人教版数学七年级上册第二章整式的加减《单元综合测试题》含答案

合集下载

人教版七年级上数学第二章《整式加减》综合测试卷(含答案)

人教版七年级上数学第二章《整式加减》综合测试卷(含答案)

人教版七年级上数学第二章《整式加减》综合测试卷(含答案)一、选择题1.下列式子书写正确的是( )A.a48B.x÷yabcC.a(x+y)D.112答案 C2化简-16(x-0.5)的结果是( )A.-16x-0.5B.16x+0.5C.16x-8D.-16x+8答案 D. -16(x-0.5)=-16x+8,故选择D.3.下列说法正确的是( )A.ab+c是二次三项式B.多项式2x+3y2的次数是4C.5是单项式是整式D.ba答案 Cx a+2y3与-3x3y2b-1是同类项,那么a,b的值分别是( )4.如果13A.a=1,b=2B.a=0,b=21C.a=2,b=1D.a=1,b=1答案 Ax-10)元出售,则下列说法中, 5.某商店举办促销活动,促销的方法是将原价x元的衣服以(45能正确表达该商店促销方法的是( )A.原价减去10元后再打8折B.原价打8折后再减去10元C.原价减去10元后再打2折D.原价打2折后再减去10元答案 B6.当x=-2时,-(x-3)+(2-x)+(3x-1)的值为( )A.2B.3C.4D.5答案 A7.若(3x2-3x+2)-(-x2+3x-3)=Ax2-Bx+C,则A、B、C的值分别为( )A.4、-6、5B.4、0、-1C.2、0、5D.4、6、5答案 D8.多项式1x|n|-(n+2)x+7是关于x的二次三项式,则n的值是( )2A.2B.-2C.2或-2D.3答案 A239. 已知多项式ax 5+bx 3+cx,当x=1时多项式的值为5,那么当x=-1时该多项式的值为( )A.-5B.5C.1D.无法求出 答案 A10.已知m 、n 为常数,代数式2x 4y+mx|5-n|y+xy 化简之后为单项式,则m n的值共有( ) A.1个 B.2个 C.3个 D.4个 答案 C11.若x 2+ax-2y+7-(bx 2-2x+9y-1)的值与x 的取值无关,则-a+b 的值为( )A.3B.1C.-2D.2答案 A12.如果关于x 的代数式-3x 2+ax+bx 2+2x+3合并后不含x 的一次项,那么( )A.a+b=0B.a=0C.b=3D.a=-2 答案 D 二、填空题(每小题3分,共30分)13.一台电视机原价是2 500元,现按原价的8折出售,则购买a 台这样的电视机需要 元.答案 2 000a14.在代数式:a 2-12,-3xy 3,0,4ab,3x 2-4,xy 7,n 中,单项式有 个.答案 5 15.多项式6x 3-xy 5+y 2中共有 项,各项系数分别为 .答案 三;6,-15,115.若单项式-2m2n x-1和5a4b2c的次数相同,则代数式x2-2x+3的值为.3答案2716.已知3a-2b=2,则9a-6b+5= .答案1117.已知a2+2ab=-8,b2+2ab=14,则a2+4ab+b2= ,a2-b2= .答案6;-2218.图2-3-1是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,……,则第n(n为正整数)个图案由个▲组成.图2-3-1答案(3n+1)三、解答题19.化简:(1)2m-3n+[6m-(3m-n)] (2)(2a2-1+3a)-2(a+1-a2).答案(1)5m-2n.(2)4a2+a-3.20.已知A=-x2+5-4x,B=5x-4+2x2,C=-2x2+8x-3.(1)化简A+B-C;45(2)在(1)的结果中,若x 取最大负整数,结果是多少?答案 (1)3x 2-7x+4.(2)4.21.化简求值:12x-2(x -13y 2)+(-32x +13y 2),其中x=-2,y=-23答案 原式=-3x+y 2.当x=-2,y=-23时,原式=-3×(-2)+(-23)2=6+49=649. 22.已知m,x,y 满足:35(x-5)2+|m-2|=0,-3a 2·b y+1与a 2b 3是同类项,求整式(2x 2-3xy+6y 2)-m(3x 2-xy+9y 2)的值.答案-158.23.课堂上李老师给出了一道整式求值的题目,李老师把要求的整式(7a 3-6a 3b+3a 2b)-(-3a 3-6a 3b+3a 2b+10a 3-3)写完后,让王红同学顺便给出一组a 、b 的值,老师自己说答案,当王红说完:“a=65,b=-2 005”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?答案 相信.(7a 3-6a 3b+3a 2b)-(-3a 3-6a 3b+3a 2b+10a 3-3)=7a 3-6a 3b+3a 2b+3a 3+6a 3b-3a 2b-10a 3+3=(7a 3+3a 3-10a 3)+(-6a 3b+6a 3b)+(3a 2b-3a 2b)+3=3,则不管a 、b 取何值,整式的值都为3.。

人教版数学七年级上册第二章整式的加减《单元综合测试卷》含答案

人教版数学七年级上册第二章整式的加减《单元综合测试卷》含答案

人教版数学七年级上学期第二章整式的加减测试一.选择题(共10小题)1.下列说法中,正确的是( ) A. 24m n 不是整式 B. ﹣32abc 的系数是﹣3,次数是3 C. 3是单项式D. 多项式2x 2y ﹣xy 是五次二项式 2.下列每组单项式中是同类项的是( )A. 2xy 与﹣13yx B. 3x 2y 与﹣2xy 2 C. 12x -与﹣2xy D. xy 与yz 3.下列各式合并同类项结果正确的是( )A. 3x 2﹣x 2=3B. 3x 2+5x 3=8x 3C. 3a 2﹣a 2=aD. 3a 2﹣a 2=2a 2 4.下列说法正确的是 ( )A. x 系数是0B. y 不是单项式C. 0.5是单项式D. -5a 的系数是5 5.单项式2a 3b 的次数是( )A 2B. 3C. 4D. 5 6.在代数式 a+b ,37x 2,5a ,m ,0,3a b a b +-,32x y -中,单项式的个数是( ) A. 6B. 5C. 4D. 3 7.对于式子:22x y +,2a b ,12,3x 2+5x -2,abc,0,2x y x +,m ,下列说法正确的是( ) A. 有5个单项式,1个多项式 B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式 8.若代数式2x a y 3z c 与4212b x y z -是同类项,则( ) A. a=4,b=2,c=3B. a=4,b=4,c=3C. a=4,b=3,c=2D. a=4,b=3,c=4 9.多项式()1472m x m x --+是关于x 四次三项式,则m 的值是( ) A. 4 B. -2 C. -4 D. 4或-410.一个多项式减去x 2﹣2y 2等于x 2+y 2,则这个多项式是( )A. ﹣2x 2+y 2B. 2x 2﹣y 2C. x 2﹣2y 2D. ﹣x 2+2y 2二.填空题(共6小题) 11.225ab π-系数是________,次数是_______次; 12.把a ﹣b 当作一个因式,则3(a ﹣b)+4(a ﹣b)2﹣2(a ﹣b)﹣3(a ﹣b)2﹣(a ﹣b)2=_____.13.如果单项式a 13x y +与3b 2x y 是同类项,那么b a =____.14.若单项式﹣x m ﹣2y 3与23x n y 2m ﹣3n 的和仍是单项式,则m ﹣n =_____. 15.多项式2x 3-x 2y 2-3xy+x-1是__________次_________项式.16.一个多项式与单项式﹣4x 的差等于3x 2﹣2x ﹣1,那么这个多项式为_____.三.解答题(共7小题)17.先化简,再求值.()22222122322233x x xy y x xy y ⎡⎤⎛⎫--++--- ⎪⎢⎥⎝⎭⎣⎦,其中x =12,y =﹣1. 18.若2x m y 2﹣(n ﹣3)x+1是关于x 、y 的三次二项式,求m 、n 的值.19.已知多项式﹣3x 2+mx+nx 2﹣x+3的值与x 无关,求(2m ﹣n)2017的值.20.已知单项式﹣25m 2x ﹣1n 9和25m 5n 3y 是同类项,求代数式12x ﹣5y 的值. 21.某村小麦种植面积是a 公顷,水稻种植面积比小麦种植面积的2倍还多25公顷,玉米的种植面积比小麦种植面积少5公顷,列式计算水稻种植面积比玉米种植面积多多少公顷?22.当x=-12,y=-3时,求代数式 3(x 2﹣2xy)﹣[3x 2﹣2y+2(xy+y)]的值. 23.定义:若a b 2+=,则称a 与b 是关于1平衡数.(1)3与______是关于1的平衡数,5x -与______是关于1的平衡数.(用含x 的代数式表示)(2)若()22a 2x 3x x 4=-++,()2b 2x 3x 4x x 2⎡⎤=--+-⎣⎦,判断a 与b 是否是关于1 的平衡数,并说明理由.答案与解析一.选择题(共10小题)1.下列说法中,正确的是( )A.24m n不是整式 B. ﹣32abc的系数是﹣3,次数是3C. 3是单项式D. 多项式2x2y﹣xy是五次二项式【答案】C【解析】【分析】由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式;系数就是一个单项式中的常数项;次数是指所有字母的指数之和;多项式的项数是指这个多项式中单项式的个数;多项式中各单项式的最高次数作为这个多项式的次数.【详解】根据定义可知:24m n是整式;﹣32abc的系数是﹣32,次数是3;多项式2x2y﹣xy是三次二项式;故选择C.2.下列每组单项式中是同类项是( )A. 2xy与﹣13yx B. 3x2y与﹣2xy2C.12x与﹣2xy D. xy与yz【答案】A【解析】【分析】根据同类项的概念(所含字母相同,并且相同字母的指数也相同)进行判断.【详解】A选项:2xy与﹣13yx含字母相同,并且相同字母指数也相同,所以是同类项,故是正确的;B选项:3x2y与-2xy2所含字母相同,但相同字母的指数不同,所以不是同类项,故是错误的;C选项:-12x与﹣2xy所含字母不同,所以不是同类项,故是错误的;D选项:xy与yz所含字母不同,所以不是同类项,故是错误的;故选A.【点睛】考查同类项,掌握同类项的定义:所含字母相同,并且相同字母的指数也相同是解题的关键.3.下列各式合并同类项结果正确的是( )A. 3x2﹣x2=3B. 3x2+5x3=8x3C. 3a2﹣a2=aD. 3a2﹣a2=2a2【答案】D【解析】【分析】所含字母相同且相同字母的指数也相同的项为同类项,只有同类项才能合并,合并时各同类项系数相加减,字母及其指数不变.【详解】解:A,原式=2x2,故错误;B,原式已是最简式,无法再进行合并,故错误;C,原式=2a2,故错误;D,原式=2a2,故正确;故选D.【点睛】本题考查了合并同类项的概念.4.下列说法正确的是 ( )A. x的系数是0B. y不是单项式C. 0.5是单项式D. -5a的系数是5【答案】C【解析】A选项,∵的系数是1,∴A选项说法错误;B选项,∵单独的一个数或字母都是单项式,∴B选项说法错误;C选项,∵单独的一个数或字母都是单项式,∴C选项说法正确;D选项,∵5a 的系数是,∴D选项说法错误;故选C.5.单项式2a3b的次数是( )A. 2B. 3C. 4D. 5【答案】C【解析】分析:根据单项式的性质即可求出答案.详解:该单项式的次数为:3+1=4故选C .点睛:本题考查单项式的次数定义,解题的关键是熟练运用单项式的次数定义,本题属于基础题型. 6.在代数式 a+b ,37x 2,5a ,m ,0,3a b a b +-,32x y -中,单项式的个数是( ) A. 6B. 5C. 4D. 3 【答案】D【解析】【分析】根据单项式的概念判断即可.【详解】代数式a+b ,37x 2,5a ,﹣m ,0,3a b a b +-,32x y -中单项式有:37x 2,5a ,﹣m ,0,共计3个. 故选D.【点睛】考查的是单项式的概念,数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式. 7.对于式子:22x y +,2a b ,12,3x 2+5x -2,abc,0,2x y x +,m ,下列说法正确的是( ) A. 有5个单项式,1个多项式 B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式 【答案】C【解析】分析:分别利用多项式以及单项式的定义分析得出答案. 详解:22x y +,2a b ,12,3x 2+5x ﹣2,abc,0,2x y x +,m 中:有4个单项式:12,abc,0,m ; 2个多项式:22x y +,3x 2+5x-2. 故选C .点睛:此题主要考查了多项式以及单项式,正确把握相关定义是解题关键.8.若代数式2x a y 3z c 与4212b x y z -是同类项,则( ) A. a=4,b=2,c=3B. a=4,b=4,c=3C. a=4,b=3,c=2D. a=4,b=3,c=4 【答案】C【解析】根据同类项的概念,含有相同的字母,相同字母的指数相同,故可由代数式2x a y 3z c 与4212b x y z -是同类项,求得a=4,b=3,c=2,故选C .9.多项式()1472m x m x --+是关于x 的四次三项式,则m 的值是( ) A. 4 B. -2 C. -4 D. 4或-4【答案】C【解析】 ∵多项式()1472m x m x --+是关于x 的四次三项式, ∴|m|=4,且m-4≠0,∴m=-4,故选C.【点睛】本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.10.一个多项式减去x 2﹣2y 2等于x 2+y 2,则这个多项式是( )A. ﹣2x 2+y 2B. 2x 2﹣y 2C. x 2﹣2y 2D. ﹣x 2+2y 2【答案】B【解析】【分析】根据:被减式=减式+差,列式计算即可得出答案.【详解】解:这个多项式为:x 2﹣2y 2+(x 2+y 2),=(1+1)x 2+(﹣2+1)y 2,=2x 2﹣y 2,故选B .【点睛】本题主要考查整式的加减.熟练应用整式加减法计算法则进行计算是解题的关键. 二.填空题(共6小题) 11.225ab π-的系数是________,次数是_______次; 【答案】 (1). 25π-(2). 3 【解析】 单项式225ab π-的系数是-25π,次数是3. 点睛:单项式的定义:不含加减号的代数式(数与字母的积的代数式),一个单独的数或字母也叫单项式.单项式中的数字因数叫做这个单项式的系数.所有字母的指数和叫做这个单项式的次数.12.把a ﹣b 当作一个因式,则3(a ﹣b)+4(a ﹣b)2﹣2(a ﹣b)﹣3(a ﹣b)2﹣(a ﹣b)2=_____.【答案】a ﹣b【解析】【分析】把a-b 看作是一个整体.合并同类项时系数相加减,字母与字母的指数不变.【详解】3(a-b)+4(a-b)2-2(a-b)-3(a-b)2-(a-b)2=(3-2)(a-b)+(4-3-1)(a-b)2=a-b .【点睛】利用整体思想,且灵活运用合并同类项法则是解题关键.13.如果单项式a 13x y +与3b 2x y 是同类项,那么b a =____.【答案】8【解析】【分析】根据同类项的定义可知,相同字母的次数相同,据此列出方程即可求出a 、b 的值.【详解】∵单项式a 13x y +与3b 2x y 是同类项,∴a 13{b 3+==, 解得a 2{b 3==. ∴b 3a 2=8=.故答案为8.14.若单项式﹣x m ﹣2y 3与23x n y 2m ﹣3n 的和仍是单项式,则m ﹣n =_____. 【答案】13. 【解析】 ∵单项式﹣x m ﹣2y 3与23x n y 2m ﹣3n 的和仍是单项式, ∴m ﹣2=n,2m ﹣3n=3,解得:m=3,n=1,∴m ﹣n =3﹣1=13; 故答案为13. 15.多项式2x 3-x 2y 2-3xy+x-1是__________次_________项式.【答案】 (1). 四 (2). 五【解析】【分析】根据多项式的次数和项数的定义直接进行解答即可.【详解】多项式2x 3﹣x 2y 2﹣3xy+x ﹣1是四次五项式.故答案为四,五.16.一个多项式与单项式﹣4x 的差等于3x 2﹣2x ﹣1,那么这个多项式为_____.【答案】3x 2﹣6x ﹣1【解析】【分析】根据题意列出关系式,去括号合并即可得到结果.【详解】根据题意得:(3x 2-2x-1)+(-4x)=3x 2-2x-1-4x=3x 2-6x-1,故答案是:3x 2-6x-1【点睛】考查了整式的加减,熟练掌握运算法则是解本题的关键.三.解答题(共7小题)17.先化简,再求值.()22222122322233x x xy y x xy y ⎡⎤⎛⎫--++--- ⎪⎢⎥⎝⎭⎣⎦,其中x =12,y =﹣1. 【答案】x 2+2y 2,94. 【解析】【分析】先去小括号,再去中括号,合并同类项,最后代入求出即可. 【详解】()22222122322233x x xy y x xy y ⎡⎤⎛⎫--++--- ⎪⎢⎥⎝⎭⎣⎦ =2x 2﹣[﹣x 2+2xy +2y 2]﹣2x 2+2xy +4y 2=2x 2+x 2﹣2xy ﹣2y 2﹣2x 2+2xy +4y 2=x 2+2y 2,当x=12,y=﹣1时,原式=14+2=94.【点睛】本题考查了整式的加减-化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.18.若2x m y2﹣(n﹣3)x+1是关于x、y的三次二项式,求m、n的值.【答案】m=1,n=3【解析】【分析】根据题意,由三次二项式的定义得出m+2=3,n-3=0,然后解得m,n,即可求得答案.【详解】∵2x m y2﹣(n﹣3)x+1是关于x、y的三次二项式,∴m+2=3,n﹣3=0,解得m=1,n=3.【点睛】考查学生对多项式的理解和掌握,要求学生对多项式的概念有正确深入的理解.19.已知多项式﹣3x2+mx+nx2﹣x+3的值与x无关,求(2m﹣n)2017的值.【答案】-1【解析】【分析】先把多项式进行合并同类项得(n-3)x2+(m-1)x+3,由于关于字母x的二次多项式-3x2+mx+nx2-x+3的值与x无关,即不含x的项,所以n-3=0,m-1=0,然后解出m、n,代入计算(2m-n)2017的值即可.【详解】合并同类项得(n﹣3)x2+(m﹣1)x+3,根据题意得n﹣3=0,m﹣1=0,解得m=1,n=3,所以(2m﹣n)2017=(﹣1)2017=﹣1.【点睛】考查了多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.20.已知单项式﹣25m2x﹣1n9和25m5n3y是同类项,求代数式12x﹣5y的值.【答案】-13.5. 【解析】分析】首先根据同类项的定义求出x和y的值,然后代入代数式得出答案.【详解】解:∵单项式﹣25m2x﹣1n9和25m5n3y是同类项,∴2x﹣1=5,3y=9, ∴x=3,y=3,∴12x﹣5y=12×3﹣5×3=﹣13.5.【点睛】本题主要考查的是同类项的定义以及代数式的求值问题,属于基础题型.理解同类项的定义是解题的关键.21.某村小麦种植面积是a公顷,水稻种植面积比小麦种植面积的2倍还多25公顷,玉米的种植面积比小麦种植面积少5公顷,列式计算水稻种植面积比玉米种植面积多多少公顷?【答案】a+30公顷.【解析】试题分析:根据题意可得水稻种植面积为(2a+25)公顷,玉米种植面积为(a﹣5)公顷,求出水稻种植面积与玉米种植面积的差即可得出结果.试题解析:水稻种植面积为(2a+25)公顷,玉米种植面积为(a﹣5)公顷,则水稻种植面积比玉米种植面积大(2a+25)﹣(a﹣5)=2a+25﹣a+5=a+30(公顷).考点:整式的加减.22.当x=-12,y=-3时,求代数式3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)]的值.【答案】﹣12【解析】试题分析:本题应对代数式进行去括号,合并同类项,将代数式化为最简式,然后把x的值代入即可.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.解:原式=3x2﹣6xy﹣3x2+2y﹣2xy﹣2y=﹣8xy,当x=,y=﹣3时,原式=﹣12.考点:整式的加减—化简求值.23.定义:若a b2+=,则称a与b是关于1的平衡数.(1)3与______是关于1的平衡数,5x-与______是关于1的平衡数.(用含x的代数式表示)(2)若()22a 2x 3x x 4=-++,()2b 2x 3x 4x x 2⎡⎤=--+-⎣⎦,判断a 与b 是否是关于1 的平衡数,并说明理由.【答案】(1)﹣1;x ﹣3;(2)a 与b 不是关于1的平衡数【解析】【分析】(1)由平衡数的定义即可求得答案;(2)计算a+b 是否等于1即可.【详解】(1)设3的关于1的平衡数为a ,则3+a=2,解得a=﹣1, ∴3与﹣1是关于1的平衡数,设5﹣x 的关于1的平衡数为b ,则5﹣x+b=2,解得b=2﹣(5﹣x )=x ﹣3, ∴5﹣x 与x ﹣3是关于1的平衡数,故答案﹣1;x ﹣3;(2)a 与b 不是关于1的平衡数,理由如下:∵a=2x 2﹣3(x 2+x )+4,b=2x ﹣[3x ﹣(4x+x 2)﹣2],∴a+b=2x 2﹣3(x 2+x )+4+2x ﹣[3x ﹣(4x+x 2)﹣2]=2x 2﹣3x 2﹣3x+4+2x ﹣3x+4x+x 2+2=6≠2, ∴a 与b 不是关于1的平衡数.。

完整版人教版七年级上册数学第二章 整式的加减含答案(含解析)

完整版人教版七年级上册数学第二章 整式的加减含答案(含解析)

人教版七年级上册数学第二章整式的加减含答案一、单选题(共15题,共计45分)1、下列判断错误的是()A.1-a-2ab是二次三项式B.-a 2b 2c与2ca 2b 2是同类项C.是多项式 D. πa 2的系数是π2、一个多项式加上多项式2x﹣1后得3x﹣2,则这个多项式为()A.x﹣1B.x+1C.x﹣3D.x+33、下列运算正确的是()A. B. C. D.4、多项式3x3﹣2x2﹣15的次数为()A.2B.3C.4D.55、下列说法正确的是()A.单项式的系数是-5,次数是2B.单项式a的系数为1,次数是0 C. 是二次单项式 D.单项式-ab的系数为-,次数是26、若﹣x2y n与3yx2是同类项,则n的值是()A.﹣1B.3C.1D.27、下列计算正确的是()A.2x+3y=5xyB.x 2•x 3=x 6C.(a 3)2=a 6D.(ab)3=ab 38、下列计算正确的是()A.2x+3y=5xyB.5a 2﹣3a 2=2C.(﹣7)÷ =﹣7D.(﹣2)﹣(﹣3)=19、去括号后结果错误的是()A.2(a+2b)=2a+4bB.3(2m﹣n)=6m﹣3nC.﹣[c﹣(a﹣b)]=﹣c ﹣a+bD.﹣(x﹣y+z)=﹣x+y﹣z10、在一张某月的日历上,任意圈出同一列上的三个数的和不可能是( )A.14B.33C.51D.2711、在﹣3x,6﹣a=2,4ab2, 0,,,>,x中,是代数式的共有()A.7个B.6个C.5个D.4个12、下列说法中正确的是( )A.若,则B.若,则C. 的系数是D.若,则13、下列叙述①单项式- 的系数是- ,次数是3次;②用一个平面去截一个圆锥,截面的形状可能是一个三角形;③在数轴上,点A、B分别表示有理数a、b,若a >b,则A到原点的距离比B到原点的距离大;④从八边形的一个顶点出发,最多可以画五条对角线;⑤六棱柱有八个面,18条棱.其中正确的有()A.2个B.3个C.4个D.5个14、下列结论正确的是( )A.3a 2b-a 2b=2B.单项式-x 2的系数是-1C.使式子(x+2)0有意义的x的取值范围是x≠0D.若分式的值等于0,则a=±115、下列结论正确的是()A.2 ﹣1=﹣2B.单项式﹣x 2的系数是﹣1C.使式子有意义的x的取值范围是x<2D.若分式的值等于0,则a=﹣1二、填空题(共10题,共计30分)16、体育课上,甲、乙两班学生进行“引体向上”身体素质测试,测试统计结果如下:甲班:全班同学“引体向上”总次数为;乙班:全班同学“引体向上”总次数为.(注:两班人数均超过30人)请比较一下两班学生“引体向上”总次数,________班的次数多,多________次.17、写出一个单项式,使它的系数是,次数是,________.18、某同学在做计算2A+B时,误将“2A+B”看成了“2A﹣B”,求得的结果是9x2﹣2x+7,已知B=x2+3x+2,则2A+B的正确答案为________.19、若5x3y n和﹣x m y2是同类项,则3m﹣7n=________.20、观察下面由※组成的图案和算式,解答问题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52请用上述规律计算:1+3+5+…+2003+2005=________.21、﹣πa2b的系数是________,次数是________.22、单项式﹣πa3bc的次数是________,系数是________.23、若﹣2x m﹣n y2与3x4y2m+n是同类项,则m﹣3n的立方根是________.24、已知a、b、c是△ABC的三边,化简|a﹣b﹣c|+|b+c﹣a|+|c+a+b|得________.25、有理数,,在数轴上的位置如图所示,试化简________.三、解答题(共6题,共计25分)26、下列代数式中,哪些是整式?①x2+y2;②﹣x;③;④6xy+1;⑤;⑥0;⑦.27、已知A=3x2-ax+6x-2,B=-3x2+4ax-7,若A+B的值不含x项,求a的值.28、先化简,再求值:已知,求代数式2xy2-[6x-4(2x-1)-2xy2]+9的值。

