高中三角函数公式总表
(完整版)三角函数三角函数公式表
(完整版)三角函数公式表1. 正弦函数 (sin):定义:正弦函数是直角三角形中对边与斜边的比值。
公式:sin(θ) = 对边 / 斜边范围:1 ≤ sin(θ) ≤ 1特殊值:sin(0°) = 0, sin(30°) = 1/2, sin(45°) = √2/2, sin(60°) = √3/2, sin(90°) = 12. 余弦函数 (cos):定义:余弦函数是直角三角形中邻边与斜边的比值。
公式:cos(θ) = 邻边 / 斜边范围:1 ≤ cos(θ) ≤ 1特殊值:cos(0°) = 1, cos(30°) = √3/2, cos(45°) = √2/2, cos(60°) = 1/2, cos(90°) = 03. 正切函数 (tan):定义:正切函数是直角三角形中对边与邻边的比值。
公式:tan(θ) = 对边 / 邻边范围:tan(θ) 可以取任意实数值特殊值:tan(0°) = 0, tan(30°) = 1/√3, tan(45°) = 1, tan(60°)= √3, tan(90°) 不存在(无穷大)4. 余切函数 (cot):定义:余切函数是直角三角形中邻边与对边的比值。
公式:cot(θ) = 邻边 / 对边范围:cot(θ) 可以取任意实数值特殊值:cot(0°) 不存在(无穷大), cot(30°) = √3, cot(45°) = 1, cot(60°) = 1/√3, cot(90°) = 05. 正割函数 (sec):定义:正割函数是直角三角形中斜边与邻边的比值。
公式:sec(θ)= 1 / cos(θ)范围:sec(θ) 可以取任意实数值特殊值:sec(0°) = 1, sec(30°) = 2, sec(45°) = √2, sec(60°) = 2/√3, sec(90°) 不存在(无穷大)6. 余割函数 (csc):定义:余割函数是直角三角形中斜边与对边的比值。
高中三角函数公式总表
1 1 1 1 ⒋S⊿= a ha = ab sin C = bc sin A = ac sin B 2 2 2 2
1 tg
1 cos 2 2
③ tg 2
⒌同角关系: ⑴商的关系:
y sin ① tg = = = sin sec x cos
2tg 1 tg 2
1 2 , 频率 f= , 相位 x ,初相 T
1 sin( ) sin( ) 2 1 cos cos cos( ) cos( ) 2
cos sin
sin sin
1 sin( ) sin( ) 2
④ sin 2
tg 2 1 cos 2 1 tg 2 2
⑤ cos 2
9.半角公式: (符号的选择由 所在的象限确定)
x cos cos csc ② ctg y sin
2
① sin 1 cos
2 2
② sin
2
2
1 cos 2
1 cos( ) cos 2
11.和差化积公式: ① sin sin 2 sin
2 2 cos ③ cos cos 2 cos 2 2 cos
② sin sin 2 cos
2
sin
2 2
④ cos cos 2 sin
Байду номын сангаас
2
sin
1
2 sin 2
⑥1 cos 2 cos 2
⑥ csc r 1 ctg sec
高中数学三角函数公式总表
⒔积化和差公式:
3
sin cos
1 sin( ) sin( ) cos sin 1 sin( ) sin( ) 2 2 1 1 cos cos cos( ) cos( ) sin sin cos( ) cos 2 2
tg tg 1 tg tg
② cos( ) cos cos sin sin ④ tg tg tg( )(1 tg tg )
2
⑤ tg ( )
tg tg tg tg tg tg 其中当 A+B+C=π 时,有: 1 tg tg tg tg tg tg
⒊ 余 弦 定 理 : a 2 =b 2 +c 2 -2bc cos A c 2 =a 2 +b 2 -2ab cos C
2 2 2 2
⒋S⊿= 1 a ha = 1 ab sin C = 1 bc sin A = 1 ac sin B = abc =2R 2 sin A sin B sin C
3tg tg 3 ③ tg 3 tg tg (60 ) tg (60 ) 1 3tg 2
⒓半角公式: (符号的选择由 所在的象限确定) ① sin
2
2
1 cos 2
1 cos 2
② sin 2
2
1 cos 2
③ cos
2 2
T
依点 x, y 作图 ⒏诱导公试 sin -
-
+
cos
tg
ctg - ctg - ctg + ctg - ctg + ctg
高中三角函数公式大全
高中三角函数公式大全sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-cosasinbcos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)cot(a+b)=(cotacotb-1)/(cotb+cota)cot(a-b)=(cotacotb+1)/(cotb-cota)倍角公式tan2a=2tana/(1-tan^2a)sin2a=2sina•cosacos2a=cos^2asin^2a=2cos^2a—1=1—2sin^2a三倍角公式sin3a=3sina-4(sina)^3;cos3a=4(cosa)^3-3cosatan3a=tana•tan(π/3+a)•tan(π/3-a)半角公式sin(a/2)=√{(1cosa)/2}cos(a/2)=√{(1+cosa)/2}tan(a/2)=√{(1c osa)/(1+cosa)}cot(a/2)=√{(1+cosa)/(1-cosa)}tan(a/2)=(1cosa)/sina=sina/(1+cosa)和差化积sin(a)+sin(b)=2sin[(a+b)/2]cos[(a-b)/2]sin(a)-sin(b)=2cos[(a+b)/2]sin[(a-b)/2]cos(a)+cos(b)=2cos[(a+b)/2]cos[(a-b)/2]cos(a)-cos(b)=-2sin[(a+b)/2]sin[(a-b)/2]tana+tanb=sin(a+b)/cosacosb积化和差sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]cos(a)sin(b)=1/2*[sin(a+b)-sin(a-b)]诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(π/2-a)=cos(a)cos(π/2-a)=sin(a)sin(π/2+a)=cos(a)cos(π/2+a)=-sin(a)sin(π-a)=sin(a)cos(π-a)=-cos(a)sin(π+a)=-sin(a)cos(π+a)=-cos(a)tga=tana=sina/cosa万能公式sin(a)=[2tan(a/2)]/{1+[tan(a/2)]^2}cos(a)={1-[tan(a/2)]^2}/{1+[tan(a/2)]^2}tan(a)=[2tan(a/2)]/{1-[tan(a/2)]^2} 其它公式a•sin(a)+b•cos(a)=[√(a^2+b^2)]*sin(a+c)[其中,tan(c)=b/a]a•sin(a)-b•cos(a)=[√(a^2+b^2)]*cos(a-c)[其中,tan(c)=a/b]1+sin(a)=[sin(a/2)+cos(a/2)]^2;1-sin(a)=[sin(a/2)-cos(a/2)]^2;;其他非重点三角函数csc(a)=1/sin(a)sec(a)=1/cos(a)双曲函数sinh(a)=[e^a-e^(-a)]/2cosh(a)=[e^a+e^(-a)]/2tgh(a)=sinh(a)/cosh(a)sin30°=1/2sin37°=0。
