局的胜负情况有多少种可能?解:甲甲甲甲甲乙甲甲甲乙乙甲甲乙甲甲甲乙甲乙甲甲乙乙甲甲经枚举发现共有6种可能.100.甲、乙二人 2时共可加工 54个零件,甲加工 3时的零件比乙加工4时的零件还多4个.问:甲每时加工多少个零件?解:甲乙二人一小时共可加工零件27个设甲每小时加工x个,那么乙每小时加工27-x个根据条件得3x=4(27-x)+47x=112 x=16答:甲每小时加工零件16个.。
小学五年级奥数题及答案大全
小学五年级奥数题及答案大全小学五年级奥数题及答案大全一51. 一副扑克牌共54张,最上面的一张是红桃K。
如果每次把最上面的12 张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃K才会又出现在最上面?解:因为[54 ,12]=108,所以每移动108 张牌,又回到原来的状况。
又因为每次移动12 张牌,所以至少移动108÷12=9(次)。
52. 爷爷对小明说:“我现在的年龄是你的7 倍,过几年是你的6倍,再过若干年就分别是你的 5 倍、4 倍、3倍、2 倍。
”你知道爷爷和小明现在的年龄吗?解:爷爷70 岁,小明10 岁。
提示:爷爷和小明的年龄差是6,5,4,3,2 的公倍数,又考虑到年龄的实际情况,取公倍数中最小的。
(60 岁)53. 某质数加6或减6得到的数仍是质数,在50 以内你能找出几个这样的质数?并将它们写出来。
解:11,13,17,23,37,47。
54. 在放暑假的8 月份,小明有五天是在姥姥家过的。
这五天的日期除一天是合数外,其它四天的日期都是质数。
这四个质数分别是这个合数减去1 ,这个合数加上1 ,这个合数乘上2 减去 1 ,这个合数乘上2 加上 1 。
问:小明是哪几天在姥姥家住的?解:设这个合数为a,则四个质数分别为(a-1) , (a+1), (2a-1) , (2a+1)。
因为(a-1)与(a+1)是相差2的质数,在1〜31 中有五组:3,5;5 ,7;11 ,13;17 ,19;21 ,31 。
经试算,只有当a=6 时,满足题意,所以这五天是8 月5,6,7,11 ,13 日。
55. 有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数。
求这两个整数。
解:3,74;18 ,37。
提示:三个数字相同的三位数必有因数111。
因为111=3×37 ,所以这两个整数中有一个是37 的倍数( 只能是37 或74) ,另一个是 3 的倍数。
小学五年级经典奥数题带答案
小学五年级经典奥数题(一)题1、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?题2、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?题3、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?题4、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?题5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?题6、运来一批西瓜,准备分两类卖,大的每千克元,小的每千克元,这样卖这批西瓜共值290元,如果每千克西瓜降价元,这批西瓜只能卖250元,问:有多少千克大西瓜?题7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?题8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?答案:1.解:设有1元的x张,1角的(28-x)张x+(28-x)==x=328-x=25答:有一元的3张,一角的25张。
2.解:设1元的有x张,2元的(x-2)张,5元的(52-2x)x+2(x-2)+5(52-2x)=116x+2x-4+260-10x=1167x=140x=20x-2=1852-2x=12答:1元的有20张,2元18张,5元12张。
3.解:设有7元和5元各x张,3元的(400-2x)张7x+5x+3(400-2x)=192012x+1200-6x=19206x=720x=120400-2x=160答:有3元的160张,7元、5元各120张。
五年级经典奥数题及答案50道
五年级经典奥数题及答案50道1. 在数轴上,AB、BC、CD、DE都是长度为1的线段,且它们依次相接,形成的五边形面积是多少?答案:22. 在一个长方形牛肚子里,画一条分割线将牛肚子分成两个小肚子,这条分割线的长度是8,面积相等的两个小肚子面积之和是多少?答案:483. 一个完整的圆披萨可以被等分成8个部分,每个底角为45度的扇形部分面积是多少?答案:1/8 π4. 在一个正方形BILL的内部,画一个面积等于BILL面积一半的正方形,这个正方形的边长是多少?答案:1/4 BILL的边长5. 一个半圆形的花坛直径是4米,花坛的花种在圆弧边上,两个相邻花之间的圆心角大小是45度,整个花坛可以有多少朵花?答案:86. 总和为111的两个正整数互质,这两个数中比较小的一个是多少?答案:377. 在一个长方形的表面上,剪去四个面积相等、四边形形状相同的小正方形,它们的边长分别是2,3,4和6,剩下的部分的面积是多少?答案:308. 在一个三角形ABC中,点D是AB边上的中点,点E是BC边上的中点,点F是CA边上的中点,连接点DEF,这个三角形被DEF分成了几个小三角形?答案:49. 一个正方形牌子上印有四个数字,每个数字都是2,3,4,5中的一个,每个数字只能用一次,求所有可能的四个数字组合方式。