【数学单元测试】人教版数学七年级(上)第二章单元质量检测试卷、答案.doc

【数学单元测试】人教版数学七年级(上)第二章单元质量检测试卷、答案.doc

人教版七年级上册第2章《整式的加减》单元检测卷一、选择题1.下列说法正确的是( )A .3不是单项式B .x 3y 2没有系数C .-18是一次一项式 D .-14xy 3是单项式2.下列说法错误的是( ) A .x 是单项式 B .3x 4是四次单项式 C .的系数是D .x 3﹣xy 2+2y 3是三次多项式3.下列选项中的单项式,与 2xy 是同类项的是( )A. 2x 2y 2B. 2xC. xyD. 2y 4.下列各式计算结果正确的是( )A. a+a=a 2B. (a ﹣1)2=a 2﹣1C. a•a=a 2D. (3a )3=9a 2 5.-(a 2-b 3+c 4)去括号后为( )A .-a 2-b 3+c 4B .-a 2+b 3+c 4C .-a 2-b 3-c 4D .-a 2+b 3-c 46.若﹣3x 2m y 3与2x 4y n 的和是一个单项式,则|m ﹣n |的值是( ) A .0B .1C .7D .﹣17.下列说法中,正确的是( )A. 2不是单项式B. ﹣ab 2的系数是﹣1,次数是3C. 6πx 3的系数是6D. ﹣2x 2y/3的系数是﹣28.一个多项式加上3x 2y-3xy 2得x 3-3x 2y ,则这个多项式是( )A. x 3+3xy 2B. x 3-3xy 2C. x 3-6x 2y+3xy 2D. x 3-6x 2y-3x 2y 9.下列各项中,去括号正确的是( )A .x 2-2(2x -y +2)=x 2-4x -2y +4B .-3(m +n )-mn =-3m +3n -mnC .-(5x -3y )+4(2xy -y 2)=-5x +3y +8xy -4y 2D.ab-5(-a+3)=ab+5a-310.将2(x+y)+3(x+y)﹣4(x+y)合并同类项,得()A.x+y B.﹣x+y C.﹣x﹣y D.x﹣y11.关于多项式﹣3x2y3﹣2x3y2﹣y/2 ﹣3,下列说法正确的是()A. 它是三次四项式B. 它是关于字母y的降幂排列C. 它的一次项是y/2D. 3x2y3与﹣2x3y2是同类项12.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A. 393B. 397C. 401D. 405二、填空题13.用代数式表示“a的平方的6倍与3的差”为__________.14.“x2的3倍与y的倒数的和”,用代数式表示为.15.去括号:-[a-(b-c)]=________.16.观察下列各式:x+1,x2+4,x3+9,x4+16,x5+25,…按此规律写出第n个式子是________ 17.设A,B,C表示整式,且A-B=3x2-2x+1,B-C=4-2x2,则C-A=__________.18.观察下列等式:(1+2)2-4×1=12+4,(2+2)2-4×2=22+4,(3+2)2-4×3=32+4,(4+2)2-4×4=42+4,…,则第n个等式是________.三、解答题19.化简:(1)2x-5y-3x+y(2)20.先化简再求值(1)-(9x3-4x2+5)-(-3-8x3+3x2),其中x=-2;(2)5xy﹣[x2+4xy﹣y2﹣(x2+2xy﹣2y2)]其中,.21.已知多项式2x2+my-12与多项式nx2-3y+6的差中不含有x,y,求m+n+mn的值.22.已知A=x2﹣2xy,B=y2+3xy.(1)求2A﹣3B?(2)若A﹣B+C=0,试求C?(3)若x=﹣2,y=﹣3时,求2A﹣B+C的值?23.观察下列算式:①1×3﹣22=﹣1②2×4﹣32=﹣1③3×5﹣42=﹣1(1)请你安照以上规律写出第四个算式:________;(2)这个规律用含n(n为正整数,n≥1)的等式表达为:________;(3)你认为(2)中所写的等式一定成立吗?说明理由.24.某影剧院观众席近似于扇面形状,第一排有m个座位,后边的每一排比前一排多两个座位.(1)写出第n排的座位数;(2)当m=20时,①求第25排的座位数;②如果这个剧院共25排,那么最多可以容纳多少观众?25.小明做一道数学题:“已知两个多项式A,B,A=……,B=x2+3x-2,计算2A+B的值.”小明误把“2A+B”看成“A+2B”,求得的结果为5x2-2x+3,请求出2A+B的正确结果.答案一、1.D.2 C.3. C. 4.C. 5.D.6 B.7. B 8. C9.C10. A.11. B 12. B二、13.6a2-3.14.33x2+.15.-a+b-c 16.x n+n217.-x2+2x-518.(n+2)2-4n=n2+4三、19.(1)解:2x-5y-3x+y =(2-3)x+(-5+1)y=-x-4y(2)解:2(a+2b)-3(a-3b) =2a+4b-3a+9b=(2-3)a+(4+9)b=-a+13b20. (1)解:原式= = .当时,原式=. -6(2)解:原式=3xy-y2 ,当x=-2, y=-3时,原式=9 .21.解:由题意得(2x2+my-12)-(nx2-3y+6)=(2-n)x2+(m+3)y-18,因为差中不含有x,y,所以2-n=0,m+3=0,所以n=2,m=-3,故m+n+mn=-3+2+(-3)×2=-7.22.(1)∵A=x2﹣2xy,B=y2+3xy,∴2A﹣3B=2(x2﹣2xy)﹣3(y2+3xy)=2x2﹣4xy﹣3y2﹣9xy=2x2﹣13xy﹣3y2;(2)∵A﹣B+C=0,∴C=B﹣A=(y2+3xy)﹣(x2﹣2xy)=y2+3xy﹣x2+2xy=y2+5xy﹣x2;(3)∵A=x2﹣2xy,B=y2+3xy,C=y2+5xy﹣x2,∴2A﹣B+C=2(x2﹣2xy)﹣(y2+3xy)+(y2+5xy﹣x2)=2x2﹣4xy﹣y2﹣3xy+y2+5xy﹣x2=x2﹣2xy,当x=﹣2,y=﹣3,原式=4﹣2×6=﹣8.23.(1)④4×6﹣52=﹣1(2)(2n ﹣1)(2n+1)﹣(2n )2=﹣1(3)解:左边=(2n ﹣1)(2n+1)﹣(2n )2=4n 2﹣1﹣4n 2=﹣1 所以(2)中所写的等式一定成立 24..(1)m +2(n ﹣1).(2)①当m =20,n =25时,m +2(n ﹣1)=20+2×(25﹣1)=68(个); ②m +m +2+m +2×2+…+m +2×(25﹣1)=25m +600.当m =20时,25m +600=25×20+600=1 100(人).解:(1)第一排有m 个座位,后边的每一排比前一排多两个座位,第n 排有m +2(n ﹣1)=2n +m ﹣2(个);(2)当m =20时,25排:2×25+20﹣2=68(个);(3)25排最多可以容纳:(20+68)×25÷2=88×25÷2=1100(位) 25.解:由题意得,A =5x 2-2x +3-2(x 2+3x -2)=5x 2-2x +3-2x 2-6x +4=3x 2-8x +7. 所以2A +B =2(3x 2-8x +7)+(x 2+3x -2)=6x 2-16x +人教版七年级数学上册第二章整式加减单元测试(含答案)一、单选题1.单项式-23x y 的系数、次数分别是( )A.-1,3B.1,3C.13,3 D.-13,3 2.下列式子中代数式的个数为( ) ①-2ab ,②π,③s =12(a +b )h ,④x +3≥y ,⑤a (b +c )=ab =ac ,⑥1+2 A .2B .3C .4D .53.下列说法中,正确的是( ) A .5mn 不是整式 B .abc 的系数是0C .3是单项式D .多项式22x y xy-的次数是54.如果m ,n 都是正整数,那么多项式 的次数是( ) A.B.mC.D.m ,n 中的较大数5.某企业今年 月份产值为 万元, 月份比 月份增加了 , 月份比 月份减少了 ,则 月份的产值为( ) A. 万元B. 万元C. 万元D. 万元6.已知两个完全相同的大长方形,长为 ,宽为 ,各放入四个完全一样的白色小长方形后,得到图(1)、图(2),那么 与 之间的关系是( )A. B.C.D.7.若单项式212a b a b x y +-与333x y -是同类项,则b a 的值是( ) A .2B .1C .3D .48.[]()a b c --+去括号后应为( ) A .-a-b+cB .-a+b-cC .-a-b-cD .-a+b+c9.一个多项式减去x 2-2y 2等于x 2-2y 2,则这个多项式是( ) A .-2x 2+y 2B .x 2-2y 2C .2x 2-4y 2D .-x 2+2y 210.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A .19B .20C .21D .2211. 等于( ) A.B.C.D.12.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.8二、填空题13.已知212a a -+=人教版数学七年级上册第二章整式的加减单元测试及答案一、单选题1.下列各式中不是整式的是( )A. 3xB.C.D. x-3y2.下列各组单项式中,为同类项的是( )A. a 3与a 2B. a 2与2a 2C. 2xy 与2xD. -3与a3.a+b=﹣3,c+d=2,则(c ﹣b )﹣(a ﹣d )的值为( )A. 5B. -5C. 1D. -14.已知一个多项式与2x 2﹣3x ﹣1的和等于x 2﹣2x ﹣3,则这个多项式是( ) A. ﹣x 2+2x+2 B. ﹣x 2+x+2 C. x 2﹣x+2 D. ﹣x 2+x ﹣25.下列说法正确的是( )A. 0不是单项式B. x 没有系数C. ﹣xy 5是单项式D.是多项式6.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c 就是完全对称式.下列三个代数式:①(a-b )2;②ab+bc+ca ;③a 2b+b 2c+c 2a .其中是完全对称式的是( )A. ①②B. ①③C. ②③D. ①②③7.代数式的4x ﹣4﹣(4x ﹣5)+2y ﹣1+3(y ﹣2)值( )A. 与x ,y 都无关B. 只与x 有关C. 只与y 有关D. 与x ,y 都有关8.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n (n 是正整数)的结果为( )A. (2n+1)2B. (2n-1)2C. (n+2)2D. n 29.长方形的一边长等于3x+2y , 另一边长比它长x-y , 这个长方形的周长是( ) A. 4x+y B. 12x+2y C. 8x+2y D. 14x+6y10.如图,按大拇指,食指,中指,无名指,小指,再无名指,中指……的顺序数数,当数到2018时,对应的手指是( )A. 食指B. 中指C. 无名指D. 小指二、填空题11.单项式- x2y的系数是________.12.﹣的系数是a,次数是b,则a+b=________.13.如果(a-5)mn b+2是关于m、n的一个五次单项式,那么a=________,b=________.14.有这样一个数字游戏:将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x代表的数字是________,此时按游戏规则填写空格,所有可能出现的结果共有________种.15.若|x﹣1|+(y+2)2=0,则(x+y)2017=________.16.计算(9a2b+6ab2)÷3ab=________.17.在计算机程序中,二叉树是一种表示数据结构的方法.如图,﹣层二叉树的结点总数为1;二层二叉树的结点的总数为3;三层二叉树的结点总数为7;四层二叉树的结点总数为15…,照此规律,七层二叉树的结点总数为________.三、计算题18.计算:(1)(2)19.多项式a2x3+ax2-4x3+2x2+x+1是关于x的二次三项式,求a2+ +a的值.四、解答题20.先去括号,在合并同类项:3(2x2﹣y2)﹣2(3y2﹣2x2)21.七年级某同学做一道题:“已知两个多项式A,B,,计算”,他误将写成了,结果得到答案,请你帮助他求出正确的答案.22.先化简,再求值:a(a﹣2b)+2(a+b)(a﹣b)﹣(a﹣b)2,其中a=﹣,b=1.五、综合题23.寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:(1)当n个最小的连续偶数相加时,它们的和S与n之间有什么样的关系,用公式表示出来;(2)并按此规律计算:(a)2+4+6+…+100的值;(b)52+54+56+…+200的值.参考答案一、单选题1. B2. B3. A4. D5. C6. A7.C8.A9.D10. A二、填空题11. -12.13.≠5;214.2;615.-116.3a+2b17. 127三、计算题18.解:(1)==(2)===19.解:∵多项式a2x3+ax2-4x3+2x2+x+1是关于x的二次三项式∴(a2-4)=0 ∴a=±2又∵a+2≠0∴a≠-2∴a=2∴a2+ +a=22+ +2=4+ +2=四、解答题20.解:3(2x 2﹣y 2)﹣2(3y 2﹣2x 2) =6x 2﹣3y 2﹣6y 2+4x 2=(6x 2+4x 2)+(﹣3y 2﹣6y 2) =10x 2﹣9y 2 .21.解:∵2A+B=x 2+5x ﹣6,A=x 2+2x ﹣1,∴B=(x 2+5x ﹣6)﹣2(x 2+2x ﹣1)=x 2+5x ﹣6﹣2x 2﹣4x+2=﹣x 2+x ﹣4,∴A+2B=x 2+2x ﹣1+2(﹣x 2+x ﹣4)=x 2+2x ﹣1﹣2x 2+2x ﹣8=﹣x 2+4x ﹣922.解:原式=a 2﹣2ab+2a 2﹣2b 2﹣a 2+2ab ﹣b 2=2a 2﹣3b 2 , 当a=﹣ ,b=1时,原式=﹣2.5 五、综合题23.(1)解:S=n (n+1) (2)解:(a )2+4+6+…+100 =50×51 =2550;(b )52+54+56+…+200=(2+4+6+8+…+200)﹣(2+4+6++…+50) =100×101﹣25×26 =10100﹣650 =9450.人教版七年级数学上册第二章整式的加减单元测试(含答案)一、单选题1.下列各式中,代数式有( )个 (1)a+b=b+a;(2)1;(3)2x-1 ;(4)23x x+;(5) s = πr 2;(6) -6kA .2B .3C .4D .52.a 的5倍与b 的和的平方用代数式表示为( )A .(5a +b )2B .5a +b 2C .5a 2+b 2D .5(a +b )23.下列各式中,不是整式的是( ). A .3aB .2x = 1C .0D .xy4.23-x yz 的系数和次数分别是( ) A .系数是0,次数是5 B .系数是1,次数是6 C .系数是-1,次数是5D .系数是-1,次数是65.考试院决定将单价为a 元的统考试卷降价20%出售,降价后的销售价为( ) A .20%aB .20%a -C .(120%)a -D .(120%)a +6.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为a 厘米,宽为b 厘米)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4a 厘米B .4b 厘米C .2(a+b )厘米D .4(a-b )厘米7.使方程3x + 5y - 2 + 3kx + 4k = 0不含 x 的项,则 k 的值为( ) A .k =-1B .k =-2C .k=3D .k = 18.若2y m +5x n +2与﹣3x 4y 5是同类项,则m +n =( ) A .1B .2C .﹣1D .﹣39.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,图1中面积为1的正方形有9个,图2中面积为1的正方形有14个,⋯,按此规律,图12中面积为1的正方形的个数为( )A.64B.60C.54D.5010.下列选项正确的是( ) A .xy +x +1是二次三项式B .﹣25xy 的系数是﹣5C .单项式x 的系数是1,次数是0D .﹣22xyz 2的次数是6 11.一列数123,,,,n a a a a ,其中112a =,111n n a a -=-(n≥2的整数),则2019a =( )A .12B .2C .-1D .-212.设23A a =+,27B a a =-+,则A 与B 的大小关系是( ) A .A B >B .A B <C .A B ≥D .A B ≤二、填空题13.小强有x 张10分邮票,y 张50分邮票,则小强这两种邮票的总面值为______. 14.多项式3m 2-5m 3+2-m 是________次_______项式.15.多项式2239x xy π++中,次数最高的项的系数是_______. 16.找规律填数:﹣1,2,﹣4,8,________ 三、解答题 17.观察下列算式 1=1=12 1+3=4=22 1+3+5=9=32 1+3+5+7=16=42 …按规律填空:(1)1+3+5+7+9=______. (2)1+3+5+…+2005=_______. (3)1+3+5+7+9+…+_____=n².(4)根据以上规律计算 101+103+105+…+499. 18.把下列代数式的代号填入相应的集合括号里.(A )22a b ab + (B )2315x x -+ (C )2a b + (D )23xy -(E )0(F )3y x -+ (G )223a ab b =+ (H )2xy a(I )223x y + (1)单项式集合__________; (2)多项式集合____________; (3)整式集合_____人教版初中数学七年级上册第2章整式的加减单元测试卷一、单选题(共10题;共30分)1.下列运算中,结果正确的是( ). A. 4+=B.C.D.解:A.4与不是同类项,所以不能合并,错误;B.6xy与x不是同类项,所以不能合并,错误;C.,同类项与字母顺序无关,正确;D.12x3与5x4字母指数不同,不是同类项,所以不能合并,错误.故答案为:C.2.多项式﹣x2+2x+3中的二次项系数是()A. ﹣1B. 1C. 2D. 3解:多项式﹣x2+2x+3中的二次项系数是:﹣1.故答案为:A3.下列语句中错误的是()A. 数字0也是单项式B. 单项式–a的系数与次数都是1C. xy是二次单项式D. –的系数是–解:A,0也是单项式,故A不符合题意;B、单项式–a的系数与次数都是-1,故B符合题意;C、是二次单项式,故C不符合题意;D、的系数是,故D不符合题意;故答案为:B4.多项式- 2a3b + 3a2 - 4的项数和次数分别为()A. 3,3B. 4,3C. 3,4D. 3,6 解:题目中多项式是四次三项式,故次数是4,项数是3.故答案为:C.5.在代数式x2+5,-1,x2-3x+2,π,,中,整式有()A. 3个B. 4个C. 5个D. 6个解:依题可得:整式有:x2+5,-1,x2-3x+2,,共4个.故答案为:B.6.下列是用火柴棒拼成的一组图形,第①个图形中有3 根火柴棒,第②个图形中有9 根火柴棒,第③个图形中有18 根火柴棒,…,按此规律排列下去,第⑥个图形中火柴棒的根数是().A. 63B. 60C. 56D. 45解:∵第①有1个三角形,共有3×1根火柴;第②个有1+2个无重边的三角形,共有3×(1+2)根火柴;第③个有1+2+3个无重边的三角形,共有3×(1+2+3)根火柴;…∴第n个有1+2+3+…+n个无重边的三角形,共有3×(1+2+3+…+n)n(n+1)根火柴;∴第⑥个图形中火柴棒根数是×6×(6+1)=63.故答案为:A.7.下列各组整式中是同类项的是()A. a3与b3B. 2a2b与﹣a2bC. ﹣ab2c与﹣5b2cD. x2与2x 解:A、a3与b3所含的字母不同,不是同类项;B、2a2b与-a2b是同类项;C、-ab2c与-5b2c所含字母不同,不是同类项;D、x2与2x相同字母的指数不相同,不是同类项.故答案为:B.8.观察如图图形,并阅读相关文字:那么10条直线相交,最多交点的个数是()A. 10B. 20C. 36D. 45解:2条直线相交,只有1个交点,3条直线相交,最多有3个交点,4条直线相交,最多有6个交点,…,n条直线相交,最多有个交点,n=10时,=45.故答案为:D9.已知和是同类项,则m+n=()A. 6B. 5C. 4D. 3解:由题意得m=3,n-1=2,∴n=3,∴m+n=3+3=6.故答案为:A.10.按图示的方法,搭1个三角形需要3根火柴棒,搭2个三角形需要5根火柴棒,依此类推,若搭个三角形需2019根火柴棒,则()A. 1008B. 1009C. 1010D. 1011 解:∵一个三角形需要3根火柴,2个三角形需要3+2=5根火柴,3个三角形需要3+2×2=7根火柴,m个三角形需要3+2(m-1)=(2m+1)根火柴.由2m+1=2019解得m=1009,所以有2019根火柴棒,可以搭出这样的三角形1009个.故答案为:B.二、填空题(共6题;共18分)11.的系数是________,次数是________次解:单项式−a2bc3的系数是−,次数是6.故答案是:−,6.12.如果是一个五次三项式,那么m=________.解:由题意得m+2=5,故m=3。

人教版数学七年级上册第二章整式的加减单元综合测试题(含答案)

人教版数学七年级上册第二章整式的加减单元综合测试题(含答案)