【精品推荐】高中三角函数公式大全
【精品推荐】高中三角函数公式大全一、诱导公式sin(α+2kπ)=sinαcos(α+2kπ)=cosαtan(α+2kπ)=tanαsin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanα这里仅作示范,诱导公式只要通过奇变偶不变,符号看象限的口诀就可以了二、两角和与差正余弦公式余弦cos(α-β)=cosαcosβ+sinαsinβcos(α+β)=cosαcosβ-sinαsinβ正弦sin(α-β)=sinαcosβ-cosαsinβsin(α+β)=sinαcosβ+cosαsinβ正切tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)正余弦记忆法(个人向):①磕磕死死,死磕磕死(分别对应余正弦)②余弦正负号变,正弦不变正弦记忆法:①分子加减与原来相同②上加下减,上减下加三、倍角公式二倍角sin2α=2sinαcosαcos2α=cos²α-sin(2cos²α-1→1+cos2α=2cos²α)(1-2sin²α→1-sin2α=2sin²α)tan2α=2tanα/(1-tan²α)sin2α=2tanα/(1+tan²α)cos2α=(1-tan²α)/(1+tan²α)2.三倍角sin3α=3sinα-4sin³αcos3α=4cos³α-3cosα四、半角公式sin(α/2)=±√(1-cosα/2)cos(α/2)=±√(1+cosα/2)tan(α/2)=(1-cosα)/sinαtan(α/2)=sinα/(1+cosα)tan(α/2)=(1-cosα+sinα)/(1+cosα+sinα)五、万能公式积化和差公式sinαcosβ=½[sin(α+β)+sin(α-β)]cosαsinβ=½[sin(α+β)-sin(α-β)]cosαcosβ=½[cos(α+β)+cos(α-β)]sinαsinβ=-½[cos(α+β)-cos(α-β)]记忆法:①除两个sin是-1/2外都以1/2开头②式子左边sin结尾,后面为减号;式子左边cos结尾,右边为加号③式子左边函数名相同则后面是两个cos;不同则后面是两个sin2.和差化积公式sinα+sinβ=2sin½(α+β)cos½(α-β)sinα-sinβ=2cos½(α+β)sin½(α-β)cosα+cosβ=2cos½(α+β)cos½(α-β)cosα-cosβ=-2sin½(α+β)sin½(α-β)记忆法:①除cos-cos是-2外都以2开头②式子右边sin结尾,前面为减号;式子右边cos结尾,前面为加号③式子左边函数名都是sin则右边函数名不同;都是cos则后面函数名相同六、辅助角公式Asinα+Bcosα=√(A²+B²)·[sinφsinα+cosφcosα]=√(A²+B²)sin(α+φ)φ为A²/√(A²+B²)对应的正弦值φ为B²/√(A²+B²)对应的余弦值七、自己整理的公式cos²α+sinβ+sin(α-β)sin(α+β)=1sin²α+cos²(α+30°)+sinαcos(α+30°)=3/41+sin2α=(sinα+cosα)²常见变换——二倍角cosωα-sinωα=-√2sin(ωα+4/π)常见变换——辅助角公式已知tan(α+¼π)=n,可知tanα=(n-1)/(n+1)常见变换——展开式sinα+cosα=±√[(tan²α+tanα+1)/tan²+1]常见变换——弦化切。
三角函数公式表(全)
三角函数公式表同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα ·cotα=1 sinα ·cscα=1 sinα/cosα=tanαsin2α+cos2α=11+tan2α=sec2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
”)诱导公式(口诀:奇变偶不变,符号看象限。
)sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=co sαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=———----———1-tanα ·tanβtanα-tanβtan(α-β)=—————-------—1+tanα ·tanβ2tan(α/2)sinα=——————1+tan2(α/2)1-tan2(α/2) cosα=——————1+tan2(α/2)2tan(α/2)tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式Sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2] cos α+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2 ] 1sinα ·cosβ=-[sin(α+β)+sin(α-β)]21cosα ·sinβ=-[sin(α+β)-sin(α-β)]21cosα ·cosβ=-[cos(α+β)+cos(α-β)]21sinα ·sinβ=— -[cos(α+β)-cos(α-β)]2化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)。
高中数学-三角函数公式大全
高中数学-三角函数公式大全新课程高中数学三角公式汇总一、任意角的三角函数在角α的终边上任取一点P(x,y),记r=x²+y²。
正弦:sinα=y/r余弦:cosα=x/r正切:tanα=y/x余切:cotα=x/y正割:secα=r/x余割:cscα=r/y注:我们还可以用单位圆中的有向线段表示任意角的三角函数。
如图,与单位圆有关的有向线段MP、OM、AT分别叫做角α的正弦线、余弦线、正切线。
二、同角三角函数的基本关系式倒数关系:sinα·cscα=1,cosα·secα=1,tanα·cotα=1.商数关系:tanα=sinα/cosα,cotα=cosα/sinα。
平方关系:sin²α+cos²α=1,1+tan²α=sec²α,1+cot²α=csc²α。
三、诱导公式⑴α+2kπ(k∈Z)、-α、π+α、π-α、2π-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号。
