信号函数发生器

合集下载

【精品】电路实验报告 函数信号发生器

【精品】电路实验报告 函数信号发生器

【精品】电路实验报告函数信号发生器一、实验目的1.理解函数信号发生器的基本原理;2.掌握函数信号发生器的使用方法;二、实验仪器函数信号发生器、万用表、示波器、电阻箱等。

三、实验原理函数信号发生器是一种可以产生各种不同波形的电子仪器,它由信号源、调制放大器、波形出口、控制电路等几个部件组成。

在使用中可以通过调节控制电路中的各个参数来控制信号波形的频率、幅度、相位等参数。

四、实验内容1.使用函数信号发生器产生各种不同波形的信号,并记录下所产生的波形、频率、幅度等参数。

2.利用万用表对所产生的波形进行测量,并记录下相关参数。

3.使用示波器观察所产生的波形,并记录下所观察到的波形形态,判断所产生的波形是否符合要求。

4.使用电阻箱对信号幅度进行调整,调整后再次进行相应的测量、观察和记录。

五、实验步骤1.将函数信号发生器插入电源插座,并开启电源开关。

5.对信号幅度进行调整,如需调整信号幅度,可以使用电阻箱对信号幅度进行调整。

六、实验数据及处理下表列出了实验中所产生的部分波形及其相关参数。

| 波形形态 | 频率 | 幅度 ||----------------|---------|-----------|| 正弦波 | 1KHz | 1Vpp || 正弦波 | 5KHz | 500mVpp|| 方波 | 2KHz | 2Vpp || 三角波 | 1KHz | 1Vpp |七、实验结果分析根据实验数据分析,可以得出以下结论:2.在产生不同波形的信号时,需调节控制电路中的各个参数,如频率、幅度、相位等,才能产生相应的波形。

3.在调试波形时应注意信号幅度,如波形幅度过大或过小,都会影响到实验的结果。

八、实验注意事项1.实验中要注意安全,避免触电、短路等事故的发生。

3.在实验中应认真记录实验数据,为进一步分析和处理提供有力的数据支持。

函数信号发生器使用说明(超级详细)

函数信号发生器使用说明(超级详细)

函数信号发⽣器使⽤说明(超级详细)函数信号发⽣器使⽤说明1-1 SG1651A函数信号发⽣器使⽤说明⼀、概述本仪器是⼀台具有⾼度稳定性、多功能等特点的函数信号发⽣器。

能直接产⽣正弦波、三⾓波、⽅波、斜波、脉冲波,波形对称可调并具有反向输出,直流电平可连续调节。

TTL可与主信号做同步输出。

还具有VCF输⼊控制功能。

频率计可做内部频率显⽰,也可外测1Hz~10.0MHz的信号频率,电压⽤LED显⽰。

⼆、使⽤说明2.1⾯板标志说明及功能见表1和图1图1DC1641数字函数信号发⽣器使⽤说明⼀、概述DC1641使⽤LCD显⽰、微处理器(CPU)控制的函数信号发⽣器,是⼀种⼩型的、由集成电路、单⽚机与半导体管构成的便携式通⽤函数信号发⽣器,其函数信号有正弦波、三⾓波、⽅波、锯齿波、脉冲五种不同的波形。

信号频率可调范围从0.1Hz~2MHz,分七个档级,频率段、频率值、波形选择均由LCD显⽰。

信号的最⼤幅度可达20Vp-p。

脉冲的占空⽐系数由10%~90%连续可调,五种信号均可加±10V的直流偏置电压。

并具有TTL电平的同步信号输出,脉冲信号反向及输出幅度衰减等多种功能。

除此以外,能外接计数输⼊,作频率计数器使⽤,其频率范围从10Hz~10MHz(50、100MHz[根据⽤户需要])。

计数频率等功能信息均由LCD显⽰,发光⼆极管指⽰计数闸门、占空⽐、直流偏置、电源。

读数直观、⽅便、准确。

⼆、技术要求2.1函数发⽣器产⽣正弦波、三⾓波、⽅波、锯齿波和脉冲波。

2.1.1函数信号频率范围和精度a、频率范围由0.1Hz~2MHz分七个频率档级LCD显⽰,各档级之间有很宽的覆盖度,如下所⽰:频率档级频率范围(Hz)1 0.1~210 1~20100 10~2001K 100~2K10K 1K ~20K100K 10K ~200K1M 100K ~2M频率显⽰⽅式:LCD显⽰,发光⼆极管指⽰闸门、占空⽐、直流偏置、电源。

什么是函数信号发生器,函数信号发生器的作用,函数信号发生器的工作原理

什么是函数信号发生器,函数信号发生器的作用,函数信号发生器的工作原理

什么是函数信号发生器,函数信号发生器的作用,函数信号发生器的工作原理什么是函数信号发生器?函数信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。