人教版数学七年级上学期第二章整式的加减测试一.选择题(共10小题)1.下列各式﹣12mn,m,8,1a,x2+2x+6,25x y-,24x yπ+,1y中,整式有()A. 3 个B. 4 个C. 6 个D. 7 个2.单项式﹣12πx2y的系数与次数分别是( )A. -12,3 B. -12,4 C. -12π,3 D. -12π,43.如果一个多项式的次数都相等,则称该多项式为齐次多项式,例如:x3+2x2y+y3是三次齐次多项式,若x m y+3x3y2+5x2y n+y5是齐次多项式,则m n等于( )A. 32B. 64C. 81D. 1254.下列各组单项式中,同类项一组的是( )A. x3y与xy3B. 2a2b与﹣3a2bC. a2与b2D. ﹣2xy与3y5.若把x﹣y看成一项,合并2(x﹣y)2+3(x﹣y)+5(y﹣x)2+3(y﹣x)得( )A. 7(x﹣y)2B. ﹣3(x﹣y)2C. ﹣3(x+y)2+6(x﹣y)D. (y﹣x)26.与a﹣b﹣c的值不相等的是( )A. a﹣(b﹣c)B. a﹣(b+c)C. (a﹣b)+(﹣c)D. (﹣b)+(a﹣c)7.一个多项式与5a2+2a﹣1的和是6a2﹣5a+3,则这个多项式是( )A. a2﹣7a+4B. a2﹣3a+2C. a2﹣7a+2D. a2﹣3a+48.下列运算正确的是().A. 2a2-3a2=-a2B. 4m-m=3C. a2b-ab2=0D. x-(y-x)=-y9.规定一种新运算,a*b=a+b,a#b=a﹣b,其中a、b为有理数,化简a2b*3ab+5a2b#4ab的结果为( )A 6a2b+ab B. ﹣4a2b+7ab C. 4a2b﹣7ab D. 6a2b﹣ab10.x2+ax﹣2y+7﹣(bx2﹣2x+9y﹣1)值与x的取值无关,则﹣a+b的值为( )A. 3B. 1C. ﹣2D. 2二.填空题(共8小题)11.单项式12πx 2yz 的系数是_____. 12.下面是按一定规律排列的代数式:a 2,3a 4,5a 6,7a 8,则第8个代数式是__.13.若(k ﹣5)x |k ﹣2|y 是关于x ,y 的六次单项式,则k =_____.14.多项式﹣xy 2+2x -2x 3y 次数是_____. 15.若关于x 的多项式(a ﹣4)x 3﹣x 2+x ﹣2是二次三项式,则a =_____.16.化简﹣5ab +4ab 结果是_____.17.如果3x 2m ﹣2y n 与﹣5x m y 3是同类项,则m n 的值为_____.18.若关于a 、b 的多项式(a 2+2a 2b ﹣b )﹣(ma 2b ﹣2a 2﹣b )中不含a 2b 项,则m =_____三.解答题(共7小题)19.化简:(1)a 2﹣3a +8﹣3a 2+4a ﹣6;(2)a +(2a ﹣5b )﹣2(a ﹣2b ).20.先化简,再求值:3a 2+b 3﹣2(21﹣5b 3)﹣(3﹣a 2﹣2b 3),其中a =﹣3,b =﹣2.21.某同学在一次测验中计算A +B 时,不小心看成A ﹣B ,结果为2xy +6yz ﹣4xz .已知A =5xy ﹣3yz +2xz ,试求出原题目的正确答案.22.如果关于字母x 的二次多项式﹣3x 2+mx +nx 2﹣x +3的值与x 的取值无关,求2m ﹣3n 的值.23.若多项式(a +2)x 6+x b y +8是四次二项式,求a 2+b 2的值.24.已知A =2x 2﹣1,B =3﹣2x 2,求A ﹣2B 的值.25.(1)一个两位正整数,a 表示十位上的数字,b 表示个位上的数字(a ≠b ,ab ≠0),则这个两位数用多项式表示为 (含a 、b 的式子);若把十位、个位上的数字互换位置得到一个新两位数,则这两个两位数的和一定能被 整除,这两个两位数的差一定能被 整除.(2)一个三位正整数F ,各个数位上的数字互不相同且都不为0.若从它的百位、十位、个位上的数字中任意选择两个数字组成6个不同的两位数.若这6个两位数的和等于这个三位数本身,则称这样的三位数F 为“友好数”,例如:132是“友好数”.一个三位正整数P ,各个数位上数字互不相同且都不为0,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数P 为“和平数”;①直接判断123是不是“友好数”?②直接写出共有 个“和平数”;③通过列方程的方法求出既是“和平数”又是“友好数”的数.答案与解析一.选择题(共10小题)1.下列各式﹣12mn,m,8,1a,x2+2x+6,25x y-,24x yπ+,1y中,整式有()A. 3 个B. 4 个C. 6 个D. 7 个【答案】C【解析】分析】根据整式的定义,结合题意即可得出答案【详解】整式有﹣12mn,m,8,x2+2x+6,25x y-,24x yπ+故选C【点睛】本题主要考查了整式的定义,注意分式与整式的区别在于分母中是否含有未知数.2.单项式﹣12πx2y的系数与次数分别是( )A. -12,3 B. -12,4 C. -12π,3 D. -12π,4【答案】C【解析】【分析】根据单项式的概念即可求出答案【详解】系数为:-1 2π次数为:3故选C【点睛】本题考查单项式的概念,解题的关键是正确理解单项式的概念3.如果一个多项式的次数都相等,则称该多项式为齐次多项式,例如:x3+2x2y+y3是三次齐次多项式,若x m y+3x3y2+5x2y n+y5是齐次多项式,则m n等于( )A. 32B. 64C. 81D. 125【答案】B【解析】【分析】根据多项式是齐次多项式,先判断该多项式的次数,再求出m、n的值,代入计算即可【详解】∵x m y+3x3y2+5x2y n+y5是齐次多项式,∴它是齐五次多项式,所以m+1=5,2+n=5,解得m=4,n=3.所以m n=43=64.故选B【点睛】本题考查了多项式的次数、乘方运算,解决本题的关键是理解齐次多项式的定义.4.下列各组单项式中,同类项一组的是( )A. x3y与xy3B. 2a2b与﹣3a2bC. a2与b2D. ﹣2xy与3y【答案】B【解析】【分析】根据同类项定义即可求出答案【详解】如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.故选B【点睛】本题考查同类项的定义,解题的关键是正确理解同类项的定义5.若把x﹣y看成一项,合并2(x﹣y)2+3(x﹣y)+5(y﹣x)2+3(y﹣x)得( )A. 7(x﹣y)2B. ﹣3(x﹣y)2C. ﹣3(x+y)2+6(x﹣y)D. (y﹣x)2【答案】A【解析】【分析】把x-y看作整体,根据合并同类项的法则,系数相加字母和字母的指数不变,进行选择.【详解】解:2(x-y)2+3(x-y)+5(y-x)2+3(y-x),=[2(x-y)2+5(y-x)2]+[3(y-x)+3(x-y)],=7(x-y)2.故选A.【点睛】本题考查合并同类项的法则,是基础知识比较简单.6.与a﹣b﹣c的值不相等的是( )A. a﹣(b﹣c)B. a﹣(b+c)C. (a﹣b)+(﹣c)D. (﹣b)+(a﹣c)【答案】A【解析】【分析】根据去括号方法逐一计算即可【详解】A、a﹣(b﹣c)=a﹣b+c.故本选项正确;B、a﹣(b+c)=a﹣b﹣c,故本选项错误;C、(a﹣b)+(﹣c)=a﹣b﹣c,故本选项错误;D、(﹣b)+(a﹣c)=﹣c﹣b+a,故本选项错误.故选A【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是”+“,去括号后,括号里的各项都不改变符号;括号前是”﹣“,去括号后,括号里的各项都改变符号7.一个多项式与5a2+2a﹣1的和是6a2﹣5a+3,则这个多项式是( )A. a2﹣7a+4B. a2﹣3a+2C. a2﹣7a+2D. a2﹣3a+4【答案】A【解析】【分析】根据题意列出关系式,去括号合并即可得到结果.【详解】解:根据题意得:(6a2﹣5a+3)﹣(5a2+2a﹣1)=6a2﹣5a+3﹣5a2﹣2a+1=a2﹣7a+4,故选A.【点睛】此题考查整式的加减,解题关键是熟练掌握运算法则.8.下列运算正确的是().A. 2a2-3a2=-a2B. 4m-m=3C. a2b-ab2=0D. x-(y-x)=-y【答案】A【解析】【分析】根据整式加减法的运算方法,逐一判断即可.【详解】解:∵2a2-3a2=-a2,∴选项A 正确;∵4m-m=3m,∴选项B 不正确;∵a 2b-ab 2≠0,∴选项C 不正确;∵x-(y-x)=2x-y,∴选项D 不正确.故选A .【点睛】此题主要考查了整式的加减法,要熟练掌握,解答此题的关键是要明确:整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.9.规定一种新运算,a *b =a +b ,a #b =a ﹣b ,其中a 、b 为有理数,化简a 2b *3ab +5a 2b #4ab 的结果为( )A. 6a 2b +abB. ﹣4a 2b +7abC. 4a 2b ﹣7abD. 6a 2b ﹣ab【答案】D【解析】【分析】原式利用题中的新定义计算即可求出值【详解】根据题中的新定义得:原式=a 2b +3ab +5a 2b ﹣4ab =6a 2b ﹣ab ,故选D .【点睛】此题考查了整式的加减,以及有理数的混合运算,熟练掌握运算法则是解本题的关键10.x 2+ax ﹣2y +7﹣(bx 2﹣2x +9y ﹣1)的值与x 的取值无关,则﹣a +b 的值为( )A. 3B. 1C. ﹣2D. 2 【答案】A【解析】【详解】试题分析:先把代数式化简合并同类项,值与x 的取值无关所以含x 项的系数为0.x 2 +ax -2y+7- (bx 2 -2x+9y -1)=22227291(1)(2)118+-+-+-+-++-+x ax y bx x y b x a x y 所以20a +=,10b -=解得2,1a b =-=,所以3-+=a b ,所以选A.考点:整式化简求值. 二.填空题(共8小题)11.单项式12πx 2yz 的系数是_____.【答案】12π 【解析】【分析】 根据单项式系数的概念即可求出答案 【详解】该单项式为12π 故答案为12π 【点睛】本题考查单项式的系数,解题的关键是正确理解单项式的系数12.下面是按一定规律排列的代数式:a 2,3a 4,5a 6,7a 8,则第8个代数式是__.【答案】15a 16【解析】【分析】根据单项式的系数与次数的规律即可求出答案【详解】系数的规律为:1、3、5、7……、2n ﹣1,次数的规律为:2、4、6、8……、2n ,∴第8个代数式为:15a 16,故答案为15a 16【点睛】考查数字规律,解题的关键是找出题意给出的规律13.若(k ﹣5)x |k ﹣2|y 是关于x ,y 的六次单项式,则k =_____.【答案】﹣3或7【解析】【分析】利用一个单项式中所有字母的指数的和叫做单项式的次数求解即可【详解】∵(k ﹣5)x |k ﹣2|y 是关于x ,y 的六次单项式∴|k ﹣2|=5,k ﹣5≠0解得k =﹣3,k =7∴k =﹣3或7故答案为﹣3或7【点睛】本题主要考查了单项式,解题的关键是熟记单项式的次数定义14.多项式﹣xy 2+2x -2x 3y 的次数是_____.【解析】【分析】多项式中,次数最高的单项式的次数即为多项式的次数.【详解】解:该多项式中,次数最高的单项式的次数为3+1=4,故该多项式的次数为:4.【点睛】本题考查了多项式的定义.15.若关于x多项式(a﹣4)x3﹣x2+x﹣2是二次三项式,则a=_____.【答案】4【解析】【分析】根据多项式的项和次数的定义来解题.要先找到题中的等量关系,然后列出方程.【详解】因为关于x的多项式(a﹣4)x3﹣x2+x﹣2是二次三项式可得:a﹣4=0解得:a=4故答案为4【点睛】本题考查了多项式.解此类题目时要明确以下概念:(1)组成多项式的每个单项式叫做多项式的项;(2)多项式中次数最高项的次数叫做多项式的次数;(3)多项式中不含字母的项叫常数项.16.化简﹣5ab+4ab的结果是_____.【答案】﹣ab【解析】【分析】根据合并同类项的法则把系数相加即可【详解】原式=(﹣5+4)ab=﹣ab故答案是:﹣ab【点睛】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变17.如果3x2m﹣2y n与﹣5x m y3是同类项,则m n的值为_____.【答案】8【解析】根据同类项的定义即可求出答案【详解】由题意可知:2m﹣2=m,n=3∴m=2,n=3∴原式=23=8故答案为8【点睛】本题考查同类项的定义,解题的关键是熟练运用同类项的定义18.若关于a、b的多项式(a2+2a2b﹣b)﹣(ma2b﹣2a2﹣b)中不含a2b项,则m=_____【答案】2【解析】【分析】原式去括号合并得到最简结果,根据结果不含a2b项,求出m的值即可【详解】原式=a2+2a2b﹣b﹣ma2b+2a2+b=3a2+(2﹣m)a2b,由结果不含a2b项,得到2﹣m=0解得:m=2故答案为2【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键三.解答题(共7小题)19.化简:(1)a2﹣3a+8﹣3a2+4a﹣6;(2)a+(2a﹣5b)﹣2(a﹣2b).【答案】(1)﹣2a2+a+2;(2) a﹣b.【解析】【分析】(1)原式合并同类项即可得到结果;(2)原式去括号合并即可得到结果【详解】(1)原式=﹣2a2+a+2;(2)原式=a+2a﹣5b﹣2a+4b=a﹣b.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键20.先化简,再求值:3a2+b3﹣2(21﹣5b3)﹣(3﹣a2﹣2b3),其中a=﹣3,b=﹣2.【答案】﹣113.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【详解】原式=3a2+b3﹣42+10b3﹣3+a2+2b3=4a2+13b3﹣45,当a=﹣3,b=﹣2时,原式=36﹣104﹣45=﹣113.【点睛】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.某同学在一次测验中计算A+B时,不小心看成A﹣B,结果为2xy+6yz﹣4xz.已知A=5xy﹣3yz+2xz,试求出原题目的正确答案.【答案】8xy﹣12yz+8xz.【解析】【分析】根据题意列出关系式,去括号合并即可得到结果【详解】解:根据题意得:A+B=2(5xy﹣3yz+2xz)﹣(2xy+6yz﹣4xz)=10xy﹣6yz+4xz﹣2xy﹣6yz+4xz=8xy﹣12yz+8xz.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键22.如果关于字母x的二次多项式﹣3x2+mx+nx2﹣x+3的值与x的取值无关,求2m﹣3n的值.【答案】-7.【解析】【分析】先把多项式进行合并同类项得(n-3)x2+(m-1)x+3,由于关于字母x的二次多项式-3x2+mx+nx2-x+3的值与x无关,即不含x的项,所以n-3=0,m-1=0,然后解出m、n计算它们的和即可.【详解】合并同类项得(n−3)x2+(m−1)x+3,根据题意得n−3=0,m−1=0,解得m=1,n=3,所以2m−3n=2−9=−7.【点睛】本题考查了多项式,解题的关键是先合并同类项化简再代值进行计算.23.若多项式(a+2)x6+x b y+8是四次二项式,求a2+b2的值.【答案】13.【解析】【分析】由(a+2)x6+x b y+8是四次二项式,得出a+2=0,b=3进一步代入求得答案即可【详解】依题意得:a+2=0,b=3解得a=﹣2,b=3,所以a2+b2=(﹣2)2+32=13.【点睛】此题考查多项式,代数式求值,掌握多项式的意义是解决问题的关键24.已知A=2x2﹣1,B=3﹣2x2,求A﹣2B的值.【答案】6x2-7【解析】【分析】根据整体思想,利用合并同类项法则进行整式的化简即可.【详解】因为A=2x2-1,B=3-2x2所以A-2B=2x2-1-2(3-2x2)=2x2-1-6+4x2=6x2-7【点睛】此题主要考查了整式的加减,关键是利用去括号法则和合并同类项法则进行化简.25.(1)一个两位正整数,a表示十位上数字,b表示个位上的数字(a≠b,ab≠0),则这个两位数用多项式表示为(含a、b的式子);若把十位、个位上的数字互换位置得到一个新两位数,则这两个两位数的和一定能被整除,这两个两位数的差一定能被整除.(2)一个三位正整数F,各个数位上的数字互不相同且都不为0.若从它的百位、十位、个位上的数字中任意选择两个数字组成6个不同的两位数.若这6个两位数的和等于这个三位数本身,则称这样的三位数F为“友好数”,例如:132是“友好数”.一个三位正整数P,各个数位上的数字互不相同且都不为0,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数P为“和平数”;①直接判断123是不是“友好数”?②直接写出共有个“和平数”;③通过列方程的方法求出既是“和平数”又是“友好数”的数.【答案】(1) 10a+b,11,9;(2) ①123不是“友好数”,理由见解析;②32;③既是“和平数”又是“友好数”的数是396,264,132.【解析】【分析】(1)分别求出两数的和与两数的差即可得到结论;(2)①根据“友好数”的定义判断即可;②根据“和平数”的定义列举出所有的“和平数”即可;③设三位数xyz既是“和平数”又是“友好数”,根据“和平数”的定义,得出y=x+z.再由“友好数”的定义,得出10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,化简即为12y=78x﹣21z.把y=x+z代入,整理得出z=2x,然后从②的数字中挑选出符合要求的数即可.【详解】(1)这个两位数用多项式表示为10a+b,(10a+b)+(10b+a)=10a+b+10b+a=11a+11b=11(a+b),∵11(a+b)÷11=a+b(整数),∴这个两位数的和一定能被数11整除;(10a+b)﹣(10b+a)=10a+b﹣10b﹣a=9a﹣9b=9(a﹣b),∵9(a﹣b)÷9=a﹣b(整数),∴这两个两位数的差一定能被数9整除,故答案为11,9;(2)①123不是“友好数”.理由如下:∵12+21+13+31+23+32=132≠123,∴123不是“友好数”;②十位数字是9的“和平数”有198,297,396,495,594,693,792,891,一个8个;十位数字是8的“和平数”有187,286,385,584,682,781,一个6个;十位数字是7的“和平数”有176,275,374,473,572,671,一个6个;十位数字是6的“和平数”有165,264,462,561,一个4个;十位数字是5的“和平数”有154,253,352,451,一个4个;十位数字是4的“和平数”有143,341,一个2个;十位数字是3的“和平数”有132,231,一个2个;所以,“和平数”一共有8+(6+4+2)×2=32个.故答案为32;③设三位数xyz既是“和平数”又是“友好数”,∵三位数xyz是“和平数”,∴y=x+z.∵xyz是“友好数”,∴10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,∴22x+22y+22z=100x+10y+z,∴12y=78x﹣21z.把y=x+z代入,得12x+12z=78x﹣21z,∴33z=66x,∴z=2x,由②可知,既是“和平数”又是“友好数”的数是396,264,132.【点睛】本题考查了整式的加减的实际运用,阅读理解能力以及知识的迁移能力,解题的关键是理解“友好数”与“和平数”的定义.。

人教版数学七年级上册第二章整式的加减《单元综合测试卷》(带答案)

人教版数学七年级上册第二章整式的加减《单元综合测试卷》(带答案)

精品数学单元测试卷一、选择题1.有理数a、b在数轴上的位置如图所示,则化简|a+b|-|a-b|的结果为()A. 2aB. -2bC. -2aD. 2b2.去括号后结果错误的是()A (a+2b)=a+2b B. -(x-y+z)=-x+y-zC. 2(3m-n)=6m-2nD. -(a-b)=-a-b3.若单项式-12x2a-1y4与2xy4是同类项,则式子(1-a)2015等于()A. 0B. 1C. -1D. 1或-14.在去括号时,下列各式错误的是()A. -[-(m+n)+m]=nB. m-(2m+3n)=-m-3nC. -[(4m-n)+2n]=-4m-nD. m-(m-n)=-n5.若多项式32281x x x-+-与多项式323253x mx x+-+的差不含二次项,则m等于()A 2 B. -2 C. 4 D. -46.若多项式11x5+16x2-1与多项式3x3+4mx2-15x+13的和不含二次项,则m等于()A 2 B. -2 C. 4 D. -47.一个多项式加上x2y-3xy2得2x2y-xy2,则这个多项式是()A 3x2y-4xy2 B. x2y-4xy2 C. x2y+2xy2 D. -x2y-2xy28.单项式2x4-m y与6xy2的次数相同,则m的值为()A. 1B. 2C. 3D. 4二、填空题9.单项式−32πab c3的系数是_____,次数是_____.10.系数为-5,只含字母m、n的三次单项式有_____个,它们是______.11.单项式−22x y3的系数与次数之积为___________.12.有理数a、b、c在数轴上的对应点如图,化简代数式:|a-b|+|a+b|-2|c-a|=____.13.化简:-[-(a+b)]-[-(a-b)]=_____.14.已知单项式6x2y4与-3a2b m+2的次数相同,则m2-2m的值为_____.15.观察下列单项式:3a2、5a5、7a10、9a17、11a26…它们是按一定规律排列的,那么这列式子的第n个单项式是_____.16.化简:3(a-13b)-2(a+12b)=_____.三、解答题17.已知多项式-5x2a+1y2-14x3y3+13x4y.(1)求多项式中各项的系数和次数;(2)若多项式是7次多项式,求a的值.18.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a元,小孩为a2元;乙旅行社报价大人、小孩均为a元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a的代数式表示)19.已知(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.20.求k为多少时,代数式2x2+kxy-3y2-3xy-8中不含xy项.21.已知:A=2x2+3ax-2x-1,B=x2-x+1,若3A-6B的值与x的取值无关,求a的值.22.观察下列一串单项式的特点:xy,-2x2y,4x3y,-8x4y,16x5y,…(1)按此规律写出第9个单项式;(2)试猜想第n个单项式为多少?它的系数和次数分别是多少?23.若5a|x|b2与(y-2)a3b|y|是同类项,求x,y的值.24.十月二十日实验中学七年级师生准备到滨州农业培训基地接受培训.已知租一辆60座的大客车的租金为150元,租一辆45座的小客车的租金为126元,经数学兴趣小组李鑫同学的计算,需租用x辆60座的大客车,再租用比大客车少1辆的小客车,即可让全部师生都有座位,且各车刚好坐满,通过以上信息,你能表示出实验中学七年级师生共有多少人吗?需付多少元的租车费用?答案与解析一、选择题1.有理数a、b在数轴上的位置如图所示,则化简|a+b|-|a-b|的结果为()A. 2aB. -2bC. -2aD. 2b【答案】A【解析】试题分析:根据有理数a、b在数轴上的位置,可得,a<0,b>0,所以∣a∣<∣b∣,所以可得,a+b>0,a-b<0则=(a+b)+a-b=a+b+a-b=2a,故选A考点:1.数轴;2.绝对值2.去括号后结果错误的是()A. (a+2b)=a+2bB. -(x-y+z)=-x+y-zC. 2(3m-n)=6m-2nD. -(a-b)=-a-b【答案】D【解析】【分析】根据去括号法则判断:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.【详解】A.(a+2b)=a+2b,故本选项正确;B.-(x-y+z)=-x+y-z,故本选项正确;C.2(3m-n)=6m-2n,故本选项正确;D.-(a-b)=-a+b,故本选项错误;故选D.【点睛】本题考查了去括号的法则,解题的关键是牢记法则,并能熟练运用,去括号时特别要注意符号的变化.3.若单项式-12x2a-1y4与2xy4是同类项,则式子(1-a)2015等于()A. 0B. 1C. -1D. 1或-1 【答案】A【解析】试题分析:利用同类项的定义求解即可.解:∵单项式﹣x 2a ﹣1y 4与2xy 4是同类项,∴2a ﹣1=1,解得a=1,∴(1﹣a )2015=0,故选A .考点:同类项.4.在去括号时,下列各式错误的是( )A. -[-(m+n )+m]=nB. m-(2m+3n )=-m-3nC. -[(4m-n )+2n]=-4m-nD. m-(m-n )=-n 【答案】D【解析】【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A 、原式=(m+n )-m=n ,计算正确,故本选项错误;B 、原式=m-2m-3n=-m-3n ,计算正确,故本选项错误;C 、原式=-(4m-n )-2n=-4m+n-2n=-4m-n ,计算正确,故本选项错误;D 、原式=m-m+n=n ,计算错误,故本选项正确;故选D .【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.5.若多项式32281x x x -+-与多项式323253x mx x +-+的差不含二次项,则m 等于( )A. 2B. -2C. 4D. -4 【答案】D【解析】【分析】用减法列式,即()32281x x x -+--()323253x mx x +-+,去括号合并同类项后,令二次项的系数等于0,即可求出m 的值.【详解】()32281x x x -+--(323253)x mx x +-+ =32322813253x x x x mx x -+---+-=()328264x m x x -+--+- ∵差不含二次项,∴820m --=,∴m =-4.故选D.【点睛】本题考查了整式的加减---无关型问题,解答本题的关键是理解题目中与字母x 的取值无关的意思,与哪一项无关,就是合并同类项后令其系数等于0.6.若多项式11x 5+16x 2-1与多项式3x 3+4mx 2-15x+13的和不含二次项,则m 等于( )A. 2B. -2C. 4D. -4【答案】D【解析】【分析】不含二次项,说明二次项的系数为0.【详解】(11x 5+16x 2-1)+(3x 3+4mx 2-15x+13)= 11x 5+16x 2-1+3x 3+4mx 2-15x+13= 11x 5+3x 3+(16+4m )x 2-15x+13,因为上式不含二次项,所以16+4m=0,解得m=-4,故选D .【点睛】本题考查的是整式的加减,根据题意把两多项式的二次项相加得到关于m 的方程是解答此题的关键.7.一个多项式加上x 2y-3xy 2得2x 2y-xy 2,则这个多项式是( )A. 3x 2y-4xy 2B. x 2y-4xy 2C. x 2y+2xy 2D. -x 2y-2xy 2 【答案】C【解析】试题分析:列代数式(2x 2y-xy 2)-(x 2y-3xy 2),然后去括号、合并同类项即可化简.即(2x 2y-xy 2)-(x 2y-3xy 2)=2x 2y-xy 2-x 2y+3xy 2=x 2y+2xy 2.故选C .考点:去括号,合并同类项8.单项式2x 4-m y 与6xy 2的次数相同,则m 的值为( )A. 1B. 2C. 3D. 4【答案】C【解析】【分析】根据两单项式的次数相同列出关于m 的方程,求出m 的值即可.【详解】∵单项式2x 4−m y 与6xy 2的次数相同,∴4−m=1,∴m=3,故答案选C.【点睛】本题考查了单项式,解题的关键是熟练的掌握单项式的相关知识点. 二、填空题9.单项式−32πab c 3的系数是_____,次数是_____. 【答案】3π-,6. 【解析】试题分析:∵单项式323ab c π-数字因数是3π-,所有字母指数的和=1+3+2=6,∴此单项式的系数是3π-,次数是6.故答案为3π-,6. 考点:单项式. 10.系数为-5,只含字母m 、n 的三次单项式有_____个,它们是______.【答案】两个;-5m 2n 或-5mn 2.【解析】试题分析:单项式中前面的数字因数是单项式的系数 ,单项式中所有字母的指数和是单项式的次数,因此系数为-5,只含字母m 、n 的三次单项式可以是-5m 2n 或-5mn 2.共有两个.考点:单项式的系数与次数.11.单项式−22x y3的系数与次数之积为___________.【答案】-2【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.求出次数和系数,再将其相乘即可.【详解】解:根据单项式定义得:单项式的系数是﹣23,次数是3;其系数与次数之积为﹣23×3=﹣2.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.12.有理数a、b、c在数轴上的对应点如图,化简代数式:|a-b|+|a+b|-2|c-a|=____.【答案】-2c【解析】【分析】根据数轴得出a<b<0<c,去掉绝对值符号,最后合并即可.【详解】∵从数轴可知:a<b<0<c,∴|a-b|+|a+b|-2|c-a|=b-a-a-b-2(c-a)=b-a-a-b-2c+2a=-2c.故答案为-2c.【点睛】本题考查了整式的加减,绝对值,数轴的应用,解此题的关键是能正确去掉绝对值符号.13.化简:-[-(a+b)]-[-(a-b)]=_____.【答案】2a【解析】【分析】先去小括号,再去中括号,最后合并整式中的同类项即可.【详解】-[-(a+b)]-[-(a-b)]=-[-a-b]-[- a+b]=a+b+a-b=2a.故答案为2a【点睛】本题考查了整式的加减、去括号法则,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.也考查了数轴与绝对值.14.已知单项式6x 2y 4与-3a 2b m+2的次数相同,则m 2-2m 的值为_____. 【答案】0【解析】【分析】 根据两个单项式的次数相同可得2+4=2+m+2,再解即可得到m 的值,进而可得答案. 【详解】由题意得:2+4=2+m+2,解得:m=2,则m 2-2m=0.故答案为0.【点睛】此题主要考查了单项式,关键是掌握一个单项式中所有字母的指数的和叫做单项式的次数. 15.观察下列单项式:3a 2、5a 5、7a 10、9a 17、11a 26…它们是按一定规律排列的,那么这列式子的第n 个单项式是_____.【答案】(2n+1)21na +【解析】【分析】 先找出前3项的规律,然后通过后面的几项进行验证,找到规律得到答案即可.【详解】3a 2=(2×1+1)211a +, 5a 5=(2×2+1)221a +,7a 10=(2×3+1)231a +,… 第n 个单项式是:(2n+1)21na +, 故答案为(2n+1)21n a +.【点睛】本题考查了规律题——数字的变化类,根据前几项发现规律,通过观察发现每一项的系数与次数都与该项的序数有关是解题的关键.16.化简:3(a-13b )-2(a+12b )=_____. 【答案】a-2b【解析】【分析】先去括号,再合并同类项即可.【详解】原式=3a-b-2a-b= a-2b.故答案为a-2b【点睛】此题考查了整式的加减,即去括号,合并同类项,注意去括号时各项符号的变化.三、解答题17.已知多项式-5x2a+1y2-14x3y3+13x4y.(1)求多项式中各项的系数和次数;(2)若多项式是7次多项式,求a的值.【答案】(1)各项的系数分别为:-5,14-,13;各项的指数分别为:21a+,6,5;(2)2a=.【解析】试题分析:(1)根据多项式次数、系数的定义即可得出答案;(2)根据次数是7,可得出关于a的方程,解出即可.试题解析:解:(1)-5x2a+l y2的系数是-5,次数是2a+3;14-x3y3的系数是14-,次数是6;13x4y的系数是13,次数是5;(2)因为多项式的次数是7次,可知-5x2a+1y2的次数是7,即2a+1+2=7,解这个方程,得a=2.考点:多项式.18.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a元,小孩为a2元;乙旅行社报价大人、小孩均为a元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a的代数式表示)【答案】乙旅行社收费比甲旅行社贵0.2a元.【解析】【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.详解】根据题意得:(a+a+a)×90%-(a+a+12 a)=2.7a-2.5a=0.2a(元),则乙旅行社收费比甲旅行社贵0.2a元.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.19.已知(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.【答案】-5.【解析】【分析】根据单项式及单项式次数的定义,可得出a、b的值,代入代数式即可得出答案.【详解】∵(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,∴3230 aba⎧⎪-⎨⎪-≠⎩==,解得:32 ab-⎧⎨-⎩==,则a2-3ab+b2=9-18+4=-5.【点睛】本题考查了单项式的知识,属于基础题,掌握单项式的定义及单项式次数的定义是解答本题的关键.20.求k为多少时,代数式2x2+kxy-3y2-3xy-8中不含xy项.【答案】k=3.【解析】【分析】先合并同类项得2x2+(k-3)xy-3y2-8,再根据题意得到k-3=0,然后解方程即可.【详解】合并同类项得2x2+(k-3)xy-3y2-8,因代数式2x2+kxy-3y2-3xy-8不含xy项,所以k-3=0,所以k=3.【点睛】本题考查了合并同类项:合并同类项就是把同类项的系数相加减,字母和字母的指数不变.21.已知:A=2x2+3ax-2x-1,B=x2-x+1,若3A-6B的值与x的取值无关,求a的值.【答案】a=0.【解析】【分析】根据题意得出3A-6B的表达式,再令x的系数为0即可.【详解】3A-6B=3(2x2+3ax-2x-1)-6(x2-x+1)=6x2+9ax-6x-3-6x2+6x-6=9ax-9,因为3A-6B的值与x取值无关,所以9a=0,所以a=0.【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.22.观察下列一串单项式的特点:xy,-2x2y,4x3y,-8x4y,16x5y,…(1)按此规律写出第9个单项式;(2)试猜想第n个单项式为多少?它的系数和次数分别是多少?【答案】(1)256x9y;(2)(﹣1)n+12n﹣1x n y,它的系数是(﹣1)n+12n﹣1,次数是n+1.【解析】试题分析:(1)通过观察可得:n为偶数时,单项式的系数为负数,x的指数为n时,系数的绝对值是2n-1,由此即可解答本题;(2)先根据已知确定出第n个单项式,然后再根据单项式的系数是指单项式的数字因数,次数是所有字母指数的和解答即可.试题解析:(1)∵当n=1时,xy,当n=2时,﹣2x2y,当n=3时,4x3y,当n=4时,﹣8x4y,当n=5时,16x5y,∴第9个单项式是29﹣1x9y,即256x9y;(2)∵n为偶数时,单项式的系数为负数,x的指数为n时,系数为2n﹣1,单项式为-2n﹣1x n y,当n为奇数时的单项式为2n﹣1x n y,所以第n个单项式为(﹣1)n+12n﹣1x n y,它的系数是(﹣1)n+12n﹣1,次数是n+1.【点睛】本题考查的是单项式,根据题意找出各式子的规律是解答此题的关键.23.若5a|x|b2与(y-2)a3b|y|是同类项,求x,y的值.【答案】x=±3,y=-2.【解析】【分析】直接利用同类项法则得出|x|=3,|y|=2,y-2≠0,求出即可.【详解】因为5a|x|b2与(y-2)a3b|y|是同类项,所以|x|=3,|y|=2,y-2≠0,所以x=±3,y=-2.【点睛】此题主要考查了同类项,正确把握定义是解题关键.24.十月二十日实验中学七年级师生准备到滨州农业培训基地接受培训.已知租一辆60座的大客车的租金为150元,租一辆45座的小客车的租金为126元,经数学兴趣小组李鑫同学的计算,需租用x辆60座的大客车,再租用比大客车少1辆的小客车,即可让全部师生都有座位,且各车刚好坐满,通过以上信息,你能表示出实验中学七年级师生共有多少人吗?需付多少元的租车费用?【答案】共有(105x-45)人,需付(276x-126)元的租车费用.【解析】【分析】需租用x辆60座的大客车,再租用比大客车少1辆的小客车,所以共有60x+45(x-1)人,再由大客车的租金为 150元,租一辆45座的小客车的租金为126元可得出租车费用.【详解】由题意得60x+45(x-1)=(105x-45)人;150x+126(x-1)=(276x-126)(元).答:实验中学七年级师生共有(105x-45)人,需付(276x-126)元的租车费用.【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.。