答案:2410. 在一个三角形ABC中,角A是直角,BD是角B的平分线,E是AC上的一点,且角BDE和角BAC相等,求角ABC和角ACB的大小。
答案:45度11. 算式85×21×44×11的个位数字是多少?答案:012. 在一个正方形草坪的四个角上,分别立了四个灯柱,然后把草坪抬起,折成两个三角形,进行了运输。
运输过程中,两个三角形任意一个三角形都不能被折叠成平面,这个时候灯柱的相对位置改变了吗?答案:没有改变13. 一个正六面体每个面被划分成相同的10个小正方形,该六面体中有多少个顶点?答案:814. 给出一个两位数AB,其中A和B分别代表数字百位和个位,如果翻转后得到另一个两位数BA,且AB和BA的和是198,那么AB是多少?答案:9915. 求一个三位数ABC可以整除11的充要条件是什么?答案:A-B+C是11的倍数。
五年级奥数题及答案通用13篇
五年级奥数题及答案通用13篇五年级小学生奥数题篇一1、某厂有一批煤,原计划每天烧5吨,可以烧45天。
实际每天少烧0.5吨,这批煤可以烧多少天?2、学校买来150米长的塑料绳,先剪下7.5米,做3根同样长的跳绳。
照这样计算,剩下的塑料绳还可以做多少根?3、修一条水渠,原计划每天修0.48千米,30天修完。
实际每天多修0.02千米,实际修了多少天?4、王老师看一本书,如果每天看32页,15天看完。
现在每天看40页,可以提前几天看完?5、一辆汽车4小时行驶了260千米,照这样的速度,又行了2.4小时,前后一共行驶了多少千米?(用两种方法解答)五年级小学生奥数题篇二1、快车和慢车同时从两个城市相对开出,2.5小时后相遇。
快车每小时行42千米,慢车每小时行35千米。
两个城市相距多少千米?2、甲、乙二位同学合打一份资料,甲每分打18个字,乙每分打22个字,两人用了30分打完这份资料,这份资料一共有多少个字?3、甲乙两车分别从两地同时出发,相对开来,甲车每小时行40千米,乙车每小时行50千米,3小时后两车还相距25千米,两地相距多少千米?4、两地相距628千米,甲车每小时行60千米,乙车每小时行80千米。
两车同时从两地相向而行,4小时后两车相遇了吗?两车相距多少千米?5、甲乙两人合做一批零件。
甲每小时做124个,乙每小时做136个。
他们合做了8小时,超额完成120个。
他们原来打算合做多少个零件?6、上午10时一只货船从甲港开往乙港,下午1小时一只客船从乙港开往甲港。
客船开出4小时与货船相遇。
货船每小时行18千米,客船每小时行27千米。
两港相距多远?参考答案1、(42+35)×2.5=192.5(千米)2、(18+22)×30=12003、(50+40)×3+25=295(千米)4、没相遇。
(60+80)×4=560(千米)628-560=68(千米)5、(124+136)×8-120=1960(个)6、18×3+(18+27)×4=234(千米)五年级小学生奥数题篇三1、甲、乙、丙三人赛跑,同时从A地出发向B地跑,当甲跑到终点时,乙离B还有30米,丙离B还有70米;当乙跑到终点时,丙离B还有45米。
小学奥数题大全及答案
小学奥数题大全及答案1.一溜十仨缸,担二八斗糠,缸缸都装满,不许有剩糠。
问:每个缸平均装多少糠?2.鸡狗四十九,一百条腿地上走。
问:多少只鸡?多少只狗?3.一百和尚一百馍,大和尚一个吃仨,小和尚仨吃一个。
问:几个大和尚?几个小和尚?4.黄瓜一担,孩子一院,每人一根黄瓜,一个孩子没有黄瓜,两个孩子一根黄瓜,剩余一根黄瓜。
问:几根黄瓜?几个孩子?5.一百牲口一百瓦,骡驮仨,马驮俩,三个毛驴驮一个瓦。
问:骡、马、驴各多少匹?6.两个老婆去上坟,同哭一个墓中人,一个哭她女儿的女婿,一个哭她女儿的女婿的老丈人。
问:这两个老婆是什么关系?7.他舅你来了,搬个凳子快坐下,咱姐你姐夫,同去看咱妈。
你从那路来,为何没见她?问:主人和来客是什么关系?8.一艘小船,只能承载5个人。
四个警察带着两个坏蛋上船后,船却没有沉。
问:这是什么原因?9.一艘轮船停在港口,水面离甲板的高度只有一米,海水第一个小时上涨0.2米,第二个小时下降0.1米。
第三个小时又上涨0.2米,第四个小时再下降0.1米,以此类推。
问:几个小时水面能和甲板涨平?10.侦察员要到河对岸执行任务,从桥的一头到另一头需用5分钟。
对面桥头敌人的哨兵看的很紧,只要看见桥上有人,就会马上叫他回去,绝对不会让他继续向前走。
侦察员必须利用敌哨兵换岗的间隙走过河去。
而敌哨兵换岗的间隙仅有3分钟。
侦察员不但顺利的过了河,而且圆满完成了任务。
问:侦察员是怎么过去河的?答案:每个缸平均装1斗。
(一溜理解为:1+6=7,十仨是13,7加上13,是20个缸;担二是12斗,加上8斗,即20斗。
)48只鸡,1只狗。
25个大和尚,75个小和尚。
3根黄瓜,4个孩子。
骡5,马32,驴63。
(5乘以3=15, 32乘以2=64,,63除以3=21,15+64+21=100,5+32+63=100)。
母女关系。
小老婆和大老婆的娘家弟弟。
坏蛋不是人,是坏了的蛋。
水涨船高,永远不能。