(口诀:函数名不变,符号看象限)⑵π/3+α、-π/3+α、π-α、-π+α的三角函数值,等于α的异名函数值,前面加上一个把α看成锐角时原函数值的符号。
(口诀:函数名改变,符号看象限)四、和角公式和差角公式sin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβcos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)五、二倍角公式sin2α=2sinα·cosαcos2α=cos²α-sin²α=2cos²α-1=1-2sin²α…(※)tan2α=2tanα/(1-tan²α)二倍角的余弦公式(※)有以下常用变形:(规律:降幂扩角,升幂缩角)1+cos2α=2cos²α1-cos2α=2sin²α1+sin2α=(sinα+cosα)²1-sin2α=(sinα-cosα)²cos2α=(1+cos2α)/(1-cos2α)sin2α=(1-cos2α)/2tanα=sin2α/(1+cos2α)万能公式告诉我们,任何单角的三角函数都可以用半角的正切来表示。
高中生必备实用三角函数公式总表
x | x 2k arcsin a, k Z
a 1
x | x k 1 arcsin a, k Z
k
cosx a
a 1 a 1
x | x 2k arccosa, k Z x | x 2k arccosa, k Z
3
⒕和差化积公式: ① sin sin 2 sin
2 2 cos ③ cos cos 2 cos 2 2 cos
② sin sin 2 cos
2
sin
2
2
④ cos cos 2 sin
4R
=
a 2 sin B sin C b 2 sin A sin C c 2 sin Asin B = = =pr= p( p a)( p b)( p c) 2 sin B 2 sin C 2 sin A
2
(其中 p 1 (a b c) , r 为三角形内切圆半径) ⒌同角关系:
tg tg 1 tg tg
② cos( ) cos cos sin sin ④ tg tg tg( )(1 tg tg )
⑤ tg ( )
tg tg tg tg tg tg 其中当 A+B+C=π 时,有: 1 tg tg tg tg tg tg
⒊ 余 弦 定 理 : a 2 =b 2 +c 2 -2bc cos A c 2 =a 2 +b 2 -2ab cos C
2 2 2 2
⒋S⊿= 1 a ha = 1 ab sin C = 1 bc sin A = 1 ac sin B = abc =2R 2 sin A sin B sin C
高中三角函数公式表
高中三角函数公式大全高中三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB-1tanB tanA + tan(A-B) =tanAtanB1tanB tanA +- cot(A+B) =cotAcotB 1-cotAcotB + cot(A-B) =cotAcotB 1cotAcotB -+倍角公式 tan2A =Atan 12tanA 2- Sin2A=2SinA •CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)半角公式 sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=AA cos 1cos 1+- cot(2A )=AA cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin +和差化积 sina+sinb=2sin2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2b a - tana+tanb=ba b a cos cos )sin(+积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 21[sin(a+b)-sin(a-b)]诱导公式sin(-a) = -sinacos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sinacos(π-a) = -cosasin(π+a) = -sinacos(π+a) = -cosa tgA=tanA =aa cos sin万能公式 sina=2)2(tan 12tan2a a+ cosa=22)2(tan 1)2(tan 1a a +- tana=2)2(tan 12tan 2a a -其它公式 a •sina+b •cosa=)b (a 22+×sin(a+c) [其中tanc=ab ] a •sin(a)-b •cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a )2其他非重点三角函数 csc(a) =asin 1 sec(a) =acos 1双曲函数 sinh(a)=2e -e -aa cosh(a)=2e e -aa + tg h(a)=)cosh()sinh(a a公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2k π+α)= sin αcos (2k π+α)= cos αtan (2k π+α)= tan αcot (2k π+α)= cot α公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sin αcos (π+α)= -cos αtan (π+α)= tan αcot (π+α)= cot α公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)= -sin αcos (-α)= cos αtan (-α)= -tan αcot (-α)= -cot α公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sin αcos (π-α)= -cos αtan (π-α)= -tan αcot (π-α)= -cot α公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sin αcos (2π-α)= cos αtan (2π-α)= -tan αcot (2π-α)= -cot α公式六:2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cos α cos (2π+α)= -sin α tan (2π+α)= -cot α cot (2π+α)= -tan αsin (2π-α)= cos α cos (2π-α)= sin α tan (2π-α)= cot α cot (2π-α)= tan α sin (23π+α)= -cos α cos (23π+α)= sin α tan (23π+α)= -cot α cot (23π+α)= -tan α sin (23π-α)= -cos α cos (23π-α)= -sin α tan (23π-α)= cot α cot (23π-α)= tan α (以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A •sin(ωt+θ)+ B •sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角正切定理[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积 S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式V=s*h 圆柱体 V=pi*r2h积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................