人教版数学七年级上册第二章整式的加减《单元综合测试题》附答案

人教版数学七年级上册第二章整式的加减《单元综合测试题》附答案

人教版数学七年级上学期第二章整式的加减测试一、选择题(每小题只有一个正确答案)1.下列各式按字母x 的降幂排列的是( )A. -5x 2-x 2+2x 2B. ax 3-2bx+cx 2C. -x 2y-2xy 2+y 2D. x 2y-3xy 2+x 3-2y 22.下列运算正确的是( )A 3-(x-1)=2-xB. 3-(x-1)=2+xC. 3-(x-1)=4-xD. 3-(x-1)=4+x3.若M=2a 2b ,N=7ab 2,P=-4a 2b ,则下列等式成立是( )A M+N=9a 2b B. N+P=3ab C. M+P=-2a 2bD. M-P=2a 2b 4. 下列各式中,合并同类项正确的是( )A. 7a+a=7aB. 4xy-2xy 2=2xyC. 9ab-4ab+ab -7ab +5ab =2abD. a-3ab+5- a-3ab -7=-6ab-25.已知2x 6y 2和﹣313mn x y 是同类项,则9m 2﹣5mn ﹣17的值是( )A. ﹣1B. ﹣2C. ﹣3D. ﹣4 6.一个多项式加上2233x y xy -得323x x y -则这个多项式是:( )A x 3+3xy 2 B. x 3-3xy 2 C. x 3-6x 2y +3xy 2 D. x 3-6x 2y -3x 2y7.要使关于x,y 的多项式4x+7y+3-2ky+2k 不含y 项,则k 的值是( )A. 0B.27C. 72D -72 8.组成多项式2x 2-x -3的单项式是下列几组中的( )A. 2x 2,x ,3B. 2x 2,-x ,-3C. 2x 2,x ,-3D. 2x 2,-x ,39.计算3(2)4(2)x y x y --+-的结果是( )A. 2x y -B. 2x y +C. 2x y --D. 2x y -+10.观察下列各单项式:a,-2a 2,4a 3,-8a 4,16a 5,-32a 6,…,根据你发现的规律,第10个单项式是A. -512a 10B. 29a 10C. 210a 10D. -210a 1011.下列各组式中是同类项的是( )A. a 与−12a 2 B. x 2y 3z 与-x 2y 3C. x 2与y 2D. 94yx 2与-5x 2y 12.下列代数式中,属于单项式的是( )A. 0B. 2(x+1)C. 1xD. a 2+2ab+b 2二、填空题13.多项式2-xy 2-4x 3y 是_______次________项式,其中3次项的系数是________.14.单项式23x y -的系数是____. 15.有理数a 、b 、c 在数轴上的位置如图,则a c c b a b ++--+=______.16.将(2a+3)看作一个整体,化简(2a+3)2+6(2a+3)2=___________.17.去括号并合并:3(a-b)-2(2a+b)=___________.三、解答题18.合并同类项:(1)a2+2a-a+a2-1;(2)3y4-6x3y-5y4+2yx3.19.已知多项式5x m+1y2+2xy2-4x3+1是六次四项式,单项式26x2n y5-m的次数与该多项式的次数相同,求(-m)3+2n的值.20. 数a,b,c在数轴上的位置如图所示,化简式子|a﹣b|﹣|b﹣c|﹣|a+c|﹣|b|+2|a|.21.已知 a是绝对值等于4的负数,b是最小的正整数,c的倒数的相反数是﹣2,求:4a2b3﹣[2abc+(5a2b3﹣7abc)﹣a2b3].答案与解析一、选择题(每小题只有一个正确答案)1.下列各式按字母x的降幂排列的是( )A. -5x2-x2+2x2B. ax3-2bx+cx2C. -x2y-2xy2+y2D. x2y-3xy2+x3-2y2【答案】C【解析】【分析】根据题意将各式按字母x的降幂排列,就是要求x的指数从高到低排列. 【详解】A. -5x2-x2+2x2,指数相同,不符合条件;B. ax3-2bx+cx2,没有按x降幂排列;C. -x2y-2xy2+y2,有按x降幂排列;D. x2y-3xy2+x3-2y2,没有按x降幂排列.故选C【点睛】本题考核知识点:字母的降幂排列. 解题关键点:理解幂的意义.2.下列运算正确的是( )A. 3-(x-1)=2-xB. 3-(x-1)=2+xC. 3-(x-1)=4-xD. 3-(x-1)=4+x【答案】C【解析】【分析】根据整式的运算法则逐个分析即可.【详解】3-(x-1)=3-x+1=4-x故选C【点睛】本题考核知识点:整式的加减. 解题关键点:熟记整式的加减法则,特别是去括号.3.若M=2a2b,N=7ab2,P=-4a2b,则下列等式成立的是()A. M+N=9a2bB. N+P=3abC. M+P=-2a2bD. M-P=2a2b【答案】C【解析】【分析】判断M与P是同类项,然后进行计算即可.【详解】解:因为M=2a2b,N=7ab2,P=-4a2b,所以M与P是同类项,所以M+P=-2a2b ,故选:C.【点睛】本题考查合并同类项,掌握同类项的概念是本题的解题关键.4. 下列各式中,合并同类项正确的是( )A. 7a+a=7aB. 4xy-2xy2=2xyC. 9ab-4ab+ab -7ab +5ab =2abD. a-3ab+5- a-3ab -7=-6ab-2【答案】D【解析】试题分析:因为7a+a=8a,所以A错误;因为4xy与-2xy2不是同类型,所以不能合并,所以B错误;因为9ab-4ab+ab -7ab +5ab =3ab,所以C 错误;因为a-3ab+5- a-3ab -7=-6ab-2,所以D 正确;考点:合并同类项5.已知2x 6y 2和﹣313m n x y 是同类项,则9m 2﹣5mn ﹣17的值是( )A. ﹣1B. ﹣2C. ﹣3D. ﹣4 【答案】A【解析】【分析】先由同类项定义得6=3m,2=n,求出m,n,再代入9m 2-5mn-17可得答案..【详解】因为,2x 6y 2和-13x 3m y n 是同类项,所以,6=3m,2=n,所以,m=2,n=2,所以,9m 2-5mn-17=9×22-5×2×2-17=-1故选A【点睛】本题考核知识点:同类项.解题关键点:理解同类项的定义.6.一个多项式加上2233x y xy -得323x x y -则这个多项式是:( )A. x 3+3xy 2B. x 3-3xy 2C. x 3-6x 2y +3xy 2D. x 3-6x 2y -3x 2y【答案】C【解析】【分析】根据题意得出:(x 3-3x 2y )-(3x 2y -3xy 2),求出即可.【详解】解:根据题意得:(x 3-3x 2y )-(3x 2y -3xy 2)=x 3-3x 2y -3x 2y +3xy 2=x 3-6x 2y +3xy 2,故选C .【点睛】本题考查了整式的加减的应用,主要考查学生的计算能力.7.要使关于x,y 的多项式4x+7y+3-2ky+2k 不含y 项,则k 的值是( )A. 0B. 27C.72D. -72 【答案】C【解析】【分析】先将含y 的项合并,要使关于x ,y 的多项式不含y 项,则7-2k=0,可求k.【详解】4x+7y+3-2ky+2k=4x+3+(7-2k)y+2k, 要使关于x ,y 的多项式不含y 项,则7-2k=0,所以,k=72故选C【点睛】本题考核知识点:合并同类项.解题关键点:理解同类项的意义.8.组成多项式2x 2-x -3的单项式是下列几组中的( )A. 2x 2,x ,3B. 2x 2,-x ,-3C. 2x 2,x ,-3D. 2x 2,-x ,3 【答案】B【解析】试题解析:多项式是由多个单项式组成的,在多项式2x 2-x-3中,单项式分别是2x 2,-x,-3,故选B .9.计算3(2)4(2)x y x y --+-的结果是( )A. 2x y -B. 2x y +C. 2x y --D. 2x y -+ 【答案】A【解析】原式去括号合并即可得到结果.解:原式=﹣3x+6y+4x ﹣8y=x ﹣2y,故选A .10.观察下列各单项式:a,-2a 2,4a 3,-8a 4,16a 5,-32a 6,…,根据你发现的规律,第10个单项式是A. -512a10B. 29a10C. 210a10D. -210a10【答案】A【解析】【分析】观察各单项式:a,-2a2,4a3,-8a4,16a5,-32a6,…,发现规律:第n个单项式是:2n-1a n(n是奇数)或-2n-1a n(n是偶数).运用规律可求结果.【详解】观察各单项式:a,-2a2,4a3,-8a4,16a5,-32a6,…,发现规律:第n个单项式是:2n-1a n(n是奇数)或-2n-1a n(n是偶数).所以,第10个单项式是:-210-1a10=-512a10故选A【点睛】本题考核知识点:单项式的规律. 解题关键点:运用有理数的运算分析系数和指数的规律.11.下列各组式中是同类项的是( )A. a与−12a2B. x2y3z与-x2y3C. x2与y2D. 94yx2与-5x2y【答案】D【解析】【分析】同类项的条件:含有相同的字母,且相同字母的指数相同.逐个分析即可.【详解】A. a与−12a2,相同字母指数不相同,不是同类项;B. x2y3z与-x2y3,含有不相同的字母,不是同类项;C. x2与y2,含有不相同的字母,不是同类项;D. 94yx2与-5x2y,是同类项.故选D【点睛】本题考核知识点:同类项.解题关键点:理解同类项的意义.12.下列代数式中,属于单项式的是( )A. 0B. 2(x+1)C. 1xD. a2+2ab+b2【答案】A【解析】【分析】由一个数字与一个字母的积或一个字母与一个字母的积所组成的代数式叫做单项式(单独的一个数字或字母也是单项式).据此分析即可.【详解】A. 0,是单项式;B. 2(x+1),不是单项式;C. 1,分母是字母,不是单项式;xD. a2+2ab+b2,是多项式.故选A【点睛】本题考核知识点:单项式.解题关键点:理解单项式的定义,分清单项式必须具备的条件.二、填空题13.多项式2-xy2-4x3y是_______次________项式,其中3次项的系数是________.【答案】(1). 四(2). 三(3). -1【解析】【分析】由若干个单项式的和组成的代数式叫做多项式(减法中有:减一个数等于加上它的相反数).多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.【详解】3次项是-xy2,多项式2-xy2-4x3y是四次三项式,其中3次项的系数是-1.故答案为四,三,-1【点睛】本题考核知识点:多项式.解题关键点:理解多项式和单项式的意义.14.单项式23x y-的系数是____.【答案】-1 3【解析】【分析】单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数; 单项式的系数:单项式中的数字因数.【详解】单项式-2x y3的系数是: -13.故答案为-1 3【点睛】本题考核知识点:单项式的系数.解题关键点:理解单项式的系数的意义.15.有理数a、b、c在数轴上位置如图,则a c c b a b++--+=______.【答案】0【解析】【分析】根据a、b、c在数轴上的位置,进行绝对值的化简,然后合并.【详解】由图可得,a<b<0<c,原式=(-a-c)+(c-b)-(-a-b)=-a-c+c-b+a+b=0.故答案为0【点睛】本题考查了整式加减,解答本题的关键是掌握去括号法则和合并同类项法则.16.将(2a+3)看作一个整体,化简(2a+3)2+6(2a+3)2=___________.【答案】7(2a+3)2【解析】【分析】运用整体思想,将(2a+3)看作一个整体,(2a+3)2+6(2a+3)2=7(2a+3)2.【详解】将(2a+3)看作一个整体,化简(2a+3)2+6(2a+3)2=7(2a+3)2故答案为7(2a+3)2【点睛】本题考核知识点:合并同类项. 解题关键点:运用整体思想进行化简.17.去括号并合并:3(a-b)-2(2a+b)=___________.【答案】-a-5b【解析】【分析】根据乘法分配律去括号,再合并同类项.详解】3(a-b)-2(2a+b)=3a-3b-4a-2b=-a-5b故答案为-a-5b【点睛】本题考核知识点:整式的运算.解题关键点:正确去括号,合并同类项.三、解答题18.合并同类项:(1)a2+2a-a+a2-1;(2)3y4-6x3y-5y4+2yx3.【答案】(1)原式=2a2+a-1;(2)原式=-2y4-4x3y.【解析】【分析】合并同类项就是将同类项的系数相加,所得的结果作为系数,字母和指数不变.【详解】解:(1)a2+2a-a+a2-1= a2+a2+2a-a -1=2a2+a-1(2)3y4-6x3y-5y4+2yx3=3y4-5y4-6x3y+2yx3= -2y4-4x3y.【点睛】本题考核知识点:合并同类项.解题关键点:掌握合并同类项的方法.19.已知多项式5x m+1y2+2xy2-4x3+1是六次四项式,单项式26x2n y5-m的次数与该多项式的次数相同,求(-m)3+2n的值.【答案】-23【解析】【分析】由已知可得:m+1+2=6,得到m的值后,根据题意可列关于n的式子,求出m,n,再代入(-m)3+2n即可求解. 【详解】解:由于多项式是六次四项式,所以m+1+2=6,解得m=3,因为,单项式26x2n y5-m的次数与该多项式的次数相同,所以,由题意可知2n+5-m=6,即:2n+5-3=6,解得n=2,所以(-m)3+2n=(-3)3+2×2=-23.【点睛】本题考核知识点:整式的项、次数.解题关键点:理解整式的有关概念.20. 数a,b,c在数轴上的位置如图所示,化简式子|a﹣b|﹣|b﹣c|﹣|a+c|﹣|b|+2|a|.【答案】2a+2c﹣b.【解析】试题分析:先根据各点在数轴上的位置判断出其符号及绝对值的大小,在去绝对值符号,合并同类项即可.解:∵由图可知c<0<a<b,|c|>b>a,∴a﹣b<0,b﹣c>0,a+c<0,∴原式=(b﹣a)﹣(b﹣c)﹣(﹣a﹣c)﹣b+2a=b﹣a﹣b+c+a+c﹣b+2a=2a+2c﹣b.考点:整式的加减;数轴;绝对值.21.已知 a是绝对值等于4的负数,b是最小的正整数,c的倒数的相反数是﹣2,求:4a2b3﹣[2abc+(5a2b3﹣7abc)﹣a2b3].【答案】﹣10.【解析】试题分析:a是绝对值等于4的负数,b是最小的正整数,c的倒数的相反数是﹣2,可得:a=-4,b=1,c=12;再把原式化简,代入a、b、c的值计算即可.试题解析:∵a是绝对值等于4的负数,b是最小的正整数,c的倒数的相反数是﹣2,∴a=-4,b=1,c=1 2 .∴原式=4a2b3﹣2abc﹣5a2b3+7abc+a2b3 =5abc=5×(-4)×1×12=-10.。

人教版数学七年级上册第二章整式的加减《单元综合检测卷》附答案

人教版数学七年级上册第二章整式的加减《单元综合检测卷》附答案

人教版数学七年级上学期第二章整式的加减测试一.选择题1.下列计算正确的是( )A. 4a﹣2a=2B. 2x2+2x2=4x4C. ﹣2x2y﹣3yx2=﹣5x2yD. 2a2b﹣3a2b=a2b2.下列说法中,正确的个数有( )①有理数包括整数和分数;②一个代数式不单项式就是多项式;③几个有理数相乘,若负因数的个数是偶数个,则积为正数;④倒数等于本身的数有﹣1.A. 1个B. 2个C. 3个D. 4个3.下面关于单项式-13a3bc2的系数与次数叙述正确的是A. 系数是13,次数是6 B. 系数是-13,次数是5C. 系数是13,次数是5 D. 系数是-13,次数是64.下列各组单项式中,是同类项的是( )A.25x y与﹣x2y B. 2a2b与2ab2C. a与1D. 2xy与2xyz5.如果A是3m2﹣m+1,B是2m2﹣m﹣7,且A﹣B+C=0,那么C是( )A. ﹣m2﹣8B. ﹣m2﹣2m﹣6C. m2+8D. 5m2﹣2m﹣66.下列说法中正确的是( )A. a和0都是单项式B. 单项式﹣23a b的系数是﹣13次数是4C. 式子x2+1x是整式D. 多项式﹣3a 2b+7a 2b 2+1的次数是77.若﹣2a m b 4与5a 2b 2+n 是同类项,则m n 的值是( )A. 2B. 0C. 4D. 18.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a ,b (a b >),则-a b 的值为( )A. 6B. 8C. 12D. 9 9.若多项式5x 2y |m|14-(m+1)y 2﹣3是三次三项式,则m 等于( ) A. ﹣1 B. 0 C. 1 D. 210.使(ax 2﹣3xy+4y 2)﹣(﹣x 2+bxy+5y 2)=6x 2﹣7xy+cy 2成立的a,b,c 的值依次是( )A. 7,﹣4,﹣1B. 5,4,﹣1C. 7,﹣4,1D. 5,4,1二.填空题11.某单项式含有字母x,y,次数是4次.则该单项式可能是_____.(写出一个即可)12.如果单项式﹣3x a+2y 3 与 2y b x 6 是同类项,那么 a 、b 的值分别是_________13.某同学在做计算2A+B 时,误将“2A+B”看成了“2A ﹣B”,求得的结果是9x 2﹣2x+7,已知B=x 2+3x+2,则2A+B 的正确答案为_____.14.多项式112m x -﹣3x+7是关于x 的四次三项式,则m 的值是_____. 15.一个多项式与单项式﹣4x 的差等于3x 2﹣2x ﹣1,那么这个多项式为_____.16.已知ab <0,且|a|<|b|,化简|a+b|+|a ﹣b|+|b ﹣a|=_____.三.解答题(共7小题)17.计算:2x 2+(3y 2﹣xy )﹣(x 2﹣3xy ).18.一堂公开课,老师在黑板上写了两个代数式34a +与237a -,让大家相互之间用这两个代数式出题考对方. (1)小明给小红出的题为:若代数式34a +与237a -的值多1,求3a 2﹣2(2a 2+a)+2(a 2﹣3a )的值; (2)小红想为难一下小明,她给小明出题为:已知a 为负数,比较代数式34a +与237a -的大小,请你帮小明作出解答.19.一般情况下2323a b a b ++=+不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得2323a b a b ++=+成立的一对数a,b 为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b 值;(2)写出一个“相伴数对”(a,b),其中a ≠0,且a ≠1;(3)若(m,n)是“相伴数对”,求代数式m ﹣223n ﹣[4m ﹣2(3n ﹣1)]的值. 20.已知a 是绝对值等于4的负数,b 是最小的正整数,c 的倒数的相反数是﹣2,(1)求a,b,c 的值;(2)求:4a 2b 3﹣[2abc+(5a 2b 3﹣7abc)﹣a 2b 3].21.已知A=2x 2+3ax ﹣2x ﹣1,B=﹣x 2+ax ﹣1,且3A+6B 的值与x 的取值无关,求5a ﹣1的值22.A 、B 、C 、D 四个车站的位置如图所示,求:(1)A 、D 两站的距离;(2)A 、C 两站的距离.23.如果单项式2ax m y 与单项式5bx 2m ﹣3y 都是关于x 、y 单项式,并且它们是同类项.(1)求m 的值;(2)若2ax m y+5bx 2m ﹣3y=0,且xy≠0,求(2a+5b)2017+m 值.答案与解析一.选择题1.下列计算正确的是( )A. 4a﹣2a=2B. 2x2+2x2=4x4C. ﹣2x2y﹣3yx2=﹣5x2yD. 2a2b﹣3a2b=a2b【答案】C【解析】【分析】合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.【详解】A、4a﹣2a=2a,此选项错误;B、2x2+2x2=4x2,此选项错误;C、﹣2x2y﹣3yx2=﹣5x2y,此选项正确;D、2a2b﹣3a2b=﹣a2b,此选项错误;故选C.【点睛】本题考查了合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项.2.下列说法中,正确的个数有( )①有理数包括整数和分数;②一个代数式不是单项式就是多项式;③几个有理数相乘,若负因数的个数是偶数个,则积为正数;④倒数等于本身的数有﹣1.A. 1个B. 2个C. 3个D. 4个【答案】A【解析】【分析】根据有理数的分类,代数式的意义,有理数的乘法法则,倒数的意义逐个说法分析,利用排除法即可得出答案. 【详解】①有理数包括整数和分数,正确;②一个代数式不是单项式就是多项式,单项式和多项式属于整式,分式也属于代数式,故此说法错误;③几个有理数相乘,若负因数的个数是偶数个,则积为正数,错误,因数中不能有零;④倒数等于本身的数有﹣1,还有1,故此选项错误.故选A.【点睛】本题考查了有理数的分类,代数式的意义,有理数的乘法法则,倒数的意义,熟练掌握各知识点是解答本题的关键.3.下面关于单项式-13a3bc2的系数与次数叙述正确的是A. 系数是13,次数是6 B. 系数是-13,次数是5C. 系数是13,次数是5 D. 系数是-13,次数是6【答案】D【解析】分析:根据单项式的系数和次数的定义即可得出答案.单项式前面的常数叫做单项式的系数,各个字母的指数之和叫做单项式的次数.详解:单项式的系数为:13;次数为:3+1+2=6.故选D.点睛:本题主要考查的是单项式的系数和次数,属于基础题型.在解答这种问题时需要注意的是π是系数,次数是指所有字母的指数之和.4.下列各组单项式中,是同类项的是( )A.25x y与﹣x2y B. 2a2b与2ab2C. a与1D. 2xy与2xyz 【答案】A【解析】【分析】直接利用同类项的定义分析得出答案.【详解】A、25x y与-x2y,是同类项,符合题意;B 、2a 2b 与2ab 2,不是同类项,不合题意;C 、a 与1,不是同类项,不合题意;D 、2xy 与2xyz ,不是同类项,不合题意;故选A .【点睛】此题主要考查了同类项,正确把握相关定义是解题关键.5.如果A3m 2﹣m+1,B 是2m 2﹣m ﹣7,且A ﹣B+C=0,那么C 是( )A. ﹣m 2﹣8B. ﹣m 2﹣2m ﹣6C. m 2+8D. 5m 2﹣2m ﹣6 【答案】A【解析】【分析】根据题意得出等式,化简即可得出答案.【详解】解:A-B+C=3m 2﹣m +1-(2m 2﹣m ﹣7)+C =0,解得C=﹣m 2﹣8,故选:A.【点睛】本题考查了根据题意列等式,仔细审题是解答本题的关键.6.下列说法中正确的是( )A. a 和0都是单项式B. 单项式﹣23a b π的系数是﹣13次数是4 C. 式子x 2+1x是整式 D. 多项式﹣3a 2b+7a 2b 2+1的次数是7【答案】A【解析】试题解析:A. 单独的一个数或字母也是单项式.故本选项正确;B. 单项式23a b π-系数是3π-,次数是3, 故本选项错误;C. 式子21x x+不是整式, 故本选项错误;D. 多项式222371a b a b -++的次数是4, 故本选项错误.故选A.7.若﹣2a m b 4与5a 2b 2+n 是同类项,则m n 的值是( )A. 2B. 0C. 4D. 1【答案】C【解析】【分析】依据同类项的定义可得到关于m 、n 的方程组,然后可求得m 、n 的值,最后再求得m n 的值即可.【详解】∵﹣2a m b 4与5a 2b 2+n 是同类项,∴m =2, 2+n=4,解得: m =2, n =2,∴22 4.n m ==故选C.【点睛】考查同类项的概念以及有理数的乘方,根据同类项的概念求出m 、n 的值是解题的关键. 8.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a ,b (a b >),则-a b 的值为( )A. 6B. 8C. 12D. 9【答案】C【解析】【分析】 设重叠部分面积为c ,-a b 可理解为:()()a c b c +-+即两个长方形面积的差.【详解】解:设重叠部分面积为c ,∴()()352312a b a c b c -=+-+=-=;故选择:C【点睛】本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.9.若多项式5x2y|m|14-(m+1)y2﹣3是三次三项式,则m等于( )A. ﹣1B. 0C. 1D. 2 【答案】C【解析】试题解析:根据三次三项式的定义,可得2+|m|=3,-14(m+1)≠0,联立方程组,得2310mm⎧+⎨+≠⎩=解得m=1.故选C.10.使(ax2﹣3xy+4y2)﹣(﹣x2+bxy+5y2)=6x2﹣7xy+cy2成立的a,b,c的值依次是( )A. 7,﹣4,﹣1B. 5,4,﹣1C. 7,﹣4,1D. 5,4,1【答案】B【解析】【分析】先把左边去括号合并同类项,然后和右边比较,即可列出关于a,b,c的方程,从而求出a,b,c的值.【详解】(ax2﹣3xy+4y2)﹣(﹣x2+bxy+5y2)=a x2﹣3xy+4y2+x2﹣bxy﹣5y2=(a+1)x2+(﹣3﹣b)xy﹣y2=6x2﹣7xy+cy2,可得a+1=6,﹣3﹣b=﹣7,c=﹣1,解得:a=5,b=4,c=﹣1,故选B.【点睛】本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.整式加减的结果要最简:①不能有同类项;②含字母项的系数不能出现带分数,带分数要化成假分数.二.填空题11.某单项式含有字母x,y,次数是4次.则该单项式可能是_____.(写出一个即可)【答案】x 2y 2【解析】【分析】根据单项式的定义即可求出答案.【详解】由题意可知:x 2y 2,故答案为x 2y 2【点睛】本题考查单项式的定义,解题的关键是熟练运用单项式的定义,本题属于基础题型. 12.如果单项式﹣3x a+2y 3 与 2y b x 6 是同类项,那么 a 、b 的值分别是_________【答案】4,3.【解析】【分析】根据相同字母的指数相等列式求解即可.【详解】∵单项式﹣3x a+2y 3与2y b x 6是同类项,∴a +2=6,b =3,则a =4,故答案为4,3.【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.13.某同学在做计算2A+B 时,误将“2A+B”看成了“2A ﹣B”,求得的结果是9x 2﹣2x+7,已知B=x 2+3x+2,则2A+B 的正确答案为_____.【答案】211411x x ++【解析】【分析】根据题意得:22292732A x x x x =-++++()(),求出2A 的值,代入后求出即可. 【详解】解:∵22292732A x x x x =-++++()()22222222927321092109321093211411x x x x x x A B x x x x x x x x x x =-++++=++∴+=+++++=+++++=++,().故答案为211411x x ++.【点睛】本题考查了整式的加减的应用,关键是求出2A 的值. 14.多项式112m x -﹣3x+7是关于x 的四次三项式,则m 的值是_____. 【答案】5【解析】【分析】根据多项式是关于x 的四次三项式可得m-1=4,即可得出结论. 【详解】多项式12x m-1-3x+7是关于x 的四次三项式, 则m-1=4,m=5.故答案为5.【点睛】本题考查了多项式,解题的关键是熟练的掌握多项式的定义. 15.一个多项式与单项式﹣4x 的差等于3x 2﹣2x ﹣1,那么这个多项式为_____.【答案】3x 2﹣6x ﹣1【解析】【分析】根据题意列出关系式,去括号合并即可得到结果.【详解】根据题意得:(3x 2-2x-1)+(-4x)=3x 2-2x-1-4x=3x 2-6x-1,故答案是:3x 2-6x-1【点睛】考查了整式的加减,熟练掌握运算法则是解本题的关键.16.已知ab <0,且|a|<|b|,化简|a+b|+|a ﹣b|+|b ﹣a|=_____.【答案】2a ﹣3b 或3b ﹣a【解析】【分析】先根据ab <0,且|a |<|b |,判断出a ,b 的取值范围,然后分两种情况根据绝对值的意义化简即可.【详解】∵ab <0,且|a |<|b |,∴a >0,b <0或a <0,b >0,当a >0,b <0时,a +b <0,a ﹣b >0,b ﹣a <0,原式=﹣a ﹣b +a ﹣b +a ﹣b =2a ﹣3b ;当a <0,b >0时, a +b >0,a ﹣b <0,b ﹣a >0,原式=a +b +b ﹣a +b ﹣a =3b ﹣a ,则原式=2a ﹣3b 或3b ﹣a .故答案为2a ﹣3b 或3b ﹣a【点睛】本题考查了绝对值的化简及分类讨论的数学思想,根据ab <0,且|a |<|b |,判断出a ,b 的取值范围是解答本题的关键.三.解答题(共7小题)17.计算:2x 2+(3y 2﹣xy )﹣(x 2﹣3xy ).【答案】2232x y xy ++【解析】试题分析:先去掉括号,再合并同类项即可.试题解析: 原式=222233x y xy x xy +--+ =2232x y xy ++18.一堂公开课,老师在黑板上写了两个代数式34a +与237a -,让大家相互之间用这两个代数式出题考对方. (1)小明给小红出的题为:若代数式34a +与237a -的值多1,求3a 2﹣2(2a 2+a)+2(a 2﹣3a )的值;(2)小红想为难一下小明,她给小明出的题为:已知a 为负数,比较代数式34a +与237a -的大小,请你帮小明作出解答.【答案】(1)-15;(2)详见解析.【解析】【分析】(1)先根据代数式34a +与237a -的值多1,列方程求出a 的值,再把3a 2﹣2(2a 2+a)+2(a 2﹣3a )化简,然后把求得的a 的值代入计算即可;(2)用作差法比较大小即可.【详解】解:(1)由题意可知:323147a a +-=+, 解得:a=5,原式=3a 2﹣4a 2﹣2a+2a 2﹣6a=a 2﹣8a=25﹣40=﹣15; (2)32347a a +-- =3328a -+ ∵a 0< ∴3328a -+>0 ∴a 32a 347+-> 【点睛】本题考查了一元一次方程的解法,整式的加减及分类讨论的数学思想,熟练掌握整式的加减法法则是解答本题的关键.19.一般情况下2323a b a b ++=+不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得2323a b a b ++=+成立的一对数a,b 为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b 的值;(2)写出一个“相伴数对”(a,b),其中a ≠0,且a ≠1;(3)若(m,n)是“相伴数对”,求代数式m ﹣223n ﹣[4m ﹣2(3n ﹣1)]的值. 【答案】(1)94b =-; (2) 9(2,)2-(答案不唯一);(3)-2. 【解析】试题分析: (1)把(1,b )代入2323a b a b ++=+中,可解出b ; (2)在2323a b a b ++=+中,把看作常数,可解得94b a =-,给取定一个值,就可得到对应的的值; (3)把(m,n )代入2323a b a b ++=+中,化简可得:940m n +=,把式子 ()2242313m n m n ⎡⎤----⎣⎦ 化成用“94m n +”表达的形式就可求出其值了. 试题解析:(1)∵(1,b )是“相伴数对”, ∴11+2323b b +=+,即151066b b +=+,解得94b =-; (2)∵2323a b a b ++=+, ∴151066a b a b +=+, ∴94b a =-, ∴给任取一个值,可得对应的的值,从而得到一对“相伴数对”,如当2a =时,92b ,这样可得“相伴数对”:(922-,). (3)∵(m,n )是“相伴数对”, ∴2323m n m n ++=+,化简可得:940m n +=, 又∵22[42(31)]3m n m n ---- =224623m n m n --+-=94233m n --- =(94)23m n -+-. ∴原式=0-2=-2.20.已知a 是绝对值等于4的负数,b 是最小的正整数,c 的倒数的相反数是﹣2,(1)求a,b,c 的值;(2)求:4a 2b 3﹣[2abc+(5a 2b 3﹣7abc)﹣a 2b 3].【答案】(1)a=﹣4,b=1,c=12;(2)-10. 【解析】【分析】(1)根据a 是绝对值等于4的负数可知a =-4,根据b 是最小的正整数可知b =1,根据c 的倒数的相反数是﹣2可知c =12; (2)先把所给代数式去括号合并同类项,然后把(1)中求得的a ,b ,c 的值代入计算即可.【详解】解:(1)由题意可知:a=﹣4,b=1,c=12(2)当a=﹣4,b=1,c=12时, 原式=4a 2b 3﹣(2abc+5a 2b 3﹣7abc ﹣a 2b 3)=4a 2b 3﹣(4a 2b 3﹣5abc)=4a 2b 3﹣4a 2b 3+5abc=5abc,=5×(﹣4)×1×12=﹣10.【点睛】本题考查了绝对值、相反数、倒数的意义、整式的化简求值,熟练掌握整式的加减法法则是解答本题的关键.21.已知A=2x 2+3ax ﹣2x ﹣1,B=﹣x 2+ax ﹣1,且3A+6B 的值与x 的取值无关,求5a ﹣1的值【答案】1.【解析】【分析】先把A=2x2+3ax﹣2x﹣1,B=﹣x2+ax﹣1代入3A+6B,化简后根据3A+6B的值与x的取值无关,求出a的值,然后把求得的a的值代入5a﹣1计算即可.【详解】解:3A+6B=3(2x2+3ax﹣2x﹣1)+6(﹣x2+ax﹣1)=6x2+9ax﹣6x﹣3﹣6x2+6ax﹣6=(15a﹣6)x﹣9,∵3A+6B的值与x的取值无关,∴15a﹣6=0,解得a=,则5a﹣1=5×﹣1=1.【点睛】本题考查了整式的加减---无关型问题,解答本题的关键是理解题目中与字母x的取值无关的意思,与哪一项无关,就是合并同类项后令其系数等于0.22.A、B、C、D四个车站的位置如图所示,求:(1)A、D两站的距离;(2)A、C两站的距离.【答案】(1)AD= 4a+3b;(2)AC=3a.【解析】【分析】(1)由图可知A、D两站的距离=AB+BD,把AB=a+b,BD=3a+2b代入计算即可;(2)由图可知A、C两站的距离=AB+BC=AB+BD-CD,把AB=a+b,BD=3a+2b,CD=a+3b代入计算即可.【详解】解:(1)根据题意得:AD=AB+BD=a+b+3a+2b=4a+3b;(2)根据题意得:AC=AB+BC=a+b+(3a+2b)﹣(a+3b)=a+b+3a+2b﹣a﹣3b=3a.【点睛】本题考查了整式加减运算的应用,根据图示正确列出算式是解答本题的关键.23.如果单项式2ax m y与单项式5bx2m﹣3y都是关于x、y的单项式,并且它们是同类项.(1)求m的值;(2)若2ax m y+5bx2m﹣3y=0,且xy≠0,求(2a+5b)2017+m的值.【答案】(1)m=3;(2)0.【解析】【分析】(1)利用同类项的概念得出m=2m-3,进而求出即可;(2)利用单项式的和为0,得出其系数是互为相反数,进而得出答案.【详解】(1)∵单项式2ax m y与单项式5bx2m﹣3y是关于x,y的单项式,并且它们是同类项,∴m=2m﹣3,解得:m=3;(2)∵单项式2ax m y+5bx2m﹣3y=0,且xy≠0,∴2a+5b=0,m=3∴(2a+5b)2017+2m=02023=0.【点睛】本题考查了同类项与单项式,解题的关键是熟练的掌握同类项的概念与单项式的性质.。