在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。

函数信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。

各种波形曲线均可以用三角函数方程式来表示。

能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。

函数信号发生器的工作原理:函数信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。

在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。

它能够产生多种波形,如三角波、锯齿波、矩形波、正弦波,所以在生产实践和科技领域中有着广泛的应用。

函数信号发生器系统主要由主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器和指示电压表构成。

当输入端输入小信号正弦波时,该信号分两路传输,一路完成整流倍压功能,提供工作电源;另一路进入一个反相器的输入端,完成信号放大功能。

该放大信号经后级的门电路处理,变换成方波后经输出,输出端为可调电阻。

函数信号发生器产生的各种波形曲线均可以用三角函数方程式来表示,函数信号发生器在电路实验和设备检测中具有十分广泛的用途。

例如在通信、广播、电视系统中,都需要射频发射,这里的射频波就是载波,把音频、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。

在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。

函数信号发生器的实现方法和使用方法 信号发生器是如何工作的

函数信号发生器的实现方法和使用方法 信号发生器是如何工作的

函数信号发生器的实现方法和使用方法信号发生器是如何工作的函数信号发生器是一种可以供应精密信号源的仪器,也就是俗称的波形发生器,最基本的应用就是通过函数信号发生器产生正弦波/方波/锯齿波/脉冲波/三角波等具有一函数信号发生器是一种可以供应精密信号源的仪器,也就是俗称的波形发生器,最基本的应用就是通过函数信号发生器产生正弦波/方波/锯齿波/脉冲波/三角波等具有一些特定周期性(或者频率)的时间函数波形来供大家作为电压输出或者功率输出等,它的频率范围跟它本身的性能有关,一般情况上都是可以从几毫赫甚至几微赫,甚至还可以显示输出超低频直到几十兆赫频率的波形信号源。

下面,大家就和我来了解一下它吧!函数信号发生器的实现方法:(1)用分立元件构成的函数发生器:通常是单函数发生器且频率不高,其工作不很稳定,不易调试。

(2)可以由晶体管、运放IC等通用器件制作,更多的则是用专门的函数信号发生器IC产生。

早期的函数信号发生器IC,如L8038、BA205、XR2207/2209等,它们的功能较少,精度不高,频率上限只有300kHz,无法产生更高频率的信号,调整方式也不够快捷,频率和占空比不能独立调整,二者相互影响。

(3)利用单片集成芯片的函数发生器:能产生多种波形,达到较高的频率,且易于调试。

鉴于此,美国美信公司开发了新一代函数信号发生器ICMAX038,它克服了(2)中芯片的缺点,可以达到更高的技术指标,是上述芯片望尘莫及的。

MAX038频率高、精度好,因此它被称为高频精密函数信号发生器IC。

在锁相环、压控振荡器、频率合成器、脉宽调制器等电路的设计上,MAX038都是优选的器件。

(4)利用专用直接数字合成DDS芯片的函数发生器:能产生任意波形并达到很高的频率。

但成本较高。

产生所需参数的电测试信号仪器。

按其信号波形分为四大类:①正弦信号发生器。

紧要用于测量电路和系统的频率特性、非线性失真、增益及灵敏度等。

按其不同性能和用途还可细分为低频(20赫至10兆赫)信号发生器、高频(100千赫至300兆赫)信号发生器、微波信号发生器、扫频和程控信号发生器、频率合成式信号发生器等。

函数信号发生器的注意事项

函数信号发生器的注意事项

函数信号发生器的注意事项
在使用函数信号发生器时,有以下几点注意事项:
1. 输入电源稳定:函数信号发生器通常需要接受外部电源供电,为了保证信号的稳定性,输入电源必须稳定且符合设备的规格要求。