部分证明已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβsin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)tan(α+β)=(1+m)/(1-m)tanβ。
重点高中生必备实用三角函数公式总表
重点高中生必备实用三角函数公式总表————————————————————————————————作者:————————————————————————————————日期:23三角公式总表⒈L 弧长=αR=nπR180 S 扇=21L R=21R 2α=3602R n ⋅π ⒉正弦定理:A asin =B b sin =Cc sin = 2R (R 为三角形外接圆半径) ⒊余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cosbca cb A 2cos 222-+=⒋S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=CB A c sin 2sin sin 2=pr=))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径) ⒌同角关系: ⑴商的关系:①θtg =x y =θθcos sin =θθsec sin ⋅ ②θθθθθcsc cos sin cos ⋅===y x ctg ③θθθtg ry⋅==cos sin ④θθθθcsc cos 1sec ⋅===tg x r ⑤θθθctg rx⋅==sin cos ⑥θθθθsec sin 1csc ⋅===ctg y r ⑵倒数关系:1sec cos csc sin =⋅=⋅=⋅θθθθθθctg tg⑶平方关系:1csc sec cos sin 222222=-=-=+θθθθθθctg tg ⑷)sin(cos sin 22ϕθθθ++=+b a b a (其中辅助角ϕ与点(a,b )在同一象限,4且abtg =ϕ) ⒍函数y=++⋅)sin(ϕωx A k 的图象及性质:(0,0>>A ω)振幅A ,周期T=ωπ2, 频率f=T1, 相位ϕω+⋅x ,初相ϕ⒎五点作图法:令ϕω+x 依次为ππππ2,23,,20 求出x 与y , 依点()y x ,作图⒏诱导公试 三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限⒐和差角公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos(μ=± ③βαβαβαtg tg tg tg tg ⋅±=±μ1)( ④)1)((βαβαβαtg tg tg tg tg ⋅±=±μ⑤γβγαβαγβαγβαγβαtg tg tg tg tg tg tg tg tg tg tg tg tg ⋅-⋅-⋅-⋅⋅-++=++1)( 其中当A+B+C=π时,有:sin cos tg ctg -α-αsin +αcos-αtg -αctg π-α+αsin -αcos -αtg -αctg π+α-αsin -αcos +αtg +αctg 2π-α -αsin +αcos -αtg -αctg 2k π+α +αsin+αcos+αtg+αctgsin con tg ctg απ-2+αcos +αsin +αctg +αtg απ+2+αcos -αsin -αctg -αtg απ-23 -αcos -αsin +αctg +αtg απ+23 -αcos+αsin-αctg-αtg5i).tgC tgB tgA tgC tgB tgA ⋅⋅=++ ii).1222222=++C tg B tg C tg A tg B tg A tg ⒑二倍角公式:(含万能公式) ①θθθθθ212cos sin 22sin tg tg +==②θθθθθθθ22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-=③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2θθ+=⒒三倍角公式:①)60sin()60sin(sin 4sin 4sin 33sin 3θθθθθθ+︒-︒=-= ②)60cos()60cos(cos 4cos 4cos 33cos 3θθθθθθ+︒-︒=+-=③)60()60(313323θθθθθθθ+⋅-⋅=--=tg tg tg tg tg tg tg ⒓半角公式:(符号的选择由2θ所在的象限确定) ①2cos 12sinθθ-±= ②2cos 12sin 2θθ-=③2cos 12cos θθ+±= ④2cos 12cos2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+ ⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=± ⑧θθθθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg⒔积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++=()[]βαβαβα--+-=cos )cos(21sin sin6⒕和差化积公式: ①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos 2cos 2cos cos βαβαβα-+=+ ④2sin2sin 2cos cos βαβαβα-+-=- ⒖反三角函数: ⒗最简单的三角方程方程方程的解集a x =sin1=a {}Z k a k x x ∈+=,arcsin 2|π1<a(){}Z k a k x x k∈-+=,arcsin 1|πa x =cos1=a {}Z k a k x x ∈+=,arccos 2|π1<a{}Z k a k x x ∈±=,arccos 2|π a tgx ={}Z k arctga k x x ∈+=,|π a ctgx ={}Z k arcctga k x x ∈+=,|π名称 函数式定义域值域性质反正弦函数x y arcsin =[]1,1-增⎥⎦⎤⎢⎣⎡-2,2ππ-arcsinx arcsin(-x)= 奇 反余弦函数xy arccos =[]1,1-减[]π,0x x arccos )arccos(-=-π反正切函数arctgx y = R 增⎪⎭⎫ ⎝⎛-2,2ππarctgx - arctg(-x)= 奇 反余切函数arcctgx y =R 减()π,0arcctgx x arcctg -=-π)(71、遗忘空集致误由于空集是任何非空集合的真子集,因此B=∅时也满足B⊆A。