桥过了二分之一以后掉头向后走,敌人换岗发现后,自然会叫他返回来的,这样就能顺利过桥了。
小学五年级奥数题50道及答案
小学五年级奥数题50道及答案1、设这个数为x,则25=2x*3+1,解得x=4.2、设去年绿化面积为x,则1800=2x+40,解得x=880.3、设去年平均日产洗衣机为x,则260=2.5x-40,解得x=120.4、设小汽车每次运x吨,则8*4+6x=47,解得x=1.5、布裁剪后剩余的长度为36-10*2.4-8x=36-24-8x,即12-8x,因为剩余长度等于0,所以12-8x=0,解得x=1.5.6、设两车行驶t小时后相遇,则48t+56t=12+272,解得t=4.7、设公鸡的数量为x,则母鸡的数量为1.5x+300,因为公鸡和母鸡的数量之和为4800,所以x+1.5x+300=4800,解得x=1200,1.5x+300=2100.8、设弟弟的年龄为x,则哥哥的年龄为x+3,因为两人年龄之和为35,所以x+x+3=35,解得x=16,哥哥的年龄为19.9、设甲车每小时行x千米,则乙车每小时行x-6千米,因为两车相向而行,所以6(x+x-6)=528,解得x=57,甲车每小时行57千米,乙车每小时行51千米。
10、设橘子的价格为x元/kg,则XXX的价格为7.4/2-0.6=3.1元/kg,因为1kg苹果的价格为3.1元,所以1kg橘子的价格为3.1/x元,解得x=5.11、设科技书的本数为x,则文艺书的本数为x+156,因为文艺书的本数比科技书的3倍还多12本,所以x+156=3x+12,解得x=72,文艺书买了228本,科技书买了72本。
12、设甲有书的本数为3x,则乙有书的本数为x,因为甲、乙两人平均每人有82本书,所以4x/2=82,解得x=41,甲有123本书,乙有41本书。
13、设下层有x本书,则上层有3x本书,因为两层的书一样多,所以3x-60=x+60,解得x=40,上层有120本书,下层有40本书。
14、设乙缸原有金鱼x条,则甲缸原有金鱼2x条,因为从乙缸里取出9条金鱼放入甲缸后,两缸鱼的条数相等,所以2x+9=x/2,解得x=18,甲缸原有36条金鱼。
小学五年级奥数题带答案
小学五年级经典奥数题(一)题1、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?题2、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?题3、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?题4、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?题5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?题6、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜?题7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?题8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?答案:1.解:设有1元的x张,1角的(28-x)张x+0.1(28-x)=5.50.9x=2.7x=328-x=25答:有一元的3张,一角的25张。
2.解:设1元的有x张,2元的(x-2)张,5元的(52-2x)x+2(x-2)+5(52-2x)=116x+2x-4+260-10x=1167x=140x=20x-2=1852-2x=12答:1元的有20张,2元18张,5元12张。
3.解:设有7元和5元各x张,3元的(400-2x)张7x+5x+3(400-2x)=192012x+1200-6x=19206x=720x=120400-2x=160答:有3元的160张,7元、5元各120张。
小学五年级奥数题50道及答案
1、25除以一个数的2倍,商是3余1,求这个数.[4]2、学校今年绿化面积1800平方米,比去年的绿化面积的2倍还多40平方米,去年绿化面积是多少平方米? [3]3、洗衣机厂今年每日生产洗衣机260台,比去年平均日产量的2.5倍少40台,去年平均日产洗衣机多少台?[3]4、化肥厂用大、小两辆汽车运47吨化肥,大汽车运了8次,小汽车运了6次正好运完,大汽车每次运4吨,小汽车每次运多少吨? [3]5、一匹布长36米,裁了10件大人衣服和8件儿童衣服,每件大人衣服用布2.4米,每件儿童衣服用布多少米?6、甲车每小时行48千米,乙车每小时行56千米,两车从相距12千米的两地同时背向而行,几小时后两车相距272千米?[4]7、饲养场共养4800只鸡,母鸡只数比公鸡只数的1.5倍还多300只,公鸡、母鸡各养了多少只?8、哥哥和弟弟的年龄相加为35岁,哥哥比弟弟大3岁,哥哥和弟弟各多少岁?[4]9、甲、乙两车同时从相距528千米的两地相向而行,6小时后相遇,甲车每小时比乙车快6千米,求甲、乙两车每小时各行多少千米?10、小张买苹果用去7.4元,比买2千克橘子多用0.6元,每千克橘子多少元? [4]11、学校图书馆购买的文艺书比科技书多156本,文艺书的本数比科技书的3倍还多12本,文艺书和科技书各买了多少本?[4]12、甲有书的本数是乙有书的本数的3倍,甲、乙两人平均每人有82本书,求甲、乙两人各有书多少本。