应确保输入电源的电压和频率符合要求,并避免电源的电压波动或频率变化。

2. 地线接法正确:函数信号发生器通常需要接地,确保正确连接地线可以减少对其他设备的干扰,并提高信号的质量。

接线时应按照设备的规格要求进行连接,避免错误地线接法导致信号的失真或干扰。

3. 避免过载操作:在使用函数信号发生器时,应注意其输出功率的限制。

过高的输出功率可能导致设备的烧毁,而过低的输出功率可能影响信号的质量。

在操作中应遵循设备的功率规格要求,并根据需要调整输出功率。

4. 频率范围和相位调节:函数信号发生器通常具有可调的频率和相位功能,操作时应根据需要进行调节。

注意调节范围内的频率和相位值,避免超出设备的限制。

在调节过程中,应注意适当的调节速度,避免频率或相位的快速变化对系统造成不良影响。

5. 信号质量监测:在使用函数信号发生器时,应注意监测信号的质量。

可以使用示波器或其他测量设备对输出信号进行测量和分析,以确保信号的稳定性和准
确性。

如果发现信号质量不理想,应及时调整设备参数,并检查输入电源和连接线路是否正常。

6. 保养和维护:定期进行设备的保养和维护,可以延长函数信号发生器的使用寿命,并保证其性能稳定。

应按照设备的说明书进行日常维护工作,例如清洁设备表面、检查连接线路是否松动等。

如发现设备故障或异常,应及时联系厂家进行维修或更换。

简易函数信号发生器的设计报告

简易函数信号发生器的设计报告

简易函数信号发生器的设计报告设计报告:简易函数信号发生器一、引言函数信号发生器是一种可以产生各种类型函数信号的设备。

在实际的电子实验中,函数信号发生器广泛应用于工程实践和科研领域,可以用于信号测试、测量、调试以及模拟等方面。

本文将着重介绍一种设计简易函数信号发生器的原理和方法。

二、设计目标本设计的目标是实现一个简易的函数信号发生器,能够产生包括正弦波、方波和三角波在内的基本函数信号,并能够调节频率和幅度。

同时,为了提高使用方便性,我们还计划增加一个显示屏,实时显示当前产生的信号波形。

三、设计原理1.信号源函数信号发生器的核心是信号发生电路,由振荡器和输出放大器组成。

振荡器产生所需的函数信号波形,输出放大器负责放大振荡器产生的信号。

2.振荡器为了实现多种函数波形的产生,可以采用集成电路作为振荡器。

例如,使用集成运算放大器构成的和差振荡器可以产生正弦波,使用施密特触发器可以产生方波,使用三角波发生器可以产生三角波。

根据实际需要,设计采用一种或多种振荡器来实现不同类型的函数信号。

3.输出放大器输出放大器负责将振荡器产生的信号放大到适当的电平以输出。

放大器的设计需要考虑到信号的频率范围和幅度调节的灵活性。

4.频率控制为了能够调节信号的频率,可以采用可变电容二极管或可变电阻等元件来实现。

通过调节这些元件的参数,可以改变振荡器中的RC时间常数或LC谐振电路的频率,从而实现频率的调节。

5.幅度控制为了能够调节信号的幅度,可以采用可变电阻作为放大电路的输入阻抗,通过调节电阻阻值来改变信号的幅度。

同时,也可以通过增加放大倍数或使用可变增益放大器来实现幅度的控制。

四、设计步骤1.确定电路结构和信号发生器的类型。

根据功能和性能需求,选择合适的振荡器和放大器电路,并将其组合在一起。

2.根据所选振荡器电路进行参数计算和元件的选择。

例如,根据需要的频率范围选择适合的振荡器电路和元件,并计算所需元件的数值。

3.设计输出放大器电路。

函数信号发生器工作原理

函数信号发生器工作原理

函数信号发生器工作原理函数信号发生器是一种可以产生不同形式的波形信号的电子设备。

它通常用于测试电路或设备的响应,及验证系统的可靠性和性能。

本文将介绍函数信号发生器的工作原理及其基本组成。

1、函数信号发生器的基本原理函数信号发生器使用内部电路产生信号波形,这些波形可以是正弦波、方波、三角波等,也可以是随时间变化的任意模拟波形信号,称为任意波形(Arbitrary Waveform)。

任意波形信号可以通过数字信号处理器(DSP)和相应的算法产生,可以控制其幅值、频率、相位、周期等参数,与旋钮手动调节产生的波形相比,任意波形信号更具有可重复性和精度。

任意波形成为了近年来函数信号发生器的重要特点之一。

函数信号发生器的工作原理基于模拟电路和数字技术的结合。

如下图所示,函数信号发生器的主要部件包括信号发生器主控板、波形发生控制板、数字信号处理器(DSP)和高精度数字模拟转换器(DAC)等。

其中波形发生控制板控制信号发生器主控板的输出电压幅值、频率、相位等参数,主控板再将这些参数转换成数字信号通过DSP和DAC产生电压波形输出到信号输出端。

2、函数信号发生器的基本组成(1)信号发生器主控板信号发生器主控板是函数信号发生器的核心控制板,它负责启动、控制和调节函数信号发生器的各种功能。

主控板内包含高速时钟电路、微控制器、输出放大器等部件,通过接收波形控制板发来的指令从而产生需要的波形输出并控制其电压幅值、频率、相位等参数。

(2)波形发生控制板波形发生控制板负责产生波形控制信号,这些信号包括电压幅值、频率、相位等参数。

它和信号发生器主控板通过数字接口连接,主控板根据波形控制板的指令产生相应的波形信号输出。

(3)数字信号处理器(DSP)数字信号处理器(DSP)是函数信号发生器中的重要部件,它用于实现任意波形信号的产生和输出。

DSP通过高精度滤波器将输入的数字信号处理成需要的波形信号,再将这些信号通过DAC转换成模拟信号输出到信号输出端。

函数信号发生器和任意波形发生器对比

函数信号发生器和任意波形发生器对比

函数信号发生器和任意波形发生器对比1、函数信号发生器函数发生器是使用最广的通用信号源信号发生器,提供正弦波、锯齿波、方波、脉冲波等波形,有的还同时具有调制和扫描功能。

函数波形发生器在设计上分为模拟式和数字合成式。

众所周知,数字合成式函数信号源(DDS)无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟式,其锁相环(PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phaseJitter)及频率漂移均能达到相当稳定的状态,但数字式信号源中,数字电路与模拟电路之间的干扰始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发生器,如今市场上的大部分函数信号发生器均为DDS信号源。