高中数学-三角函数公式表
sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβtanα-tanβ
tan(α+β)=—————— tan(α-β)=——————
一.同角三角函数的基本关系式
1.倒数关系:tanα·cotα=1 sinα·cscα=1 cosα·secα=1
2.商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα
3.平方关系:sin2α+cos2α=1 1+tan2α=sec2α1+cot2α=csc2α
⒍函数y= k的图象及性质:( )
振幅A,周期T= ,频率f= ,相位 ,初相
⒓半角公式:(符号的选择由 所在的象限确定)
① ② ③ ④
⑤ ⑥ ⑦
⑧
7.积化和差公式:
8.和差化积公式:
① ②
③ ④
9.化asinα±bcosα为一个角的三角函数的公式( 与点(a,b)在同一象限,且 )
10.二倍角的正弦、余弦和正切公式
2tanα
sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2αtan2α=—————
1-tan2α
11.三倍角公式:
①
R= R2 =
⒉正弦定理: = = =2R(R为三角形外接圆半径)
⒊余弦定理:a =b +c -2bc b =a +c -2ac
c =a +b -2ab
⒋三角形面积:S⊿= a = ab = bc = ac
高中必背三角函数公式表
高中必背三角函数公式表高中必背三角函数公式表作为高中数学的重要部分,三角函数是很多学生所苦恼的部分,需要反复理解和重复记忆才能掌握好。
今天,我们就来看一下高中必背的三角函数公式表,相信对你的学习有所帮助。
I. 基本三角函数公式1. 正弦函数(sin)sinA = 对边 / 斜边sin A = a/c2. 余弦函数(cos)cos A = 邻边 / 斜边cos A = b/c3. 正切函数(tan)tan A = 对边 / 邻边tan A = a/b4. 正割函数(sec)sec A = 斜边 / 邻边sec A = c/b5. 余割函数(csc)csc A = 斜边 / 对边csc A = c/a6. 割正切函数(cot)cot A = 邻边 / 对边cot A = b/aII. 商数与余数公式1. 正弦函数的商数与余数公式sin (A ± B) = sin A cos B ± cos A sin Bsin 2A = 2sin A cos Asin (π/2 - A) = cos Asin (π + A) = -sin Asin (π - A) = sin Asin (2π - A) = -sin A2. 余弦函数的商数与余数公式cos (A ± B) = cos A cos B ∓ sin A sin B cos 2A = cos² A - sin² Acos (π/2 - A) = sin Acos (π + A) = -cos Acos (π - A) = -cos Acos (2π - A) = cos A3. 正切函数的商数与余数公式tan (A ± B) = (tan A ± tan B) / (1 ∓ tan A tan B) tan² A + 1 = sec² AIII. 其他常用公式1. 三角函数同角变换公式sin (-A) = -sin Acos (-A) = cos Atan (-A) = -tan A2. 三角函数的平方和差公式sin² (A ± B) = sin² A ± 2sin A sin B + sin² B cos² (A ± B) = cos² A ∓ 2cos A cos B + cos² B 3. 三角函数的倍角公式sin 2A = 2sin A cos Acos 2A = cos² A - sin² Atan 2A = (2tan A) / (1 - tan² A)4. 半角公式sin (A/2) = ± √[(1 - cos A) / 2]cos (A/2) = ± √[(1 + cos A) / 2]tan (A/2) = ± √[(1 - cos A) / (1 + cos A)]总结高中数学中,三角函数是考试不可避免的一部分,而掌握好三角函数公式,则是解题的必要条件。
高中数学三角函数公式大全(三角函数的公式)
高中数学三角函数公式大全(三角函数的公式)高中数学三角函数公式大全公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα三角函数诱导公式知识点公式一:终边相同的角的同一三角函数的值相等设α为任意锐角,弧度制下的角的表示:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:π+α的三角函数值与α的三角函数值之间的关系设α为任意角,弧度制下的角的表示:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系(1)π/2+α与α的三角函数值之间的关系sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanα(2)π/2-α与α的三角函数值之间的关系sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα(3)3π/2+α的三角函数值之间的关系sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/α+α)=-tanα(4)3π/2-α的三角函数值之间的关系sin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα三角函数8个基本关系式是什么sin^2(A)+cos^2(A)=11+tan^2(A)=sec^2(A)1+cot^2(A)=csc^2(A)sin(A/2)=(1±cos(A))/2tan(A/2)=(±cos(A)-1)/(1+cos(A))cot(A/2)=(±cos(A)+1)/(1-cos(A))tan(A)+cot(A)=(2sin(A))/(cos(A)-sin(A)) tan(A)-cot(A)=(2cos(A))/(cos(A)+sin(A)) 三角函数的定义是什么?三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。
详细的三角函数公式表(高中)
“上弦中切下割,一:指数函数
二:对数函数
三:指数函数与对数函数有什么关系?(关于y=x 对称)
x
y 2=x
y 3=x
y ⎪⎭
⎫ ⎝⎛=21x
y ⎪⎭