[4]13、一只两层书架,上层放的书是下层的3倍,如果把上层的书搬60本到下层,那么两层的书一样多,求上、下层原来各有书多少本.[4]14、有甲、乙两缸金鱼,甲缸的金鱼条数是乙缸的一半,如从乙缸里取出9条金鱼放人甲缸,这样两缸鱼的条数相等,求甲缸原有金鱼多少条.[4]15、汽车从甲地到乙地,去时每小时行60千米,比计划时间早到1小时;返回时,每小时行40千米,比计划时间迟到1小时.求甲乙两地的距离.[5]16、同学们种向日葵,五年级种的棵数比四年级种的3倍少10棵,五年级比四年级多种62棵,两个年级各种多少棵?17、电视机厂生产一批电视机,如果每天生产40台,要比原计划多生产6天,如果每天生产60台,可以比原计划提前4天完成,求原计划生产时间和这批电视机的总台数.[5]19、一把直尺和一把小刀共1.9元,4把直尺和6把小刀共9元,每把直尺和每把小刀各多少元?20、甲、乙两个粮仓存粮数相等,从甲仓运出130吨、从乙仓运出230吨后,甲粮仓剩粮是乙粮仓剩粮的3倍,原来每个粮仓各存粮多少吨?21、甲、乙两堆煤共100吨,如从甲堆运出10吨给乙堆,这时甲堆煤的质量正好是乙堆煤质量的1.5倍,求甲、乙两堆煤原来各有多少吨?22、甲仓存粮32吨乙仓存粮57吨以后甲仓每天存人4吨,乙仓每天存人9吨,几天后乙仓存粮是甲仓的2倍?23、两根电线同样长短,将第一根剪去2米后,第二根长是第一根的1。
(word完整版)五年级奥数题100题(附答案)
五年级奥数题100题(附答案)1. 765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002. (9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1) =9000+9000+…….+9000 (500个9000)=45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。
6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49.有7个数,它们的平均数是18。
小学五年级数学50道奥数题(附解析答案)
小学五年级数学50道奥数题(附解析答案)小学五年级奥数题一、工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还需要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。
当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。
单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。
甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。
现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,,问鸡与兔各有几只?三.数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?2.A和B是小于100的两个非零的不同自然数。
五年级奥数题100道及答案
五年级奥数题100道及答案1. 小明有5个苹果,他给小华2个,自己还剩下多少个苹果?答案:小明还剩下3个苹果。
2. 一个班级有40名学生,如果每2名学生组成一个小组,可以组成多少个小组?答案:可以组成20个小组。
3. 一个数的3倍是45,这个数是多少?答案:这个数是15。
4. 一个长方形的长是15厘米,宽是10厘米,它的周长是多少?答案:周长是50厘米。
5. 一个数加上12等于36,这个数是多少?答案:这个数是24。
6. 如果一个数的一半是18,那么这个数是多少?答案:这个数是36。
7. 一个数的4倍是64,这个数是多少?答案:这个数是16。
8. 一个正方形的边长是8厘米,它的面积是多少?答案:面积是64平方厘米。
9. 一个数的5倍是100,这个数是多少?答案:这个数是20。
10. 一个班级有50名学生,如果每5名学生组成一个小组,可以组成多少个小组?答案:可以组成10个小组。
11. 一个数的6倍是72,这个数是多少?答案:这个数是12。
12. 一个数减去15得到30,这个数是多少?答案:这个数是45。
13. 一个数的7倍是49,这个数是多少?答案:这个数是7。
14. 一个数的8倍是64,这个数是多少?答案:这个数是8。
15. 一个数的9倍是81,这个数是多少?答案:这个数是9。
16. 一个数的10倍是100,这个数是多少?答案:这个数是10。
17. 一个数的11倍是121,这个数是多少?答案:这个数是11。
18. 一个数的12倍是144,这个数是多少?答案:这个数是12。
19. 一个数的13倍是169,这个数是多少?答案:这个数是13。
20. 一个数的14倍是196,这个数是多少?答案:这个数是14。
21. 一个数的15倍是225,这个数是多少?答案:这个数是15。
22. 一个数的16倍是256,这个数是多少?答案:这个数是16。
23. 一个数的17倍是289,这个数是多少?答案:这个数是17。
小学五年级奥数题30道(附答案)