2、任意波形发生器任意波形发生器,是一种特殊的信号源,不仅具有一般信号源波形生成能力,而且可以仿真实际电路测试中需要的任意波形。

在我们实际的电路的运行中,由于各种干扰和响应的存在,实际电路往往存在各种缺陷信号和瞬变信号,如果在设计之初没有考虑这些情况,有的将会产生灾难性后果。

任意波发生器可以帮您完成实验,仿真实际电路,对您的设计进行全面的测试。

由于任意波形发生往往依赖计算机通讯输出波形数据。

在计算机传输中,通过专用的波形编辑软件生成波形,有利于扩充仪器的能力,更进一步仿真实验。

另外,内置一定数量的非易失性存储器,随机存取编辑波形,有利于参考对比,或通过随机接口通讯传输到计算机作更进一步分析与处理。

有些任意波形发生器有波形下载功能,在作一些麻烦费用高或风险性大的实验时,通过数字示波器等仪器把波形实时记录下来,然后通过计算机接口传输到信号源,直接下载到设计电路,更进一步实验验证。

泰克推出的AFG3000系列三合一信号源,可以完成以上提到的功能,并且在波形输出的精度、稳定性等方面都有较大提高,是走在行业前列的新一代任意波发生器。

信号源的主要技术指标传统函数发生器的主要指标和新近研发的任意波形发生器的主要指标有一些不同,我们这里分开介绍。

函数信号发生器

函数信号发生器

4、斜波产生
(1)、波形开关置“三角波”。 (2)、占空比开关按入指示灯亮。 (3)、调节占空比旋钮,三角波将变成 斜波。
5、外测频率
(1)、按入外测开关,外测频指示灯 亮。 (2)、外测信号由计数/频率输入端输 入。 (3)、选择适当的频率范围,由高量 程向低量程选择合适的有效数,确保测 量精度(注意:当有溢出指示时,请提 高一档量程)。
YB1600系列
函数信号发生器
概述 函数信号发生器是一种多波形信号源, 它能产生某种特定的周期性时间函数波 形.可输出很低频率的信号,也称为低频 信号发生器或波形发生器.工作频率从几 毫赫兹到十兆赫兹.一般能产生正弦波, 方波和三角波,有的还可以产生锯齿波、 矩形波(宽度和重复周期可调)、正负 尖脉冲等波形。
(1)、将波形选择开关(WAVE FORM)分别按正弦波、方波、三角波。 此时示波器屏幕上将分别显示正弦波、 方波、三角波。 (2)、改变频率选择开关,示波器显 示的波形以及LED窗口显示的频率将发 生明显变化。 (3)、幅度旋钮(AMPLITUDE)顺 时针旋转至最大,示波器显示的波形幅 度将≥20 VP—P。
函数信号发生器
它能进行调频,因而可成为低频扫频信 号源。函数信号发生器能在生产、测试、 仪器维修和实验时作信号源使用。 产生信号的方法有3种,一种是用施 密特电路产生方波,然后经变换得到三 角波和正弦波,第二种是先产生正弦波 再得到方波和三角波,第三种是先产生 三角波再转换为方波和正弦波。
信号发生器分通用和专用 信号发生器 专用信号发生器:电视信号 发生器、编码信号发生器等。 通用信号发生器:正弦信 号发生器、脉冲信号发生器、 函数信号发生器等。
6、TTL输出
(1)、TTL/CMOS端口接示波器Y轴 输入端(DC输入)。 (2)、示波器将显示方波或脉冲波, 该输出端可作TTL/CMOS数字电路实验 时钟信号源。

函数信号发生器和脉冲信号发生器

函数信号发生器和脉冲信号发生器
2.4.4 函数信号发生器 和脉冲信号发生器
函数信号发生器和脉冲信号发生器都是由集成运放构成 的积分器、比较器等组成的波形产生电路,函数信号发生器可 输出低频形式的方波、三角波、锯齿波以及正弦波等波形。脉 冲信号发生器可输出方波、三角波、锯齿波,一般不能输出正 弦波。但脉冲信号发生器的输出频率可以很高,而且其脉宽、 前后沿等也可以在很大的范围内改变。本节简要介绍这两种信 号发生器的电路结构和基本工作原理。
R1 P
R2 R
C +–A D
考电压的值,则可改变输
比较 比较
积分器
出波形的幅度大小。
+Um 器1 器2 –Um
当用一只二极管代替充放电电阻时,则积分器输出锯齿 波,双稳则输出占空比很大或者很小的矩形波。
二极管整形网络把三角波转变为正弦波,三种波形的输 出由波形选择开关选择,然后经放大器、衰减器等输出。
⒊ 前后沿可调的脉冲信号发生器
它是在上述基本脉冲信号发生器的基础上增加了由积分器和 比较器构成的积分调宽和比较整形电路以及减法电路,以使输出 脉冲的脉宽可在更宽的范围内调节;另外增加了由积分器组成的 前后沿调节电路,使除了矩形波外,还可输出梯形波、三角波和 锯齿波等波形。
外触发
电路
+
自激
多谐
放大整形
⒈ 脉冲信号发生器的基本结构
脉冲信号发生器的基本结构如图所示。主要包括主振级、脉冲形 成级、输出级等。
主振级
脉冲形成级
延时级
形成级
主脉冲 输出级