人教版七年级上册数学第二章整式的加减单元检测带答案

人教版七年级上册数学第二章整式的加减单元检测带答案

第二章整式的加减综合测试第Ⅰ卷(选择题)一.选择题(共10小题)1.下列说法正确的是()A. 单项式3πx2y3的系数是3B. 单项式﹣6x2y的系数是6C. 单项式﹣xy2的次数是3D. 单项式x3y2z的次数是52.下列各组单项式中,是同类项的是()A. 与﹣x2yB. 2a2b与2ab2C. a与1D. 2xy与2xyz3.在下列各式:ab,,ab2+b+1,﹣9,x3+x2﹣3中,多项式有()A. 2个B. 3个C. 4个D. 5个4.化简a﹣(b﹣c)正确的是()A. a﹣b+cB. a﹣b﹣cC. a+b﹣cD. a+b+c5.多项式4xy2﹣3xy+12的次数为()A. 3B. 4C. 6D. 76.一个多项式加上﹣2a+7等于3a2+a+1,则这个多项式是()A. 3a2﹣a﹣6B. 3a2+3a+8C. 3a2+3a﹣6D. ﹣3a2﹣3a+67.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a﹣b的值为()A. 6B. 8C. 9D. 128.如图1为2018年5月份的日历表,某同学任意框出了其中的四个数字,如图2,若用m表示框图中相应位置的数字,则“?”位置的数字可表示为()A. m+1B. m+5C. m+6D. m+79.下列各项去括号正确的是()A. ﹣3(m+n)﹣mn=﹣3m+3n﹣mnB. ﹣(5x﹣3y)+4(2xy﹣y2)=﹣5x+3y+8xy﹣4y2C. ab﹣5(﹣a+3)=ab+5a﹣3D. x2﹣2(2x﹣y+2)=x2﹣4x﹣2y+410.若单项式2x3y2m与﹣3x n y2的差仍是单项式,则m+n的值是()A. 2B. 3C. 4D. 5二.填空题(共6小题)11.﹣3xy﹣x3+xy3是_____次多项式.12.单项式﹣π2x2y的系数是_____,次数是_____.13.某单项式含有字母x,y,次数是4次.则该单项式可能是_____.(写出一个即可)14.若两个单项式﹣3x m y2与﹣xy n的和仍然是单项式,则这个和的次数是_____.15.若关于x、y的代数式mx3﹣3nxy2+2x3﹣xy2+y中不含三次项,则(m﹣3n)2018=_____.16.若,,则的值为______________.三.解答题(共7小题)17.化简:(1)2a﹣4b﹣3a+6b(2)(7y﹣5x)﹣2(y+3x)18.通常用作差法可以比较两个数或者两个式子的大小.(1)如果a﹣b>0,则a b;如果a﹣b=0,则a b;如果a﹣b<0,则a b;(用“>”、“<”、“=”填空)(2)已知A=5m2﹣4(m﹣),B=7m2﹣7m+3,请用作差法比较A与B的大小.19.在对多项式(x2y+5xy2+5)﹣[(3x2y2+x2y)﹣(3x2y2﹣5xy2﹣2)]代入计算时,小明发现不论将x、y 任意取值代入时,结果总是同一个定值,为什么?20.先化简,再求值:8a2﹣10ab+2b2﹣(2a2﹣10ab+8b2),其中a=,b=﹣.21.已知A=3a2b﹣2ab2+abc,小明同学错将“2A﹣B“看成”2A+B“,算得结果C=4a2b﹣3ab2+4abc.(1)计算B的表达式;(2)求出2A﹣B的结果;(3)小强同学说(2)中的结果的大小与c的取值无关,对吗?若a=,b=,求(2)中式子的值.22.对于有理数a,b定义a△b=3a+2b,化简式子[(x+y)△(x-y)]△3x23.从A地途径B地、C地,终点E地的长途汽车上原有乘客(6x+2y)人,在B地停靠时,上来(2x﹣y)人,在C地停靠时,上来了(2x+3y)人,又下去了(5x﹣2y)人.(1)途中两次共上车多少人?(2)到终点站E地时,车上共有多少人?答案与解析第Ⅰ卷(选择题)一.选择题(共10小题)1.下列说法正确的是()A. 单项式3πx2y3的系数是3B. 单项式﹣6x2y的系数是6C. 单项式﹣xy2的次数是3D. 单项式x3y2z的次数是5【答案】C【解析】【分析】直接利用单项式的次数与系数确定方法分析得出答案.【详解】A、单项式3πx2y3的系数是3π,故此选项错误;B、单项式-6x2y的系数是-6,故此选项错误;C、单项式-xy2的次数是3,正确;D、单项式x3y2z的次数是6,故此选项错误;故选C.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.2.下列各组单项式中,是同类项的是()A. 与﹣x2yB. 2a2b与2ab2C. a与1D. 2xy与2xyz【答案】A【解析】【分析】直接利用同类项的定义分析得出答案.【详解】A、与-x2y,是同类项,符合题意;B、2a2b与2ab2,不是同类项,不合题意;C、a与1,不是同类项,不合题意;D、2xy与2xyz,不是同类项,不合题意;故选A.【点睛】此题主要考查了同类项,正确把握相关定义是解题关键.3.在下列各式:ab,,ab2+b+1,﹣9,x3+x2﹣3中,多项式有()A. 2个B. 3个C. 4个D. 5个【答案】B【解析】【分析】直接利用多项式的定义分析得出答案.【详解】ab,,ab2+b+1,-9,x3+x2-3中,多项式有:,ab2+b+1,x3+x2-3共3个.故选B.【点睛】此题主要考查了多项式,正确把握多项式定义是解题关键.4.化简a﹣(b﹣c)正确的是()A. a﹣b+cB. a﹣b﹣cC. a+b﹣cD. a+b+c【答案】A【解析】【分析】去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.【详解】a-(b-c)=a-b+c.故选A.【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.顺序为先大后小.5.多项式4xy2﹣3xy+12的次数为()A. 3B. 4C. 6D. 7【答案】A【解析】【分析】直接利用多项式的次数确定方法是解题关键.【详解】多项式4xy2-3xy+12的次数为,最高此项4xy2的次数为:3.故选A.【点睛】此题主要考查了多项式,正确把握多项式的次数确定方法是解题关键.6.一个多项式加上﹣2a+7等于3a2+a+1,则这个多项式是()A. 3a2﹣a﹣6B. 3a2+3a+8C. 3a2+3a﹣6D. ﹣3a2﹣3a+6【答案】C【解析】【分析】先根据题意列出算式,再去掉括号合并同类项即可.【详解】根据题意得:这个多项式为(3a2+a+1)-(-2a+7)=3a2+a+1+2a-7=3a2+3a-6,故选C.【点睛】本题考查了整式的加减和列代数式,能根据题意列出算式是解此题的关键.7.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a﹣b的值为()A. 6B. 8C. 9D. 12【答案】D【解析】【分析】设重叠部分面积为c,(a-b)可理解为(a+c)-(b+c),即两个长方形面积的差.【详解】设重叠部分的面积为c,则a-b=(a+c)-(b+c)=35-23=12,故选D.【点睛】本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.8.如图1为2018年5月份的日历表,某同学任意框出了其中的四个数字,如图2,若用m表示框图中相应位置的数字,则“?”位置的数字可表示为()A. m+1B. m+5C. m+6D. m+7【答案】C【解析】【分析】由日历中数字可得答案.【详解】由于在日历中一行为七天,所以m正下面一个数为m+7,所以?为m+7-1m+6,所以答案选择C项.【点睛】本题考查了用已知数表示未知数,了解一行为七天是解决本题的关键.9.下列各项去括号正确的是()A. ﹣3(m+n)﹣mn=﹣3m+3n﹣mnB. ﹣(5x﹣3y)+4(2xy﹣y2)=﹣5x+3y+8xy﹣4y2C. ab﹣5(﹣a+3)=ab+5a﹣3D. x2﹣2(2x﹣y+2)=x2﹣4x﹣2y+4【答案】B【解析】【分析】根据去括号法则逐个判断即可.【详解】A、-3(m+n)-mn=-3m-3n-mn,错误,故本选项不符合题意;B、-(5x-3y)+4(2xy-y2)=-5x+3y+8xy-4y2,正确,故本选项符合题意;C、ab-5(-a+3)=ab+5a-15,错误,故本选项不符合题意;D、x2-2(2x-y+2)=x2-4x+2y-4,错误,故本选项不符合题意;故选B.【点睛】本题考查了去括号法则,能熟记去括号法则的内容是解此题的关键.10.若单项式2x3y2m与﹣3x n y2的差仍是单项式,则m+n的值是()A. 2B. 3C. 4D. 5【答案】C【解析】【分析】根据合并同类项法则得出n=3,2m=2,求出即可.【详解】∵单项式2x3y2m与-3x n y2的差仍是单项式,∴n=3,2m=2,解得:m=1,∴m+n=1+3=4,故选C.【点睛】本题考查了合并同类项和单项式,能根据题意得出n=3、2m=2是解此题的关键.二.填空题(共6小题)11.﹣3xy﹣x3+xy3是_____次多项式.【答案】四【解析】【分析】直接利用多项式的次数确定方法分析得出答案.【详解】-3xy-x3+xy3是四次多项式.【点睛】此题主要考查了多项式,正确把握多项式的次数确定方法是解题关键.12.单项式﹣π2x2y的系数是_____,次数是_____.【答案】(1). ﹣π2(2). 3【解析】【分析】由于单项式中数字因数叫做单项式的系数,所有字母的指数和是单项式的次数,由此即可求解.【详解】由单项式的系数及其次数的定义可知,单项式﹣π2x2y的系数是﹣π2,次数是3.故答案为:﹣π2,3.【点睛】此题主要考查了单项式的系数及其次数的定义,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.13.某单项式含有字母x,y,次数是4次.则该单项式可能是_____.(写出一个即可)【答案】x2y2【解析】【分析】根据单项式的定义即可求出答案.【详解】由题意可知:x2y2,故答案为:x2y2【点睛】本题考查单项式的定义,解题的关键是熟练运用单项式的定义,本题属于基础题型.14.若两个单项式﹣3x m y2与﹣xy n的和仍然是单项式,则这个和的次数是_____.【答案】3【解析】【分析】根据同类项的定义直接可得到m、n的值.【详解】因为两个单项式-3x m y2与-xy n的和仍然是单项式,所以m=1,n=2,所以这个和的次数是1+2=3,【点睛】本题考查了同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫同类项.15.若关于x、y的代数式mx3﹣3nxy2+2x3﹣xy2+y中不含三次项,则(m﹣3n)2018=_____.【答案】1【解析】【分析】不含三次项,则三次项的系数为0,从而可得出m和n的值,代入即可得出答案.【详解】∵代数式mx3-3nxy2+2x3-xy2+y中不含三次项,∴m=-2,-3n=1,解得:m=-2,n=-,∴(m-3n)2018=1.故答案为:1.【点睛】此题考查了多项式的知识,要求我们掌握多项式的次数、系数指的是哪一部分,难度一般.16.若,,则的值为______________.【答案】【解析】试题解析:m2+mn=-5①,n2-3mn=10②,①-②得:m2+mn-n2+3mn=m2+4mn-n2=-5-10=-15.故答案为:-15.三.解答题(共7小题)17.化简:(1)2a﹣4b﹣3a+6b(2)(7y﹣5x)﹣2(y+3x)【答案】(1)﹣a+2b;(2)﹣11x+5y.【解析】【分析】(1)直接合并同类项即可;(2)先去括号,然后合并同类项.【详解】(1)原式=﹣a+2b;(2)原式=7y﹣5x﹣2y﹣6x=﹣11x+5y.【点睛】本题考查了整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号、合并同类项.18.通常用作差法可以比较两个数或者两个式子的大小.(1)如果a﹣b>0,则a b;如果a﹣b=0,则a b;如果a﹣b<0,则a b;(用“>”、“<”、“=”填空)(2)已知A=5m2﹣4(m﹣),B=7m2﹣7m+3,请用作差法比较A与B的大小.【答案】(1)>;=;<;(2)A<B.【解析】【分析】(1)根据题意,利用整式的加减法法则判断即可;(2)利用做差法判断即可.【详解】(1)如果a﹣b>0,则a>b;如果a﹣b=0,则a=b;如果a﹣b<0,则a<b;故答案为:>;=;<;(2)∵A﹣B=5m2﹣4(m﹣)﹣(7m2﹣7m+3)=﹣2m2﹣1<0,∴A<B.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.19.在对多项式(x2y+5xy2+5)﹣[(3x2y2+x2y)﹣(3x2y2﹣5xy2﹣2)]代入计算时,小明发现不论将x、y 任意取值代入时,结果总是同一个定值,为什么?【答案】结果是定值,与x、y取值无关.【解析】【分析】原式去括号、合并同类项得出其结果,从而得出结论.【详解】(x2y+5xy2+5)-[(3x2y2+x2y)-(3x2y2-5xy2-2)]=x2y+5xy2+5-(3x2y2+x2y-3x2y2+5xy2+2)=x2y+5xy2+5-3x2y2-x2y+3x2y2-5xy2-2=(x2y-x2y)+(5xy2-5xy2)+(-3x2y2+3x2y2)+(5-2)=3,∴结果是定值,与x、y取值无关.【点睛】本题主要考查整式的加减-化简求值,解题的关键是掌握整式的加减运算顺序和运算法则.20.先化简,再求值:8a2﹣10ab+2b2﹣(2a2﹣10ab+8b2),其中a=,b=﹣.【答案】6a2﹣6b2,.【解析】【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【详解】原式=8a2﹣10ab+2b2﹣2a2+10ab﹣8b2=6a2﹣6b2,当a=,b=﹣时,原式=.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.21.已知A=3a2b﹣2ab2+abc,小明同学错将“2A﹣B“看成”2A+B“,算得结果C=4a2b﹣3ab2+4abc.(1)计算B的表达式;(2)求出2A﹣B的结果;(3)小强同学说(2)中的结果的大小与c的取值无关,对吗?若a=,b=,求(2)中式子的值.【答案】(1)﹣2a2b+ab2+2abc; (2)8a2b﹣5ab2;(3)0.【解析】【分析】(1)由2A+B=C得B=C-2A,将C、A代入后,再去括号后合并同类项化为最简即可;(2)将A、B代入2A-B,,再去括号后合并同类项化为最简即可;(3)由化简后的代数式中无字母c可知其值与c无关,将a、b的值代入计算即可.【详解】(1)∵2A+B=C,∴B=C-2A=4a2b-3ab2+4abc-2(3a2b-2ab2+abc)=4a2b-3ab2+4abc-6a2b+4ab2-2abc=-2a2b+ab2+2abc.(2)2A-B=2(3a2b-2ab2+abc)-(-2a2b+ab2+2abc)=6a2b-4ab2+2abc+2a2b-ab2-2abc=8a2b-5ab2.(3)对,与c无关,将a=,b=代入,得8a2b-5ab2=8××-5××=0.【点睛】本题考查了整式加减的应用,整式的加减实质上是去括号后合并同类项.熟知去括号法则和合并同类项法则是解题的关键.22.对于有理数a,b定义a△b=3a+2b,化简式子[(x+y)△(x-y)]△3x【答案】21x+3y【解析】整体分析:根据定义a△b=3a+2b,先小括号,后中括号依次化简[(x+y)△(x-y)]△3x.解:原式=[3(x+y)+2(x-y)]△3x=(3x+3y+2x-2y)△3x=(5x+y)△3x=3(5x+y)+6x=15x+3y+6x=21x+3y.23.从A地途径B地、C地,终点E地的长途汽车上原有乘客(6x+2y)人,在B地停靠时,上来(2x﹣y)人,在C地停靠时,上来了(2x+3y)人,又下去了(5x﹣2y)人.(1)途中两次共上车多少人?(2)到终点站E地时,车上共有多少人?【答案】(1)(4x+2y)人;(2)(5x+6y)人【解析】【分析】(1)将途中两次上车人数相加,计算即可求解;(2)将(1)中所求结果加上车上原有人数、减去下去的人数即可.【详解】(1)根据题意知,途中两次共上车2x﹣y+2x+3y=4x+2y(人);(2)6x+2y+4x+2y﹣(5x﹣2y)=10x+4y﹣5x+2y=5x+6y,故到终点站E地时,车上共有(5x+6y)人.【点睛】本题考查了整式的加减、去括号法则两个考点.能够根据题意正确列式是解题的关键.。