1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
甲车每小时行40千米,乙车每小时行 45千米,两地相距多少千米?(交换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走4.5千米,第二小组每小时行3.5千米。
两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。
多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。
甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。
运后结算时,共付运费4400元。
托运中损坏了多少箱玻璃?12.五年级一中队和二中队要到距学校20千米的地方去春游。
第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。
小学五年级奥数题带答案
小学五年级奥数题带答案文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]小学五年级经典奥数题(一)题1、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张题2、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张题3、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张题4、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆题5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天题6、运来一批西瓜,准备分两类卖,大的每千克元,小的每千克元,这样卖这批西瓜共值290元,如果每千克西瓜降价元,这批西瓜只能卖250元,问:有多少千克大西瓜题7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次题8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题答案:x+(28-x)==x=328-x=25答:有一元的3张,一角的25张。
2.解:设1元的有x张,2元的(x-2)张,5元的(52-2x) x+2(x-2)+5(52-2x)=116x+2x-4+260-10x=1167x=140x=20x-2=1852-2x=12答:1元的有20张,2元18张,5元12张。
3.解:设有7元和5元各x张,3元的(400-2x)张7x+5x+3(400-2x)=1920x=120400-2x=160答:有3元的160张,7元、5元各120张。
小学五年级奥数题大全及答案(更新版)
小学五年级奥数题大全及答案五年级奥数1、小数的巧算2、数的整除性3、质数与合数4、约数与倍数5、带余数除法6、中国剩余定理7、奇数与偶数8、周期性问题9、图形的计数10、图形的切拼11、图形与面积12、观察与归纳13、数列的求和14、数列的分组15、相遇问题16、追及问题17、变换和操作18、逻辑推理19、逆推法20、分数问题1.1小数的巧算(一)年级班姓名得分一、填空题1、计算 1.135+3.346+5.557+7.768+9.979=_____.2、计算 1.996+19.97+199.8=_____.3、计算 9.8+99.8+999.8+9999.8+99999.8=_____.4、计算6.11+9.22+8.33+7.44+5.55+4.56+3.67+2.78 +1.89=_____.5、计算1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=_____.6、计算 2.89⨯4.68+4.68⨯6.11+4.68=_____.7、计算 17.48⨯37-17.48⨯19+17.48⨯82=_____.8、计算 1.25⨯0.32⨯2.5=_____.9、计算 75⨯4.7+15.9⨯25=_____.10、计算 28.67⨯67+32⨯286.7+573.4⨯0.05=_____.二、解答题11、计算 172.4⨯6.2+2724⨯0.3812、计算 0.00...0181⨯0.00 (011)963个0 1028个013、计算12.34+23.45+34.56+45.67+56.78+67.89+78.91+89.12+91.2314、下面有两个小数:a=0.00...0105 b=0.00 (019)1994个0 1996个0求a+b,a-b,a⨯b,a÷b.1.2小数的巧算(二)年级班姓名得分一、真空题1、计算 4.75-9.64+8.25-1.36=_____.2、计算 3.17-2.74+4.7+5.29-0.26+6.3=_____.3、计算 (5.25+0.125+5.75)⨯8=_____.4、计算 34.5⨯8.23-34.5+2.77⨯34.5=_____.5、计算 6.25⨯0.16+264⨯0.0625+5.2⨯6.25+0.625⨯20=_____.6、计算 0.035⨯935+0.035+3⨯0.035+0.07⨯61⨯0.5=_____.7、计算 19.98⨯37-199.8⨯1.9+1998⨯0.82=_____.8、计算 13.5⨯9.9+6.5⨯10.1=_____.9、计算 0.125⨯0.25⨯0.5⨯64=_____.10、计算 11.8⨯43-860⨯0.09=_____.