K
同 同步放大

同步输出
同步脉冲
脉冲信号形成级包括延时级和脉冲信号形成级。其目的是产生经 过一定延时、脉冲宽度稳定且可任意调节的主脉冲信号。

函数信号发生器和任意波形发生器对比

函数信号发生器和任意波形发生器对比

函数信号发生器和任意波形发生器对比1、函数信号发生器函数发生器是使用最广的通用信号源信号发生器,提供正弦波、锯齿波、方波、脉冲波等波形,有的还同时具有调制和扫描功能。

函数波形发生器在设计上分为模拟式和数字合成式。

众所周知,数字合成式函数信号源(DDS)无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟式,其锁相环(PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phaseJitter)及频率漂移均能达到相当稳定的状态,但数字式信号源中,数字电路与模拟电路之间的干扰始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发生器,如今市场上的大部分函数信号发生器均为DDS信号源。

2、任意波形发生器任意波形发生器,是一种特殊的信号源,不仅具有一般信号源波形生成能力,而且可以仿真实际电路测试中需要的任意波形。

在我们实际的电路的运行中,由于各种干扰和响应的存在,实际电路往往存在各种缺陷信号和瞬变信号,如果在设计之初没有考虑这些情况,有的将会产生灾难性后果。

任意波发生器可以帮您完成实验,仿真实际电路,对您的设计进行全面的测试。

由于任意波形发生往往依赖计算机通讯输出波形数据。

在计算机传输中,通过专用的波形编辑软件生成波形,有利于扩充仪器的能力,更进一步仿真实验。

另外,内置一定数量的非易失性存储器,随机存取编辑波形,有利于参考对比,或通过随机接口通讯传输到计算机作更进一步分析与处理。

有些任意波形发生器有波形下载功能,在作一些麻烦费用高或风险性大的实验时,通过数字示波器等仪器把波形实时记录下来,然后通过计算机接口传输到信号源,直接下载到设计电路,更进一步实验验证。

泰克推出的AFG3000系列三合一信号源,可以完成以上提到的功能,并且在波形输出的精度、稳定性等方面都有较大提高,是走在行业前列的新一代任意波发生器。

信号源的主要技术指标传统函数发生器的主要指标和新近研发的任意波形发生器的主要指标有一些不同,我们这里分开介绍。

函数信号发生器

函数信号发生器

摘要函数信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路。

函数信号发生器在电路实验和设备检测中具有十分广泛的用途。

通过对函数波形发生器的原理以及构成分析,可设计一个能变换出三角波、正弦波、方波的函数波形发生器。

正弦波,方波,三角波(锯齿波)发生电路有多种结构形式,可它们的基本结构部分都是由放大电路构成。

放大电路的结构也有多种形式,有三级场效应管放大电路,也可由集成运算放大器构成放大电路,集放以其性能优越,电路结构简单,使用方便等特点而得到越来越广泛的应用。

本实验各波形发生电路中的基本放大器均选用集成运算放大器构成。

经过参数计算,调试,实验得出了正弦波、矩形波、锯齿波波形图。

关键字:函数信号发生器、集成运算放大器、晶体管差分放大目录摘要 (1)一设计目的、意义 (3)二总体设计方案论证及选择 (4)方案一: (5)2.1 正弦波 (5)2.2 矩形波发生器 (8)2.3锯齿波发生器 (10)2.4系统测试 (11)方案二: (12)三误差分析和思考 (16)3.1 实验误差析 (16)3.2问题思考 (16)四心得体会 (17)五所需主要仪器及器件 (18)一设计目的、意义1 设计目的(1)掌握正弦波,矩形波,锯齿波函数发生器的原理及设计方法。

(2)了解振荡和其它振荡器的组成和特点。

(3)了解正弦波振荡器的组成及工作原理。

(4)能用仪器﹑仪表调试﹑测量振荡器的主要指标。

(5)理解函数信号发生器的组成框图及工作流程。

(6)能用仪器﹑仪表调试﹑测量函数信号发生器的主要指标。

2 设计意义函数发生器作为一种常用的信号源,是现代测试领域内应用最为广泛的通用仪器之一。

在研制、生产、测试和维修各种电子元件、部件以及整机设备时,都学要有信号源,由它产生不同频率不同波形的电压、电流信号并加到被测器件或设备上,用其他仪器观察、测量被测仪器的输出响应,以分析确定它们的性能参数。