⎫ ⎝⎛=31x
y 2log =x
y 2
1log =x
y 3log =x
y 3
1log =
二、基本初等函数及其图像
1
x
y 2=x
y =x
y 2log =,奇函数
无界,周期为余割函数
,偶函数无界,周期为正割函数,奇函数无界,周期为余切函数,奇函数无界,周期为正切函数,偶函数有界,周期为余弦函数,奇函数有界,周期为正弦函数性质
表达式名称ππππππ2csc 2sec cot tan 2cos 2sin x
y x y x y x y x y x y ======)
R (sin ∈=x x y 的图象
2
3
4
)
R (cos ∈=x x y 的图象tan (π0.5π)
y x x k =≠+的图像cot (π)
y x x k =≠的图像
)
0()
(cot arc 22)(arct an ]0[]11[arccos 22]11[arcsin ππππππ,,反余切函数
,,反正切函数,,反余弦函数,,反正弦函数
值域定义域表达式名称∞+-∞=⎪⎭⎫ ⎝⎛-∞+-∞=-=⎥⎦⎤
⎢
⎣⎡--=x
y x y x y x y。
高中三角函数公式表
高中三角函数公式大全高中三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB-1tanB tanA + tan(A-B) =tanAtanB1tanB tanA +- cot(A+B) =cotAcotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+倍角公式 tan2A =Atan 12tanA 2- Sin2A=2SinA •CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)半角公式 sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin +和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin2b a +sin 2b a - tana+tanb=ba b a cos cos )sin(+积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb =21[sin(a+b)-sin(a-b)]诱导公式sin(-a) = -sinacos(-a) = cosa sin(2π-a) = cosacos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sinacos(π-a) = -cosasin(π+a) = -sinacos(π+a) = -cosa tgA=tanA =aa cos sin万能公式 sina=2)2(tan 12tan2a a+ cosa=22)2(tan 1)2(tan 1a a +- tana=2)2(tan 12tan 2a a -其它公式 a •sina+b •cosa=)b (a 22+×sin(a+c) [其中tanc=ab ] a •sin(a)-b •cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2a )21-sin(a) = (sin 2a -cos 2a )2其他非重点三角函数 csc(a) =asin 1 sec(a) =a cos 1双曲函数 sinh(a)=2e -e -aa cosh(a)=2e e -aa tg h(a)=)cosh()sinh(a a公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2k π+α)= sin αcos (2k π+α)= cos αtan (2k π+α)= tan αcot (2k π+α)= cot α公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sin αcos (π+α)= -cos αtan (π+α)= tan αcot (π+α)= cot α公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)= -sin αcos (-α)= cos αtan (-α)= -tan αcot (-α)= -cot α公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sin αcos (π-α)= -cos αtan (π-α)= -tan αcot (π-α)= -cot α公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sin αcos (2π-α)= cos αtan (2π-α)= -tan αcot (2π-α)= -cot α公式六:2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cos α cos (2π+α)= -sin α tan (2π+α)= -cot α cot (2π+α)= -tan α sin (2π-α)= cos α cos (2π-α)= sin α tan (2π-α)= cot α cot (2π-α)= tan α sin (23π+α)= -cos αcos (23π+α)= sin α tan (23π+α)= -cot α cot (23π+α)= -tan α sin (23π-α)= -cos α cos (23π-α)= -sin α tan (23π-α)= cot α cot (23π-α)= tan α (以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用A •sin(ωt+θ)+B •sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角正切定理[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积 S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式V=s*h 圆柱体 V=pi*r2h积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................部分证明已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβsin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)tan(α+β)=(1+m)/(1-m)tanβ。
高中三角函数公式总表.doc