二、解答题11、计算32.14+64.28⨯0.5378⨯0.25+0.5378⨯64.28⨯0.75-8⨯64.28⨯0.125⨯0.537812、计算 0.888⨯125⨯73+999⨯313、计算 1998+199.8+19.98+1.99814、下面有两个小数:a=0.00...0125 b=0.00 (08)1996个0 2000个0 试求a+b, a-b, a⨯b, a÷b.2.1数的整除性(一)年级班姓名得分一、填空题1、四位数“3AA1”是9的倍数,那么A=_____.2、在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____.3、能同时被2、3、5整除的最大三位数是_____.4、能同时被2、5、7整除的最大五位数是_____.5、1至100以内所有不能被3整除的数的和是_____.6、所有能被3整除的两位数的和是______.7、已知一个五位数□691□能被55整除,所有符合题意的五位数是_____.8、如果六位数1992□□能被105整除,那么它的最后两位数是_____.9、42□28□是99的倍数,这个数除以99所得的商是_____.10、从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是_____号.二、解答题1、173□是个四位数字.数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?12、在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?13、在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成3张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将100张黄油票换成100张香肠票,并且在整个交换过程中刚好出手了1991张票券?14、试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.2.2数的整除性(二)年级班姓名得分一、填空题1、一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.2、123456789□□,这个十一位数能被36整除,那么这个数的个位上的数最小是_____.3、下面一个1983位数33…3□44…4中间漏写了一个数字(方框),已知这991个 991个个多位数被7整除,那么中间方框内的数字是_____.4、有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____.5、有这样的两位数,它的两个数字之和能被4整除,而且比这个两位数大1的数,它的两个数字之和也能被4整除.所有这样的两位数的和是____.6、一个小于200的自然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个自然数是_____.7、任取一个四位数乘3456,用A表示其积的各位数字之和,用B表示A的各位数字之和,C表示B的各位数字之和,那么C是_____.8、有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从小到大排列起来,第五个数的末位数字是_____.9、从0、1、2、4、5、7中,选出四个数,排列成能被2、3、5整除的四位数,其中最大的是_____.10、所有数字都是2且能被66……6整除的最小自然数是_____位数.100个二、解答题11、找出四个互不相同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除,如果要求这四个数中最大的数与最小的数的和尽可能的小,那么这四个数里中间两个数的和是多少?12、只修改21475的某一位数字,就可知使修改后的数能被225整除,怎样修改?13、500名士兵排成一列横队.第一次从左到右1、2、3、4、5(1至5)名报数;第二次反过来从右到左1、2、3、4、5、6(1至6)报数,既报1又报6的士兵有多少名?14、试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明.3.1质数与合数(一)年级班姓名得分一、填空题1在一位的自然数中,既是奇数又是合数的有_____;既不是合数又不是质数的有_____;既是偶数又是质数的有_____.2、最小的质数与最接近100的质数的乘积是_____.3、两个自然数的和与差的积是41,那么这两个自然数的积是_____.4、在下式样□中分别填入三个质数,使等式成立.□+□+□=505、三个连续自然数的积是1716,这三个自然数是_____、_____、_____.6、找出1992所有的不同质因数,它们的和是_____.7、如果自然数有四个不同的质因数, 那么这样的自然数中最小的是_____.8、9216可写成两个自然数的积,这两个自然数的和最小可以达到_____.9、从一块正方形的木板上锯下宽为3分米的一个木条以后,剩下的面积是108平方分米.