信号发生器是电子测量领域中最基本、应用最广泛的一类电子仪器。

函数信号发生器使用说明

函数信号发生器使用说明

函数信号发生器使用说明函数信号发生器主要由信号产生电路、信号放大电路等部分组成。

可输出正弦波、方波、三角波三种信号波形。

输出信号电压幅度可由输出幅度调节旋钮进行调节,输出信号频率可通过频段选择及调频旋钮进行调节。

其外形如下图:使用说明:电源开关:将电源开关按键弹出即为“关”位置,将电源线接入,按电源开关,以接通电源。

LED显示窗口:此窗口指示输出信号的频率,当“外测”开关按入,显示外测信号的频率。

如超出测量范围,溢出指示灯亮。

频率调节旋钮:调节此旋钮改变输出信号频率,顺时针旋转,频率增大,逆时针旋转,频率减小,微调旋钮可以微调频率。

占空比调节:占空比开关,占空比调节旋钮,将占空比开关按入,占空比指示灯亮,调节占空比旋钮,可改变波形的占空比。

波形选择开关:按对应波形的某一键,可选择需要的波形。

衰减开关:电压输出衰减开关,二档开关组合为20dB、40dB、60dB。

频率范围选择开关(并兼频率计闸门开关):根据所需要的频率,按其中一键。

计数、复位开关:按计数键,LED显示开始计数,按复位键,LED显示全为0计数/频率端口:计数、外测频率输入端口。

外测频开关:此开关按入LED显示窗显示外测信号频率或计数值。

电平调节:按入电平调节开关,电平指示灯亮,此时调节电平调节旋钮,可改变直流偏置电平。

幅度调节旋钮:顺时针调节此旋钮,增大电压输出幅度。

逆时针调节此旋钮可减小电压输出幅度。

电压输出端口:电压输出由此端口输出。

TTL/CMOS输出端口:由此端口输出TTL/CMOS信号。

功率输出端口:功率输出由此端口输出。

扫频:按入扫频开关,电压输出端口输出信号为扫频信号,调节速率旋钮,可改变扫频速率,改变线性/对数开关可产生线性扫频和对数扫频。

电压输出指示:3位LED显示输出电压值,输出接50Ω负载时应将读数÷2。

函数信号发生器解读

函数信号发生器解读

函数信号发生器本实验室采用EE1651型函数信号发生器。

一、主要特征EE1651型函数信号发生器能直接产生正弦波,三角波,方波,锯齿波和脉冲波。

TTL / CMOS与OUTPUT同步输出。

直流电平可连续调节,频率计可作内部频率显示,也可作外测频率,电压用LED显示。

二、工作原理函数信号发生器工作时,由V / I电压-电流变换器产生二个恒流源。

恒流源对时基电容C进行充电和放电,电容的充电和放电使电容上的电压随时间分别呈线性上升和线性下降,因而在电容两端得到三角波电压。

三角波电压经方波形成电路得到方波电压。

三角波电压经正弦波形成电路得到正弦波电压,最后经过功率放大输出。

三、主要技术参数:频率范围: 0.1Hz~1MHz 分七档波形:正弦波,三角波,方波,正向或负向脉冲波,正向或负向锯齿波TTL输出脉冲波:低电平≤0.8V,高电平≥1.8VCMOS输出脉冲波:低电平≤0.8V,高电平≥13 V连续可调输出阻抗:50Ω±10%输出幅度:≥20U P-P (空载)输出衰减:20dB,40dB直流偏置:0~±10V连续可调电源:220±10%,50±2Hz四、使用说明1、面板说明EE1651型函数信号发生器前面板布局参见图(1)显示窗口显示输出信号的频率(2)显示单位指示灯显示输出信号频率的单位指示,分“kHZ”“HZ”(3) 频段选择按键输出信号频段选择,分七档,揿下某键,输出信号为对应频段的频率。