【人教版】数学七年级上册第二章整式的加减《单元测试题》含答案

【人教版】数学七年级上册第二章整式的加减《单元测试题》含答案

第二章整式的加减综合测试一、选择题(本大题共10小题,每小题3分,共30分)1.用式子表示a 与5的差的2倍,下列正确的是( ) A. a-(-5)×2 B. a+(-5)×2 C. 2(a-5)D. 2(a+5)2.计算a +(-a )的结果是 ( ) A. 2aB. 0C. -a 2D. -2a3.下面说法正确的是( ) A.213x π的系数是13B.212xy 的系数是12x C. ﹣5x 2的系数是5D. 3x 2的系数是34.下列运算中,正确的是( ). A. 325a b ab +=B. 325235a a a +=C. 22330a b ba -=D. 22541a a -=5.下列各组中,不是同类项的是( ) A. 5225与B. ab ba -与C. 2210.25a b a b -与 D. 2332a b a b -与6.在式子0,-3x ,n-m ,3x ,-1,t 2,a2中,单项式的个数是p ,多项式的个数是q ,则p+q 的值为( ) A. 6B. 5C. 4D. 37.若m=-1,则整式m 2-2m-1的值是( ) A 4B. 2C. -1D. -48.按某种标准把多项式进行分类时,3x 3﹣4和a 2b +ab 2+1属于同一类,则下列哪一个多项式也属于此类( ) A. abc ﹣1B. x 2﹣2C. 3x 2+2xy 4D. m 2+2mn +n 29.某种商品进价为a 元,商店将价格提高30%作零售价销售,在销售旺季过后,商店又以八折的优惠价开展促销活动,这时该商品的售价为( ) A. a 元B. 0.8a 元C. 0.92a 元D. 1.04a 元10.已知a ,b ,c 在数轴上的位置如图所示,化简|a+c|-|a+b|-|c-b|的结果是( )A -2c B. 2a+2b C. -2a-2c D. 2a-b二、填空题(本大题共6小题,每小题3分,共18分)11.多项式2x 3-x 2y 2-3xy+x-1是__________次_________项式. 12.若单项式3a 5b m+1与-2a n b 2是同类项,则m-n=__________. 13.若2x ﹣3y ﹣1=0,则5﹣4x+6y 的值为 .14.若多项式3x 2+kx-2x+1(k 为常数)中不含有x 的一次项,则k=__________.15.小明在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个一次二项式,如图所示,所捂的一次二项式为___________.16.在图所示的运算流程中,若输出的数y=3,则输入的数x=______.三、解答题(本大题共6小题,共52分)17.先简化,再求值:(4a 2﹣3a)﹣(2a+a ﹣1)+(2﹣a 2﹣4a),其中a =﹣2. 18.计算: (1)-4a -(12a -2); (2)3(2x 2-y 2)-2(3y 2-2x 2). 19.2123536m x y xy x +-+--是六次四项式,且253n m x y -的次数跟它相同()1求m ,n 的值()2求多项式的常数项以及各项的系数和.20.小黄做一道题:“已知两个多项式A ,B ,计算A -B ”.小黄误将A -B 看作A +B ,求得结果是2927x x -+.若B =232+-x x ,请你帮助小黄求出A -B 的正确答案.21.如图所示,某长方形广场四角都有一块半径相同的14圆形的草地,已知圆形的半径为r 米,长方形的长为a 米,宽为b 米.(1)请列式表示广场空地面积;(2)若长方形的长为300米,宽为200米,圆形的半径为10米,计算广场空地的面积(计算结果保留π).22.已知图所示的计算程序.根据计算程序回答下列问题:(1)填写表内空格:输入x 3 2 -2 13…输出答案0 …(2)你发现的规律是.(3)用简要过程说明你发现的规律的正确性.附加题(共20分,不计入总分)23.如果x-2y=3,m+2n=2,则(x+m)-2(y-n)的值是_________.24.一般情况下a2323b a b++=+不成立,但有些数可以使得它成立,例如a=b=0.我们称使得a2323b a b++=+成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值.(2)若(m,n)是“相伴数对”,求整式26m+4n-2(4m-2n)+5的值.答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1.用式子表示a 与5的差的2倍,下列正确的是( ) A. a-(-5)×2 B. a+(-5)×2 C. 2(a-5) D. 2(a+5)【答案】C 【解析】 【分析】根据题目中语句可以用代数式表示出来,本题得以解决. 【详解】a 与5的差的2倍可以表示为:2(a−5), 故选C.【点睛】本题考查的是列代数式,熟练掌握这一点是解题的关键. 2.计算a +(-a )的结果是 ( ) A. 2a B. 0C. -a 2D. -2a【答案】B 【解析】 【分析】根据加一个负数等于减去这个数进行计算即可. 【详解】a +(-a )=a -a =0 故选B.【点睛】本题考查的是整式计算方法,熟练掌握这一点是解题的关键. 3.下面说法正确的是( ) A.213x π的系数是13B.212xy 的系数是12x C. ﹣5x 2的系数是5 D. 3x 2的系数是3【答案】D 【解析】 【详解】A .13π2x 的系数是13π,错误 B .122xy 系数为12错误C .-52x 的系数是-5,错误D .32x 的系数是3,正确,故选D. 4.下列运算中,正确的是( ). A. 325a b ab += B. 325235a a a +=C. 22330a b ba -=D. 22541a a -=【答案】C 【解析】试题分析:3a 和2b 不是同类项,不能合并,A 错误;32a 和23a 不是同类项,不能合并,B 错误;22330a b ba -=,C 正确;22254a a a -=,D 错误,故选C .考点:合并同类项.【此处有视频,请去附件查看】5.下列各组中,不是同类项的是( ) A. 5225与 B. ab ba -与C. 2210.25a b a b -与 D. 2332a b a b -与【答案】D 【解析】:根据同类项的定义(所含字母相同,相同字母的指数相同),即可作出判断. 试题解析:A .B .C .是同类项;D .所含字母相同,但相同字母的质数不同,不是同类项. 故选D . 考点:同类项.【此处有视频,请去附件查看】6.在式子0,-3x ,n-m ,3x ,-1,t 2,a2中,单项式的个数是p ,多项式的个数是q ,则p+q 的值为( ) A. 6 B. 5C. 4D. 3【答案】A 【解析】试题分析:在这些代数式中,单项式有0,﹣3x ,﹣1,2t ,2a共五个,所以p=5,多项式有n ﹣m 共一个,所以q=1,所以p+q=5+1=6,故选A.考点:1.多项式;2.单项式.7.若m=-1,则整式m2-2m-1的值是()A. 4B. 2C. -1D. -4【答案】B【解析】【分析】把m=-1代入代数式m2-2m-1,即可得到结论.【详解】m2-2m-1=(-1)2-2(-1)-1=2;故选B.【点睛】本题考查的是代数式的求值,熟练掌握方法是解题的关键.8.按某种标准把多项式进行分类时,3x3﹣4和a2b+ab2+1属于同一类,则下列哪一个多项式也属于此类()A. abc﹣1B. x2﹣2C. 3x2+2xy4D. m2+2mn+n2【答案】A【解析】从多项式的次数考虑求解.解:3x3﹣4和a2b+ab2+1属于同一类,都是3次多项式,A、abc﹣1是3次多项式,故本选项正确;B、x2﹣2是2次多项式,故本选项错误;C、3x2+2xy4是5次多项式,故本选项错误;D、m2+2mn+n2是2次多项式,故本选项错误.故选A.9.某种商品进价为a元,商店将价格提高30%作零售价销售,在销售旺季过后,商店又以八折的优惠价开展促销活动,这时该商品的售价为()A. a元B. 0.8a元C. 0.92a元D. 1.04a元【答案】D【解析】【分析】先算出提价后的售价,再算打折后的售价.【详解】价格提升30%后,售价为1.3a,后又打八折销售,故售价变为0.8 1.3a=1.04a,所以选D选项. 【点睛】正确理解题意是解题的关键.10.已知a,b,c在数轴上的位置如图所示,化简|a+c|-|a+b|-|c-b|的结果是()A. -2cB. 2a+2bC. -2a-2cD. 2a-b【答案】B【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】由数轴上点的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,a+b<0,c-b>0,∴原式=a+c+a+b-c+b=2a+2b.故选B.【点睛】本题考查的是数轴和绝对值的综合运用,熟练掌握这两点是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.多项式2x3-x2y2-3xy+x-1是__________次_________项式.【答案】(1). 四(2). 五【解析】【分析】根据多项式的次数和项数的定义直接进行解答即可.【详解】多项式2x3﹣x2y2﹣3xy+x﹣1是四次五项式.故答案为四,五.12.若单项式3a5b m+1与-2a n b2是同类项,则m-n=__________.【答案】-4【解析】【分析】根据同类项的定义:所含字母相同,相同字母的指数相同即可得出答案.【详解】∵单项式3a5b m+1与-2a n b2是同类项;∴n=5,m+1=2,∴n=5,m=1;∴m-n=-4.【点睛】本题考查的是同类项定义,熟练掌握这一点是解题的关键.13.若2x﹣3y﹣1=0,则5﹣4x+6y的值为.【答案】3.【解析】试题分析:由2x﹣3y﹣1=0可得2x﹣3y=1,所以5﹣4x+6y=5﹣2(2x﹣3y)=5﹣2×1=3.考点:代数式求值.14.若多项式3x2+kx-2x+1(k为常数)中不含有x的一次项,则k=__________.【答案】2【解析】【分析】不含x这一项,利用x的系数为0求解.【详解】∵多项式3x2+kx−2x+1中不含有x的一次项,∴k−2=0,即k=2.故答案为2.【点睛】本题考查的是多项式,熟练掌握多项式是解题的关键.15.小明在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个一次二项式,如图所示,所捂的一次二项式为___________.【答案】-m+2【解析】【分析】根据整式减法的运算方法,用m2-2m减去m2-m-2,求出所捂的一次二项式即可.【详解】所捂的一次二项式与m2−m−2的和是m2−2m,(m2−2m)−(m2−m−2)=m2−2m−m2+m+2=2−m∴所捂的一次二项式为2−m.故答案为2−m.【点睛】本题考查的是整式的加减,熟练掌握这一点是解题的关键. 16.在图所示的运算流程中,若输出的数y=3,则输入的数x=______.【答案】5或6 【解析】试题解析:根据所给的图可知,若x 为偶数,则x=2y ,若x 不是偶数,则x=2y-1, 故:当x 是偶数时,有x=2×3=6, 当x 是奇数时,有x=2×3-1=5. 三、解答题(本大题共6小题,共52分)17.先简化,再求值:(4a 2﹣3a)﹣(2a+a ﹣1)+(2﹣a 2﹣4a),其中a =﹣2. 【答案】3a 2﹣10a+3;35. 【解析】 【分析】先去括号,然后合并同类项,最后把数值代入进行计算即可. 【详解】原式=4a 2﹣3a ﹣2a ﹣a+1+2﹣a 2﹣4a , =3a 2﹣10a+3,当a =﹣2时,原式=3×(﹣2)2﹣10×(﹣2)+3 =3×4+20+3, =35.【点睛】本题考查了整式的加减——化简求值,熟练掌握去括号法则及合并同类项法则是解题的关键. 18.计算:(1)-4a -(12a -2); (2)3(2x 2-y 2)-2(3y 2-2x 2). 【答案】(1)-92a +2;(2)10x 2-9y 2.【解析】【分析】(1)先去括号,进行加减运算; (2)先去括号,再合并同类项. 【详解】(1)原式=-4a -12a +2= -92a +2; (2)原式=6x 2-3y 2-6y 2+4x 2=10x 2-9y 2【点睛】本题考查的是整式的加减,熟练掌握方法是解题的关键. 19.2123536m x y xy x +-+--是六次四项式,且253n m x y -的次数跟它相同()1求m ,n 的值()2求多项式的常数项以及各项的系数和.【答案】(1)3m =,2n =;(2)系数和为:513613-+--=- 【解析】 【分析】根据多项式的概念即可求出n 与m 的值,然后根据多项式即可判断常数项与各项系数. 【详解】解:()1由题意可知:该多项式时六次多项式, ∴216m ++=, ∴3m =, ∵253nmx y-的次数也是六次,∴256n m +-=, ∴2n =∴3m =,()22n =该多项式为:2423536x y xy x -+--常数项6-,各项系数为:5-,1,3-,6-, 故系数和为:513613-+--=-【点睛】本题考查了多项式与单项式,解题的关键是熟练的掌握多项式与单项式的定义.20.小黄做一道题:“已知两个多项式A ,B ,计算A -B ”.小黄误将A -B 看作A +B ,求得结果是2927x x -+.若B =232+-x x ,请你帮助小黄求出A -B 的正确答案.【答案】A -B =7x 2-8x +11.【解析】【分析】先根据题意求出A,再计算A-B 即可.【详解】解:由题意,得:A =(A +B )-B=(2927x x -+)-(x 2+3x-2)=9x 2-2x +7-x 2-3x +2=8x 2-5x +9∴A -B =(8x 2-5x +9)-(232x x +-)=8x 2-5x +9-x 2-3x +2=7x 2-8x +11【点睛】此题主要考查整式的加减,解题的关键是熟知去括号法则.21.如图所示,某长方形广场的四角都有一块半径相同的14圆形的草地,已知圆形的半径为r 米,长方形的长为a 米,宽为b 米.(1)请列式表示广场空地的面积;(2)若长方形的长为300米,宽为200米,圆形的半径为10米,计算广场空地的面积(计算结果保留π).【答案】(1)ab -πr 2;(2)60 000-100π.【解析】【分析】(1)草地面积=144⨯圆形面积;空地的面积=长方形面积-草地面积; (2)把a =300米,b =200米,圆形的半径=10米代入(1)中式子即可.【详解】(1)广场空地的面积(单位:平方米)为:ab -πr 2;(2)当a=300,b=200,r=10时,ab -πr 2=300×200-π×102=60 000-100π.所以广场空地的面积(单位:平方米)为:60 000-100π.【点睛】本题考查的是列代数式和代数式求值,熟练掌握这两点是解题的关键.22.已知图所示计算程序.根据计算程序回答下列问题:(1)填写表内空格:输入x 3 2 -2 13…输出答案0 …(2)你发现的规律是.(3)用简要过程说明你发现的规律的正确性.【答案】(1)从左到右依次填0,0,0;(2)输入任何数的结果都为0;(3)详见解析.【解析】【分析】(1)根据题目提供的运算程序,把已知数据代入进行运算,进而将所得的结果填入表格即可;(2)接下来观察表格中数据特征总结出规律;(3)根据程序可写出关于x的方程式,此方程式的值为0,所以无论x取任何值,结果都为0. 【详解】(1)从左到右依次填0,0,0.(2)输入任何数的结果都为0(3)2x2x-12x2-12x=12x2+12x-12x2-12x=0.所以无论x取任何值,结果都为0,即结果与字母x的取值无关.【点睛】本题考查的是整式的混合运算和规律的总结,熟练掌握这两点是解题的关键. 附加题(共20分,不计入总分)23.如果x-2y=3,m+2n=2,则(x+m)-2(y-n)的值是_________.【答案】5【解析】【分析】原式去括号变形后,将已知等式代入计算即可求出值.【详解】∵x-2y=3,m+2n=2,∴(x+m)-2(y-n)=x+m-2y+n=x-2y+ m+2n=5.【点睛】本题考查的整式的加减,熟练掌握这一点是解题的关键.24.一般情况下a2323b a b++=+不成立,但有些数可以使得它成立,例如a=b=0.我们称使得a2323b a b++=+成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值.(2)若(m,n)是“相伴数对”,求整式26m+4n-2(4m-2n)+5的值.【答案】(1)b=-94;(2)5.【解析】【分析】(1)结合题中所给的定义将(1,b)代入式子求解即可;(2)将(m,n)代入a2323b a b++=+,然后对代数式进行化简求解即可.【详解】(1)将a=1,代入a2323b a b++=+中,得112323b b++=+,化简求得b=-94.(2)将a=m,b=n,代入a2323b a b++=+中,得9m+4n=0.26m+4n-2(4m-2n)+5=26m+4n-8m+4n+5=18m+8n+5=2(9m+4n)+5=0+5=5. 【点睛】本题考查的是整式的加减,熟练掌握这一点是解题的关键.。

人教版数学七年级上册第二章整式的加减《单元综合测试卷》附答案

人教版数学七年级上册第二章整式的加减《单元综合测试卷》附答案

人教版数学七年级上学期第二章整式的加减测试第Ⅰ卷(选择题共30分)一、选择题(每题3分,共30分)1. 下列式子中,不是整式的是( )A. B. +b C. D. 4y2. 关于单项式-xy3z2,下列说法正确的是( )A. 系数是1,次数是5B. 系数是-1,次数是6C. 系数是1,次数是6D. 系数是-1,次数是53. 多项式a3-4a2b2+3ab-1的项数与次数分别是( )A. 3和4B. 4和4C. 3和3D. 4和34. 已知-6a9b4和5a4n b4是同类项,则12n-10的值是( )A. 17B. 37C. -17D. 985. 用式子表示“x的2倍与y的和的平方”是( )A. (2x+y)2B. 2x+y2C. 2x2+y2D. x(2+y)26. 整式x2-3x的值是4,则3x2-9x+8的值是( )A. 20B. 4C. 16D. -47. 观察如图所示图形,则第n个图形中三角形的个数是( )A. 2n+2B. 4n+4C. 4nD. 4n-48. 某教学楼阶梯教室,第一排有m个座位,后面每一排都比前面一排多4个座位,则第n排的座位数是( )A. m+4B. m+4nC. n+4(m-1)D. m+4(n-1)9. 已知A=3a2+b2-c2,B=-2a2-b2+3c2,且A+B+C=0,则C=( )A. a2+2c2B. -a2-2c2C. 5a2+2b-4c2D. -5a2-2b2+4c210. 如图,两个六边形的面积分别为16和9,两个阴影部分的面积分别为a,b(a<b),则b-a的值为( )A. 4B. 5C. 6D. 7第Ⅱ卷(非选择题共70分)二、填空题(每题3分,共18分)11. 已知-mx n y是关于x,y的一个单项式且系数为3,次数为4,则m n=________.12. 若关于x,y的多项式4xy3-2ax2-3xy+2x2-1不含x2项,则a=________.13. 把a-b看作一个整体,合并同类项:3(a-b)+4(a-b)2-2(a-b)-3(a-b)2-(a-b)2=________.14. 已知一列数2,8,26,80,…,按此规律,则第n(n为正整数)个数是________.(用含n的式子表示)15. 某班学生在实践基地进行拓展活动,因为器材的原因,教练要求分成固定的a组,若每组5人,则多出9名同学;若每组6人,最后一组的人数将不满,则最后一组的人数用含a的式子可表示为________.16. 若|a+1|+(b-)2=0,则5a2+3b2+2(a2-b2)-(5a2-3b2)的值为________.三、解答题(共52分)17. 已知12a2b2x,8a3xy,4m2nx2,60xyz3.(1)观察上述式子,请写出这四个式子都具有的两个特征;(2)请写出一个新的式子,使该式同时具有你在(1)中所写出的两个共同特征.18. 去掉下列各式中的括号:(1)8m-(3n+5);(2)n-4(3-2m);(3)2(a-2b)-3(2m-n).19. 已知关于x,y的多项式x4+(m+2)x n y-xy2+3,其中n为正整数.(1)当m,n为何值时,它是五次四项式?(2)当m,n为何值时,它是四次三项式?20. 有这样一道题:“计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=,y=-1.”甲同学把“x=”错抄成“x=-”,但他计算的结果也是正确的,试说明理由,并求出正确结果.21. 已知A=2a2-a,B=-5a+1.(1)化简:3A-2B+2;(2)当a=-时,求3A-2B+2的值.22. 一个四边形的周长是48 cm,已知第一条边长是a cm,第二条边比第一条边的2倍还长3 cm,第三条边长等于第一、第二两条边长的和.(1)用含a的式子表示第四条边长;(2)当a=7时,还能得到四边形吗?并说明理由.23. 暑假期间,学校组织学生去某景点游玩,甲旅行社说:“如果带队的一名老师购买全票,则学生享受半价优惠”;乙旅行社说:“所有人按全票价的六折优惠”.已知全票价为a元,学生有x人,带队老师有1人.(1)试用含a和x的式子表示甲、乙旅行社的收费;(2)若有30名学生参加本次活动,请你为他们选择一家更优惠的旅行社.24. 全世界每年都有大量的土地被沙漠吞没,改造沙漠,保护土地资源已成为一项十分紧迫的任务.某地区沙漠原有面积是100万平方千米,为了解该地区沙漠面积的变化情况,进行了连续3年的观察,并将每年年底的观察结果记录如下表:观察时间该地区沙漠面积(万平方千米)第一年年底100.2第二年年底100.4第三年年底100.6预计该地区沙漠的面积将继续按此趋势扩大.(1)如果不采取措施,那么到第m年年底,该地区沙漠面积将变为多少万平方千米?(2)如果第5年后采取措施,每年改造0.8万平方千米沙漠(沙漠面积的扩大趋势不变),那么到第n年(n>5)年年底该地区沙漠的面积为多少万平方千米?(3)在(2)的条件下,第90年年底,该地区沙漠面积占原有沙漠面积的多少?答案与解析第Ⅰ卷(选择题共30分)一、选择题(每题3分,共30分)1. 下列式子中,不是整式的是( )A. B. +b C. D. 4y【答案】C【解析】【分析】根据整式、单项式、多项式的概念进行解答即可.【详解】解:A.是多项式,是整式;B.是多项式,是整式;C.分母中含有字母,不是整式;D.是单项式,是整式.【点睛】本题考查了整式的概念,整式包含单项式和多项式,对整式概念的认识,凡分母中含有字母的代数式都不属于整式,在整式范围内用“+”或“-”将单项式连起来的就是多项式,不含“+”或“-”的整式绝对不是多项式,而单项式注重一个“积”字.2. 关于单项式-xy3z2,下列说法正确的是( )A. 系数是1,次数是5B. 系数是-1,次数是6C. 系数是1,次数是6D. 系数是-1,次数是5【答案】B【解析】【分析】根据单项式的系数、次数的概念进行解答即可.【详解】解:单项式-xy3z2=(-1)·xy3z2,系数为-1,次数为1+3+2=6.故选:B.【点睛】本题考查了单项式系数、次数的概念,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.在判别单项式的系数时,要注意包括数字前面的符号,而形如a或-a这样的式子的系数是1或-1,不能误以为没有系数,单项式的次数仅与单项式中字母的指数有关,而与系数中的指数无关.3. 多项式a3-4a2b2+3ab-1的项数与次数分别是( )A. 3和4B. 4和4C. 3和3D. 4和3【答案】B【解析】【分析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.【详解】解:多项式a3-4a2b2+3ab-1的项有:a3、-4a2b2、3ab、-1,共4项,所以项数为4;每一项的次数分别为:3、4、2、0,所以多项式的次数为4.故选:B.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.4. 已知-6a9b4和5a4n b4是同类项,则12n-10的值是( )A. 17B. 37C. -17D. 98【答案】A【解析】试题分析:已知-6a9b4和5a4n b4是同类项,根据同类项的定义可得4n=9,解得n=,则12n-10=12×-10=17.故答案选A.考点:同类项的定义.5. 用式子表示“x的2倍与y的和的平方”是( )A. (2x+y)2B. 2x+y2C. 2x2+y2D. x(2+y)2【答案】A【解析】【分析】x的2倍即为2x,与y的和表示为(2x+y),然后再将此和进行平方即可.【详解】用式子表示“x的2倍与y的和的平方”是(2x+y)2.故选:A.【点睛】本题考查了列代数式,列代数式应注意:①仔细辨别词义.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义.如“除”与“除以”,“平方和”与“和的平方”的词义区分.②分清数量关系.要正确列代数式,只有分清数量之间的关系.③注意运算顺序.列代数式时,一般应在语言叙述的数量关系中,先读的先写,不同级运算的语言,且又要体现出先低级运算,要把代数式中代表低级运算的这部分括起来.④规范书写格式.列代数时要按要求规范地书写.像数字与字母、字母与字母相乘可省略乘号不写,数与数相乘必须写乘号;除法可写成分数形式,带分数与字母相乘需把代分数化为假分数.6. 整式x2-3x的值是4,则3x2-9x+8的值是( )A. 20B. 4C. 16D. -4【答案】A【解析】【分析】分析所给多项式与所求多项式二次项、一次项系数的关系即可得出答案.【详解】解:因为x2-3x=4,所以3x2-9x=12,所以3x2-9x+8=12+8=20.故选:A.【点睛】本题考查了代数式的求值,分析发现所求多项式与已知多项式之间的关系是解决此题的关键.7. 观察如图所示图形,则第n个图形中三角形的个数是( )A. 2n+2B. 4n+4C. 4nD. 4n-4【答案】C【解析】【分析】由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.【详解】解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n.故选:C.【点睛】此题考查了学生由特殊到一般的归纳能力.解此题时要注意寻找各部分间的联系,找到一般规律.8. 某教学楼阶梯教室,第一排有m个座位,后面每一排都比前面一排多4个座位,则第n排的座位数是( )A. m+4B. m+4nC. n+4(m-1)D. m+4(n-1)【答案】D【解析】试题解析:由于第一排有m个座位,后面每一排都比前面一排多4个座位,则第n排座位数为:m+4(n-1).故选D.9. 已知A=3a2+b2-c2,B=-2a2-b2+3c2,且A+B+C=0,则C=( )A. a2+2c2B. -a2-2c2C. 5a2+2b-4c2D. -5a2-2b2+4c2【答案】B【解析】【分析】由A+B+C=0知,C=-(A+B),然后把A,B的值代入即可.【详解】解:∵A+B+C=0,∴C=-(A+B)=-(3a2+b2-c2-2a2-b2+3c2)=-(a2+2c2)=-a2-2c2,故选:B.【点睛】本题考查了整式的加减,主要是去括号法则的运用.注意表示整式加减时,整式上应先添加括号.10. 如图,两个六边形的面积分别为16和9,两个阴影部分的面积分别为a,b(a<b),则b-a的值为( )A. 4B. 5C. 6D. 7【答案】D【解析】【分析】直接利用已知图形得出b-a=b+空白面积-(a+空白面积)=大正六边形面积-小正六边形面积,进而得出答案.【详解】解:∵两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a,b(a<b),∴b-a=b+空白面积-(a+空白面积)=大正六边形面积-小正六边形面积=16-9=7.故选:D.【点睛】此题主要考查了整式的加减运算,结合图形得出b-a与两个六边形的面积之间的关系是解决此题的关键.第Ⅱ卷(非选择题共70分)二、填空题(每题3分,共18分)11. 已知-mx n y是关于x,y的一个单项式且系数为3,次数为4,则m n=________.【答案】-27【解析】试题解析:由题意可得:解得:故故答案为:12. 若关于x,y的多项式4xy3-2ax2-3xy+2x2-1不含x2项,则a=________.【答案】1【解析】【分析】把a看成是常数,合并同类项,然后令x2项的系数为0即可求出a的值.【详解】解:4xy3-2ax2-3xy+2x2-1=4xy3+(2-2a)x2-3xy-1,因为多项式不含x2项,所以2-2a=0,解得:a=1.故答案为:1.【点睛】此题主要考查了多项式,关键是掌握合并同类项法则.即系数相加作为系数,字母和字母的指数不变.在多项式中不含某一项,即合并同类项后令这一项的系数为0.13. 把a-b看作一个整体,合并同类项:3(a-b)+4(a-b)2-2(a-b)-3(a-b)2-(a-b)2=________.【答案】a-b【解析】【分析】把(a-b)看作是一个字母,利用合并同类项的法则进行合并即可.【详解】解:原式=(3-2)(a-b)+(4-3-1)(a-b)2=1(a-b)= a-b.故答案为:a-b.【点睛】本题主要考查了合并同类项的法则,系数相加作为系数,字母和字母的指数不变.也考查了整体思想的应用.14. 已知一列数2,8,26,80,…,按此规律,则第n(n为正整数)个数是________.(用含n的式子表示)【答案】3n-1【解析】【分析】2,8,26,80都加1正好是3的幂的形式,据此即可发现规律.【详解】解:第1个数:2=31-1,第2个数:8=32-1,第3个数:26=33-1,第4个数:80=34-1,……第n个数:3n-1.故答案为:3n-1.【点睛】此题考查了数字的变化规律,找出数字之间的运算规律,利用规律解决问题是解答此题的关键.15. 某班学生在实践基地进行拓展活动,因为器材的原因,教练要求分成固定的a组,若每组5人,则多出9名同学;若每组6人,最后一组的人数将不满,则最后一组的人数用含a的式子可表示为________.【答案】15-a【解析】【分析】因为分成固定的a组,若每组5人,就有9名同学多出来,则一共有人数为(5a+9)人,如果每组6人,则最后一组的人数可以表示为:总人数-前(a-1)组的人数.【详解】解:若每组5人,就有9名同学多出来,则总人数为(5a+9),每组6人,最后一组的人数不满,则前(a-1)组的人数为6(a-1),所以最后一组的人数为:(5a+9)-6(a-1)= 5a+9-6a+6=15-a.故答案为:15-a.【点睛】本题考查了列代数式和整式的加减,根据题目中的数量关系正确的列出代数式是解决此题的关键.16. 若|a+1|+(b-)2=0,则5a2+3b2+2(a2-b2)-(5a2-3b2)的值为________.【答案】3【解析】【分析】利用非负数的性质求出a与b的值,原式去括号合并得到最简结果,代入计算即可求出值.【详解】解:∵|a+1|+(b-)=0,∴a+1=0,b-=0,即a=-1,b=,原式=5a2+3b2+2a2-2b2-5a2+3b2=2a2+4b2=2×(-1)2+4×()2=2+1=3.故答案为:3【点睛】此题考查了整式的加减-化简求值和非负数性质的应用,熟练掌握运算法则和根据非负数的性质求出a、b的值是解本题的关键.三、解答题(共52分)17. 已知12a2b2x,8a3xy,4m2nx2,60xyz3.(1)观察上述式子,请写出这四个式子都具有的两个特征;(2)请写出一个新的式子,使该式同时具有你在(1)中所写出的两个共同特征.【答案】见解析【解析】【分析】(1)根据式子的类型以及式子的次数即可写出,答案不唯一;(2)根据(1)写出的式子的特点,即可写出.【详解】本题答案不唯一.如:(1)①都是单项式;②次数都是5.(2)14ab2c2.【点睛】本题考查了代数式的定义,以及单项式的次数的定义,理解定义是关键.18. 去掉下列各式中的括号:(1)8m-(3n+5);(2)n-4(3-2m);(3)2(a-2b)-3(2m-n).【答案】(1) 8m-3n-5(2) n-12+8m(3) 2a-4b-6m+3n【解析】【分析】利用去括号法则确定各项的符号,利用乘法的分配率确定各项的绝对值即可.【详解】解:(1)8m-(3n+5)=8m-3n-5.(2)n-4(3-2m)=n-(12-8m)=n-12+8m.(3)2(a-2b)-3(2m-n)=2a-4b-(6m-3n)=2a-4b-6m+3n.【点睛】本题考查了去括号,去括号时,当括号前面为“-”时常出现错误,常常是括号内前面的项符号改变了,后面就忘记了,如:-4(3-2m)=-12-8m,应引起特别注意.19. 已知关于x,y的多项式x4+(m+2)x n y-xy2+3,其中n为正整数.(1)当m,n为何值时,它是五次四项式?(2)当m,n为何值时,它是四次三项式?【答案】(1) n=4,m≠-2(2) m=-2,n为任意正整数.【解析】【分析】(1)根据多项式是五次四项式可知n+1=5,m+2≠0,从而可求得m、n的取值;(2)根据多项式是四次三项式可知:m+2=0,n为任意实数.【详解】解:(1)因为多项式是五次四项式,所以n+1=5,m+2≠0,所以n=4,m≠-2.(2)因为多项式是四次三项式,所以m+2=0,n为任意正整数,所以m=-2,n为任意正整数.【点睛】本题主要考查的是多项式的定义,掌握多项式的定义是解题的关键.20. 有这样一道题:“计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=,y=-1.”甲同学把“x=”错抄成“x=-”,但他计算的结果也是正确的,试说明理由,并求出正确结果.【答案】2【解析】【分析】原式去括号合并得到结果,即可作出判断.【详解】解:(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)=2x3-3x2y-2xy2-x3+2xy2-y3-x3+3x2y-y3=-2y3.因为化简后的结果中不含x,所以原式的值与x的取值无关.当x=,y=-1时,原式=-2×(-1)3=2.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.21. 已知A=2a2-a,B=-5a+1.(1)化简:3A-2B+2;(2)当a=-时,求3A-2B+2的值.【答案】(1)6a2+7(2)-2【解析】试题分析:(1)把A、B代入3A﹣2B+2,再去括号、合并同类项;(2)把a=-代入上式计算.试题解析:解:(1)3A﹣2B+2,=3(2a2﹣a)﹣2(﹣5a+1)+2,=6a2﹣3a+10a﹣2+2,=6a2+7a;(2)当a=-时,3A﹣2B+2=6×(-)2+7×(-)=-2.考点:整式的加减—化简求值;整式的加减22. 一个四边形的周长是48 cm,已知第一条边长是a cm,第二条边比第一条边的2倍还长3 cm,第三条边长等于第一、第二两条边长的和.(1)用含a的式子表示第四条边长;(2)当a=7时,还能得到四边形吗?并说明理由.【答案】(1) (42-6a)cm(2)不能【解析】分析:(1)由第二、三边与第一边的关系,分别表示出第二、三边,用周长-第一边-第二边-第三边表示出第四边即可;(2)不能构成四边形,理由为:将a的值代入(1)表示出的第四边,得到其值为0,故不能构成四边形.解答:解:(1)由周长为48cm,第一边为acm,根据题意列得:第二边长为(2a+3)cm,第三边为a+(2a+3)=(3a+3)cm,则第四边长为48-[a+(2a+3)+(3a+3)]=48-(a+2a+3+3a+3)=48-(6a+6)=48-6a-6=(42-6a)cm;(2)不能构成四边形,理由为:当a=7cm时,第四边为42-6×7=0,不能构成四边形。