木条的面积是_____平方分米.10、今有10个质数:17,23,31,41,53,67,79,83,101,103.如果将它们分成两组,每组五个数,并且每组的五个数之和相等,那么把含有101的这组数从小到大排列,第二个数应是_____.二、解答题11、2,3,5,7,11,…都是质数,也就是说每个数只以1和它本身为约数.已知一个长方形的长和宽都是质数个单位,并且周长是36个单位.问这个长方形的面积至多是多少个平方单位?12、把7、14、20、21、28、30分成两组,每三个数相乘,使两组数的乘积相等.13、学生1430人参加团体操,分成人数相等的若干队,每队人数在100至200之间,问哪几种分法?14、四只同样的瓶子内分别装有一定数量的油,每瓶和其他各瓶分别合称一次,记录千克数如下:8、9、10、11、12、13.已知四只空瓶的重量之和以及油的重量之和均为质数,求最重的两瓶内有多少油?3.2质数与合数(二)年级班姓名得分一、填空题1、在1~100里最小的质数与最大的质数的和是_____.2、小明写了四个小于10的自然数,它们的积是360.已知这四个数中只有一个是合数.这四个数是____、____、____和____.3、把232323的全部质因数的和表示为AB,那么A⨯B⨯AB=_____.4、有三个学生,他们的年龄一个比一个大3岁,他们三个人年龄数的乘积是1620,这三个学生年龄的和是_____.5、两个数的和是107,它们的乘积是1992,这两个数分别是_____和_____.6、如果两个数之和是64,两数的积可以整除4875,那么这两数之差是_____.7、某一个数,与它自己相加、相减、相乘、相除,得到的和、差、积、商之和为256.这个数是_____.8、有10个数:21、22、34、39、44、45、65、76、133和153.把它们编成两组,每组5个数,要求这组5个数的乘积等于那组5个数的乘积.第一组数____________;第二组数是____________.9、有_____个两位数,在它的十位数字与个位数字之间写一个零,得到的三位数能被原两位数整除.10、主人对客人说:“院子里有三个小孩,他们的年龄之积等于72,年龄之和恰好是我家的楼号,楼号你是知道的,你能求出这些孩子的年龄吗?”客人想了一下说:“我还不能确定答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、25除以一个数的2倍,商是3余1,求这个数. [4]
2、学校今年绿化面积1800平方米,比去年的绿化面积的2倍还多40平方米,去年绿化面积是多少平方米? [3]
3、洗衣机厂今年每日生产洗衣机260台,比去年平均日产量的2.5倍少40台,去年平均日产洗衣机多少台? [3]
4、化肥厂用大、小两辆汽车运47吨化肥,大汽车运了8次,小汽车运了6次正好运完,大汽车每次运4吨,小汽车每次运多少吨? [3]
5、一匹布长36米,裁了10件大人衣服和8件儿童衣服,每件大人衣服用布2.4米,每件儿童衣服用布多少米?
6、甲车每小时行48千米,乙车每小时行56千米,两车从相距12千米的两地同时背向而行,几小时后两车相距272千米? [4]
7、饲养场共养4800只鸡,母鸡只数比公鸡只数的1.5倍还多300只,公鸡、母鸡各养了多少只?
8、哥哥和弟弟的年龄相加为35岁,哥哥比弟弟大3岁,哥哥和弟弟各多少岁? [4]
9、甲、乙两车同时从相距528千米的两地相向而行,6小时后相遇,甲车每小时比乙车快6千米,求甲、乙两车每小时各行多少千米?
10、小张买苹果用去7.4元,比买2千克橘子多用0.6元,每千克橘子多少元? [4]
11、学校图书馆购买的文艺书比科技书多156本,文艺书的本数比科技书的3倍还多12本,文艺书和科技书各买了多少本? [4]
12、甲有书的本数是乙有书的本数的3倍,甲、乙两人平均每人有82本书,求甲、乙两人各有书多少本. [4]
13、一只两层书架,上层放的书是下层的3倍,如果把上层的书搬60本到下层,那么两层的书一样多,求上、下层原来各有书多少本. [4]
14、有甲、乙两缸金鱼,甲缸的金鱼条数是乙缸的一半,如从乙缸里取出9条金鱼放人甲缸,这样两缸鱼的条数相等,求甲缸原有金鱼多少条. [4]
15、汽车从甲地到乙地,去时每小时行60千米,比计划时间早到1小时;返回时,每小时行40千米,比计划时间迟到1小时.求甲乙两地的距离. [5]
16、同学们种向日葵,五年级种的棵数比四年级种的3倍少10棵,五年级比四年级多种62棵,两个年级各种多少棵?
17、电视机厂生产一批电视机,如果每天生产40台,要比原计划多生产6天,如果每天生产60台,可以比原计划提前4天完成,求原计划生产时间和这批电视机的总台数. [5]
19、一把直尺和一把小刀共1.9元,4把直尺和6把小刀共9元,每把直尺和每把小刀各多少元?
20、甲、乙两个粮仓存粮数相等,从甲仓运出130吨、从乙仓运出230吨后,甲粮仓剩粮是乙粮仓剩粮的3倍,原来每个粮仓各存粮多少吨?
21、甲、乙两堆煤共100吨,如从甲堆运出10吨给乙堆,这时甲堆煤的质量正好是乙堆煤质量的1.5倍,求甲、乙两堆煤原来各有多少吨?
22、甲仓存粮32吨乙仓存粮57吨以后甲仓每天存人4吨,乙仓每天存人9吨,几天后乙仓存粮是甲仓的2倍?