三角公式总表⒈ L 弧长 = R=n πRS 扇= 1 L R=1 R2=n R 218022360⒉正弦定理:a b= c为三角形外接圆半径)= = 2R (Rsin A sin B sin C⒊余弦定理:a 2 =b 2 +c 2 -2bc cos A b2=a2+c 2 -2ac cosBc 2 =a 2 +b 2 -2ab cosCcos A b 2c 2 a 22bc⒋ S ⊿= 1a h a = 1 ab sin C = 1 bc sin A = 1 ac sin B = abc=2R 2 sin A sin B sinC22224R= a 2 sin B sin C = b 2 sin Asin C = c 2sin Asin B =pr = p( p a)( p b)( p c)2 sin A2sin B2sin C( 其中 p1( a b c) , r为三角形内切圆半径 )2⒌同角关系:⑴商的关系: ① tg= y = sin= sin sec② ctgxcos coscscx cosy sin③ siny costg④ secr 1 tgcscrx cos⑤ cosx sinctg⑥ cscr 1 ctgsecry sin⑵倒数关系: sin csc cos sectg ctg 1⑶平方关系: sin 2 cos 2sec 2tg 2csc 2ctg 21⑷ a sinb cosa 2b 2 sin()(其中辅助角与点( a,b )在同一象限,且 tgb )a⒍函数 y= A sin(x)k 的图象及性质: (0, A 0 )= 2, 频率 f=1, 相位x,初相振幅 A,周期 T T,,3 ,2⒎五点作图法:令x 依次为0 求出 x 与 y ,2 2依点x, y 作图⒏诱导公试-- + 2-2k+223232 sin cos tg ctg- sin +cos - tg - ctg+sin - cos - tg - ctg- sin - cos +tg + ctg- sin +cos - tg - ctg+sin +cos +tg + ctgsin con tg ctg+ cos +sin + ctg +tg+ cos - sin - ctg - tg- cos - sin + ctg +tg- cos +sin - ctg - tg三角函数值等于的同名三角函数值,前面加上一个把看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限三角函数值等于的异名三角函数值,前面加上一个把看作锐角时,原三角函数值的符号 ; 即:函数名改变,符号看象限⒐和差角公式①sin(③tg (⑤tg () sin cos cos sin ② cos( ) cos cos sin sin tg tg ④tg tg tg ( )(1 tg tg ) )tg tg1)tg tg tg tg tg tg其中当A+B+C=π时 ,1 tg tg tg tg tg tg有:i). tgA tgB tgC tgA tgB tgC ii).A B A CB C tgtgtgtgtg tg1222 222⒑二倍角公式: ( 含万能公式 )①②sin 22 sin cos2tg1 tg2cos22 sin 22cos 2 1 1 2 sin 21 tg2 cos1 tg 22tgsin2tg 21 cos 221 cos2③ tg 22④ 1 tg 22⑤ cos21 tg⒒三倍角公式:① sin 33sin4 sin 34 sin sin(60) sin(60 )②③cos3 3cos 4 cos 34 cos cos(60) cos(60)tg 33tgtg 3tg (60) tg (60)1 3tg2 tg⒓半角公式:(符号的选择由 所在的象限确定)2① sin1 cos② sin 21 cos③ cos1 cos222222④ cos 21 cos ⑤1 cos2 sin 2⑥1 cos2 cos 22222⑦ 1 sin(cos sin )2 cos sin2 22 2⑧ tg1 cossin1 cos1 cos1 cossin2⒔积化和差公式:sin cos1 sin() sin()cos sin 1 sin() sin()22cos cos1 cos( ) cos() sin sin1cos() cos22⒕和差化积公式:① sin sin 2 sin cos ② sin sin 2 cos2 sin2 2 2③ cos cos 2 cos2 cos ④ cos cos 2 sin sin22 2⒖反三角函数:名称函数式定义域值域性质反正弦函数y arcsin x 1,1 增, arcsin(-x) -arcsinx 奇2 2反余弦函数y arccosx 1,1 减0, arccos( x) arccosx反正切函数y arctgx R 增, arctg(-x) - arctgx 奇2 2反余切函数y arcctgx R 减0, arcctg ( x) arcctgx ⒗最简单的三角方程方程方程的解集sin x a a 1 x | x 2k arcsin a, k Za 1 x | x k 1 k arcsin a, k Zcos x a a 1 x | x 2k arccos a, k Za 1 x | x 2k arccos a, k Ztgx a x | x k arctga , k Zctgx a x | x k arcctga , k Z。
高中三角函数公式大全表格
高中三角函数公式大全表格常用三角函数:离心率 (Eccentricity):e = √(1 - (b²/a²))长轴 (Major Axis):2a短轴 (Minor Axis):2b平面直角坐标系下的位置关系:单位圆 (Unit Circle):x² + y² = 1正弦 (Sine):sinθ = y余弦 (Cosine):cosθ = x正切 (Tangent):tanθ = y/x余切 (Cotangent):cotθ = 1/tanθ = x/y正割 (Secant):secθ = 1/cosθ = 1/x余割 (Cosecant):cscθ = 1/sinθ = 1/y和差公式:正弦和差公式 (Sum and Difference of Sines):sin(α ± β) = sinαcosβ ± cosαsinβ余弦和差公式 (Sum and Difference of Cosines):cos(α ± β) = cosαcosβ ∓ sinαsinβ正切和差公式 (Sum and Difference of Tangents):ta n(α ± β) = (tanα ± tanβ) / (1 ∓ tanαtanβ)倍角公式:正弦倍角公式 (Double-Angle Identity for Sine):sin(2θ) = 2sinθcosθ余弦倍角公式 (Double-Angle Identity for Cosine):cos(2θ) = cos²θ - sin²θ正切倍角公式 (Double-Angle Identity for Tangent):tan(2θ) = 2tanθ / (1 - tan²θ)半角公式:正弦半角公式 (Half-Angle Identity for Sine):sin(θ/2) = ±√((1 - cosθ) / 2)余弦半角公式 (Half-Angle Identity for Cosine):cos(θ/2) = ±√((1 + cosθ) / 2)正切半角公式 (Half-Angle Identity