(4)频率调节旋钮用于输出信号频率的微调,调节范围:0.2*档数——2*档数,与(3)配合使用,确定输出信号频率。

(5)波形选择按键用于选择输出函数波形,依次为正弦波、三角波、方波选择按键,揿下某键,输出函数为对应的波形。

(6)波形对称性调节旋钮调节此旋钮可改变输出信号的对称性。

当处于“关”位置时,为输出对称波形。

(7)函数输出口函数信号从此端口输出(8)外扫描输入口外扫描控制信号从此端口输入。

函数信号发生器的功能

函数信号发生器的功能

函数信号发生器的功能函数信号发生器是一种可以生成各种类型信号的设备或软件。

它广泛应用于科学研究、工程测试、仪器校准等领域。

本文将介绍函数信号发生器的工作原理、应用领域以及一些常见的信号类型。

一、函数信号发生器的工作原理函数信号发生器的核心是一个信号发生器电路,其输出信号的波形由内部的信号发生器电路产生。

信号发生器电路可以采用多种方式实现,其中较常见的方法是使用集成电路或数字信号处理器(DSP)。

信号发生器电路的基本原理是通过对一个基准信号进行调制、变换和控制,生成不同类型的信号。

基准信号可以是正弦波、方波、三角波等,也可以是任意波形。

通过调整基准信号的幅度、频率、相位和偏置等参数,可以得到各种不同的信号。

二、函数信号发生器的应用领域函数信号发生器广泛应用于科学研究、工程测试和仪器校准等领域。

下面将介绍几个常见的应用场景。

1. 信号处理和通信系统测试:在信号处理和通信系统设计和测试中,需要模拟各种不同的信号环境,以验证系统的性能和稳定性。

函数信号发生器可以生成各种模拟信号,如音频信号、视频信号、调制信号等,用于系统测试和性能评估。

2. 仪器校准和校准:在仪器校准和校准中,需要提供准确的标准信号,以验证和校准测量设备的准确性和精度。

函数信号发生器可以生成稳定、精确的标准信号,用于仪器校准和校准。

3. 科学研究和实验:在科学研究和实验中,需要生成各种特定的信号,以便进行研究和实验。

函数信号发生器可以生成特定频率、特定幅度和特定相位的信号,用于科学研究和实验。

4. 教育培训和学术研究:函数信号发生器也广泛应用于教育培训和学术研究。

它可以帮助学生和研究人员理解和研究信号的特性和行为。

通过调整函数信号发生器的参数,可以生成各种不同的信号,并观察其特性和行为。

三、常见的信号类型函数信号发生器可以生成多种类型的信号,下面将介绍几种常见的信号类型。

1. 正弦波:正弦波是最基本的周期信号,具有连续的、光滑的波形。

它的特点是振幅、频率和相位都是恒定的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RAM由128字节,30~3FH作为堆栈区,40~45H为显示缓冲区,40H存放波形编码,
42H~45H存放频率值,42H存放参考电压值,46H为设置标志区
1、人机交互模块
(1)显示子模块
片内RAM的40H~45H是显示缓冲区。采用查表方式形成显示的段码,显示码表存于ROM中。显示模块流程图如图(3)所示。R1存位选信号,R2存显示次数,R0存显示缓冲区地址。单片机先向P2口送位选信号;从显存中取数字,通过查表,得到显示段码,送P0口;延时,保持显示;修改R0;判断是否已显示6次,不满6次,转开始处执行,已执行6次,则结束显示。
由两片0832和两块LM324运放组成。0832(1)提供参考电压,单片机向0832(1)送数字编码,产生不同的输出。本函数信号发生器可输出1V、2V、3V、4V、5V五个电压。0832(1)输出电压作为的0832(2)的参考电压。也就是所本函数信号发生器的幅值是可调的。0832(2)产生各种波形,生成波形样值码,经D/A转换得到各种模拟样值点。假如N个点构成波形的一个周期,则0832(2)输出N个样值点后,样值点形成运动轨迹,即一个周期。重复输出N个点,成为第二个周期。
中断服务流程如图6所示,波形产生流程如图7所示。
五、完整程序
;-----------------------------------------------------------------------------------------
;这是一个有三种波形选择,电压幅值可调,频率可变,用键盘进行控制的函数信号发生器
地址分配如下:
0832(1):BFFFH, 0832(2):7FFFH。
(1)
四、软件结构
程序由人机交互模块和波形产生模块组成,二者如图2所示。其中(a)是主流程图,
由系统初始化和人机交互程序模块组成,(b)是定时器中断程序流程图,函数信号发
生模块作为中断服务程序,作为中断服务程序,实现系统的波形输出。单片机的片内
MOV R2,#06H ;存显示次数
MOV R3,#40H ;存显示缓存区首址
DIS: MOV A,R1
MOV P2,A
RL A
MOV R1,A
MOV A,@R3 ;取缓冲区显示数据
MOV P0,A
INC R3
LCALL DELAY1 ;调用延时
DJNZ R2,DIS
POP R3
POP R2
POP R1
DJNZ R6,$
DJNZ R7,D1
POP R7
POP R6
RET
;---------------------------------------------------------------------------------------
;按键功能处理,当按数字键,检测设置标志区,看是否是要送显示缓冲去的数,不是就返回主程序
函数信号发生器
一、函数信号发生器的技术指标
1、波形:方波、正弦波、锯齿波;
2、幅值电压:1V、2V、3V、4V、5V;
3、频率:10HZ、20HZ、50HZ、100HZ、200HZ、500HZ、1KHZ;
二、操作设计
1、上电后,系统初始化,数码显示6个‘-’,等待输入设置命令。
2、按“幅值”、“频率”、“方波”、“正弦波”、“锯齿波”键进行相应的设置,数码管显示“-”。输入相应参数,显示参数值,全部设置完毕后,按“Enter”键,数码管显示波形的编码,电压幅值,频率。