人教版七年级数学上册第二章《整式的加减》综合测试卷(含答案)

人教版七年级数学上册第二章《整式的加减》综合测试卷(含答案)

人教版七年级数学上册第二章《整式的加减》综合测试卷(含答案)一、单选题(每小题3分,共30分)1.下列各式2211241,,8,,26,,,25πx y x ymn m x xa y-+-++中,单项式有( )A.3个B.4个C.6个D.7个2.(安顺中考)下列计算正确的是 ( )A.3x2-x2=3B.-3a2-2a2=-a2C.3(a-1)=3a-1D.-2(x+1)=-2x-23.下列说法正确的是 ( )A.-22x3y 的次数6B. 0不是单项C.23x y的系数是13D.2πr的系数是14.(贵州安顺期末)下列各组中的两个项不属于同类项的是 ( )A. 3x2y和-2x2yB. -xy和2yxC. 1-和1D. -2x2y与xy25.整式x2-3x的值是4,则3x2-9x+8的值是 ( )A.20B.4C.16D.-46.下面四个代数式中,不能表示图中阴影部分面积的是 ( )A.(x+3)(x+2)-2xB.x2+5xC.3(x+2)+x2D. x(x+3)+67.一台轿车标价a万元,为了促销,每台降价10%销售,则每台轿车的售价为 ( )万元A. 10a%B.(1+10% )aC.90% aD.(1+.90%)a8.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是 ( )A.-5x-1B.5x+1C.-13x-1D.13x+19.如果多项式x2+8xy-y2-kxy+5不含xy项,则k的值为( )A.0B.7C.1D.810.(青岛期末)观察如图所示图形,则第n个图形中三角形的个数是 ( )A.22n +B.44n +C.4nD.44n -二、填空题(每小题3分,共24分) 11.写出一个系数为-2且含a,b 的五次单项式 。

12.多项式3235612x y x -+-是 次 项式,最高次项的系数是 。

13.若代数式3a m b n-1与-9a 3b 6的和是单项式,则m n += 。

人教版七年级上册数学第二章整式的加减单元检测(附答案)

人教版七年级上册数学第二章整式的加减单元检测(附答案)

人教版数学七年级上册第二章整式的加减综合能力测试第Ⅰ卷(选择题)一.选择题(共10小题,满分40分,每小题4分)1.下列代数式中,整式为()A. x+1B.C.D.2.在代数式π,x2+,x+xy,3x2+nx+4,﹣x,3,5xy,中,整式共有()A. 7个B. 6个C. 5个D. 4个3.单项式2πr3的系数是()A. 3B. πC. 2D. 2π4.单项式2a3b的次数是()A. 2B. 3C. 4D. 55.对于式子:,,,3x2+5x-2,abc,0,,m,下列说法正确的是( )A. 有5个单项式,1个多项式B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式6.下列说法正确的是( )A. -的系数是-3B. 2m2n的次数是2C. 是多项式D. x2-x-1的常数项是17.如果2x a+1y与x2y b﹣1是同类项,那么的值是()A. B. C. 1 D. 38.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 99.下面计算正确的是()A. (m+1)a﹣ma=1B. a+3a2=4a3C. ﹣(a﹣b)=﹣a+bD. 2(a+b)=2a+b10.一个长方形的周长为6a+8b,其中一边长为2a﹣b,则另一边长为()A. 4a+5bB. a+bC. a+5bD. a+7b第Ⅱ卷(非选择题)二.填空题(共4小题,满分20分,每小题5分)11.下列代数式:(1)mn,(2)m,(3),(4),(5)2m+1,(6),(7),(8)x2+2x+,(9)y3﹣5y+中,整式有______.(填序号)12.如果多项式(﹣a﹣1)x2﹣x b+x+1是关于x的四次三项式,那么这个多项式的最高次项系数是_____,2次项是_____13.如图是小明家的楼梯示意图,其水平距离(即:AB的长度)为(2a+b)米,一只蚂蚁从A点沿着楼梯爬到C点,共爬了(3a﹣b)米.问小明家楼梯的竖直高度(即:BC的长度)为_____米.14.若x=y+3,则(x﹣y)2﹣2.3(x﹣y)+0.75(x﹣y)2+(x﹣y)+7等于_____.三.解答题(共9小题,满分90分)15.计算:(1)3xy﹣4xy﹣(﹣2xy)(2)(﹣3)2÷2÷(﹣)+4+22×(﹣)16.若3x m y n是含有字母x和y的五次单项式,求m n的最大值.17.已知多项式x2y m+1+xy2–3x3–6是六次四项式,单项式6x2n y5–m的次数与这个多项式的次数相同,求m+n的值.18.如果两个关于x、y的单项式2mx a y3与﹣4nx3a﹣6y3是同类项(其中xy≠0).(1)求a的值;(2)如果它们的和为零,求(m﹣2n﹣1)2017的值.19.若(2mx2﹣x+3)﹣(3x2﹣x﹣4)的结果与x的取值无关,求m的值.20.已知多项式(m﹣3)x|m|﹣2y3+x2y﹣2xy2是关于的xy四次三项式.(1)求m的值;(2)当x=,y=﹣1时,求此多项式的值.21.嘉淇准备完成题目:化简:(x²+6x+8)-(6x+5x²+2)发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?22.阅读下面材料:计算1+2+3+…+99+100时,如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5050.根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m).23.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了多项式,形式如下:﹣(a2+4ab+4b2)=a2﹣4b2(1)求所捂的多项式(2)当a=﹣2,b=时,求所捂的多项式的值答案与解析第Ⅰ卷(选择题)一.选择题(共10小题,满分40分,每小题4分)1.下列代数式中,整式为()A. x+1B.C.D.【答案】A【解析】【分析】直接利用整式、分式、二次根式的定义分析得出答案.【详解】A、x+1是整式,故此选项正确;B、是分式,故此选项错误;C、是二次根式,故此选项错误;D、是分式,故此选项错误,故选A.【点睛】本题考查了整式、分式、二次根式的定义,熟练掌握相关定义是解题关键.2.在代数式π,x2+,x+xy,3x2+nx+4,﹣x,3,5xy,中,整式共有()A. 7个B. 6个C. 5个D. 4个【答案】B【解析】【分析】分母中含有字母的式子一定不是多项式也不是单项式,因此其不是整式.所有单项式和多项式都是整式. 【详解】在代数式π,x2+,x+xy,3x2+nx+4,﹣x,3,5xy,中,整式有:π,x+xy,3x2+nx+4,﹣x,3,5xy,共有6个.故选:B【点睛】本题考核知识点:整式. 解题关键点:理解整式的意义.3.单项式2πr3的系数是()A. 3B. πC. 2D. 2π【答案】D【解析】【分析】根据单项式中的数字因数是单项式的系数求解即可.【详解】单项式2πr3的系数是2π.故选D.【点睛】本题考查了单项式的概念,单项式中的数字因数叫做单项式的的系数,系数包括它前面的符号,单项式的次数是所有字母的指数的和.4.单项式2a3b的次数是()A. 2B. 3C. 4D. 5【答案】C【解析】分析:根据单项式的性质即可求出答案.详解:该单项式的次数为:3+1=4故选:C.点睛:本题考查单项式的次数定义,解题的关键是熟练运用单项式的次数定义,本题属于基础题型.5.对于式子:,,,3x2+5x-2,abc,0,,m,下列说法正确的是( )A. 有5个单项式,1个多项式B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式【答案】C【解析】分析:分别利用多项式以及单项式的定义分析得出答案.详解:,,,3x2+5x﹣2,abc,0,,m中:有4个单项式:,abc,0,m;2个多项式为:,3x2+5x-2.故选:C.点睛:此题主要考查了多项式以及单项式,正确把握相关定义是解题关键.6.下列说法正确的是( )A. -的系数是-3B. 2m2n的次数是2C. 是多项式D. x2-x-1的常数项是1【答案】C【解析】分析:直接利用单项式以及多项式的定义分别分析得出答案.详解:A.﹣的系数是﹣,故此选项错误;B.2m2n的次数是3次,故此选项错误;C.是多项式,正确;D.x2﹣x﹣1的常数项是﹣1,故此选项错误.故选C.点睛:本题主要考查了单项式以及多项式,正确把握相关定义是解题的关键.7.如果2x a+1y与x2y b﹣1是同类项,那么的值是()A. B. C. 1 D. 3【答案】A【解析】【分析】根据同类项的概念可得a+1=2,b-1=1,解方程求得a、b的值,代入进行计算即可得.【详解】由题意得:a+1=2,b-1=1,解得:a=1,b=2,所以=,故选A.【点睛】本题考查了同类项,熟知所含字母相同,相同字母的指数也相同的项是同类项是解题的关键.8.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【答案】C【解析】分析:首先可判断单项式a m-1b2与a2b n是同类项,再由同类项的定义可得m、n的值,代入求解即可.详解:∵单项式a m-1b2与a2b n的和仍是单项式,∴单项式a m-1b2与a2b n是同类项,∴m-1=2,n=2,∴m=3,n=2,∴n m=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.9.下面计算正确的是()A. (m+1)a﹣ma=1B. a+3a2=4a3C. ﹣(a﹣b)=﹣a+bD. 2(a+b)=2a+b【答案】C【解析】【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进行计算,即可选出答案.【详解】A. (m+1)a﹣ma=a≠1,故此选项错误;B.a与3a2不是同类项,不能合并,故此选项错误;C. ﹣(a﹣b)=﹣a+b,故此选项正确;D. 2(a+b)=2a+2b≠2a+b,故此选项错误;故选C.【点睛】本题主要考查了合并同类项,去括号,关键是注意去括号时注意符号他变化,注意乘法分配律的应用,不要漏乘.10.一个长方形的周长为6a+8b,其中一边长为2a﹣b,则另一边长为()A. 4a+5bB. a+bC. a+5bD. a+7b【答案】C【解析】【分析】根据长方形的周长公式列出求边长的式子,再去括号,合并同类项即可.【详解】一个长方形的周长为6a+8b,一边长为2a﹣b,∴它的另一边长=(6a+8b )-( 2a﹣b)=3a+4b-2a+b=a+5b.故选C.【点睛】本题考查的是整式的加减的应用,熟知整式的加减实质上就是去括号合并同类项,正确列出算式是解答此题的关键.第Ⅱ卷(非选择题)二.填空题(共4小题,满分20分,每小题5分)11.下列代数式:(1)mn,(2)m,(3),(4),(5)2m+1,(6),(7),(8)x2+2x+,(9)y3﹣5y+中,整式有______.(填序号)【答案】1)、(2)、(3)、(5)、(6)、(8).【解析】单项式和多项式统称整式,由此可得(1)mn,(2)m,(3),(5)2m+1,(6)都是整式,所以整式有(1)、(2)、(3)、(5)、(6)、(8).12.如果多项式(﹣a﹣1)x2﹣x b+x+1是关于x的四次三项式,那么这个多项式的最高次项系数是_____,2次项是_____【答案】(1). ﹣(2). 不存在【解析】【分析】由题意可得b=4,–a–1=0,求出a、b的值后再根据多项式的相关概念进行求解即可得.【详解】由题意得:b=4,–a–1=0,解得:a=–1,b=4,∴多项式–x 4+x+1的最高次项系数是–,2次项是0,故答案为:–;0.【点睛】本题考查了多项式的项数以及次数,熟练掌握多项式的项数及次数的概念是解题的关键.13.如图是小明家的楼梯示意图,其水平距离(即:AB的长度)为(2a+b)米,一只蚂蚁从A点沿着楼梯爬到C点,共爬了(3a﹣b)米.问小明家楼梯的竖直高度(即:BC的长度)为_____米.【答案】(a﹣2b)【解析】试题分析:根据平移可得蚂蚁所爬的距离=AB+BC,即3a-b=2a+b+BC.考点:代数式的减法计算14.若x=y+3,则(x﹣y)2﹣2.3(x﹣y)+0.75(x﹣y)2+(x﹣y)+7等于_____.【答案】10【解析】【分析】由由x=y+3得x-y=3,整体代入原式计算即可.【详解】由x=y+3得x-y=3,将其代入要求的式子得:原式=,故答案为:10.【点睛】本题考查了整式的加减—化简求值,解题的关键是掌握整体代入思想的运用.三.解答题(共9小题,满分90分)15.计算:(1)3xy﹣4xy﹣(﹣2xy)(2)(﹣3)2÷2÷(﹣)+4+22×(﹣)【答案】(1)xy(2)-8【解析】【分析】(1) 先将括号去掉,然后根据合并同类项的法则:系数相加减,字母和字母的指数不变.据此合并即可;(2) 原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【详解】(1)原式=3xy﹣4xy+2xy=xy,(2)原式=9÷÷(﹣)+4+4×(﹣)=4×(﹣)+4﹣6=﹣6+4﹣6=﹣8【点睛】本题考查了有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.16.若3x m y n是含有字母x和y的五次单项式,求m n的最大值.【答案】9【解析】【分析】根据单项式的概念即可求出答案.【详解】因为3x m y n是含有字母x和y的五次单项式,所以m+n=5,且m、n均为正整数.当m=1,n=4时,m n=14=1;当m=2,n=3时,m n=23=8;当m=3,n=2时,m n=32=9;当m=4,n=1时,m n=41=4,故m n的最大值为9.【点睛】考查单项式的概念,解题关键是运用单项式的概念和分类讨论的思想.17.已知多项式x2y m+1+xy2–3x3–6是六次四项式,单项式6x2n y5–m的次数与这个多项式的次数相同,求m+n的值.【答案】5.【解析】【分析】根据多项式的次数和单项式的次数的定义进行分析解答即可.【详解】∵多项式x2y m+1+xy2﹣3x3﹣6是六次四项式,∴2+m+1=6,解得:m=3,∵单项式26x2n y5﹣m的次数与这个多项式的次数相同,∴2n+5﹣m=6,∴2n=1+3=4,∴n=2.∴m+n=3+2=5.【点睛】熟知“(1)单项式的次数的定义:单项式中所有字母因数的指数之和叫做这个单项式的次数;(2)多项式的次数的定义:多项式的各项中,次数最高的项的次数就是这个多项式的次数”是解答本题的关键. 18.如果两个关于x、y的单项式2mx a y3与﹣4nx3a﹣6y3是同类项(其中xy≠0).(1)求a的值;(2)如果它们的和为零,求(m﹣2n﹣1)2017的值.【答案】(1)3(2)-1【解析】试题分析:(1)根据同类项的概念可得关于a 的方程,解方程即可得;(2)由已知可得2m-4n=0,从而得m-2n=0,代入进行计算即可得.试题解析:(1)∵关于x、y的两个单项式2mx a y3和﹣4nx3a﹣6y3是同类项,∴a=3a﹣6,解得:a=3;(2)∵2mx a y3+(﹣4nx3a﹣6y3)=0,则2m﹣4n=0,即m﹣2n=0,∴(m﹣2n﹣1)2017=(﹣1)2017=﹣1.19.若(2mx2﹣x+3)﹣(3x2﹣x﹣4)的结果与x的取值无关,求m的值.【答案】【解析】【分析】与x无关说明含x的项都被消去,由此可得出m的值.【详解】(2mx2﹣x+3)﹣(3x2﹣x﹣4)=2mx2﹣x+3﹣3x2+x+4=(2m﹣3)x2+7,∵(2mx2﹣x+3)﹣(3x2﹣x﹣4)的结果与x的取值无关,∴2m﹣3=0,解得:m=.【点睛】本题考查整式的加减,解题的关键是正确理解(2mx2﹣x+3)﹣(3x2﹣x﹣4)的结果与x的取值无关.20.已知多项式(m﹣3)x|m|﹣2y3+x2y﹣2xy2是关于的xy四次三项式.(1)求m的值;(2)当x=,y=﹣1时,求此多项式的值.【答案】(1)-3(2)【解析】【分析】(1)直接利用多项式的次数的确定方法得出m的值;(2)将x,y的值代入求出结果即可.【详解】(1)∵多项式(m﹣3)x|m|﹣2y3+x2y﹣2xy2是关于的xy四次三项式,∴|m|﹣2+3=4,m﹣3≠0,解得:m=﹣3,(2)当x=,y=﹣1时,此多项式的值为:﹣6××(﹣1)3+()2×(﹣1)﹣2××(﹣1)2=9﹣﹣3=.【点睛】本题考查了多项式及绝对值的知识点,解题的关键是根据题意得出m的值.21.嘉淇准备完成题目:化简:(x²+6x+8)-(6x+5x²+2)发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?【答案】(1)﹣2x2+6;(2)a=5【解析】【分析】(1)由题意可先去括号,再合并同类项计算即可;(2)设“”是a,代入原式得到(a﹣5)x2+6,再根据“该题标准答案的结果是常数”,即可解答.【详解】(1)(3x2+6x+8)﹣(6x+5x2+2)=3x2+6x+8﹣6x﹣5x2﹣2=﹣2x2+6;(2)设“”是a,则原式=(ax2+6x+8)﹣(6x+5x2+2)=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案的结果是常数,∴a﹣5=0,解得:a=5.【点睛】本题考查了整式的加减,解题的关键是掌握合并同类项及去括号法则.22.阅读下面材料:计算1+2+3+…+99+100时,如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5050.根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m).【答案】101a+5050m.【解析】【分析】由阅读材料可以看出,100个数相加,用第一项加最后一项可得101,第二项加倒数第二项可得101,…,共100项,可分成50个101,在计算a+(a+m)+(a+2m)+(a+3m)+…+(a+100d)时,可以看出a共有100个,m,2m,3m,…100m,共有100个,m+100m=101m,2m+99d=101d,…共有50个101m,根据规律可得答案.【详解】a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)=101a+(m+2m+3m+…+100m)=101a+(m+100m)+(2m+99m)+(3m+98m)+…+(50m+51m)=101a+101m×50=101a+5050m.【点睛】考查了整式的加法,关键是根据阅读材料找出其中的规律,根据规律得出解题的技巧.23.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了多项式,形式如下:﹣(a2+4ab+4b2)=a2﹣4b2(1)求所捂的多项式(2)当a=﹣2,b=时,求所捂的多项式的值【答案】(1)2a2+4ab(2)4【解析】试题分析:(1)所捂的多项式是被减式,根据被减式=减式+差求解;(2)把a,b的值代入到(1)中所求的多项式中求值.试题解析:(1)所捂多项式=a2-4b2+a2+4b2+4ab=2a2+4ab;(2)当a=-1,b=时,所捂多项式=2×(-1)2+4×(-1)×=2-2=0.。