for Tangent):tan(θ/2) = ±√((1 - cosθ) / (1 + cosθ))和差化积公式:正弦和差化积公式 (Product-to-Sum Identity for Sine):sinα + sinβ = 2sin((α + β)/2)cos((α - β)/2)正弦差和化积公式 (Sum-to-Product Identity for Sine):sinα - sinβ = 2cos((α + β)/2)sin((α - β)/2)余弦和差化积公式 (Product-to-Sum Identity for Cosine):cosα + cosβ = 2cos((α + β)/2)cos((α - β)/2)余弦差和化积公式 (Sum-to-Product Identity for Cosine):cosα - cosβ = -2sin((α + β)/2)sin((α - β)/2)正弦化积公式:正弦化积公式 (Product-to-Sum Identity for Sine):sinαsinβ = (1/2)[cos(α - β) - cos(α + β)]余弦化积公式:余弦化积公式 (Product-to-Sum Identity for Cosine):cosαcosβ = (1/2)[cos(α - β) + cos(α + β)]和差化积公式:和差化积公式 (Sum-to-Product Identity):sinα + sinβ = 2sin[(α + β)/2]cos[(α - β)/2]sinα - sinβ = 2cos[(α + β)/2]sin[(α - β)/2]cosα + cosβ = 2cos[(α + β)/2]cos[(α - β)/2]cosα - cosβ = -2sin[(α + β)/2]sin[(α - β)/2]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角公式总表
⒈L 弧长=αR=nπR 180 S 扇=21L R=2
1R 2
α=3602R n ⋅π
⒉正弦定理:
A a
sin =B b sin =C
c sin = 2R 〔R 为三角形外接圆半径〕
⒊余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos
c 2
=a 2
+b
2
-2ab C cos bc
a c
b A 2cos 2
22-+=
⒋S ⊿=2
1a a h ⋅=2
1ab C sin =2
1bc A sin =2
1ac B sin =R
abc 4=2R 2A sin B sin C sin
=A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C
B A c sin 2sin sin 2=pr =))()((c p b p a p p ---
(其中)(2
1c b a p ++=, r 为三角形内切圆半径)
⒌同角关系:
⑴商的关系:①θtg =x y =
θ
θ
cos sin =θθsec sin ⋅ ②θθθ
θ
θcsc cos sin cos ⋅===
y x ctg ③θθθtg r
y
⋅==
cos sin ④θθθθcsc cos 1sec ⋅==
=tg x r ⑤θθθctg r
x
⋅==
sin cos ⑥θθθθsec sin 1csc ⋅==
=ctg y r ⑵倒数关系:1sec cos csc sin =⋅=⋅=⋅θθθθθθctg tg ⑶平方关系:1csc sec cos sin 222222=-=-=+θθθθθθctg tg ⑷)sin(cos sin 22ϕθθθ++=
+b a b a
〔其中辅助角ϕ与点〔a,b 〕
在同一象限,且a
b tg =ϕ〕
⒍函数y=++⋅)sin(ϕωx A k 的图象及性质:〔0,0>>A ω〕
振幅A ,周期T =ω
π2, 频率f =T
1, 相位ϕω+⋅x ,初相ϕ
⒎五点作图法:令ϕω+x 依次为ππππ2,2
3,,2
0 求出x 与y ,
依点()y x ,作图 ⒏诱导公试 三角函数值等于α的同
名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,
符号看象限 三角函数值等于α的异
名三角函数值,前面加上一个把α看作锐角时,原
三角函数值的符号;即:函数名改变,符号看象限
⒐和差角公式
①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β
αβ
αβαtg tg tg tg tg ⋅±=
± 1)( ④)1)((βαβαβαtg tg tg tg tg ⋅±=±
⑤γ
βγαβαγ
βαγβαγβαtg tg tg tg tg tg tg tg tg tg tg tg tg ⋅-⋅-⋅-⋅⋅-++=
++1)( 其中当A+B+C=π时,有:
i).tgC tgB tgA tgC tgB tgA ⋅⋅=++ ii).12
22222=++C
tg B tg C tg A tg B tg A tg ⒑二倍角公式:(含万能公式) ①θ
θ
θθθ2
12cos sin 22sin tg tg +=
= ②θ
θ
θθθθθ222
2
2
2
11sin 211cos 2sin cos 2cos tg tg +-=-=-=-=
③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2
θθ+=
⒒三倍角公式:
①)60sin()60sin(sin 4sin 4sin 33sin 3θθθθθθ+︒-︒=-= ②)60cos()60cos(cos 4cos 4cos 33cos 3θθθθθθ+︒-︒=+-=
③)60()60(31332
3θθθθ
θ
θθ+⋅-⋅=--=tg tg tg tg tg tg tg ⒓半角公式:〔符号的选择由2
θ
所在的象限确定〕 ①2cos 12sin
θθ
-±
= ②2
cos 12sin 2θ
θ-= ③2cos 12cos θθ+±= ④2cos 12
cos 2
θθ
+=
⑤2sin 2cos 12θθ=- ⑥2
cos 2cos 12θ
θ=+ ⑦2
sin
2
cos )2
sin 2
(cos sin 12θ
θθθθ±=±=±
⑧θ
θ
θθθθθ
sin cos 1cos 1sin cos 1cos 12
-=+=+-±
=tg
⒔积化和差公式:
[])sin()sin(2
1
cos sin βαβαβα-++=
[])sin()sin(2
1
sin cos βαβαβα--+=
[])cos()cos(21
cos cos βαβαβα-++=
()[]βαβαβα--+-=cos )cos(2
1sin sin ⒕和差化积公式: ①2cos
2sin
2sin sin β
αβ
αβα-+=+ ②2
sin
2cos
2sin sin β
αβ
αβα-+=-
③2cos 2cos 2cos cos βαβαβα-+=+ ④2
sin
2sin 2cos cos β
αβαβα-+-=- ⒖反三角函数: ⒗最简单的三角方程。