23、两根电线同样长短,将第一根剪去2米后,第二根长是第一根的1.8倍,原来两根电线各长多少米? [4]
24、一批香蕉,卖掉140千克后,原来香蕉的质量正好是剩下香蕉的5倍,这批香蕉共有多少千克?
25、小明去爬山,上山花了45分钟,原路下山花了30分钟,上山每分钟比下山每分钟少走9
米,求下山速度. [4]
26、甲、乙分别从相距18千米的A、B两地同时同向而行,乙在前甲在后.当甲追上乙时行了1.5小时.乙车每小时行48千米,求甲车速度. [4]
27、甲、乙两车同时由A地到B地,甲车每小时行30千米,乙车每小时行45千米,乙车先出发2小时后甲车才出发,两车同时到达B地.求A、B两地的距离. [5]
28、师徒俩加工同一种零件,徒弟每小时加工12个,工作了3小时后,师傅开始工作,6小时后,两人加工的零件同样多,师傅每小时加工多少个零件. [5]
29、有甲、乙两桶油,甲桶油再注入15升后,两桶油质量相等;如乙桶油再注人145升,则乙桶油的质量是甲桶油的3倍,求原来两桶油各有多少升. [5]
30、甲、乙、丙三条铁路共长1191千米,甲铁路长比乙铁路的2倍少189千米,乙铁路长比丙铁路少8千米,求甲铁路的长. [5]
31、一个工程队由6个粗木工和1个细木工组成.完成某项任务后,粗木工每人得200元,细木工每人工资比全队的平均工资多30元.求细木工每人得多少元. [5]
32、小明期中考试语文、数学、地理三科平均分为96分,常识分数比语文、数学、地理、常识四科平均分少3分.求常识分数.
33、电视机厂装配一批电视机,计划25天完成,如每天多装35台,24天能超额完成60台.求原计划每天装配多少台.
34、师徒俩要加工同样多的零件,师傅每小时加工50个,比徒弟每小时多加工10个.工作中师傅停工5小时,因此徒弟比师傅提前1小时完成任务.求两人各加工多少个零件. [5] 35、买2.5千克苹果和2千克橘子共用去13.6元,已知每千克苹果比每千克橘子贵2.2元,这两种水果的‘单价各是每千克多少元? [5]
36、买4支钢笔和9支圆珠笔共付24元,已知买2支钢笔的钱可买3支圆珠笔,两种笔的价钱各是多少元? [4]
37、一个两位数,个位上的数字是十位上数字的2倍,如果把十位上的数字与个位上的数字对调,那么得到的新两位数比原两位数大36.求原两位数. [5]
38、一个两位数,十位上的数字比个位上的数字小1,十位上的数字与个位上的数字的和是这个两位数的0.2倍.求这个两位数. [5]
39、有四只盒子,共装了45个小球.如变动一下,第一盒减少2个;第二盒增加2个;第三盒增加一倍;第四盒减少一半,那么这四只盒子里的球就一样多了.原来每只盒子中各有几个球? [5]
40、学校体育室有长绳和短绳共72根,短绳的根数是长绳的8倍.长绳和短绳各有多少根?
41、王大妈卖鸡蛋,上午卖出了12千克,下午卖出了18千克,下午比上午多卖了27.6元.平均每千克鸡蛋卖多少元?
42、南京到北京的铁路长1166千米.一列快车从南京开往北京,一列慢车同时从北京开往南京,5.5小时后两车相遇.快车每小时行118千米,慢车每小时行多少千米?(两种方法做)
43、一个三角形的面积是2.1平方米,它的高是1.2米,底是多少米?
44、师徒俩共同加工一批零件,15天完成任务.师傅每天加工60个零件,完成任务时比徒弟多加工了360个零件.徒弟每天加工多少个零件?
45、食堂买来大米和面粉各7袋,共重525千克.大米每袋重50千克,面粉每袋重多少千克?
46、玩具厂一星期生产的熊猫玩具比狗熊玩具多360件,熊猫玩具的件数是狗熊玩具的5倍.熊猫玩具和狗熊玩具各生产了多少件?
47、李师傅买4双袜子和2双鞋子,一共用去95.2元.已知鞋子每双34元,袜子每双多少元?
48、甲乙两站相距900千米,一列货车和一列客车分别同时从甲乙两站相对开出.货车每小时行80千米,客车每小时行120千米,经过多少小时两车在途中相遇?(用两种方法做)
49、水果店运来30箱苹果和25箱梨,共重975千克.每箱苹果重20千克,每箱梨重多少千克?
50、一个梯形的面积是72.9平方厘米,上底是10.4厘米,下底是5.8厘米,高是多少厘米?
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求。