初一数学七年级人教版上册第2章《整式的加减》单元综合测试题答案解析

初一数学七年级人教版上册第2章《整式的加减》单元综合测试题答案解析

初一数学七年级人教版上册第2章《整式的加减》单元综合测试题一、选择题1.下列单项式中,与-3xy2是同类项的是( )A. -2x2yB. 3y2C. 5xy2D. -6x【答案】C【解析】直接利用同类项的定义是所含有的字母相同,并且相同字母的指数也相同的项叫同类项,所以只要判断所含有的字母是否相同,相同字母的指数是否相同即可.由同类项的定义可知,x的指数是1,y的指数是2.A、x的指数是2,y的指数是1,故此选项错误;B、3不含有x的项, 故此选项错误;C、x的指数是1,y的指数是2, 故此选项正确;D、-6不含有y的项,故此选项错误.所以C选项是正确的.【点评】本题主要考查同类项的定义,熟悉掌握定义是关键.2.下列说法正确的是( )A. 23a4的系数是2,次数是7B. 若-34x m y2的次数是5,则m=5C. 0不是单项式D. 若x2+mx是单项式,则m=0或x=0 【答案】D【解析】根据单项式的系数和次数的定义解答即可.A 、23a 4的系数是8,次数是4,故此选项错误.B 、若m 23x y 4的次数是5,则m=3, 故此选项错误. C 、0是单项式,故此选项错误.D 、若x 2+mx 是单项式,则m=0或x=0, 故此选项正确.所以D 选项是正确的.【点评】本题考查了单项式的定义,单项式的系数和次数,熟记概念是解题的关键.3.下列运算正确的是( )A. 3a+2a=5a 2B. 3a+3b=3abC. 2a 2bc ﹣a 2bc=a 2bcD. a 5﹣a 2=a 3 【答案】C【解析】A.3a+2a=5a ,故错误;B.3a 与3b 不是同类项,不能合并,故错误;C.2a 2bc-a 2bc=a 2bc ,正确;D.a 5与a 2不是同类项,不能合并,故错误;故选C.4.下列各式运算其中去括号不正确的有( )(1)-(-a -b )=a -b ;(2)5x -(2x -1)-x 2=5x -2x -1+x 2;(3)3xy -12(xy -y 2)=3xy -12xy +y 2;(4)(a 3+b 3)-3(2a 3-3b 3)=a 3+b 3-6a 3+9b 3 A. (1)(2)B. (1)(2)(3)C. (2)(3)(4)D. (1)(2)(3)(4) 【答案】B【解析】在去括号时,如果括号前面是负号,则去掉括号后括号里面的每一项都要变号.(1)、原式=a+b ;(2)、原式=5x -2x+1-x²;(3)、原式=3xy -12xy+12y²;(4)、正确. 【考点】去括号法则.5.下面是小林做的4道作业题:(1)2ab+3ab=5ab;(2)2ab-3ab=-ab;(3)2ab-4ab=6ab;(4)2ab+4ab=6ab.做对一题得2分,则他共得到( )A. 2分B. 4分C. 6分D. 8分【答案】C【解析】(1)2ab+3ab=5ab ,正确;(2)2ab ﹣3ab=﹣ab ,正确;(3)∵2ab ﹣3ab=﹣ab ,∴2ab ﹣3ab=6ab 错误;(4)2ab÷3ab=23,正确.3道正确,得到6分, 故选项C 正确.故选:C.6.下列各题去括号错误的是( ) A. 113322x y x y ⎛⎫--=-+ ⎪⎝⎭ B. m+(-n+a-b)=m-n+a-b C. 12-(4x-6y+3)=-2x+3y+3 D. 112112237237a b c a b c ⎛⎫⎛⎫+--+=++- ⎪ ⎪⎝⎭⎝⎭ 【答案】C【解析】根据去括号法则依次计算各项后即可解答.选项A ,132x y ⎛⎫-- ⎪⎝⎭ =132x y -+; 选项B ,()m n a b m n a b +-+-=-+-;选项C ,()134632322x y x y --+=-+-; 选项D ,112112237237a b c a b c ⎛⎫⎛⎫+--+=++- ⎪ ⎪⎝⎭⎝⎭. 综上,只有选项C 错误,故选C.【点评】本题考查了去括号法则:1.括号前是"+",把括号和它前面的"+"去掉后,原括号里各项的符号都不改变;2.括号前是"-",把括号和它前面的"-"去掉后,原括号里各项的符号都要改变.7.若(3x 2-3x+2)-(-x 2+3x-3)=Ax 2-Bx+C,则A 、B 、C 的值分别为( )A. 4、-6、5B. 4、0、-1C. 2、0、5D. 4、6、5【答案】D【解析】 先把等式左边的整式相加减,再分别令等式两边x 的二次项系数、一次项系数及常数项分别相等即可.∵等式的左边=3x 2-3x+2+x 2-3x+3=(3+1)x 2-(3+3)x+2+3=4x 2-6x+5,∴A=4,B=6,C=5,故选D .【点评】本题考查了整式的加减,熟知整式加减的实质就是合并同类项是解答此题的关键. 8.多项式()n 1x n 2x 72-++是关于x 的二次三项式,则n 的值是( ) A. 2B. -2C. 2或-2D. 3 【答案】A【解析】∵多项式()1272n x n x -++是关于x 的二次三项式, ∴220n n =⎧⎨+≠⎩ ,解得n=2. 故选A.9.若代数式(2x 2+ax-y+6)-(2bx 2-3x-5y-1)(a,b 为常数)的值与字母x 的取值无关,则代数式a+3b 的值为( )A. 0B. -1C. 2或-2D. 6【答案】B【解析】先将代数式进行去括号合并,然后令含x 的项系数为0,即可求出a 与b 的值,最后代入所求的式子即可求得答案.原式=2x2+ax-y+6-2bx2+3x+5y+1,=x2(2-2b)+x(a+3)+4y+7,∵代数式的值与x的取值无关,∴(2-2b)=0,(a+3)=0,∴b=1,a=-3 ,当b=1,a=-3时,a+2b=-3+2=-1,所以B选项是正确的.【点评】此题考查了学生对整式的加减和代数式求值的知识掌握情况,熟练掌握运算法则是解本题的关键;做这类习题我们必须认真和细心,搞清题意,这样问题就迎刃而解了.10.已知a,b,c是三个有理数,它们在数轴上的位置如图所示,则化简|a-b|+|c-a|-|b+c|+(c-a)的结果是( )A. 3a-cB. -2a+cC. a+cD. -2b-c【答案】C【解析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简即可得到结果.根据数轴得:c<b<0<a,且|a|<|b|<|c|,∴a-b>0,c-a<0,b+c<0,则原式=a-b+a-c+b+c+c-a=a+c,所以C选项是正确的.【点评】此题考查了数轴和绝对值,灵活运用解本题的关键.二、填空题11.苹果原价是每千克x元,按8折优惠出售,该苹果现价是每千克____元(用含x的代数式表示). 【答案】0.8x【解析】依题意得:该苹果现价是每千克80%x=0.8x.【考点】列代数式.12.在代数式2-12a,-3xy3,0,4ab,3x2-4,7xy,n中,单项式有____个.【答案】5【解析】根据单项式的概念找出单项式的个数.单项式有:-3xy3,0,4ab,xy7,n,共5个.故答案为:5.【点评】本题主要考查单项式的概念,熟悉掌握是关键.13.若-12x m+3y与2x4y n+3是同类项,则(m+n)2 017=____.【答案】-1【解析】根据同类项中相同字母的指数相同的概念可得出关于m、n的方程,解方程求出m、n的值再代入(m+n)2017进行计算即可得.∵-12x m+3y与2x4y n+3是同类项,∴m+3=4,n+3=1,∴m=1,n=-2,∴(m+n)2017=(1-2)2017=-1,故答案为:-1.【点评】本题考查了同类项、乘方等,解答本题的关键是掌握同类项中相同字母指数相同的概念.14.若单项式-23m2n x-1和5a4b2c的次数相同,则代数式x2-2x+3的值为____.【答案】27【解析】根据单项式次数的概念求出关于x的方程,解出x,然后代入即可.∵单项式-23m2n x-1和5a4b2c 的次数相同,∴2+x-a=4+2+1 ,解得: x=6 ,则x2-2x+3=27.故答案为:27.【点评】本题考查了单项式的知识,解答本题的关键是掌握单项式的次数的定义.15.已知2a﹣3b=7,则8+6b﹣4a=_____.【答案】-6【解析】∵2a﹣3b=7,∴8+6b﹣4a=8﹣2(2a﹣3b)=8﹣2×7=﹣6,故答案为:﹣6.【考点】代数式求值;整体代入.16.下图是某月份的日历,用一个方框圈出任意3×3个数,设最中间一个数是x,则用含x的代数式表示这9个数的和是____.【答案】9x【解析】根据最中间的为x,由日历中数字的规律表示出其他8个数,求出之和即可.设最中间的一个是x,根据题意得:x−8+x−7+x−6+x−1+x+x+1+x+6+x+7+x+8=9x.故答案为:9x.【点评】此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.17.若(x-1)2 +4|y-6|=0,则(5x+6y)-(4x+8y)的值为__.【答案】-11【解析】原式合并同类项得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.∵(x-1)2+4|y-6|=0,∴x-1=0,y-6=0,即x=1,y=6,则原式=x-2y=1-12=-11.故答案为:-11.【点评】本题考查的知识点是整式的加减—化简求值,非负数的性质:绝对值,解题的关键是熟练的掌握整式的加减—化简求值,非负数的性质:绝对值整式的加减—化简求值,非负数的性质:绝对值.18.小明在求一个多项式减去x2-3x+5的结果时,误认为是加上x2-3x+5,得到的结果是5x2-2x+4,则正确的结果是_______.【答案】3x2+4x-6【解析】根据题目的条件,先求出原式,再按照题目给的正确做法求出正确结果.∵误认为加上x2−3x+5,得到的答案是5x2−2x+4,∴原式=5x2−2x+4−(x2−3x+5)=4x2+x−1.(4x2+x−1)−(x2−3x+5)=4x2+x−1−x2+3x−5=3x2+4x−6.【点评】本题考查的知识点是整式的加减,解题的关键是熟练的掌握整式的加减整式的加减.19.现规定a bc d=a-b+c-d,则222-3-2--2-3-5xy x xy xx xy的值为____.【答案】-4x2+2xy+2 【解析】首先根据例题可得22 2-3-2--2-3-5xy x xy x x xy+=(xy-3x2)-(-2xy-x2)+(-2x2-3)-(-5+xy),然后再去括号,合并同类项即可.∵a bc d=a-b+c-d∴22 2-3-2--2-3-5xy x xy x x xy+=(xy-3x2)-(-2xy-x2)+(-2x2-3)-(-5+xy)=xy-3x2+2xy+x2-2x2-3+5-xy=2xy-4x2+2.故答案为:2xy-4x2+2.【点评】本题考查的知识点是整式的加减,解题的关键是熟练的掌握整式的加减.20.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为______个.【答案】9n+3.【解析】∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,∴正方形和等边三角形的和=6+6=12=9+3;∵第2个图由11个正方形和10个等边三角形组成,∴正方形和等边三角形的和=11+10=21=9×2+3;∵第3个图由16个正方形和14个等边三角形组成,∴正方形和等边三角形的和=16+14=30=9×3+3,…,∴第n个图中正方形和等边三角形的个数之和=9n+3.故答案为:9n+3.【考点】规律型:图形的变化类三、解答题21.化简:(1)2m-3n+[6m-(3m-n)];(2)(2a2-1+3a)-2(a+1-a2).【答案】(1)5m-2n;(2)4a2+a-3【解析】根据整式的解法步骤即可得到答案.(1)原式=2m-3n+(6m-3m+n)=2m-3n+6m-3m+n=5m-2n.(2)原式=2a2-1+3a-2a-2+2a2=4a2+a-3.【点评】本题考查的知识点是整式的加减,解题的关键是熟练的掌握整式的加减.22.已知m,x,y满足:35(x-5)2+|m-2|=0,-3a2·b y+1与a2b3是同类项,求整式(2x2-3xy+6y2)-m(3x2-xy+9y2)的值.【答案】-158.【解析】利用非负数的性质求出x与m的值,再利用同类项定义求出y的值,原式去括号合并得到最简结果,把x 与y的值代入计算即可求出值.因为35(x-5)2+|m-2|=0,所以x=5,m=2.因为-3a2b y+1与a2b3是同类项,所以y+1=3,解得y=2.所以(2x2-3xy+6y2)-m(3x2-xy+9y2)=(2x2-3xy+6y2)-2(3x2-xy+9y2)=2x2-3xy+6y2-6x2+2xy-18y2=-4x2-xy-12y2.因为x=5,y=2,所以原式=-4×52-5×2-12×22=-158.【点评】本题考查的知识点是整式的加减—化简求值,非负数的性质:绝对值,非负数的性质:偶次方,同类项,解题的关键是熟练的掌握整式的加减—化简求值,非负数的性质:绝对值,非负数的性质:偶次方,同类项.23.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.(1)求12a+☆3;(2)若2☆x=m,1x4⎛⎫⎪⎝⎭☆3=n(其中x为有理数),试比较m,n的大小.【答案】(1)8(a+1).(2)m>n. 【解析】(1)根据☆的含义,可得即可求出(2)根据☆的含义,以及m=2☆x,n=14☆3(其中x为有理数),分别求出m、n的值各是多少;然后比较大小即可.(1)12a+☆3=12a+×32+2×12a+×3+12a+=8(a+1).(2)由题意知m=2x2+2×2x+2=2x2+4x+2,n=14x×32+2×14x×3+14x=4x,所以m-n=2x2+2>0.所以m>n.【点评】本题考查的知识点是有理数的混合运算, 有理数大小比较,解题的关键是熟练的掌握有理数的混合运算, 有理数大小比较.24.合肥百货大楼开展国庆大酬宾活动,某品牌西服每套定价2000元,领带每条定价400元.在开展促销活动期间,向客户提供两种优惠方案:①西装和领带都按定价的90%付款;②买一套西装送一条领带.现某客户要购买x套西装(x≥1),领带条数比西装套数的4倍多5.(1)若该客户分别按方案①、②购买,则各需付款多少元?(用含x的代数式表示)(2)若x=10,通过计算说明按哪种方案购买较为合算.【答案】(1)按方案①购买,需付款(3 240x+1 800)元;按方案②购买,需付款(3 200x+2 000)元.(2)当买10套西装时,按方案②购买合算.【解析】(1)①需付款为:领带价钱的90%+西装价钱的90%.②需付款为:(领带条数-x)条领带价钱+西装价钱.(2)把x=10代入(1)中的两个式子即可.(1)按方案①购买,需付款[2 000x+400(4x+5)]×90%=(3 240x+1 800)元;按方案②购买,需付款2 000x+400(3x+5)=(3 200x+2 000)元.(2)当x=10时,3 240x+1 800=3 240×10+1 800=34 200(元),3 200x+2 000=3 200×10+2 000=34 000(元),而34 000<34 200,所以当买10套西装时,按方案②购买合算.【点评】本题考查的知识点是代数式求值,列代数式,解题的关键是熟练的掌握代数式求值,列代数式.25.图中的数阵是由全体正奇数排成的.(1)图中平行四边形框内的九个数之和与中间的数有什么关系?(2)在图中任意作一个类似(1)中的平行四边形框,这九个数之和还有这种规律吗?请说出理由.这九个数之和能等于2 016吗?2 015,2 025呢?若能,请写出这九个数中最小的一个;若不能,请说出理由.【答案】(1)平行四边形框内的九个数之和是中间的数的9倍.(2)这九个数之和不能为2016;这九个数之和也不能为2015;这九个数之和能为2025,中间数为225,最小的数为207.【解析】(1)、求出各数与中间数的差值,观察发现该值成对出现,此时不难得到这九个数之和与中间数的关系了;(2)、不妨设框中间的数为n,根据(1)中各数与中间数的关系,可用n表示出各数,从而得到9个数之和与中间数的关系;由上面的结果不难得到任意作一个类似(1)的平行四边形框,框中的九个数之和都是中间的数的9倍,从而判断出2015、2016、2025中可能是这九个数之和的数.注意:数阵是由全体奇数排成!最后,根据框中的最小的数比中间的数小18,即可得到九个数中最小的一个.(1)平行四边形框内的九个数之和是中间的数的9倍.(2)任意作一个类似(1)中的平行四边形框,规律仍然成立.不妨设平行四边形框中间的数为n,则这九个数按从小到大的顺序排列依次为(n-18),(n-16),(n-14),(n-2),n,(n+2),(n+14),(n+16),(n+18).显然,其和为9n,是n的9倍.这九个数之和不能为2 016.若和为2 016,则9n=2 016,n=224,是偶数,显然不在数阵中.这九个数之和也不能为2 015.因为2 015不能被9整除.这九个数之和能为2 025,中间数为225,最小的数为225-18=207【点评】本题考查的知识点是找到日历中的数字规律.。

初中七年级数学上册第二章《整式的加减》测试卷3套含答案

初中七年级数学上册第二章《整式的加减》测试卷3套含答案

A. 2(n 2) 3
B. 2(n 1)
C. 2n 3
D. 2(n 2)
6. 3x2 4x 2 2x2 x ,括号内应填( )
A. 5x2 3x 2
B. x2 3x
C. x2 3x 2
D. x2 3x 2
7.(衢州中考)如图,边长为(m 3)的正方形纸片剪出一个边长为 m 的正方形之后剩余部分又剪拼成一个
D. (x 1) x2 2 x 1 x2 2
7.若多项式 mx2 3 x 7 2 x2 4 的化简结果不含二次项,则 m 的值为( )
A.0
B.1
C. 2
D.2
8.某商品打七折后价格为 a 元,则原价为( )
A. a 元
B. 10 a 7
C. 30%a
9.若单项式 3a b m2 2 与 1 a3bn 的和仍是单项式,则 mn 的值是(
a
2
”错抄成
“ a 2 ”,乙同学没抄错题,但他们做出的结果一样,你知道是怎么回事吗?
25.我国出租车收费标准因地而异.甲市起步价为 6 元,3 千米后每千米收费为 1.5 元;乙市起步价为 10 元, 3 千米后每千米收费为 1.2 元. (1)试问在甲、乙两市乘坐出租车 s(s>3) 千米的费用差是多少元?
18.【答案】14 3n 1
三、
19.【答案】解:原式 3a2b 1 ab2 3 ab2 a2b 2a2b 1 ab2 .
4
4
2
(2)原式 3a2 b2 3a2 6b2 5b2
20.【答案】解: x3 2x2 3x 1 2x2 3x 2 x3 2x2 3x 1 2x2 3x 2 x3 3 .
24.【答案】解:原式 3a3b3 1 a2b b 4a3b3 1 a2b b2 a3b3 1 a2b 2b2 3 b2 b 3,可知次多
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学七年级上学期第二章整式的加减测试一.选择题1.下列说法正确的是( )A. 是单项式B. πr2的系数是1C. 5a2b+ab﹣a是三次三项式D. xy2的次数是22.下列计算正确的是( )A. 6b﹣5b=1B. 2m+3m2=5m3C. ﹣2(c﹣d)=﹣2c+2dD. ﹣(a﹣b)=﹣a﹣b3.若﹣x2a y2b+5与﹣x b+5y a+1是同类项,则a、b的值分别为( )A. B. C. D.4.化简m+n﹣(n﹣m)的结果为( )A. 2m﹣2nB. ﹣2mC. 2mD. ﹣2n5.已知单项式3x m y3与4x2y n的和是单项式,则m n的值是( )A. 3B. 6C. 8D. 96.下列运算正确的是( )A. ﹣(a﹣1)=﹣a﹣1B. ﹣2(a﹣1)=﹣2a+1C. a3﹣a2=aD. ﹣5x2+3x2=﹣2x27.下列计算正确的是( )A. ﹣2﹣2=0B. 8a4﹣6a2=2a2C. 3(b﹣2a)=3b﹣2aD. ﹣32=﹣98.多项式a﹣(b﹣c)去括号的结果是( )A. a﹣b﹣cB. a+b﹣cC. a+b+cD. a﹣b+c9.下列说法正确的是( )A. 若|a|=﹣a,则a<0B. 若a<0,ab<0,则b>0C. 式子3xy2﹣4x3y+12是七次三项式D. 若a=b,m是有理数,则=10.已知一个多项式与3x2+9x的和等于5x2+4x﹣1,则这个多项式是( )A. 8x2+13x﹣1B. ﹣2x2+5x+1C. 8x2﹣5x+1D. 2x2﹣5x﹣1二.填空题11.若4x2y3+2ax2y3=4bx2y3,则3+a﹣2b=_____.12.已知a﹣3b=3,则6b+2(4﹣a)的值是_____.13.已知2x+y=﹣1,则代数式(2y+y2﹣3)﹣(y2﹣4x)的值为_____.14.有理数a,b,c在数轴上的位置如图所示,化简|b+a|﹣|b﹣c|+|a﹣c|的结果是_____.15.若﹣7x m y4与2x9y n是同类项,则|m﹣n|=_____.16.如图所示,点A、点B、点C分别表示有理数a、b、c,O为原点,化简:|a﹣c|﹣|b﹣c|=_____.三.解答题17.嘉淇准备完成题目:化简:(x2+6x+8)-(6x+5x2+2)发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?18.先化简下式,再求值:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x=,y=﹣1.19.已知代数式A=2x2+5xy﹣7y﹣3,B=x2﹣xy+2.(1)求3A﹣(2A+3B)的值;(2)若A﹣2B的值与x的取值无关,求y的值.20.大刚计算“一个整式A减去2ab﹣3bc+4ac”时,误把“减去”算成“加上”,得到的结果是2bc+ac﹣2ab.请你帮他求出正确答案.21.先化简,再求值:5a2+3b2+2(a2﹣b2)﹣(5a2+3b2),其中a为最大的负整数,b为2的倒数.22.化简:2(3a2+4a﹣2)﹣(4a2﹣3a)23.先化简,后求值:,其中x在数轴上的对应点到原点的距离为个单位长度.答案与解析一.选择题1.下列说法正确的是( )A. 是单项式B. πr2的系数是1C. 5a2b+ab﹣a是三次三项式D. xy2的次数是2【答案】C【解析】【分析】根据单项式的概念、多项式的概念分别判断即可.【详解】A.分母含有字母x,不是单项式,此选项错误;B.πr2的系数是π,不是1,此选项错误;C.5a2b+ab﹣a是三次三项式,此选项正确;D.xy2的次数是3,不是2,此选项错误.故选C.【点睛】本题主要考查了单项式、多项式的概念,需要注意的是π不是字母,是常数.2.下列计算正确的是( )A. 6b﹣5b=1B. 2m+3m2=5m3C. ﹣2(c﹣d)=﹣2c+2dD. ﹣(a﹣b)=﹣a﹣b【答案】C【解析】【分析】根据去括号法则以及合并同类项法则一一判断即可.【详解】A.6b-5b=b,故此选项错误;B.2m与3m2不是同类项,不能合并,故此选项错误;C.-2(c-d)=-2c+2d,故此选项正确;D.-(a-b)=-a+b,故此选项错误,故选:C.【点睛】考查去括号法则以及合并同类项法则,掌握法则是解题的关键.3.若﹣x2a y2b+5与﹣x b+5y a+1是同类项,则a、b的值分别为( )A. B. C. D.【答案】A【解析】【分析】由同类项的定义列出关于a、b的二元一次方程组,解方程组即可求得a、b的值. 【详解】由同类项的定义可得:,解得:.故选A.【点睛】本题主要考查同类项的概念以及二元一次方程组的解法.4.化简m+n﹣(n﹣m)的结果为( )A. 2m﹣2nB. ﹣2mC. 2mD. ﹣2n【答案】C【解析】【分析】原式去括号合并即可得到结果.【详解】解:原式=m+n-n+m=2m,故选:C.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.5.已知单项式3x m y3与4x2y n的和是单项式,则m n的值是( )A. 3B. 6C. 8D. 9【答案】C【解析】【分析】由同类项的定义可以求出m、n的值,再进行幂的运算即可.【详解】由题意可得3x m y3与4x2y n为同类项,∴,∴m n=23=8.故选C.【点睛】两项之和为单项式,那么这两项必为同类项,本题关键在于利用这个知识点解题.6.下列运算正确的是( )A. ﹣(a﹣1)=﹣a﹣1B. ﹣2(a﹣1)=﹣2a+1C. a3﹣a2=aD. ﹣5x2+3x2=﹣2x2【答案】D【解析】【分析】本题主要利用整式的加减运算法则依次进行判断.【详解】A.﹣(a﹣1)=﹣a+1,此选项错误;B.﹣2(a﹣1)=﹣(2a﹣2)=﹣2a+2,此选项错误;C.a3﹣a2≠a,此选项错误;D.﹣5x2+3x2=﹣2x2,此选项正确.故选D.【点睛】本题主要考查整式的加减运算法则:(1)有括号,先去括号;(2)有同类项,再合并同类项. 还需注意的是如果括号前面是减号,那么括号里面的加减号要变号.7.下列计算正确的是( )A. ﹣2﹣2=0B. 8a4﹣6a2=2a2C. 3(b﹣2a)=3b﹣2aD. ﹣32=﹣9【答案】D【解析】【分析】本题主要利用整式的加减运算法则依次进行判断.【详解】A.﹣2﹣2=﹣4,此选项错误;B.8a4﹣6a2≠2a2,8a4与6a2不是同类项,不能进行合并同类项运算;C.由乘法分配律可得3(b﹣2a)=3b﹣6a,此选项错误;D.﹣32=﹣9,此选项正确.故选D.【点睛】本题主要考查整式的加减运算,乘法分配律的运用以及幂的运算.8.多项式a﹣(b﹣c)去括号的结果是( )A. a﹣b﹣cB. a+b﹣cC. a+b+cD. a﹣b+c【答案】D【解析】【分析】根据去括号规律:括号前是“-”号,去括号后时连同它前面的“-”号一起去掉,括号内各项都要变号可得答案.【详解】a-(b﹣c)=a﹣b+c.【点睛】本题考查了去括号,掌握去括号时符号改变规律是解决此题的关键.9.下列说法正确的是( )A. 若|a|=﹣a,则a<0B. 若a<0,ab<0,则b>0C. 式子3xy2﹣4x3y+12是七次三项式D. 若a=b,m是有理数,则=【答案】B【解析】【分析】根据绝对值的性质,有理数的乘法法则,多项式中次数最高的项的次数叫做多项式的次数,等式性质进行分析即可.【详解】A、若|a|=-a,则a≤0,故原题说法错误;B、若a<0,ab<0,则b>0,故原题说法正确;C、式子3xy2-4x3y+12是四次三项式,故原题说法错误;D、若a=b,m是不为0有理数,则,故原题说法错误.故选B.【点睛】此题主要考查了多项式、绝对值、有理数的乘法和等式的性质,关键是掌握各知识点.10.已知一个多项式与3x2+9x的和等于5x2+4x﹣1,则这个多项式是( )A. 8x2+13x﹣1B. ﹣2x2+5x+1C. 8x2﹣5x+1D. 2x2﹣5x﹣1【答案】D【解析】【分析】列出式子,再运用整式的加减运算法则计算出结果即可.【详解】5x2+4x﹣1﹣(3x2+9x)=5x2+4x﹣1﹣3x2﹣9x=2x2﹣5x﹣1.故选D.【点睛】本题主要考查整式的加减运算法则,需注意的是去括号的时候要考虑符号的变更.二.填空题11.若4x2y3+2ax2y3=4bx2y3,则3+a﹣2b=_____.【答案】1【解析】【分析】合并同类项可得:4x2y3+2ax2y3=(4+2a)x2y3,进而得出4+2a=4b,整理得a-2b=﹣2,将a﹣2b整体代入要求的式子计算出结果即可.【详解】∵4x2y3+2ax2y3=(4+2a)x2y3=4bx2y3,∴4+2a=4b,∴2a﹣4b=﹣4,∴a﹣2b=﹣2,∴3+a﹣2b=3﹣2=1.故答案为1.【点睛】本题主要考查整式的加减运算法则以及整体代入的思想.12.已知a﹣3b=3,则6b+2(4﹣a)的值是_____.【答案】2【解析】【分析】把所求的式子去括号后,进行整理,然后将a-3b作为一个整体代入进行求值即可.【详解】∵a-3b=3,∴-2(a-3b)=-6,∴6b+2(4-a)=6b+8-2a=-2(a-3b)+8=-6+8=2,故答案为:2.【点睛】本题考查了代数式的求值,利用了“整体代入法”求代数式的值.13.已知2x+y=﹣1,则代数式(2y+y2﹣3)﹣(y2﹣4x)的值为_____.【答案】-5【解析】试题解析:原式当2x+y=−1时,原式=−2−3=−5.故答案为:−5.点睛:原式去括号合并得到最简结果,把已知等式代入计算即可求出值.14.有理数a,b,c在数轴上的位置如图所示,化简|b+a|﹣|b﹣c|+|a﹣c|的结果是_____.【答案】-2b【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】根据题意得:c<a<0<b,且|b|<|a|<|c|,∴b+a<0,b-c>0,a-c>0,则原式=-b-a-b+c+a-c=-2b,故答案为:-2b【点睛】此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.15.若﹣7x m y4与2x9y n是同类项,则|m﹣n|=_____.【答案】5【解析】【分析】由同类项的定义分别求出m、n的值,再计算出|m﹣n|即可.【详解】由同类项的定义可得,∴|m﹣n|=|9﹣4|=5.故答案为5.【点睛】本题主要考查同类项的定义以及绝对值的计算.16.如图所示,点A、点B、点C分别表示有理数a、b、c,O为原点,化简:|a﹣c|﹣|b﹣c|=_____.【答案】2c-a-b【解析】试题分析:根据数轴可得:a<c<0<b,所以a-c<0,b-c>0,所以│a-c│-│b-c│=c-a-(b-c)= c-a-b+c=2c-a -b.考点:数轴、绝对值、有理数的大小比较.三.解答题17.嘉淇准备完成题目:化简:(x2+6x+8)-(6x+5x2+2)发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?【答案】(1)﹣2x2+6;(2)5;【解析】【分析】(1)由题意可先去括号,再合并同类项计算即可;(2)设“”是a,代入原式得到(a﹣5)x2+6,再根据“该题标准答案的结果是常数”,即可解答.【详解】(1)(3x2+6x+8)﹣(6x+5x2+2)=3x2+6x+8﹣6x﹣5x2﹣2=﹣2x2+6;(2)设“”是a,则原式=(ax2+6x+8)﹣(6x+5x2+2)=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案的结果是常数,∴a﹣5=0,解得:a=5.【点睛】本题考查了整式的加减,解题的关键是掌握合并同类项及去括号法则.18.先化简下式,再求值:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x=,y=﹣1.【答案】x2﹣2y2;﹣1【解析】试题分析:根据整式的加减法则,先去括号,然后合并同类项,化简后再代入求值即可. 试题解析:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2)=2x2+x2﹣2xy+2y2﹣2x2+2xy﹣4y2=x2﹣2y2,当x=,y=﹣1时,原式=﹣2=﹣1.19.已知代数式A=2x2+5xy﹣7y﹣3,B=x2﹣xy+2.(1)求3A﹣(2A+3B)的值;(2)若A﹣2B的值与x的取值无关,求y的值.【答案】(1)﹣x2+8xy﹣7y﹣9;(2)y=0【解析】【分析】(1)根据整式的运算法则即可求出答案.(2)根据题意将A-2B化简,然后令含x的项的系数为0即可求出y的值.【详解】(1)3A﹣(2A+3B)=3A﹣2A﹣3B=A﹣3B∵A=2x2+5xy﹣7y﹣3,B=x2﹣xy+2∴A﹣3B=(2x2+5xy﹣7y﹣3)﹣3(x2﹣xy+2)=2x2+5xy﹣7y﹣3﹣3x2+3xy﹣6=﹣x2+8xy﹣7y﹣9(2)A﹣2B=(2x2+5xy﹣7y﹣3)﹣2(x2﹣xy+2)=7xy﹣7y﹣7∵A﹣2B的值与x的取值无关∴7y=0,∴y=0【点睛】考查整式的运算法则,解题的关键是熟练运用整式的运算法则.20.大刚计算“一个整式A减去2ab﹣3bc+4ac”时,误把“减去”算成“加上”,得到的结果是2bc+ac﹣2ab.请你帮他求出正确答案.【答案】8bc﹣7ac﹣6ab;【解析】【分析】根据题意可知A=2bc+ac–2ab–(2ab–3bc+4ac),求出A后再计算A–(2ab–3bc+4ac)即可得正确答案.【详解】由题意可知:A+(2ab–3bc+4ac)=2bc+ac–2ab,A=2bc+ac–2ab–(2ab–3bc+4ac)=2bc+ac–2ab–2ab+3bc–4ac=5bc–3ac–4ab,∴A–(2ab–3bc+4ac)=5bc–3ac–4ab–2ab+3bc–4ac=8bc–7ac–6ab.【点睛】本题考查了整式的加减,熟练掌握去括号法则以及合并同类项法则是解题的关键.21.先化简,再求值:5a2+3b2+2(a2﹣b2)﹣(5a2+3b2),其中a为最大的负整数,b为2的倒数.【答案】【解析】【分析】首先利用乘法分配律将2(a2﹣b2)化为2 a2-2b2,再利用整式的加减运算法则进行化简,由a为最大的负整数可得a=﹣1,由b为2的倒数可得b=,将a、b的值分别代入化简后的式子计算出结果即可.【详解】原式=5a2+3b2+2a2﹣2b2﹣5a2﹣3b2=2a2-2b2,∵a为最大的负整数,b为2的倒数,∴a=﹣1,b=,∴原式=2×(﹣1)2﹣2×()2=2﹣=.【点睛】本题主要考查整式的加减运算法则、负整数、倒数的概念,熟练掌握整式的运算法则是关键.22.化简:2(3a2+4a﹣2)﹣(4a2﹣3a)【答案】2a2+11a﹣4.【解析】【分析】先由乘法分配律以及去括号法则去括号,然后再合并同类项即可.【详解】原式=6a2+8a-4-4a2+3a=2a2+11a﹣4.【点睛】本题主要考查整式的加减运算法则,需注意的是如果括号前面是减号,那么括号里面的加减号要变号.23.先化简,后求值:,其中x在数轴上的对应点到原点的距离为个单位长度.【答案】【解析】先去括号,再合并,根据题意可知x有两个值,然后分别把x的值代入化简后的式子计算即可.解:原式=﹣x3+x﹣2﹣x+1=﹣x3﹣1,又∵x到原点的距离为个单位长度,∴x=±,当x=时,原式=﹣﹣1=﹣;当x=﹣时,原式=﹣1=.。

相关文档
最新文档