RET
DELAY1: PUSH R1 ;延时程序
PUSH R2
MOV R1,#50
D1: MOV R2,#50
DJNZ R2,$
DJNZ R1,D1
POP R2
POP R1
RET
;------------------------------------------------------------------------------------------
ACALL DELAY ;延时12ms
ACALL DELAY
ACALL KS1 ;判断有无键闭合
JZ NS ;无键闭合,放回主程序
SCAN: MOV R0,#00H ;按键初始值
MOV R1,#04H ;扫描行数
MOV R2,#FEH ;送扫描值
MOV A,R2
MOV P1,A ;扫描,并设定输入模式
3、要停止使用函数信号发生器,可按复位按钮,将系统复位,然后关闭电源。
4、输入频率值的时候,一定要输入四位数。
二、硬件组成
由单片机、键盘、显示接口电路,波形转换(D/A)电路和电源等四部分构成。
1、单片机电路
功能:形成扫描码,键值识别、键处理、参数设置;形成显示段码;产生定时中断;形成波形的数字编码,并输出到D/A接口电路。
KEY_DEAL:MOV DPTR,#TAB ;送散转表首地址
MOV A,R0
MOV A,@A+DPTR
PRO1: PUSH R7
PUSH R5
MOV A,46H ;0~9号功能键处理
MOV R7,A
MOV R5,#42H
MOV R4,#04H
CJNE R7,#01H,WAVE_V
MOV A,R0
F_SEND: MOV B,@R5 ;频率存储的一个循环
(7)“0~9”键处理
进入“PRO1”子程序,查设置标志区46H的内容,有无设置,若有设置,则进入设定操作,将数字0~9送显示缓冲区。若无设置,则返回主程序。
3、波形产生模块
(1)将一个周期T的信号分成32个点(按X轴等份),两点间的时间间隔△T由单片机的定时器产生。
(2)一个周期分成32个点,对应三种波形的32个数据存放在以FBO_TAB、XIN_TAB、JCHB_TAB为起始地址的存储器中。
KS1: MOV A,#0FH ;按键闭合判断子程序
MOV P1,A ;扫描,并设定输入模式
NOP
MOVX A,P1 ;把P1口的值读回A
CPL A
ANL A,#0FH ;A不为0,有键闭合
RET
DELAY: PUSH R6
PUSH R7
MOV R7,#40 ;延时约6ms
D1: MOV R6,#36
MOV R6,B
CJNE R6,#0AH,F_SEND1;不等于#0AH,说明已经有数字存储,转移到下一单元
MOVX @R5,A
JMP OVER
F_SEND1: INC R5
(2)“频率”键处理
进入“PRO3”子程序,将设置标志区置为01H,表示频率参数设定;42H是频率值显示缓冲区首址;向42H、43H、44H、45H单元送#0AH,使数码管显示“―――”,返回键盘主程序。
(3)“方波”键处理
进入“PRO4”程序,给40H单元送方波编码01H,使数码管显示“1”,返回键盘主程序。
;这是定时中断服务程序,通过对40单元的内容的检测,判断调用哪个波形输出
;---------------------------------------------------------------------------------------
INT_T: PUSH A
PUSH R1
MOV A,40H ;读波形设置标志位
;送0832(1);2、从42H~45H中取频率值并进入相应的程序段,实现频率与设定初值的转换,完成TMOD的
;设定和初值设定;3、开启定时中断,向R1赋样值初始编码并返回主程序
;------------------------------------------------------------------------------------------
功能:驱动6位数码管动态显示,扫描键盘。
由反向驱动器UNL2803A、6位共阴极数码管和4×4键盘组成。
P0口作为数码管的段选口,P2口作为位选口,与UNL2803A相连接。P1口的低四位作为键盘的行状态的输入,高四位作为输出扫描。
3、D/A电路
功能:将波形样值的编码转换成模拟值;完成单极性的波形输出。
;当按幅值键时,把设置标志区置为02H,表示设定参考电压,将42单元置为#0AH
;当按频率键时,把设置标志区置为01H,表示频率参数设定,42H时缓冲区首址,向42H,43H,44H,45H单元
;送#0AH,返回键盘主程序
;当按ENTER键,检查是否已全部设置完毕,是的话1、送从45H中取参考电压,查表获得电压的数字编码
(2)键盘处理子模块
键识别作为主程序,键处理作为子程序。流程图如图4、图5所示,键盘的工作过程:
1)扫描键盘,获得列扫描码和行状态码,确定键值;
2)根据键值,通过散转表,转到相应的键处理程序;
3)进入键处理,执行键功能。
2、功能键处理
(1)“幅值”键处理
进入PRO2子程序,将设置标志位区46H置为02H,表示设定参考电压;将46H单元置为#0AH,使相应的数码管显示“-”。
;这是显示程序,对显示缓冲取的数据进行扫描显示
;-----------------------------------------------------------------------------------------
LED_DISPLAY: PUSH R1
PUSH R2
PUSH R3
MOV R1,#FEH ;存位选信号
MOV R1,A
CJNE R1,#01H,XINE
CALL FANGBO
XINE: CJNE R1,#02H,JUCHI
CALL XINEW
JUCHI: CALL JUCHIBO来自POP R1POP A
RETI
;-----------------------------------------------------------------------------------------
相关文档
最新文档